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A B S T R A C T

The present paper is concerned with the existence of solitary wave solutions of Rosenau-
type equations. By using two standard theories, Normal Form Theory and Concentration-
Compactness Theory, some results of existence of solitary waves of three different forms are
derived. The results depend on some conditions on the speed of the waves with respect to
the parameters of the equations. They are discussed for several families of Rosenau equations
present in the literature. The analysis is illustrated with a numerical study of generation
of approximate solitary-wave profiles from a numerical procedure based on the Petviashvili
iteration.

. Introduction

In this study, we consider Rosenau-type equations of the form

𝑢𝑡 + 𝜖𝑢𝑥 + 𝛼𝑢𝑥𝑥𝑡 + 𝜂𝑢𝑥𝑥𝑥 + 𝛽𝑢𝑥𝑥𝑥𝑥𝑡 + 𝛾𝑢𝑥𝑥𝑥𝑥𝑥 + (𝑔(𝑢))𝑥 = 0, (1.1)

here 𝛼, 𝛽, 𝛾, 𝜖, 𝜂 ∈ R and 𝑔 is a smooth nonlinear function satisfying one of these two conditions:

(P1) 𝑔 = 𝑔(𝑢, 𝑢′, 𝑢′′, 𝑢′′′) and its Taylor series vanishes at the origin along with its first derivatives, and the dependence of 𝑔 on 𝑢′
and 𝑢′′′ occurs as sums of even-order products of these two variables, [1].

(P2) 𝑔 = 𝑔(𝑢) is a pure function of 𝑢, with no dependence on the derivatives.

ome particular cases of (1.1), present in the literature and that will be analyzed below, are:

• The Rosenau equation ([2–4] and references therein) corresponds to 𝜖 = 𝛽 = 1, 𝛼 = 𝜂 = 𝛾 = 0, and the cases of 𝑔:

– Classical: 𝑔(𝑢) = 𝑢2∕2.
– Single power: 𝑔(𝑢) = 𝑢𝑝+1

𝑝+1 , 𝑝 ≥ 1.

– Cubic-quintic, [5]: 𝑔(𝑢) = 𝑢3

3 + 𝑟
5 𝑢

5, with 𝑟 constant.

• The Rosenau-RLW equation ([6,7] and references therein) corresponds to 𝜂 = 𝛾 = 0, 𝜖, 𝛽 > 0, 𝛼 ∈ R and 𝑔 quadratic, say
𝑔(𝑢) = 𝑢2∕2. It may be generalized to a single power 𝑔(𝑢) = 𝑢𝑝+1

𝑝+1 , 𝑝 ≥ 1.
• The Rosenau-KdV equation ([7–9] and references therein) corresponds to taking 𝛼 = 𝛾 = 0, 𝜖, 𝛽 > 0, 𝜂 ∈ R and 𝑔 quadratic or,

in general, 𝑔(𝑢) = 𝑢𝑝+1

𝑝+1 , 𝑝 ≥ 1.
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• The Rosenau–Kawahara equation ([8,10] and references therein) corresponds to 𝛼 = 0, 𝜖, 𝛽 > 0, 𝛾 ∈ R (with 𝛾 = −1 in [8]) and
𝑔(𝑢) = 𝑢𝑝+1

𝑝+1 , 𝑝 ≥ 1, [10] (with 𝑝 = 1 in [8]).
• The Rosenau-RLW-Kawahara equation ([11,12] and references therein) corresponds to 𝜖 = 2𝑘 > 0, 𝛼 = −𝜇, 𝜂 ∈ R, 𝛽 > 0,

and, [12]

𝑔(𝑢) = 𝐴𝑢2

2
+ 𝐵 𝑢𝑚+1

𝑚 + 1
+ 𝑠

(

𝑢2𝑥
2

+ 𝑢𝑢𝑥𝑥

)

, 𝐴, 𝐵, 𝑠 ∈ R.

(Other cases in [11] may not satisfy (P1).)

he literature on the previous families of Rosenau-type equations, sketched above, is now described in more detail. The Rosenau
quation was originally derived in [2] to study the dynamics of dense discrete lattices. Some mathematical properties of the equation
ith different types of nonlinearities are studied in [3–5]. They concern well-posedness of the initial-value problem (ivp), Lie

ymmetries, exact periodic traveling wave solutions (of cnoidal type), as well as the numerical generation of solitary wave solutions
nd computational study of their dynamics. In [13], the Concentration-Compactness theory of [14] is applied to study the existence
f solitary wave solutions of equations of BBM type which include the Rosenau equation. This is mentioned by the authors in [5] as
tarting point of their numerical investigation of the waves with the Petviashvili iteration, [15]. The orbital stability, [16] of solitary
ave solutions of the Rosenau-RLW equation (whose existence is assumed as critical points of the energy subject to constant charge)

s investigated in [7]. Some references are concerned with the derivation of exact solitary wave solutions for particular values of
he speed. This is the case of [8,9] for the Rosenau-RLW, Rosenau-KdV equations and generalized versions, [8,10] for the Rosenau–
awahara equation, and [11] for the Rosenau-RLW-Kawahara equation, among others. The numerical treatment of the equations

s mainly based on finite differences, [10,11,17], finite element methods, ([18] and references therein), and Fourier pseudospectral
iscretizations in space with an explicit, fourth-order Runge–Kutta time integrator for the Rosenau equation in [4].

The main contributions of the present paper are concerned with the existence of solitary wave solutions of (1.1), focused on three
ypes: Classical Solitary Waves (CSW), with monotone and nonmonotone decay, and Generalized Solitary Waves (GSW). To this end,
ome mathematical properties of (1.1) are described in Section 2. They include well-posedness of the ivp, conserved quantities and
amiltonian formulation. This section is completed with the description of the problem of searching for solitary wave solutions.
he problem is then analized in the following two sections using two classical theories. In Section 3 we study the existence with
he Normal Form Theory (NFT), [19,20], which is used to identify solitary-wave structures as homoclinic orbits of the solitary wave
roblem considered as a dynamical system. Our study will be based on different approaches, [1,21,22], and will be applied to the
amilies of Rosenau-type equations mentioned above. This includes a discussion, for each family, on the range of values of the speed
nd depending on the parameters of the equations, required for the existence results. The existence of the three types of waves will
e illustrated here with a computational study of generation of approximate profiles. This will be done by solving numerically
he fourth-order differential equation satisfied by the solitary-wave profiles. The numerical procedure consists of discretizing the
eriodic, ivp on a long enough interval with a Fourier collocation method and solving iteratively the resulting algebraic system for
he discrete Fourier coefficients of the approximation with Petviashvili-type methods, [15,23–25]. From the numerical experiments
ome additional properties of the waves, such as the asymptotic decay and the speed–amplitude relation, are explored.

A different point of view is taken in Section 4, where the existence of CSW’s is analyzed from the Concentration-Compactness
heory (CCT) of Lions, [14]. In this case, the CSW’s are found as minimizers of a constrained variational problem. Compared to the
tudy performed in [13] for BBM-type equations, our approach consists of the analysis of different minimization problems, more
elated to other applications of the theory, cf. e.g. [26–28]. We will make a general assumption on a key property of coercivity of
he functional to be minimized, that will be characterized in terms of the speed of the wave. The study of this condition for each
f the families of Rosenau equations introduced above will lead us to the corresponding, specific conditions on the speed in order
o ensure the existence. We will also prove that the results obtained are extensions of some derived from the NFT, in the sense that
he conditions for the speed are similar but do not impose restrictions on the proximity to limiting values, that are required by the
ocal character of the NFT. The numerical procedure will be used again to illustrate the generation of some approximate profiles in
his case; all were shown to be nonmonotone. The paper will be closed with a section of concluding remarks. The interested reader
s referred to the extended version [29] for more detailed explanations and computations.

Throughout the paper, 𝐶 will denote a generic constant, that may depend on the corresponding parameters involved in the
context.

2. Some mathematical properties of the rosenau equations

In this section, some mathematical properties of (1.1), that will be used in the paper, are collected. In order to delimit the
‘admissible’ Eq. (1.1) from a modeling point of view, a first step would be the study of linear well-posedness of the ivp in 𝐿2,
meaning, as usual, existence and uniqueness of solutions and continuous dependence on the initial data. If

𝑓 (𝑘) = ∫R
𝑓 (𝑥)𝑒−𝑖𝑘𝑥𝑑𝑥, 𝑘 ∈ R,

enotes the Fourier transform of 𝑓 ∈ 𝐿2, we consider the ivp of the linearized equation
2

𝑢𝑡 + 𝜖𝑢𝑥 + 𝛼𝑢𝑥𝑥𝑡 + 𝜂𝑢𝑥𝑥𝑥 + 𝛽𝑢𝑥𝑥𝑥𝑥𝑡 + 𝛾𝑢𝑥𝑥𝑥𝑥𝑥 = 0, (2.1)
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𝑢(𝑥, 0) = 𝑢0(𝑥), 𝑥 ∈ R, 𝑡 > 0,

in Fourier space (with respect to 𝑥) to have
𝑑
𝑑𝑡

�̂�(𝑘, 𝑡) + 𝑖𝑘𝑙(𝑘)�̂�(𝑘, 𝑡) = 0, 𝑘 ∈ R, 𝑡 > 0, (2.2)

�̂�(𝑘, 0) = 𝑢0(𝑘),

here

𝑙(𝑘) =
𝜖 − 𝜂𝑘2 + 𝛾𝑘4

1 − 𝛼𝑘2 + 𝛽𝑘4
.

The solution of (2.2) is

�̂�(𝑘, 𝑡) = 𝑒−𝑖𝑘𝑙(𝑘)𝑡𝑢0(𝑘), 𝑘 ∈ R, 𝑡 > 0.

Then, well-posedness of (2.1) holds if 𝑚(𝑘, 𝑡) = 𝑒−𝑖𝑘𝑙(𝑘)𝑡 is bounded in finite intervals of 𝑡. It looks clear that this happens when the
denominator of 𝑙(𝑘) has no zeros on 𝑘 ∈ R. If we consider the polynomial

𝑃 (𝑥) = 1 − 𝛼𝑥 + 𝛽𝑥2, 𝑥 ≥ 0,

then linear well-posedness requires

𝛼2 < 4𝛽. (2.3)

Condition (2.3) will be assumed throughout the paper. In particular, (2.3) implies 𝛽 > 0. (Note that the case 𝛼 = 𝛽 = 0 corresponds to
the Kawahara or fifth-order KdV equation, [27,30,31].) We will also assume 𝜖 > 0, as in all the literature on Rosenau-type equations
that we are aware of.

On the other hand, local well-posedness results of the full nonlinear problem (1.1) with suitable nonlinear terms can be derived
from several approaches, [32,33]. In what follows, for 𝑠 ∈ R, 𝐻𝑠 = 𝐻𝑠(R) will be the 𝐿2-based Sobolev space over R, with norm
denoted by ‖ ⋅ ‖𝑠, and for 𝑇 > 0, 𝑋𝑠 = 𝐶(0, 𝑇 ,𝐻𝑠) will stand for the space of continuous functions 𝑢 ∶ [0, 𝑇 ] → 𝐻𝑠 with norm

||𝑢|𝑋𝑠 = max
0≤𝑡≤𝑇

‖𝑢(𝑡)‖𝑠.

Theorem 2.1. Let 𝑠 ≥ 0. Assume that 𝜖 > 0, that (2.3) holds, and that 𝑔 in (1.1) is locally Lipschitz in 𝐻𝑠 with 𝑔(0) = 0. Let 𝑢0 ∈ 𝐻𝑠.
Then there exists 𝑇 > 0 and a unique solution 𝑢 ∈ 𝑋𝑠 of (1.1) with initial condition 𝑢0.

