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A B S T R A C T   

The paper addresses the persistent challenge of insider threat in cybersecurity. Despite advancements in 
detection and prevention technologies and approaches, the complexity of digital environments and the ingenuity 
of insiders remain a problem. We propose an encryption algorithm called Securecipher, specifically designed to 
protect file systems from insider threats. The requirements that an algorithm must meet in this context are 
outlined, along with a method for its development. A context-based key generation mechanism is introduced, 
eliminating the need for key storage. A file marking mechanism is proposed that enables protection of the 
encryption algorithm against specific insider threat attacks. The proposed encryption algorithm meets the re
quirements posed by insider threats and has successfully passed 87 % of the NIST tests, equivalent to 13 out of 15 
tests passed. Compared to conventional algorithms, the proposed encryption algorithm is more efficient in the 
context of insider threats, allowing access to distant locations instantaneously. In the specific case of the com
parison with the RC4 algorithm, it showed a 0.25 s higher speed when accessing the last position of a 128-bytes 
file. Furthermore, a significant increase in the vocabulary of the encrypted text with Securecipher compared to 
the original text is observed, approximately 42 times more.   

1. Introduction 

In an increasingly interconnected world heavily reliant on electronic 
data management, information security becomes an unavoidable pri
ority. The dynamic nature of cyber threats and the myriad of channels 
through which data can leak require advanced and proactive solutions 
to mitigate external and internal threats (Bandari, 2021). In this context, 
external threats refer to cyber-attacks caused by agents external to the 
organization, such as phishing, malware, hacking, among others (Her
rera Montano et al., 2022). In contrast, internal threats arise from within 
the organization. This type of threat includes incidents caused by people 
with authorized access to information, either consciously or uncon
sciously (Pal,Chattopadhyay,and Swarnkar, 2023; Renaud et al., 2024). 
In the past, Data Loss Prevention (DLP) systems have emerged as 
essential tools to protect sensitive information. These solutions can 
address internal threats, negligence or malicious acts by employees, as 
well as external threats that seek to exploit vulnerabilities in network 

security (Ahmad,Mehfuz,and Beg, 2022; Herrera Montano et al., 2022). 
DLP systems are based on various protection methods, from auto

mated data classification and constant monitoring of user activities to 
the enforcement of access policies and information encryption. Since the 
early 1980 s, Secure File Systems (SFS) received considerable attention 
as DLP tools (Gudes, 1980). A SFS refers to a data storage environment 
that implements robust measures and controls to protect the integrity, 
confidentiality, and availability of stored information. This requires the 
integration of other security techniques, where the importance of 
encryption algorithms and secure information access techniques is 
highlighted (Montano et al., 2022). The key to these systems lies in their 
ability to adapt to heterogeneous business environments to ensure data 
protection (Ahmad,Mehfuz,and Beg, 2023; Faheem et al., 2017; Ghouse, 
Nene, and VembuSelvi. 2019). 

The effective adoption of the encryption algorithm in an SFS 
strengthens the defenses against external and internal attacks (Faheem 
et al., 2017; Herrera Montano et al., 2022). During the last decades, the 
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la Torre Díez).  

Contents lists available at ScienceDirect 

Expert Systems With Applications 

journal homepage: www.elsevier.com/locate/eswa 

https://doi.org/10.1016/j.eswa.2024.124470 
Received 10 March 2024; Received in revised form 21 May 2024; Accepted 7 June 2024   

mailto:isabel.herrera.montano@uva.es
mailto:juan.ramos_diaz.ext@nokia.com
mailto:jose_javier.garcia_aranda@nokia.com
mailto:sergio.molina_cardin.ext@nokia.com
mailto:juan.guerrero_lopez.ext@nokia.com
mailto:isator@tel.uva.es
www.sciencedirect.com/science/journal/09574174
https://www.elsevier.com/locate/eswa
https://doi.org/10.1016/j.eswa.2024.124470
https://doi.org/10.1016/j.eswa.2024.124470
https://doi.org/10.1016/j.eswa.2024.124470
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2024.124470&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Expert Systems With Applications 254 (2024) 124470

2

efficiency against external threat of conventional cryptographic algo
rithms (Djordjevic, 2019; Yegireddi and Kiran Kumar, 2016) such as: 
Data Encryption Standard (DES) (Nie and Zhang, 2009; Smid and 
Branstad, 1988; Tihanyi, 2022; Zhao, 2023), Advanced Encryption 
Standard (AES) (Ahmad et al., 2022,2023; Dworkin, 2023), Rivest–
Shamir–Adleman (RSA) (Burnett and Paine, 2001; Thakare et al., 2024), 
Rivest Cipher 4 (RC4) (Paul, 2018; Stallings, 2005), and other conven
tional algorithms (Abujoodeh,Tamimi,and Tahboub, 2023; Bernstein, 
2024; Faheem et al., 2017) has been demonstrated. The security of these 
algorithms is reduced in the face of the insider threat, because the in
sider has the information in the clear and can generate a set of docu
ments to obtain key information (Huang and Li, 2017). 

A study conducted until July 2022 (Herrera Montano et al., 2022), 
revealed that 40 % of the studies found in the literature concerning DLP 
systems, address information encryption techniques as a fundamental 
measure against data leakage. Similar studies such as (Ahmad et al., 
2023) and (Ahmad et al., 2022), propose cryptographic approaches, 
based on the AES algorithm, for greater security of data transfer and 
storage in the cloud. In (Dhanuja et al., 2020) proposed E-REA, an 
extension of the Reverse Encryption Algorithm (REA) algorithm pro
posed in 2013 by the authors of (Bhagat, Satpute, and Palekar, 2013). 
The algorithm proposed in (Dhanuja et al., 2020), seeks to improve the 
security of data in transit. 