Proof. We write (1.1) in the form
𝑑𝑢
𝑑𝑡

+ 𝑢 = (𝑢), (2.4)

here  is the linear operator with Fourier symbol 𝑖𝑘𝑙(𝑘), 𝑘 ∈ R, and

(𝑢) = −𝑀−1𝜕𝑥𝑔(𝑢),

here 𝑀 is given by

𝑀 = 1 + 𝛼𝜕2𝑥 + 𝛽𝜕4𝑥, (2.5)

hich, from (2.3), is invertible. From Duhamel formula, the solution of (2.4) can be written as

𝑢 = (𝑡)𝑢0 + ∫

𝑡

0
(𝑡 − 𝜏)(𝑢)𝑑𝜏,

where (𝑡) denotes the group generated by . We consider the mapping �̃� ↦ 𝑢 with

𝑢 = (𝑡)𝑢0 + ∫

𝑡

0
(𝑡 − 𝜏)(�̃�)𝑑𝜏. (2.6)

ote that due (2.3), (𝑡) is a unitary group on 𝐻𝑠. On the other hand, let 𝑇 ,𝑅 > 0 and �̃�1, �̃�2 be in a closed ball of radius 𝑅 centered
t 0 in 𝑋𝑠. Since 𝑔 is locally Lipschitz and from the arguments used in e.g. [33], we may find 𝐶 = 𝐶(𝑅) > 0 such that

‖(�̃�1)(𝜏) − (�̃�2)(𝜏)‖𝑋𝑠 ≤ 𝐶‖�̃�1(𝜏) − �̃�2(𝜏)‖𝑋𝑠 , (2.7)

for any 0 ≤ 𝜏 ≤ 𝑇 . Then, (2.7) and the hypothesis 𝑔(0) = 0 imply the existence of some small enough 𝑇 > 0 such that (2.6) is a
contraction of the closed ball into itself. The result follows from the application of the Contraction Mapping Theorem. □

Some additional properties of (1.1) with 𝑔 satisfying (P1) or (P2), can also be mentioned. Note first that in the case of (P2) and
if 𝐺′(𝑢) = 𝑔(𝑢), then (1.1) admits

𝑉 (𝑢) = 1 (𝑢2 − 𝛼𝑢2 + 𝛽𝑢2 )𝑑𝑥,
3

2 ∫R 𝑥 𝑥𝑥
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as an invariant in time quantity by smooth enough solutions 𝑢 which decay, along with its derivatives in space up to second order,
to zero as |𝑥| → ∞. Furthermore, if (2.3) holds, then (1.1) admits a Hamiltonian structure

𝑢𝑡 =  𝛿𝐻(𝑢),

ith  = −𝜕𝑥𝑀−1, 𝑀 as in (2.5), and the Hamiltonian function given by

𝐻(𝑢) = ∫R

( 1
2
(

𝜖𝑢2 − 𝜂𝑢2𝑥 + 𝛾𝑢2𝑥𝑥
)

+ 𝐺(𝑢)
)

𝑑𝑥.

The present paper is focused on the existence of solitary wave solutions. Solitary wave solutions of Eq. (1.1) are smooth functions
𝑢 of the form 𝑢(𝑥, 𝑡) = 𝜑(𝑋) where 𝑋 = 𝑥 − 𝑐𝑠𝑡, 𝑐𝑠 ≠ 0 and where 𝜑 satisfies

(𝛾 − 𝛽𝑐𝑠)𝜑′′′′′ + (𝜂 − 𝛼𝑐𝑠)𝜑′′′ + (𝜖 − 𝑐𝑠)𝜑′ + [𝑔(𝜑)]′ = 0. (2.8)

ere ′ denotes the derivative with respect to 𝑋. Integrating Eq. (2.8) and assuming that 𝜑 and derivatives vanish as |𝑋| → ∞ then

(𝛾 − 𝛽𝑐𝑠)𝜑′′′′ + (𝜂 − 𝛼𝑐𝑠)𝜑′′ + (𝜖 − 𝑐𝑠)𝜑 + 𝑔(𝜑) = 0. (2.9)

ssuming that 𝛾 − 𝛽𝑐𝑠 ≠ 0, then (2.9) can be alternatively written as

𝜑′′′′ − 𝑏𝜑′′ + 𝑎𝜑 = 𝑓 (𝜑), (2.10)

here 𝑓 = 𝑔∕(𝛽𝑐𝑠 − 𝛾) and

𝑎 = 𝑎(𝑐𝑠) =
𝑐𝑠 − 𝜖
𝛽𝑐𝑠 − 𝛾

, 𝑏 = 𝑏(𝑐𝑠) =
𝛼𝑐𝑠 − 𝜂
𝛾 − 𝛽𝑐𝑠

. (2.11)

In what follows we will make a general study of existence of solutions of (2.9). Under the assumption that 𝜑 → 0 as |𝑋| → ∞,
the corresponding solution will be called Classical Solitary Wave (CSW). However, we may consider other solutions of (2.9), with
a different asymptotic behavior, and our study will also consider two types of them: Generalized Solitary Waves (GSW), [34–36],
and Periodic Traveling Waves (PTW), [37].

3. Existence of solitary wave solutions via normal form theory

One of the approaches, considered here, to study the existence of the solutions for (2.10), [1,38–40], is based on the application
of the Normal Form Theory to the equivalent first-order differential system for 𝑈 = (𝑈1, 𝑈2, 𝑈3, 𝑈4)𝑇 ∶= (𝜑,𝜑′, 𝜑′′, 𝜑′′′), given by

𝑈 ′ = 𝑉 (𝑈, 𝑐𝑠) ∶= 𝐿(𝑐𝑠)𝑈 + 𝑅(𝑈, 𝑐𝑠), (3.1)

here

𝐿(𝑐𝑠) =

⎛

⎜

⎜

⎜

⎜

⎝

0 1 0 0
0 0 1 0
0 0 0 1

𝜖 − 𝑐𝑠
𝛽𝑐𝑠 − 𝛾

0
𝛼𝑐𝑠 − 𝜂
𝛾 − 𝛽𝑐𝑠

0

⎞

⎟

⎟

⎟

⎟

⎠

, 𝑅(𝑈, 𝑐𝑠) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0
0
0

𝑔(𝑈 )
𝛽𝑐𝑠 − 𝛾

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (3.2)

he system (3.1), (3.2) admits the solution 𝑈 = 0 if 𝑔(0) = 0. We also assume that 𝑔′(𝑈 ) = 0 so that 𝜕𝑈𝑅(0) = 0. Furthermore, note
that if 𝑔 satisfies (P1) then (2.10) is reversible under the transformation

𝑡 ↦ −𝑡

(𝜑,𝜑′, 𝜑′′, 𝜑′′′)𝑇 ↦ (𝜑,−𝜑′, 𝜑′′,−𝜑′′′)𝑇 , (3.3)

Then, for 𝑔 satisfying (P1) or (P2), the vector field 𝑉 is reversible, in the sense that for all 𝑈, 𝑐𝑠

𝑆𝑉 (𝑈, 𝑐𝑠) = −𝑉 (𝑆𝑈, 𝑐𝑠), 𝑆 = diag(1,−1, 1,−1). (3.4)

In order to study the homoclinic solutions of (2.10), we first consider the linearization of (3.1), (3.2) at the equilibrium point
𝑈 = 0 yields to the linear system 𝑈 ′ = 𝐿𝑈 . The characteristic equation is indeed

𝜆4 − 𝑏𝜆2 + 𝑎 = 0, (3.5)

where 𝑎 = 𝑎(𝑐𝑠), 𝑏 = 𝑏(𝑐𝑠) are given by (2.11). The distribution of the roots of (3.5) in the (𝑏, 𝑎)-plane, given in Fig. 1, reproduces the
rguments of [1]. Thus the linearized dynamics is determined by the four regions 1 to 4, separated by the bifurcation curves

0(𝑐𝑠) = {(𝑏, 𝑎)|𝑎 = 0, 𝑏 > 0} = {𝑐𝑠 = 𝜖,
𝛼𝑐𝑠 − 𝜂
𝛾 − 𝛽𝑐𝑠

> 0},

1(𝑐𝑠) = {(𝑏, 𝑎)|𝑎 = 0, 𝑏 < 0} = {𝑐𝑠 = 𝜖,
𝛼𝑐𝑠 − 𝜂
𝛾 − 𝛽𝑐𝑠

< 0},

2(𝑐𝑠) = {(𝑏, 𝑎)|𝑎 > 0, 𝑏 = −2
√

𝑎}

= {
𝑐𝑠 − 𝜖

> 0,
𝛼𝑐𝑠 − 𝜂

= −2
√

𝑐𝑠 − 𝜖
},
4

𝛽𝑐𝑠 − 𝛾 𝛾 − 𝛽𝑐𝑠 𝛽𝑐𝑠 − 𝛾
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Fig. 1. Linearization at the origin of (3.1) (as in Figure 1 of [1]): Regions 1 to 4 in the (𝑏, 𝑎)-plane, delimited by the bifurcation curves C0 to C3, and schematic
representation of the position in the complex plane of the roots of (3.5) for each curve and region. (Dot: simple root, larger dot: double root.).

3(𝑐𝑠) = {(𝑏, 𝑎)|𝑎 > 0, 𝑏 = 2
√

𝑎}

= {
𝑐𝑠 − 𝜖
𝛽𝑐𝑠 − 𝛾

> 0,
𝛼𝑐𝑠 − 𝜂
𝛾 − 𝛽𝑐𝑠

= 2
√

𝑐𝑠 − 𝜖
𝛽𝑐𝑠 − 𝛾

}.

In terms of the spectrum of 𝐿(𝑐𝑠), C0 is characterized by the presence of two zero eigenvalues and other two, nonzero and real;
in C1, there are two zero eigenvalues and other two, imaginary; in C2, the spectrum consists of a double complex conjugate pair
of imaginary eigenvalues ±𝑖

√

𝑏∕2, while in C3 we have two double real eigenvalues ±
√

𝑏∕2. The four curves meet at the origin
(𝑏, 𝑎) = (0, 0), where 𝐿(𝑐𝑠) has only the zero eigenvalue with geometric multiplicity equals one, cf. Fig. 1.

The theory of normal forms consists of finding a change of variables to transform, locally near the equilibrium, the system
into a simpler one (the normal form) up to some fixed order and from which the dynamics of the original is better analyzed. The
local transformation is polynomial and can be computed from the resolution of a sequence of linear problems. The dynamics of
the resulting normal form is determined by the linear part. The theory, first introduced by Poincaré and Birkhoff, was developed
by Arnold, [41], and has many applications, see e.g. [19] and references therein. Its particular use to determine the existence of
solitary wave solutions is also widely considered in the literature (cf. e.g. [1,28,38–40] and references therein). On the other hand,
the search for solitary waves as homoclinic trajectories sometimes requires the introduction of bifurcation parameters in order to
analyze the emergence of structures via the bifurcation theory and the application of the corresponding version of the normal form
theorem. In addition, of particular relevance is the influence of symmetries and reversible transformations, which are inherited by
the normal form, see [19] for details.

One of the applications of the normal form concerns the analysis of the systems obtained from a center manifold reduction. For
the case at hand, we will consider the approach developed in [22], based on determining a normal form of the reversible vector
field given by (3.1), (3.2) in a general way and then discussing its principal part near the bifurcation curves 𝑗 , 𝑗 = 0, 1, 2, with
specific bifurcation parameter 𝜇 for each curve. The case of 3 will be explored computationally will the help of the references,
cf. [1,39,42,43]. The conclusions will be illustrated by their application to several types of Rosenau equations.

The corresponding normal form theorem (cf. e.g. [19]) establishes, in the case of (3.1), (3.2) and for any positive integer 𝑚 ≥ 2,
the existence of neighborhoods 𝑉1 of 𝑈 = 0 and 𝑉2 of 𝜇 = 0 such that for any 𝜇 ∈ 𝑉2 there is a polynomial 𝛷(𝜇, ⋅) ∶ R4 → R4 of
degree 𝑚 satisfying:

(i) The coefficients of 𝛷 are smooth functions of 𝜇 and

𝛷(0, 0) = 0, 𝜕𝑈𝛷(0, 0) = 0.

(ii) For 𝑉 ∈ 𝑉1, the change of variable

𝑈 = 𝑉 +𝛷(𝜇, 𝑉 ),

transforms (3.1) into the normal form

𝑉 ′ = 𝐿𝑉 +𝑁(𝜇, 𝑉 ) + 𝜌(𝜇, 𝑉 ),

where

(a) For any 𝜇 ∈ 𝑉2, 𝑁(𝜇, ⋅) ∶ R4 → R4 is a polynomial of degree 𝑚, with coefficients which are smooth functions of 𝜇 and
𝑁(0, 0) = 𝜕𝑉 𝑁(0, 0) = 0.

(b) The equality

𝑁(𝜇, 𝑒𝑡𝐿
∗
𝑉 ) = 𝑒𝑡𝐿

∗
𝑁(𝜇, 𝑉 ),
5
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holds for all (𝑡, 𝑉 ) ∈ R×R4 and 𝜇 ∈ 𝑉2, and where 𝐿∗ denotes the adjoint of 𝐿. This is equivalent, [19], to the condition

𝜕𝑉 𝑁(𝜇, 𝑉 )𝐿∗𝑉 = 𝐿∗𝑁(𝜇, 𝑉 ), 𝑉 ∈ R4, 𝜇 ∈ 𝑉2.

(c) 𝜌 is smooth in (𝜇, 𝑉 ) ∈ 𝑉2 × 𝑉1 and

𝜌(𝜇, 𝑉 ) = 𝑜 (‖𝑉 ‖

𝑚) ,

for all 𝜇 ∈ 𝑉2 and where ‖ ⋅ ‖ denotes the Euclidean norm in R4.
(d) The polynomials 𝛷(𝜇, ⋅), 𝑁(𝜇, ⋅) satisfy, for all 𝜇 ∈ 𝑉2

𝑆𝛷(𝜇, 𝑉 ) = 𝛷(𝜇, 𝑆𝑉 ), 𝑆𝑁(𝜇, 𝑉 ) = −𝑁(𝜇, 𝑆𝑉 ), 𝑉 ∈ R4,

where 𝑆 is given in (3.4).

e note that (3.1), (3.2) can alternatively be written as

𝑈 ′ = 𝐿0𝑈 + 𝑅(𝑈, 𝑐𝑠), (3.6)

here 𝑅(𝑈, 𝑐𝑠) = 𝑅11(𝑈, 𝑐𝑠) + 𝑅(𝑈, 𝑐𝑠),

𝐿0 =

⎛

⎜

⎜

⎜

⎜

⎝

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎠

, 𝑅11(𝑈, 𝑐𝑠) =

⎛

⎜

⎜

⎜

⎜

⎝

0
0
0

−𝑎(𝑐𝑠)𝑈1 + 𝑏(𝑐𝑠)𝑈3

⎞

⎟

⎟

⎟

⎟

⎠

, (3.7)

and observe that the approach made in [22] can be used here to compute a general expression of a reversible normal form for
(3.6), (3.7). We notice that the approach in [22] initially assumes a regular, nonlinear function 𝑅 at least quadratic near the origin.

owever, the treatment of the linear term 𝑅11 in (3.7) (which can be considered quadratic as 𝑎 and 𝑏 will involve some bifurcation
arameters) can be included in the construction of the normal form from the arguments used in [21], based on the preservation of
he eigenvalue structure. All this leads to a normal form for (3.6) as, [22]

𝑈 ′ = 𝐿0𝑈 + 𝑃4(𝑈1, 𝑉2, 𝑉4)

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0

0

0

1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

+ 𝑃2(𝑈1, 𝑉2, 𝑉4)

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0

𝑈1

𝑈2

𝑈3

⎞

⎟

⎟

⎟

⎟

⎟

⎠

+𝑃0(𝑉2, 𝑉4)

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0

𝑉2
𝑊2

𝑋2

⎞

⎟

⎟

⎟

⎟

⎟

⎠

+ 𝑃1(𝑈1, 𝑉2, 𝑉4)

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝑉3
𝑊3

𝑋3

𝑌3

⎞

⎟

⎟

⎟

⎟

⎟

⎠

+𝑃3(𝑈1, 𝑉2, 𝑉4)

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0

0

𝑉3
𝑊3

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (3.8)

where

𝑉2 = 𝑈2
2 − 2𝑈1𝑈3, 𝑉3 = 𝑈3

2 − 3𝑈1𝑈2𝑈3 + 3𝑈2
1𝑈4,

𝑉4 = 3𝑈2
2𝑈

2
3 − 6𝑈3

2𝑈4 − 8𝑈1𝑈
3
3 + 18𝑈1𝑈2𝑈3𝑈4 − 9𝑈2

1𝑈
2
4 ,

𝑊2 = −3𝑈1𝑈4 + 𝑈2𝑈3, 𝑊3 = 3𝑈1𝑈2𝑈4 − 4𝑈1𝑈
2
3 + 𝑈2

2𝑈3,

𝑋2 = −3𝑈2𝑈4 + 2𝑈2
3 , 𝑋3 = −3𝑈1𝑈3𝑈4 + 3𝑈2

2𝑈1 − 𝑈2𝑈
2
3 ,

𝑌3 = 3𝑈2𝑈3𝑈4 −
4
3
𝑈3
3 − 3𝑈1𝑈

2
4 ,

and 𝑃𝑗 , 𝑗 = 0, 1, 2, 3, 4, are polynomials in their arguments with

𝑃4(𝑈1, 𝑉2, 𝑉4) = 𝜇2𝑈1 + 𝜈1𝑈
2
1 + 𝜈2𝑉2 + 𝑂(‖𝑈‖

3),

𝑃2(𝑈1, 𝑉2, 𝑉4) = 𝜇1 + 𝜈3𝑈1 + (‖𝑈‖

2),

𝑃0(𝑉2, 𝑉4) = 𝜈4 + 𝑂(‖𝑈‖

2),

where 𝜈𝑗 , 𝑗 = 1, 2, 3, 4, are constants and

𝜇 = 𝑏 , 𝜇 =
( 𝑏)2

− 𝑎 = 𝜇2 − 𝑎, (3.9)
6
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with 𝑎, 𝑏 given by (2.11). In order to apply here the discussion, established in [22], on the normal form near each bifurcation curve
𝑗 , 𝑗 = 0, 1, 2, it is also convenient to write the bifurcation curves in the (𝜇1, 𝜇2) plane, as

0 = {(𝜇1, 𝜇2)|𝜇1 > 0, 𝜇2 = 𝜇2
1},

1 = {(𝜇1, 𝜇2)|𝜇1 < 0, 𝜇2 = 𝜇2
1},

2 = {(𝜇1, 𝜇2)|𝜇1 < 0, 𝜇2 = −5
4
𝜇2
1},

3 = {(𝜇1, 𝜇2)|𝜇1 > 0, 𝜇2 = −5
4
𝜇2
1}.

(Cf. Figure 1 of [22].)
Note that the linearization of (3.8) at the origin leads to the system

𝑈 ′ = 𝐿(𝜇1, 𝜇2)𝑈,

here

𝐿(𝜇1, 𝜇2) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 1 0 0

𝜇1 0 1 0

0 𝜇1 0 1

𝜇2 0 𝜇1 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (3.10)

hich, using (3.9), has the same characteristic polynomial as 𝐿 in (3.2), preserving then the eigenvalue structure, cf. [21].
Following the discussion in [22], the principal part of the normal form (3.8) will be described near the curves 𝑗 , 𝑗 = 0, 1, 2, in

rder to show the existence of different homoclinic structures leading to different types of solutions of (2.10). The results will be
pecified for typical choices of the nonlinear term 𝑔 and illustrated numerically.

.1. Near 0

We consider 𝜇 = −𝑎 as bifurcation parameter, in such a way that 𝜇2 = 𝜇2
1 +𝜇, 0 is characterized by the conditions 𝜇 = 0, 𝜇1 > 0,

nd the points near 0 depend on the (small) values of 𝜇. If 𝐿 denotes the matrix (3.10) at 𝜇 = 0, then a basis of the generalized
igenspace Ker𝐿2 = span(𝜉0, 𝜉1) with 𝐿𝜉1 = 𝜉0 is given explicitly by, [21,22]

𝜉0 = (1, 0,−𝜇1, 0)𝑇 , 𝜉1 = (0, 1, 0,−2𝜇1)𝑇 ,

ith, in addition, 𝑆𝜉0 = 𝜉0, 𝑆𝜉1 = −𝜉1. Using the Center Manifold Theorem, [19,44], the dynamics of bounded solutions near 0 can
be studied on the two-dimensional center manifold. From the change of variables

𝑈 = 𝐴𝜉0 + 𝐵𝜉1 +𝛷(𝜇,𝐴, 𝐵),

with suitable 𝛷, the principal (linear and quadratic) part of the normal form (3.8) takes the form, [19,22]
𝑑𝐴
𝑑𝑋

= 𝐵,

𝑑𝐵
𝑑𝑋

= − 1
3𝜇1

(

𝜇𝐴 + (𝜈1 + 2𝜇1)(𝜈2 − 𝜈3)𝐴2) . (3.11)

The variables 𝐴,𝐵,𝑋 can be rescaled in order to reformulate (3.11) as a nonsingular system as 𝜇1 → 0, [22].) When 𝑔 in (3.2) is
uadratic in the components of 𝑈 then (3.11) can be reduced to, [21]

𝑑𝐴
𝑑𝑋

= 𝐵,

𝑑𝐵
𝑑𝑋

= −
𝜇
3𝜇1

𝐴 − 2
3
𝐴2,

which admits a homoclinic to zero solution, in the form of a Classical Solitary Wave

𝐴(𝑋) = 9𝑎
4𝑏

sech2
(

1
2

√

𝑎
𝑏
𝑋
)

,

hen 𝜇 < 0 (that is 𝑎 > 0, region 2 in Fig. 1). The persistence of the homoclinic solution in the original system (3.1), which
corresponds to a CSW solution of (1.1) can be proved following [1,40]. These conclusions are applied to different families of
equations of Rosenau-type in Tables 1–4, where the range of speed 𝑐𝑠 > 0 ensuring the existence of CSW’s is specified in each
case when 𝑔 is quadratic in the components of 𝑈 . (The existence of CSW solutions of the Rosenau equation will be considered in
Section 4, as well as the generalized case 𝑔(𝑢) = 𝑢𝑝+1

𝑝+1 , 𝑝 ≥ 1.) The justification of Tables 1–4 is in the extended version [29], where
the curves 𝑗 , 𝑗 = 0, 1, 2, 3, and the regions of Fig. 1 are described for each equation of Rosenau type considered in this paper. The
eneration of some of the CSW profiles are illustrated in Fig. 2. (All the figures are generated from the experiments performed using
he Petviashvili method, [15]; the numerical procedure is also described in [29].)

Two properties of the profiles can be observed from Fig. 2. Note first that the wave is smooth, even, and decreases (if it is
f elevation) or increases (if it is of depression) fast in both directions away from its maximum (or minimum) point at 𝑋 = 0.
7
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Fig. 2. CSW generation, 𝑢 profiles and phase portraits. (a), (b) Rosenau-RLW equation with 𝛼 = −1, 𝜖 = 𝛽 = 1, 𝑔(𝑢) = 𝑢2∕2; 𝑐𝑠 = 1.1; (c), (d) Rosenau–Kawahara
quation with 𝜂 = −1∕2, 𝜖 = 𝛽 = 1, 𝛾 = 2, 𝑔(𝑢) = 𝑢2∕2, 𝑐𝑠 = 𝑦− + 𝜖 + 0.01 ≈ 0.951; (e), (f) Rosenau-RLW-Kawahara equation with 𝛼 = 𝛾 = −1, 𝜖 = 𝛽 = 1, 𝜂 = 1, 𝑔(𝑢) =
2∕2, 𝑐𝑠 = 𝑧+ + 𝜖 − 0.565 ≈ 1.102. The values of 𝑦− and 𝑧+ are given in Tables 3 and 4 resp.

urthermore, the corresponding phase portrait and the way how the homoclinic orbit approaches zero at ±∞ suggest that the
rofile goes to zero exponentially as |𝑋| → ∞. This behavior can be theoretically checked from the application of some standard
esults (cf. e.g. [45]) in the case of nonlinear terms of the form 𝑔(𝑢) = 𝑢𝑝+1

𝑝+1 , 𝑝 ≥ 1.

Remark 3.1. When 𝜇 > 0 is small (region 3 of Fig. 1, close to 0) NFT predicts the existence of periodic solutions of the reduced
system, as in [40]. They correspond to periodic traveling wave (PTW) solutions of (1.1): The description of the region for several
families of Rosenau equations and the computation of some approximate PTW’s are can be checked in [29].
8
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Table 1
Admissible parameters and type of solitary wave for the Rosenau-RLW equation,
according to the Normal Form Theory (cf. [29]). NMCSW=Nonmonotone CSW.
Rosenau-RLW
(𝛾 = 𝜂 = 0, 𝜖, 𝛽 > 0)

Admissible parameters Type of solitary wave

𝛼 < 0, 0 < 𝑐𝑠 − 𝜖 < 𝜖𝛼2

4𝛽−𝛼2
CSW

𝑐𝑠 − 𝜖 small

𝛼 > 0, 𝑐𝑠 − 𝜖 < 0 GSW
|𝑐𝑠 − 𝜖| small

𝛼 > 0, 𝑐𝑠 − 𝜖 − 𝜖𝛼2

4𝛽−𝛼2
> 0 small NMCSW

Table 2
Admissible parameters and type of solitary wave for the Rosenau-KdV equation,
according to the Normal Form Theory, where 𝑥+ = 1

2

(

−𝜖 +
√

𝜖2 + 𝜂2

𝛽

)

(cf. [29]).

Rosenau-KdV
(𝛼 = 𝛾 = 0, 𝜖, 𝛽 > 0)

Admissible parameters Type of solitary wave

𝜂 > 0, 𝜖 < 𝑐𝑠 < 𝑥+ CSW
𝑐𝑠 − 𝜖 small

𝜂 < 0, 𝑐𝑠 − 𝜖 < 0 GSW
|𝑐𝑠 − 𝜖| small

𝜂 < 0, 𝑐𝑠 − 𝜖 − 𝑥+ > 0 small NMCSW

3.2. Near 1

We consider the same parameters defined in the previous section. In 1 (where 𝜇1 < 0) the spectrum of 𝐿 consists of two
maginary simple eigenvalues ±𝑖

√

−3𝜇1 and 0, which is double. A basis of the generalized eigenspace may consist of the vectors
𝜉0, 𝜉1, defined above, along with 𝜁0, 𝜁0, where

𝜁0 = (1, 𝑖
√

−3𝜇1, 2𝜇1, 𝑖𝜇1
√

−3𝜇1)𝑇 .

For 𝜇 > 0, the double eigenvalue splits into two real eigenvalues (region 3 of Fig. 1), [22]. The change of variables

𝑈 = 𝐴𝜉0 + 𝐵𝜉1 + 𝐶𝜁0 + 𝐶𝜁0 +𝛷(𝜇,𝐴, 𝐵, 𝐶, 𝐶),

for some polynomial 𝛷 of degree at least two, can be chosen to write (3.8) in a normal form, [40]

𝑑𝐴
𝑑𝑋

= 𝐵,

𝑑𝐵
𝑑𝑋

= − 1
3𝜇1

(

𝜇𝐴 + (𝜈1 + 2𝜇1)(𝜈2 − 𝜈3)𝐴2 + 𝜈5|𝐶|

2) +⋯ ,

𝑑𝐶
𝑑𝑋

= 𝑖
√

−3𝜇1𝐶

(

1 +
𝜇

18𝜇2
1

+ 𝜈6𝐴 +⋯

)

, (3.12)

here

𝜈5 = 2𝜈1 + 2𝜇1(𝜈3 − 7𝜈2) + 12𝜇2
1𝜈4,

𝜈6 = 1
9𝜇2

1

(𝜈1 + 𝜇1(4𝜈3 − 𝜈2) − 12𝜇2
1𝜈4),

(which, as before, can be reformulated in order to be nonsingular as 𝜇1 → 0). For a quadratic nonlinearity 𝑔, (3.12) has the form,
[21]

𝑑𝐴
𝑑𝑋

= 𝐵,

𝑑𝐵
𝑑𝑋

= −
𝜇
3𝜇1

𝐴 − 2
3
𝐴2 − 4

3
|𝐶|

2,

𝑑𝐶
𝑑𝑋

= 𝑖
√

−3𝜇1𝐶

(

1 +
𝜇

18𝜇2
− 1

9𝜇

)

.

9

1 1



Communications in Nonlinear Science and Numerical Simulation 137 (2024) 108130A. Durán and G.M. Muslu

A
l
i
f
i
a

Fig. 3. GSW generation, 𝑢 profiles and phase portraits. (a), (b) Rosenau-RLW equation with 𝛼 = 1, 𝜖 = 𝛽 = 1, 𝑔(𝑢) = 𝑢2∕2; 𝑐𝑠 = 0.9; (c), (d) Rosenau–Kawahara
equation with 𝜂 = 1, 𝜖 = 0.25, 𝛽 = 4, 𝛾 = 2, 𝑔(𝑢) = 𝑢2∕2, 𝑐𝑠 = 0.43; (e), (f) Rosenau–Kawahara equation with 𝜂 = −1, 𝜖 = 1, 𝛽 = 2, 𝛾 = 1, 𝑔(𝑢) = 𝑢2∕2, 𝑐𝑠 = 0.9.

s mentioned in e.g. [21,34–36,40], in region 3 close to 1, there are orbits which are homoclinic to periodic orbits as |𝑋| → ∞,
eading to smooth Generalized Solitary Wave solutions of (1.1). Some of the ripples may have exponentially small amplitude and on
solated curves the oscillations may vanish and an orbit homoclinic to zero (CSW, also called embedded soliton) is formed. For the
amilies of Rosenau equations mentioned in the introduction, the range of speed and parameters ensuring the emergence of GSW’s
s specified in Tables 1–4 and some of approximate profiles are shown in Fig. 3. In addition, close to 1, but in region 4, [40], PTW’s
re also formed, cf. [29].
10
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3.3. Near 2

In this case, according to the definition of 2 in the (𝜇1, 𝜇2) plane, we consider a bifurcation parameter 𝜇 such that

𝜇2 = −5
4
𝜇2
1 − 𝜇, 𝜇1 < 0.

ecall that the spectrum of 𝐿 in 2 consists of two double imaginary eigenvalues

𝜆± = ±𝑖
√

−3
2
𝜇1.

hen 𝜇 > 0 is small (region 1 of Fig. 1) they become two complex simple pairs of eigenvalues, symmetric with respect to the axis,
hile if 𝜇 < 0 (region 4) they become two pairs of imaginary eigenvalues which are simple. The generalized eigenspace when 𝜇 = 0

an be generated by the eigenvalues 𝜁0, 𝜁0 and the generalized eigenvectors 𝜁1, 𝜁1, where, [22]

𝜁0 = (1, 𝜆+,
𝜇1
2
,−𝜇1

𝜆+
2
)𝑇 , 𝜁1 = (0, 1, 2𝜆+,

5
2
𝜇1)𝑇 .

Following [1,20,22,46] we can change the variable

𝑈 = 𝐴𝜁0 + 𝐵𝜁1 + 𝐴𝜁0 + 𝐵𝜁1 +𝛷(𝜇,𝐴, 𝐵,𝐴, 𝐵),

in such a way that the following normal form for (3.8) can be derived
𝑑𝐴
𝑑𝑋

= 𝜆+𝐴 + 𝐵 −
𝑖𝜇𝐴

6𝜇1
√

−6𝜇1
+⋯ ,

𝑑𝐵
𝑑𝑋

= 𝜆+𝐵 −
𝑖𝜇𝐵

6𝜇1
√

−6𝜇1
−

𝜇
6𝜇1

𝐴 +
76𝜈21
243𝜇3

1

𝐴|𝐴|2 +⋯

fter rescaling, the study made in [46] reveals the existence of homoclinic to zero orbits when 𝜇 > 0 is small (region 1 in Fig. 1)
corresponding to CSW but with nonmonotone decay; they are different from the ones obtained close to 0, (which are positive
or negative) as well as the possible formation of orbits which are homoclinic to periodic orbits (corresponding to GSW’s) and
periodic orbits (corresponding to PTW’s) when 𝜇 < 0 (region 4). The description given in [29] gives the range of speeds and
parameters corresponding to these two situations for each Rosenau-type equation considered in the present paper. The information
corresponding to nonmonotone CSW’s is displayed in Tables 1–4 and some approximate profiles are shown in Fig. 4. The form of
both the approximate profiles and phase portraits reveals the nonmonotone behavior of the waves and their oscillatory (exponential)
asymptotic decay to zero as |𝑋| → ∞.

3.4. Near 3

In this case, the numerical experiments with 𝑔(𝑢) = 𝑢2∕2 suggest that the bifurcation from region 2 to region 1 in Fig. 1 generates
new homoclinic orbits in different ways: multimodal homoclinic orbits, [39], CSW’s and CSW’s with nonmonotone decay, and PTW’s,
cf. [28,42,43]. The bifurcation from CSW’s to nonmonotone CSW’s case is illustrated by some examples in Figs. 5 and 6.

4. Existence of classical solitary wave solutions with Concentration-Compactness theory

For the case 𝑔(𝑢) = 𝐺′(𝑢), 𝑔(0) = 0, with 𝐺(𝑢) homogeneous of some degree 𝑞 > 2 and such that

∫R
𝐺(𝑢)𝑑𝑥 > 0, (4.1)

for some 𝑢, the existence of CSW solutions of (1.1) can be analyzed using the theory of Concentration-Compactness, developed by
Lions in [14] and which is a classical procedure to study solitary-wave solutions in nonlinear dispersive equations, [37,47]. In the
present case we look for solitary waves of (1.1) as solutions of minimization problems of the form

𝐼𝜆 = inf{𝐸(𝑢) ∶ 𝑢 ∈ 𝐻2∕𝐹 (𝑢) = 𝜆}, (4.2)

for 𝜆 > 0 where,

𝐸(𝑢) = ∫−R

(

(𝑐𝑠 − 𝜖)𝑢2 − (𝑐𝑠𝛼 − 𝜂)𝑢2𝑥 + (𝑐𝑠𝛽 − 𝛾)𝑢2𝑥𝑥
)

𝑑𝑥, (4.3)

𝐹 (𝑢) = ∫R
𝐺(𝑢)𝑑𝑥. (4.4)

The main hypothesis we assume here is the existence of positive constants 𝐶1, 𝐶2 such that for all 𝑢 ∈ 𝐻2

𝐶1‖𝑢‖
2
2 ≤ 𝐸(𝑢) ≤ 𝐶2‖𝑢‖

2
2. (4.5)

Note that the continuity condition (second inequality in (4.5)) easily follows from the definition of 𝐸. The coercivity condition (first
11

inequality in (4.5)) can be characterized as follows.
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Fig. 4. Generation of nonmonotone CSW’s, 𝑢 profiles and phase portraits. (a), (b) Rosenau-RLW equation with 𝛼 = 1, 𝜖 = 𝛽 = 1, 𝑔(𝑢) = 𝑢2∕2; 𝑐𝑠 = 1.5; (c), (d)
osenau-KdV equation with 𝜂 = −1, 𝜖 = 𝛽 = 1, 𝑔(𝑢) = 𝑢2∕2, 𝑐𝑠 ≈ 1.3071; (e), (f) Rosenau–Kawahara equation with 𝛾 = 2, 𝜖 = 𝛽 = 1, 𝜂 = −1, 𝑔(𝑢) = 𝑢2∕2, 𝑐𝑠 ≈ 2.2590.

Proposition 4.1. Let 𝜌 = 𝛽𝜖 − 𝛾, 𝛿 = 𝛼𝜖 − 𝜂, and

𝑥± = 1
4𝛽 − 𝛼2

(

𝛼𝛿 − 2𝜌 ±
√

(𝛼𝛿 − 2𝜌)2 + 𝛿2(4𝛽 − 𝛼2)
)

. (4.6)

f

𝑐𝑠 − 𝜖 < 𝑥− or 𝑐𝑠 − 𝜖 > 𝑥+, (4.7)

hen (4.5) holds for some positive constants 𝐶 , 𝑗 = 1, 2 and all 𝑢 ∈ 𝐻2.
12
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P

Fig. 5. Bifurcation from region 2 to region 1 close to 3, 𝑢 profiles and phase portraits. (a), (b) Rosenau-RLW equation with 𝛼 = −1, 𝜖 = 𝛽 = 1, 𝑔(𝑢) = 𝑢2∕2; 𝑐𝑠 = 1.3;
(c), (d) Rosenau-RLW equation with 𝛼 = −1, 𝜖 = 𝛽 = 1, 𝑔(𝑢) = 𝑢2∕2; 𝑐𝑠 = 1.7; (e) and (f) are magnifications of (c) and (d) resp.

roof. As mentioned before, we just have to prove the first inequality in (4.5). We can write (4.3) in the form

𝐸(𝑢) = ∫−R

(

(𝑐𝑠 − 𝜖)𝑢2 + (𝑐𝑠𝛼 − 𝜂)𝑢𝑢𝑥𝑥 + (𝑐𝑠𝛽 − 𝛾)𝑢2𝑥𝑥
)

𝑑𝑥

= ⟨𝐴

(

𝑢
)

,

(

𝑢
)

⟩, (4.8)
13
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𝑢

w

Fig. 6. Bifurcation from region 2 to region 1 close to 3, 𝑢 profiles and phase portraits. (a), (b) Rosenau–Kawahara equation with 𝜂 = −1, 𝜖 = 1, 𝛽 = 2, 𝛾 = 1, 𝑔(𝑢) =
2∕2, 𝑐𝑠 ≈ 0.4538; (c), (d) Rosenau–Kawahara equation with 𝛾 = 1, 𝜖 = 1, 𝛽 = 2, 𝜂 = −1, 𝑔(𝑢) = 𝑢2∕2, 𝑐𝑠 ≈ 0.1438; (e) and (f) are magnifications of (c) and (d) resp.

here ⟨⋅, ⋅⟩ denotes the 𝐿2 inner product and

𝐴 =
⎛

⎜

⎜

⎝

𝑐𝑠 − 𝜖 𝛼(𝑐𝑠−𝜖)+𝛿
2

𝛼(𝑐𝑠−𝜖)+𝛿
2 𝛽(𝑐𝑠 − 𝜖) + 𝜌

⎞

⎟

⎟

⎠

.

The eigenvalues 𝑧± of 𝐴 satisfy 𝑧+ > 0 while 𝑧− > 0 when

𝑃 (𝑐 − 𝜖) > 0, (4.9)
14

𝑠
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Table 3
Admissible parameters and type of solitary wave for the Rosenau–Kawahara equation, according

to the Normal Form Theory, where 𝑦± = 1
2

(

− 𝜌
𝛽
±
√

(

𝜌
𝛽

)2
+ 𝜂2

𝛽

)

(cf. [29]).

Rosenau–Kawahara
(𝛼 = 0, 𝜖, 𝛽 > 0)

𝜌 = 𝜖𝛽 − 𝛾 Admissible parameters Type of solitary wave

𝜌 < 0 𝜂 < 0, 𝑦− < 𝑐𝑠 − 𝜖 < 0, |𝑐𝑠 − 𝜖| small CSW
or
𝜂 > 0, 𝑐𝑠 − 𝜖 > −𝜌∕𝛽

𝜂 > 0, 0 < 𝑐𝑠 − 𝜖 < −𝜌∕𝛽 GSW
𝑐𝑠 − 𝜖 small

𝜂 > 0, 𝑦− − (𝑐𝑠 − 𝜖) > 0 small NMCSW
or
𝜂 < 0, 𝑐𝑠 − 𝜖 − 𝑦+ > 0 small

𝜌 > 0 𝜂 > 0, 0 < 𝑐𝑠 − 𝜖 < 𝑦+, |𝑐𝑠 − 𝜖| small CSW
or
𝜂 < 0, 𝑐𝑠 − 𝜖 < −𝜌∕𝛽

𝜂 < 0,−𝜌∕𝛽 < 𝑐𝑠 − 𝜖 < 0 GSW
|𝑐𝑠 − 𝜖| small

𝜂 > 0, 𝑦− − (𝑐𝑠 − 𝜖) > 0 small NMCSW
or
𝜂 < 0, 𝑐𝑠 − 𝜖 − 𝑦+ > 0 small

𝜌 = 0 𝛽 large and 𝜂 > 0, 0 < 𝑐𝑠 − 𝜖 < 𝑦+ CSW
or
𝛽 large and 𝜂 < 0, 𝑦− < 𝑐𝑠 − 𝜖 < 0

𝜂 > 0, 𝑦− − (𝑐𝑠 − 𝜖) > 0 small NMCSW
or
𝜂 < 0, (𝑐𝑠 − 𝜖) − 𝑦+ > 0 small

Table 4
Admissible parameters and type of solitary wave for the Rosenau-
RLW-Kawahara equation, according to the Normal Form Theory

(cf. [29]), where 𝑧+ = 1
2

(

2(𝜂−3)
3

+
√

(

2(𝜂−3)
3

)2
+ 4 (1+𝜂)2

3

)

.

Rosenau-RLW-Kawahara
(𝛼 = 𝛾 = −1, 𝜖 = 𝛽 = 1, 𝜂 > 0)

Admissible parameters Type of solitary wave

0 < 𝑐𝑠 − 𝜖 < 𝑧+ CSW
𝑐𝑠 − 𝜖 small

with

𝑃 (𝑥) = 𝑥2 +
2(2𝜌 − 𝛼𝛿)
4𝛽 − 𝛼2

𝑥 − 𝛿2

4𝛽 − 𝛼2
.

he roots of 𝑃 are given by (4.6) and they satisfy 𝑥− ≤ 0 ≤ 𝑥+. Thus, (4.9) holds when one of the conditions (4.7) is satisfied. In
such case, then 𝐴 is shown to be positive definite and (4.5) follows from (4.8). □

The characterization (4.7) will be discussed below for the families of Rosenau equations considered in the present paper. This
will give us a range of speeds ensuring the existence of CSW’s in each case and that will be related to the corresponding results
obtained in Section 3 from the NFT.

The following lemma uses to be the starting point for the application of the Concentration Compactness theory.

Lemma 4.1. Under the hypotheses (4.1) and (4.5), the problems (4.2) satisfy the following properties:

(i) 𝐼𝜆 > 0 for 𝜆 > 0.
(ii) Every minimizing sequence for 𝐼𝜆, 𝜆 > 0, is bounded in 𝐻2.
(iii) For all 𝜃 ∈ (0, 𝜆)

𝐼𝜆 < 𝐼𝜃 + 𝐼𝜆−𝜃 . (4.10)

Proof. Note first that since 𝐺 is homogeneous of degree 𝑞 > 2 then [30]
𝑞

15

|𝐺(𝑢)| ≤ 𝐶|𝑢| ,
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(
t

for some constant 𝐶. Then, if 𝑢 minimizes (4.2) for 𝜆 > 0, from (4.4) and the Sobolev embedding of 𝐻2 into 𝐿∞ it holds that

𝜆 = ∫R
𝐺(𝑢)𝑑𝑥 ≤ 𝐶 ∫R

|𝑢|𝑞𝑑𝑥 ≤ 𝐶‖𝑢‖𝑞−2𝐿∞ ‖𝑢‖2
𝐿2 (4.11)

≤ 𝐶‖𝑢‖𝑞2, (4.12)

for some constant 𝐶. Using (4.5) and (4.12) we have

𝐼𝜆 = 𝐸(𝑢) ≥ 𝐶𝜆2∕𝑞 > 0,

or some constant 𝐶 and (i) follows. Property (ii) is also a consequence of (4.12) and coercivity hypothesis (4.5). On the other hand,
ince 𝐸 and 𝐹 are homogeneous of degrees 2 and 𝑞 respectively, then

𝐼𝜏𝜆 = 𝜏
2
𝑞 𝐼𝜆.

Therefore, if 𝜃 ∈ (0, 𝜆), with 𝜃 = 𝜏𝜆, 𝜏 ∈ (0, 1), then we have, for 𝑞 > 2

𝐼𝜃 + 𝐼𝜆−𝜃 = 𝐼𝜏𝜆 + 𝐼(1−𝜏)𝜆 = 𝜏
2
𝑞 𝐼𝜆 + (1 − 𝜏)

2
𝑞 𝐼𝜆

> (𝜏 + (1 − 𝜏))𝐼𝜆,

nd (4.10) follows. □

The application of Concentration-Compactness theory in order to prove the existence of CSW’s of (1.1) under the assumption
4.5) is as follows. Let {𝑢𝑛}𝑛 be a minimizing sequence for (4.2) and consider the sequence of nonnegative functions

𝜌𝑛(𝑥) = |𝑢𝑛(𝑥)|
2 + |𝑢′𝑛(𝑥)|

2 + |𝑢′′𝑛 (𝑥)|
2.

Then 𝜌𝑛 ∈ 𝐿1 and its 𝐿1 norm satisfies 𝜆𝑛 = ‖𝜌𝑛‖𝐿1 = ‖𝑢𝑛‖22. From Lemma 4.1, 𝜆𝑛 is bounded and from (4.5), (4.12)

𝜆𝑛 > 𝐶𝜆
2
𝑞 ,

for some constant 𝐶. Let 𝜎 = lim𝑛→∞ 𝜆𝑛 > 0. Normalizing 𝜌𝑛 as 𝜌𝑛(𝑥) = 𝜎𝜌𝑛(𝜆𝑛𝑥), to have

𝜆𝑛 = ‖𝜌𝑛‖𝐿1 = 𝜎,

and dropping tildes from now on), then from Lemma 1.1 of [14] there is a subsequence {𝜌𝑛𝑘}𝑘≥1 satisfying one of the following
hree possibilities:

(1) (Compactness.) There are 𝑦𝑘 ∈ R such that 𝜌𝑛𝑘 (⋅ + 𝑦𝑘) satisfies that for any 𝜖 > 0 there exists 𝑅 = 𝑅(𝜖) > 0 large enough such
that

∫
|𝑥−𝑦𝑘|≤𝑅

𝜌𝑛𝑘 (𝑥)𝑑𝑥 ≥ 𝜎 − 𝜖.

(2) (Vanishing.) For any 𝑅 > 0

lim
𝑘→∞

sup
𝑦∈R∫|𝑥−𝑦|≤𝑅

𝜌𝑛𝑘 (𝑥)𝑑𝑥 = 0. (4.13)

(3) (Dichotomy.) There is 𝜃0 ∈ (0, 𝜎) such that for any 𝜖 > 0 there exists 𝑘0 ≥ 1 and 𝜌𝑘,1, 𝜌𝑘,2 ∈ 𝐿1 with 𝜌𝑘1 , 𝜌𝑘2 ≥ 0 such that for
𝑘 ≥ 𝑘0

∫R
|𝜌𝑛𝑘 − (𝜌𝑘,1 + 𝜌𝑘,2)|𝑑𝑥 ≤ 𝜖, (4.14)

|

|

|

|

∫R
𝜌𝑘,1𝑑𝑥 − 𝜃0

|

|

|

|

≤ 𝜖,
|

|

|

|

∫R
𝜌𝑘,2𝑑𝑥 − (𝜎 − 𝜃0)

|

|

|

|

≤ 𝜖,

with

supp𝜌𝑘,1 ∩ supp𝜌𝑘,2 = ∅,

dist
(

supp𝜌𝑘,1, supp𝜌𝑘,2
)

→ +∞, 𝑘 → ∞.

Since the supports of 𝜌𝑘,1 and 𝜌𝑘,2 are disjoint, we may assume the existence of 𝑅0 > 0 and sequences {𝑦𝑘}𝑘 and 𝑅𝑘 → ∞ as
𝑘 → ∞ such that, [26]

supp𝜌𝑘,1 ⊂ (𝑦𝑘 − 𝑅0, 𝑦𝑘 + 𝑅0),

supp𝜌𝑘,2 ⊂ (−∞, 𝑦𝑘 − 2𝑅𝑘) ∪ (𝑦𝑘 + 2𝑅𝑘,∞). (4.15)

Our goal is to prove that compactness holds by ruling out the other two possibilities. Note first that if vanishing property (4.13)
hods, then

lim sup
𝑦+𝑅 (

|𝑢𝑛𝑘 (𝑥)|
2
)

𝑑𝑥 = 0.
16

𝑘→∞ 𝑦∈R∫𝑦−𝑅
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Since {𝑢𝑛}𝑛 is a bounded sequence in 𝐻2 and from (4.11) we have

𝐹 (𝑢𝑛𝑘 ) ≤ 𝐶‖𝑢𝑛𝑘‖
𝑞−2
𝐿∞ ‖𝑢𝑛𝑘‖

2
𝐿2 ≤ 𝐶‖𝑢𝑛𝑘‖

2
𝐿2 ,

or some constant 𝐶. This implies that

lim
𝑘→∞

𝐹 (𝑢𝑛𝑘 ) = 0,

which contradicts the fact that 𝜆 > 0 and vanishing is not possible.
We now assume that dichotomy holds and consider cutoff functions 𝜑, 𝜙 ∈ 𝐶∞(R), 0 ≤ 𝜑, 𝜙 ≤ 1, with

𝜙(𝑥) = 1, |𝑥| ≤ 1, 𝜙(𝑥) = 0, |𝑥| ≥ 2,

𝜑(𝑥) = 1, |𝑥| ≥ 2, 𝜑(𝑥) = 0, |𝑥| ≤ 1.

Let 𝑅 > 𝑅0 and define, for 𝑥 ∈ R,

𝜙𝑘(𝑥) = 𝜙
(𝑥 − 𝑦𝑘

𝑅

)

, 𝑢𝑘,1 = 𝜙𝑘(𝑥)𝑢𝑛𝑘 (𝑥),

𝜑𝑘(𝑥) = 𝜑
(

𝑥 − 𝑦𝑘
𝑅𝑘

)

, 𝑢𝑘,2 = 𝜑𝑘(𝑥)𝑢𝑛𝑘 (𝑥),

𝑤𝑘(𝑥) = 𝑢𝑛𝑘 (𝑥) − 𝑢𝑘,1(𝑥) − 𝑢𝑘,2(𝑥).

In the following lemma some auxiliary results are collected, [26].

Lemma 4.2. Let 𝜖 > 0. If dichotomy holds, then:

(1) For 𝑅 large enough

∫
|𝑥−𝑦𝑘|≤𝑅0

|𝜌𝑛𝑘 (𝑥) − 𝜌𝑘,1(𝑥)|𝑑𝑥 ≤ 𝜖 (4.16)

∫
|𝑥−𝑦𝑘|≥2𝑅𝑘

|𝜌𝑛𝑘 (𝑥) − 𝜌𝑘,2(𝑥)|𝑑𝑥 ≤ 𝜖, (4.17)

∫𝑅0≤|𝑥−𝑦𝑘|≤2𝑅𝑘

𝜌𝑛𝑘 (𝑥)𝑑𝑥 ≤ 𝜖. (4.18)

(2) For 𝑅,𝑅𝑘 large enough
|

|

|

|

‖𝑢𝑘,1‖
2
2 − ∫R

𝜌𝑘,1𝑑𝑥
|

|

|

|

= 𝑂(𝜖), (4.19)

|

|

|

|

‖𝑢𝑘,2‖
2
2 − ∫R

𝜌𝑘,2𝑑𝑥
|

|

|

|

= 𝑂(𝜖). (4.20)

(3) For 𝑅,𝑅𝑘 large enough

‖𝑤𝑘‖2 = 𝑂(𝜖). (4.21)

Proof. Using (4.14) and (4.15) we have

𝑂(𝜖) = ∫R
|𝜌𝑛𝑘 − (𝜌𝑘,1 + 𝜌𝑘,2)|𝑑𝑥

= ∫
|𝑥−𝑦𝑘|≤𝑅0

|𝜌𝑛𝑘 (𝑥) − 𝜌𝑘,1(𝑥)|𝑑𝑥 + ∫
|𝑥−𝑦𝑘|≥2𝑅𝑘

|𝜌𝑛𝑘 (𝑥) − 𝜌𝑘,2(𝑥)|𝑑𝑥

+ ∫𝑅0≤|𝑥−𝑦𝑘|≤2𝑅𝑘

𝜌𝑛𝑘 (𝑥)𝑑𝑥,

which implies (4.16)–(4.18). Note now that

𝜙′
𝑘(𝑥) =

1
𝑅
𝜙′

(𝑥 − 𝑦𝑘
𝑅

)

, 𝜙′′
𝑘 (𝑥) =

1
𝑅2

𝜙′′
(𝑥 − 𝑦𝑘

𝑅

)

,

𝜑′
𝑘(𝑥) =

1
𝑅𝑘

𝜑′
(

𝑥 − 𝑦𝑘
𝑅𝑘

)

, 𝜑′′
𝑘 (𝑥) =

1
𝑅2
𝑘

𝜑′′
(

𝑥 − 𝑦𝑘
𝑅𝑘

)

.

Then, for some constant 𝐶 and 𝑅 large enough

‖𝑢𝑘,1‖
2
2 = ∫R

(

|𝑢𝑘,1(𝑥)|
2 + |𝑢′𝑘,1(𝑥)|

2 + |𝑢′′𝑘,1(𝑥)|
2
)

𝑑𝑥

≤ ∫
|𝑥−𝑦𝑘|≤2𝑅

(

|𝑢𝑛𝑘 (𝑥)|
2 + |𝑢′𝑛𝑘 (𝑥)|

2 + |𝑢′′𝑛𝑘 (𝑥)|
2
)

𝑑𝑥

+ 𝐶
|𝑢𝑛𝑘 (𝑥)|

2𝑑𝑥
17

𝑅 ∫
|𝑥−𝑦𝑘|≤2𝑅
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T

F

a

T

f
i

L
t

P

= ∫
|𝑥−𝑦𝑘|≤𝑅0

𝜌𝑛𝑘 (𝑥)𝑑𝑥 − ∫R
𝜌𝑘,1(𝑥)𝑑𝑥 + ∫R

𝜌𝑘,1(𝑥)𝑑𝑥

+ 𝐶
𝑅 ∫

|𝑥−𝑦𝑘|≤2𝑅
|𝑢𝑛𝑘 (𝑥)|

2𝑑𝑥 + ∫𝑅0≤|𝑥−𝑦𝑘|≤2𝑅
𝜌𝑛𝑘 (𝑥)𝑑𝑥.

herefore, using (4.15), we have
|

|

|

|

‖𝑢𝑘,1‖
2
2 − ∫R

𝜌𝑘,1(𝑥)𝑑𝑥
|

|

|

|

≤ ∫
|𝑥−𝑦𝑘|≤𝑅0

|𝜌𝑛𝑘 (𝑥) − 𝜌𝑘,1(𝑥)|𝑑𝑥

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐼1

+ 𝐶
𝑅 ∫

|𝑥−𝑦𝑘|≤2𝑅
|𝑢𝑛𝑘 (𝑥)|

2𝑑𝑥

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐼2

+ ∫𝑅0≤|𝑥−𝑦𝑘|≤2𝑅
𝜌𝑛𝑘 (𝑥)𝑑𝑥

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐼3

.

or 𝑅 large enough, (4.16), and (4.18), the integrals 𝐼𝑗 , 𝑗 = 1, 2, 3, are 𝑂(𝜖), leading to (4.19). Similarly,
|

|

|

|

‖𝑢𝑘,2‖
2
2 − ∫R

𝜌𝑘,2(𝑥)𝑑𝑥
|

|

|

|

≤ ∫
|𝑥−𝑦𝑘|≥𝑅𝑘

|𝜌𝑛𝑘 (𝑥) − 𝜌𝑘,2(𝑥)|𝑑𝑥

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐽1

+ 𝐶
𝑅𝑘 ∫

|𝑥−𝑦𝑘|≤2𝑅𝑘

|𝑢𝑛𝑘 (𝑥)|
2𝑑𝑥

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐽2

+ ∫𝑅𝑘≤|𝑥−𝑦𝑘|≤2𝑅𝑘

𝜌𝑛𝑘 (𝑥)𝑑𝑥

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐽3

,

nd for 𝑅 large enough, (4.17), and (4.18), the integrals 𝐽𝑗 , 𝑗 = 1, 2, 3, are 𝑂(𝜖) and (4.20) holds. Note finally that

𝑤𝑘 = 𝜒𝑘𝑢𝑛𝑘 , 𝜒𝑘 = 1 − 𝜙𝑘 − 𝜑𝑘,

supp𝜒𝑘 ⊂ {𝑅 ≤ |𝑥 − 𝑦𝑘| ≤ 2𝑅𝑘}.

hen

‖𝑤𝑘‖
2
2 ≤ 𝐶

(

‖𝜒𝑘‖
2
𝐿∞ + ‖𝜒 ′

𝑘‖
2
𝐿∞ + ‖𝜒 ′′

𝑘 ‖
2
𝐿∞

)

∫𝑅≤|𝑥−𝑦𝑘|≤2𝑅𝑘

𝜌𝑛𝑘 (𝑥)𝑑𝑥, (4.22)

or some constant 𝐶. The parenthesis on the right-hand side of (4.22) is bounded while the integral is 𝑂(𝜖) because of (4.18),
mplying (4.21). □

emma 4.3. Let 𝜖 > 0. If dichotomy holds and 𝑅,𝑅𝑘 are large enough, then there are subsequences of {𝑢𝑘,1}𝑘, {𝑢𝑘,2}𝑘, denoted again in
he same way, such that

𝐸(𝑢𝑛𝑘 ) = 𝐸(𝑢𝑘,1) + 𝐸(𝑢𝑘,2) + 𝑂(𝜖), (4.23)

𝐹 (𝑢𝑛𝑘 ) = 𝐹 (𝑢𝑘,1) + 𝐹 (𝑢𝑘,2) + 𝑂(𝜖). (4.24)

roof. Since 𝑢𝑛𝑘 = 𝑤𝑘 + 𝑢𝑘,1 + 𝑢𝑘,2 then we can write

𝐸(𝑢𝑛𝑘 ) = 𝐸(𝑤𝑘) + 𝐸(𝑢𝑘,1) + 𝐸(𝑢𝑘,2) +𝑁,

where

𝑁 = 2𝐴1 ∫R
𝑤𝑘(𝑢𝑘,1 + 𝑢𝑘,2)𝑑𝑥 + 2𝐴2 ∫R

𝑤′
𝑘(𝑢

′
𝑘,1 + 𝑢′𝑘,2)𝑑𝑥

+2𝐴2 ∫R
𝑤′′

𝑘 (𝑢
′′
𝑘,1 + 𝑢′′𝑘,2)𝑑𝑥,

where

𝐴1 = 𝑐𝑠 − 𝜖, 𝐴2 = −(𝑐𝑠𝛼 − 𝜂), 𝐴3 = 𝑐𝑠𝛽 − 𝛾.

Therefore, from Cauchy–Schwarz inequality we have
( )

,

18

|𝑁| ≤ 𝐶‖𝑤𝑘‖2 ‖𝑢𝑘,1‖2 + ‖𝑢𝑘,2‖2
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for some constant 𝐶. Now, (4.19), (4.20), (4.14), and (4.21) imply that 𝑁 = 𝑂(𝜖) and (4.23) holds. On the other hand, since {𝑢𝑛𝑘}𝑘
is a minimizing sequence, using Lemma 4.1(i) and (iii) along with the property 0 ≤ 𝜙 ≤ 1, then 𝐹 (𝑢𝑘,1) is bounded, and there is a
subsequence (denoted again by 𝑢𝑘,1) such that 𝐹 (𝑢𝑘,1) converges to some 𝜃 ∈ R. Thus, there is some 𝑘0 > 0 such that for 𝑘 ≥ 𝑘0

|𝐹 (𝑢𝑘,1) − 𝜃| ≤ 𝜖.

Now, since 𝐹 (𝑢𝑛𝑘 ) = 𝜆, 𝜙𝑘𝜑𝑘 = 0, and 𝐺 is homogeneous of degree 𝑞, from (4.12) we have

|𝐹 (𝑢𝑘,2) − (𝜆 − 𝜃)| ≤
|

|

|

|

∫R

(

𝐺(𝜑𝑘𝑢𝑛𝑘 ) − 𝐺(𝑢𝑛𝑘 ) + 𝐺(𝜙𝑘𝑢𝑛𝑘 )
)

𝑑𝑥
|

|

|

|

+ 𝜖

=
|

|

|

|

∫R

(

𝜑𝑞
𝑘 + 𝜙𝑞

𝑘 − 1
)

𝐺(𝑢𝑛𝑘 )𝑑𝑥
|

|

|

|

+ 𝜖

≤ ∫R
𝜒𝑞
𝑘𝐺(𝑢𝑛𝑘 )𝑑𝑥 + 𝜖 = 𝐹 (𝑤𝑘) + 𝜖

≤ 𝐶‖𝑤𝑘‖
𝑞
2 + 𝜖 = 𝑂(𝜖), (4.25)

where in the last equality (4.21) was used; then (4.24) follows. □

As a consequence of (4.23) we have

Corollary 4.1. Under the conditions of Lemma 4.3

𝐼𝜆 ≥ lim
𝑘→∞

inf 𝐸(𝑢𝑛𝑘 )

≥ lim
𝑘→∞

inf 𝐸(𝑢𝑘,1) + lim
𝑘→∞

inf 𝐸(𝑢𝑘,2) + 𝜖. (4.26)

In order to rule out dichotomy, we discuss the existence of the limit obtained in the proof of Lemma 4.3

𝜃 = lim
𝑘→∞

𝐹 (𝑢𝑘,1).

We have the following possibilities, [26]:

(1) 𝜃 = 0. Then, using (4.25) we have, for 𝑘 large enough and 𝜖 < 𝜆∕2

𝐹 (𝑢𝑘,2) > 𝜆 − 𝜖 > 𝜆
2
> 0. (4.27)

We consider 𝑑𝑘 > 0 such that 𝜆 = 𝐹 (𝑑𝑘ℎ𝑘,2); explicitly

𝑑𝑘 =
(

𝜆
𝐹 (𝑢𝑘,2)

)
1
𝑞
,

Then

|𝑑𝑘 − 1| <
|

|

|

|

|

|

(

𝜆
𝐹 (𝑢𝑘,2)

)
1
𝑞
− 1

|

|

|

|

|

|

< 1
𝐹 (𝑢𝑘,2)1∕𝑞

|

|

|

|

𝜆
1
𝑞 − 𝐹 (ℎ𝑘,2)

1
𝑞
|

|

|

|

.

For 𝑥 > 0 let 𝑟(𝑥) = 𝑥
1
𝑞 . Then

|

|

|

|

𝜆
1
𝑞 − 𝐹 (𝑢𝑘,2)

1
𝑞
|

|

|

|

= |

|

𝑟(𝜆) − 𝑟(𝐹 (ℎ𝑘,2))||

= |

|

𝑟′(𝜉𝑘)(𝜆 − 𝐹 (𝑢𝑘,2))|| ,

for some 𝜉𝑘 between 𝐹 (𝑢𝑘,2) and 𝜆 and consequently, by (4.27), between 𝜆∕2 and 𝜆. Therefore

𝑟′(𝜉𝑘) =
1
𝑞

(

1
𝜉𝑘

)
1
𝑞 −1

< 1
𝑞

( 2
𝜆

)

1
𝑞 −1 .

This yields, for some constant 𝐶(𝜆)

|𝑑𝑘 − 1| <
( 2
𝜆

)1∕𝑞
|

|

𝜆 − 𝑓 (𝑢𝑘,2)|| = 𝑂(𝜖).

Then lim𝑘→∞ 𝑑𝑘 = 1 and

𝐼𝜆 ≤ 𝐸(𝑑𝑘𝑢𝑘,2) = 𝑑2𝑘𝐸(𝑢𝑘,2) = 𝐸(𝑢𝑘,2) + 𝑂(𝜖). (4.28)

Therefore, from coercivity property of 𝐸, dichotomy, and (4.19)

lim
𝑘→∞

inf 𝐸(𝑢𝑘,1) ≥ 𝐶 lim
𝑘→∞

inf ‖𝑢𝑘,1‖22
≥ 𝐶 lim inf ‖𝜌 ‖ 1 + 𝑂(𝜖) ≥ 𝐶𝜃 + 𝑂(𝜖).
19

𝑘→∞ 𝑘,1 𝐿 0



Communications in Nonlinear Science and Numerical Simulation 137 (2024) 108130A. Durán and G.M. Muslu
Therefore, (4.26) and (4.28) imply, for 𝜖 > 0 arbitrarily small

𝐼𝜆 ≥ 𝐶𝜃0 + 𝐼𝜆 + 𝑂(𝜖),

that taking 𝜖 → 0 leads to 𝐼𝜆 ≥ 𝐶𝜃0 + 𝐼𝜆, which is the contradiction with 𝜃0 ≤ 0.
(2) 𝜆 > 𝜃 > 0. Then, from (4.23)

𝐸(𝑢𝑛𝑘 ) = 𝐸(𝑢𝑘,1) + 𝐸(𝑢𝑘,2) + 𝑂(𝜖)

≥ 𝐼𝐹 (𝑢𝑘,1) + 𝐼𝐹 (𝑢𝑘,2) + 𝑂(𝜖)

=
(

𝐹 (𝑢𝑘,1)
2
𝑞 + 𝐹 (𝑢𝑘,2)

2
𝑞

)

𝐼1 + 𝑂(𝜖).

If 𝑘 → ∞ then

𝐼𝜆 ≥
(

𝜃
2
𝑞 + (𝜆 − 𝜃)

2
𝑞

)

𝐼1 + 𝑂(𝜖) = 𝐼𝜃 + 𝐼𝜆−𝜃 + 𝑂(𝜖),

for 𝜖 > 0 arbitrarily small. This contradicts Lemma 4.1(ii).
(3) 𝜃 < 0. Then, from (4.25)

lim
𝑘→∞

𝐹 (ℎ𝑘,2) = 𝜆 − 𝜃 > 𝜆
2
,

and we apply the analysis of item (1) leading to contradiction.
(4) 𝜃 = 𝜆. Then, as in item (1), we may take 𝜖 small enough so that 𝐹 (ℎ𝑘,1) > 𝜆∕2 for 𝑘 large. The same arguments apply to have

𝐼𝜆 ≤ 𝐸(𝑢𝑘,1) + 𝑂(𝜖),

and

lim
𝑘→∞

inf 𝐸(𝑢𝑘,2) ≥ 𝐶 lim
𝑘→∞

inf ‖𝑢𝑘,2‖22
≥ 𝐶 lim

𝑘→∞
inf ‖𝜌𝑘,2‖𝐿1 + 𝑂(𝜖) ≥ 𝐶(𝜎 − 𝜃0) + 𝑂(𝜖).

This leads, for 𝑘 → ∞, 𝜖 → 0

𝐼𝜆 ≥ 𝐶(𝜎 − 𝜃0) + 𝐼𝜆,

implying the contradiction 𝜎 − 𝜃0 ≤ 0.
(5) 𝜃 > 𝜆. Then 𝐹 (ℎ𝑘,1) > 0 for 𝑘 large enough. We consider 𝑒𝑘 such that 𝐹 (𝑒𝑘𝑢𝑘,1) = 𝜆. Explicitly

𝑒𝑘 =
(

𝜆
𝐹 (𝑢𝑘,1)

)
2
𝑞
.

Then

lim
𝑘→∞

𝑒𝑘 =
(𝜆
𝜃

)

2
𝑞 .

Therefore, for 𝑘 large enough, we have

𝐼𝜆 ≤ 𝐸(𝑒𝑘𝑢𝑘,1) = 𝑒2𝑘𝐸(𝑢𝑘,1) < 𝐸(𝑢𝑘,1). (4.29)

From coercivity property of 𝐸, dichotomy, and (4.20)

lim
𝑘→∞

inf 𝐸(𝑢𝑘,2) ≥ 𝐶 lim
𝑘→∞

inf ‖𝑢𝑘,2‖22 ≥ 𝐶 lim
𝑘→∞

inf ‖𝜌𝑘,2‖𝐿1 + 𝑂(𝜖)

≥ 𝐶(𝜎 − 𝜃0) + 𝑂(𝜖). (4.30)

Thus, (4.26), (4.29), and (4.30) imply

𝐼𝜆 ≥ 𝐼𝜆 + 𝐶(𝜎 − 𝜃0) + 𝑂(𝜖).

When 𝜖 → 0, we have the contradiction 𝜎 − 𝜃0 ≤ 0.

Since vanishing and dichotomy do not hold, then Lemma 1.1 of [14] implies that necessarily compactness is satisfied. This means
that there exists {𝑦𝑘}𝑘 ⊂ R such that for any 𝜖 > 0 there is 𝑅 = 𝑅(𝜖) > 0 large and 𝑘0 > such that for 𝑘 ≥ 𝑘0

∫
|𝑥−𝑦𝑘|≤𝑅

𝜌𝑛𝑘𝑑𝑥 ≥ 𝜎 − 𝜖, ∫
|𝑥−𝑦𝑘|≥𝑅

𝜌𝑛𝑘𝑑𝑥 = 𝑂(𝜖). (4.31)

From the arguments of Lemma 4.1(i), applied to 𝑃𝑘 = {|𝑥 − 𝑦𝑘| ≥ 𝑅}, we have

𝐺(𝑢𝑛𝑘 )𝑑𝑥 ≤ 𝐶‖𝑢𝑛𝑘‖
𝑞−2
𝐿∞ 𝑢2𝑛 𝑑𝑥
20

∫𝑃𝑘 ∫𝑃𝑘 𝑘
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w

L
s

T

T
𝐸

T

w

U

a

≤ 𝐶‖𝑢𝑛𝑘‖
𝑞−2
2 ∫𝑃𝑘

𝜌𝑛𝑘𝑑𝑥 = 𝑂(𝜖),

here in the last inequality Lemma 4.1(iii) and (4.31) were used. Therefore
|

|

|

|

|

∫
|𝑥−𝑦𝑘|≤𝑅

𝐺(𝑢𝑛𝑘 )𝑑𝑥 − 𝜆
|

|

|

|

|

≤ 𝜖. (4.32)

et �̃�𝑛𝑘 (𝑥) = 𝑢𝑛𝑘 (𝑥 − 𝑦𝑘). Then �̃�𝑛𝑘 is bounded in 𝐻2 and therefore there exists a subsequence �̃�𝑛𝑘 which converges weakly in 𝐻2 to
ome �̃�. From (4.32)

𝜆 ≥ ∫

𝑅

−𝑅
𝐺(�̃�𝑛𝑘 )𝑑𝑥 ≥ 𝜆 − 𝜖.

he compact embedding of 𝐻2(−𝑅,𝑅) in 𝑊 1,𝑝(−𝑅,𝑅) ∀𝑝 ≥ 1 and Lemma 2.2 of [30] imply

𝜆 ≥ ∫

𝑅

−𝑅
𝐺(�̃�)𝑑𝑥 ≥ 𝜆 − 𝜖.

aking 𝜖 → 0 then 𝑅 = 𝑅(𝜖) → ∞ and therefore 𝐹 (�̃�) = 𝜆. Furthermore, from lower semicontinuity and invariance by translations of
we have

𝐼𝜆 = lim
𝑘→∞

inf 𝐸(�̃�𝑛𝑘 ) ≥ 𝐸(�̃�) ≥ 𝐼𝜆.

herefore �̃� satisfies the variational problem

𝛿𝐸(�̃�) = 𝜅𝛿𝐹 (�̃�),

ith 𝜅 a Lagrange multiplier. This means

(𝛾 − 𝛽𝑐𝑠)�̃�′′′′ + (𝜂 − 𝛼𝑐𝑠)�̃�′′ + (𝜖 − 𝑐𝑠)𝑢 + 𝜅𝑔(�̃�) = 0. (4.33)

sing the Euler theorem to the homogeneous function 𝐺, then

𝐺′(�̃�)�̃� = 𝑞𝐺(�̃�),

nd multiplying (4.33) by �̃� and integrating yield

𝑞𝜅𝜆 = 𝐸(�̃�) = 𝐼𝜆 ⇒ 𝜅 =
𝐼𝜆
𝑞𝜆

> 0.

Defining

𝑢 = 𝜅
1

𝑞−1 �̃�,

then 𝑢 is a solution of (2.9). This completes the proof of the first part of the following theorem.

Theorem 4.1. Under the assumptions (2.3), (4.1), (4.7), there is a solution 𝑢 ∈ 𝐻𝑢 of (2.9). Furthermore if 𝑔(𝑢) ∈ 𝐻𝑠−2 when
𝑢 ∈ 𝐻𝑠, 𝑠 > 0, then 𝑢 ∈ 𝐻∞.

Proof. The last statement is proved from writing (2.9) in the form

𝑄𝜑 = 𝑔(𝜑), (4.34)

where 𝑄 is the linear operator with Fourier symbol

𝑄𝑢(𝑘) =
(

(𝛽𝑐𝑠 − 𝛾)𝑘4 − (𝛼𝑐𝑠 − 𝜂)𝑘2 + (𝑐𝑠 − 𝜖)
)

�̂�(𝑘), 𝑘 ∈ R.

Note that from Proposition 4.1, the determinant of the matrix 𝐴 in (4.8) is positive, leading to

(𝛼𝑐𝑠 − 𝜂)2 < 4(𝛽𝑐𝑠 − 𝛾)(𝑐𝑠 − 𝜖).

This implies that 𝑄 is invertible. The hypothesis on 𝑔 and (4.34) yield 𝑢 ∈ 𝐻4. A bootstrap argument applied to (4.34) proves the
result. □

4.1. Some examples

In this section Theorem 4.1 will be applied in order to prove the existence of CSW solutions of several families of Rosenau-type
Eq. (1.1). The application mainly depends on the coercivity property (4.5) of the corresponding functional (4.3). We will consider
nonlinear terms of the form 𝑔(𝑢) = 𝑢𝑝+1

𝑝+1 , 𝑝 ≥ 1, for which

𝐺(𝑢) = 𝑢𝑝+2 ,
21
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Fig. 7. Generation of nonmonotone CSW’s, 𝑢 profiles and phase portraits. Rosenau equation with 𝜖 = 𝛽 = 1, 𝑔(𝑢) = 𝑢2∕2 and for several speeds 𝑐𝑠 > 𝜖.

Fig. 8. Generation of nonmonotone CSW’s, 𝑢 profiles and phase portraits. Rosenau equation with 𝜖 = 𝛽 = 1, 𝑔(𝑢) = 𝑢3∕3 + 𝑢5∕5 and for several speeds 𝑐𝑠 > 𝜖.

and consequently 𝐺 is homogeneous of degree 𝑞 = 𝑝 + 2. Thus

𝐹 (𝑢) = ∫R
𝑢𝑝+2

(𝑝 + 2)(𝑝 + 1)
𝑑𝑥.

The corresponding conditions on the speed 𝑐𝑠 for coercivity property will be derived in each case from the characterization given
in Proposition 4.1. In all the cases, the CSW’s predicted from CCT are nonmonotone and were partially anticipated by NFT.

4.1.1. Rosenau equation
Rosenau equation corresponds to (1.1) with 𝛼 = 𝜂 = 𝛾 = 0, 𝜖, 𝛽 > 0. Then

𝐸(𝑢) = ∫R

(

(𝑐𝑠 − 𝜖)𝑢2 + (𝑐𝑠𝛽)𝑢2𝑥𝑥
)

𝑑𝑥.

In this case the roots in (4.6) are 𝑥+ = 0, 𝑥− = −𝜖. Therefore, (4.7) is satisfied for 𝑐𝑠 > 0 only when 𝑐𝑠 − 𝜖 > 0. In this case the
application of NFT is special, since from (2.11), 𝑎 = 𝑎(𝑐𝑠) =

𝑐𝑠−𝜖
𝛽𝑐𝑠

, 𝑏 = 0, and the eigenvalues of the linearization are the roots of
𝜆4 + 𝑎 = 0. The existence of (nonmonotone) CSW’s for speeds 𝑐𝑠 > 𝜖 with 𝑐𝑠 − 𝜖 small can be established (region 1 close to 3 in
Fig. 1). The existence result obtained from Concentration-Compactness theory is valid for 𝑐𝑠 > 𝜖 with no restriction on the size of
𝑐𝑠 − 𝜖. The numerical generation of some of the profiles is illustrated in Fig. 7. For 𝑐𝑠 < 𝜖 (region 3 with 𝑏 = 0) PTW’s were found
experimentally.

It may be worth mentioning that when 𝑔(𝑢) is a sum of homogeneous functions, the application of Concentration-Compactness
theory to (1.1) can follow the steps developed in [27]. For the Rosenau equation, the corresponding result would ensure the existence
of solitary waves under the same restriction 𝑐𝑠 > 𝜖 on the speeds. This is illustrated in Fig. 8 for 𝑔(𝑢) = 𝑢3∕3 + 𝑢5∕5.

In both Figs. 7 and 8, we observe that the amplitude of the waves is an increasing function of the speed and, from the phase
portraits, the profiles decay to zero exponentially as |𝑋| → ∞ in an oscillatory way.
22
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a

H
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4.1.2. Rosenau-RLW equation
Rosenau-RLW equation corresponds to (1.1) with 𝜂 = 𝛾 = 0, 𝜖, 𝛽 > 0. Then

𝐸(𝑢) = ∫R

(

(𝑐𝑠 − 𝜖)𝑢2 − 𝛼𝑐𝑠𝑢
2
𝑥 + (𝑐𝑠𝛽)𝑢2𝑥𝑥

)

𝑑𝑥.

In this case

𝑥+ = 𝛼2𝜖
4𝛽 − 𝛼2

, 𝑥− = −𝜖,

and for speeds 𝑐𝑠 > 0(4.7) holds when

𝑐𝑠 − 𝜖 > 𝛼2𝜖
4𝛽 − 𝛼2

,

which was partially anticipated by NFT (cf. Table 1) but now 𝛼 ∈ R and the proximity between the two values 𝑐𝑠 − 𝜖 and 𝛼2𝜖
4𝛽−𝛼2 is

not required.

4.1.3. Rosenau-KdV equation
Rosenau-KdV equation corresponds to (1.1) with 𝛼 = 𝛾 = 0, 𝜖, 𝛽 > 0. Then

𝐸(𝑢) = ∫R

(

(𝑐𝑠 − 𝜖)𝑢2 + 𝜂𝑢2𝑥 + (𝑐𝑠𝛽)𝑢2𝑥𝑥
)

𝑑𝑥.

In this case

𝑥± = 1
2

⎛

⎜

⎜

⎝

−𝜖 ±

√

𝜖2 +
𝜂2

𝛽

⎞

⎟

⎟

⎠

,

nd (4.7) holds when 𝑐𝑠 − 𝜖 > 𝑥+ or 𝑐𝑠 − 𝜖 < 𝑥−. Note that 𝑥− < −𝜖, so for 𝑐𝑠 > 0 only the first condition is possible, and this is the
same as that in Table 2 without the restrictions on the sign of 𝜂 and on the size of the difference between 𝑐𝑠 − 𝜖 and 𝑥+.

4.1.4. Rosenau-Kawahara equation
Rosenau–Kawahara equation corresponds to (1.1) with 𝛼 = 0, 𝜖, 𝛽 > 0. Then

𝐸(𝑢) = ∫R

(

(𝑐𝑠 − 𝜖)𝑢2 + 𝜂𝑢2𝑥 + (𝑐𝑠𝛽 − 𝛾)𝑢2𝑥𝑥
)

𝑑𝑥.

We may write 𝐸 in the form

𝐸(𝑢) = ∫R

(

(𝑐𝑠 − 𝜖)2𝑢2 + 𝜂𝑢2𝑥 + ((𝑐𝑠 − 𝜖)𝛽 + 𝜌)𝑢2𝑥𝑥
)

𝑑𝑥,

with 𝜌 = 𝜖𝛽 − 𝛾. In this case

𝑥± = 1
2

⎛

⎜

⎜

⎝

−𝜆
𝛽
+

√

(

𝜆
𝛽

)2
+

𝜂2

𝛽

⎞

⎟

⎟

⎠

.

ence, as before, CCT gives the same conditions on the speed 𝑐𝑠 to ensure the existence of CSW as some given by NFT, cf. Table 3,
for the case of nonmonotone CSW’s, now independently of the sign of 𝜂 and 𝜌, and of the difference between 𝑐𝑠 − 𝜖 and 𝑥±.

4.1.5. Rosenau-RLW-Kawahara equation
Rosenau-RLW-Kawahara equation corresponds to (1.1) with 𝛼 = 𝛾 = −1, 𝜖 = 𝛽 = 1, 𝜂 > 0. Then

𝐸(𝑢) = ∫R

(

(𝑐𝑠 − 𝜖)𝑢2 + (𝜂 + 𝑐𝑠)𝑢2𝑥 + (𝑐𝑠𝛽 + 1)𝑢2𝑥𝑥
)

𝑑𝑥.

Now

𝑥± = 1
2

⎛

⎜

⎜

⎝

2(𝜂 − 3)
3

±

√

(

2(𝜂 − 3)
3

)2
+

4(1 + 𝜂)2
3

⎞

⎟

⎟

⎠

.

ince 𝑥− < −𝜖 then, for 𝑐𝑠 > 0(4.7) holds only when 𝑐𝑠 − 𝜖 > 𝑥+, and the existence of nonmonotone CSW’s can be ensured in the
corresponding region 1 (right) of Fig. 1 but not necessarily close to the curve 3. By way of illustration, approximations of some of
these profiles are shown in Fig. 9.

We note that for nonlinear terms 𝑔 of the form

𝑔(𝑢) = 𝑔(𝑢, 𝑢𝑥, 𝑢𝑥𝑥),

the Concentration-Compactness theory for (1.1) can also be analyzed using the approach in [27]. Some of the approximate profiles
23

for this case are given in Fig. 10.
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Fig. 9. Generation of NMCSW’s, 𝑢 profiles and phase portraits. Rosenau-RLW-Kawahara equation with 𝜂 = 1, 𝑔(𝑢) = 𝑢2∕2 and several speeds 𝑐𝑠; (c) and (d) are
magnifications of (a) and (b) resp.

5. Concluding remarks

The present paper is focused on the existence of solitary-wave solutions of equations of Rosenau type of the form (1.1), which
involve different generalizations of the Rosenau equation derived in [2]. After the study, in Section 2, of some mathematical
properties of the corresponding ivp, such as well-posedness, conserved quantities and Hamiltonian formulation, we apply two
standard theories in order to obtain existence results of solitary-wave solutions. In Section 3, for two types of nonlinearities, the
equation for the solitary waves (2.9) is written as a reversible first-order system (3.6) and where the Normal Form Theory (NFT) is
applied. The derivation and analysis of a normal form close to suitable bifurcation curves reveal the existence of classical solitary
waves (CSW’s) of two types (positive∕negative and with nonmonotone decay) as well as generalized solitary waves (GSW’s). The
general conclusions are then applied to several families of Rosenau-type equations, with the purpose of identifying the range of
speeds which, depending on the parameters of the equation under study, ensures the existence of each type of solitary wave. A
more detailed description is made in the extended version [29].

Section 4 is devoted to the use of Concentration-Compactness Theory (CCT) with the aim at obtaining additional results on the
existence of CSW’s and which may extend those from NFT. The corresponding theorem establishes the formation of such waves under
a general condition on the speed and ensuring the coercivity property of the minimized functional, a key feature for the successful
application of CCT. The resulting restriction on the speed is analyzed for the above mentioned families of Rosenau equations. The
main conclusions are that the corresponding results of existence do extend those obtained with NFT for CSW’s with nonmonotone
decay, in the sense of allowing a wider range of values of velocities which in the case of NFT is somehow restricted because of the
local character of this theory.

In both Sections 3 and 4, the existence results are illustrated with the numerical generation of approximate CSW and GSW
solutions, as well as some additional periodic traveling wave (PTW) solutions. The numerical procedure, described and checked
in [29], consists of discretizing the fourth-order Eq. (2.9) for the solitary-wave profiles on a long enough interval and periodic
boundary conditions with a Fourier collocation scheme, and solving the algebraic system for the discrete Fourier coefficients of
the approximation (in the Fourier space) using the Petviashvili iteration. The performance of the method, checked with several
24
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Fig. 10. Generation of CSW’s, 𝑢 profiles and phase portraits. Rosenau-RLW-Kawahara equation with 𝜂 = 1, 𝑔(𝑢) = 𝑢2 + 𝑢2𝑥 + 𝑢𝑢𝑥𝑥 and speeds (a), (b) 𝑐𝑠 = 1.1; (c),
(d) 𝑐𝑠 = 2.9.

examples in [29], guarantees an accuracy of the computations which enables to suggest some additional conclusions on the behavior
of the waves. The main properties concern the CSW’s, that seem to decay to zero exponentially (in a monotone or oscillating way,
depending on the type of CSW) and whose amplitude seems to be an increasing function of the speed.

We believe that the study performed in the present paper gives a complete enough picture about the existence of solitary-
wave solutions of Rosenau-type equations. This will also serve as motivation for a second part, developed in a future research,
concerning the dynamics of the waves. It is our purpose to design efficient discretizations of the equations that may suggest, from
a computational point of view, some conclusions on different stability issues.
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