Other recent similar studies, focus on the development of encryption 
algorithms for SFS, such is the case of (Bhondve, 2023), which proposes 
a system that employs the combination of AES and Blowfish algorithms 
for the development of a secure file storage system in cloud environ
ments. The authors of (Ms. S. Suma et al., 2023) propose hybrid cryp
tography for a secure storage system, the proposed encryption 
mechanism uses the combination of multiple conventional encryption 
algorithms. The study described in (Adeniyi et al., 2023) focuses on 
modifying the AES algorithm to achieve better performance in protect
ing patient medical information stored in the cloud. However, an 
encryption algorithm for DLP systems focused on the special needs of the 
insider threat has not been proposed so far. 

The main objective of this paper is to propose Securecipher, a new 
encryption algorithm for SFS, valid to mitigate the insider threat. In this 
research work, we study the main requirements of a valid encryption 
algorithm to mitigate the insider threat. A mechanism based on boolean 
functions is proposed for the development of this type of encryption 
algorithms. Additionally, an encryption algorithm, with context-based 
key generation, is presented and evaluated. The main contributions of 
this paper are the following:  

1. The main requirements necessary for an encryption algorithm to be 
valid against the insider threat are presented.  

2. A mechanism for the development of valid encryption algorithms to 
mitigate the insider threat is proposed.  

3. A new encryption algorithm, with key generation mechanism based 
on contextual challenge execution, is presented to mitigate the in
sider threat.  

4. A file marking mechanism is proposed that enables protection of the 
encryption algorithm against specific insider threat attacks. 

The remainder of this article is organized as follows: The specificities 
and requirements of insider threat security are presented in section 2. In 
section 3, the SFS architecture and its component security techniques are 
described. Also, the Securecipher encryption algorithm is proposed in 
section 4, followed by the security and efficiency analysis of the pro
posed encryption algorithm in section 5. Finally, the main conclusions 
reached in this research are presented in section 6. 

2. Insider threat security 

This section outlines the primary specifications and requirements 
that must be considered for the development of an encryption algorithm 

within the context of insider threats. 

2.1. Specificities of insider threats vs. external threats 

In our study, we found that there is a significant difference between 
an attack derived from insider threats and one originating from external 
threats. An insider has certain “advantages” that an external attacker 
usually does not have. Table 1 presents the description of three speci
ficities of an insider compared to an external attacker, studied in this 
research. 

In Table 1, it is evident that due to the advantages presented by an 
insider, attacks known as known-plaintext attacks, chosen-plaintext at
tacks and chosen-ciphertext attacks can be produced (Kremer and Ryan, 
2005; Lee,Lin,and Chang, 2011; Stamp and Low, 2007). 

2.2. Requirements for designing an encryption algorithm resistant to 
insider threats 

A valid encryption algorithm insider threats in SFS needs additional 
functionalities to those required by a conventional encryption algo
rithm. In this scenario, the user works with encrypted files in real time, 
which necessitates requests from applications at random positions. 
Table 2 outlines the requirements that an encryption algorithm adapted 
to insider threats must satisfy, classified into three types: functional, 
non-functional, and general. Functional requirements adapt the SFS in 
the context of insider threats. Non-functional requirements refer to the 
main considerations during the design of the algorithm. General re
quirements cover criteria applicable to all encryption algorithms. 

3. Secure file system architecture 

The underpinning of the proposed encryption algorithm’s research 
lies in the SFS, as shown in Fig. 1. The SFS is essentially a Virtual File 
System (VFS) enhanced with security methodologies. The Dokan tool 
has been employed for the development of the VFS (Anon, n.d.; Montano 
et al., 2022). Dokan is a library utilized for developing user-mode file 
systems on the Windows platform. This tool facilitates the creation of file 
systems that mirror the real file system. The VFS intercepts application 
calls to the operating system to implement security measures among 
them. The primary objective of the SFS, is to safeguard information by 
encrypting it upon exit from the VFS. The VFS intercepting write oper
ations to external devices and reads from cloud storage repositories. 
Fig. 1 illustrates the architecture and operation of the SFS. Fig. 1 
depicting a plaintext file that, upon interaction with the SFS, undergoes 

Table 1 
Specificities of insider threats vs. external threats. Own source.  

Specificities Insider threats External threats 

File generation An insider has the 
capability to produce 
encrypted files, thereby 
acquiring as many as 
required. 

The external attacker may 
capture information. 
However, unlike the 
insider, they cannot 
generate it. 

Knowledge of the 
information 

The insider can generate 
the files with the 
information he wants. This 
allows you to create files 
that can have very useful 
information depending on 
the encryption. Either files 
of a specific size (1 byte, 
512 bytes, etc.), or files 
with a specific content (all 
bytes at 0x00, 0xFF, etc.). 

An external attacker 
generally does not know 
the content of the captured 
information. 

Correspondence of 
encrypted and 
decrypted files 

The insider may know the 
correspondence between 
plaintext and encrypted 
files. 

The external attacker has 
no access to knowledge of 
this correspondence.  
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encryption and marking. The SFS comprises the VFS, a key generation 
mechanism based on challenge-solving, file marking mechanism, and 
the encryption system. Subsequently, the other components of the SFS 
are delineated. 

3.1. Encryption algorithm 

An encryption system refers to a procedure that uses an algorithm 
with a specific key, known as an encryption key. This procedure trans
forms a plain text message into a format unreadable to any individual 
who lacks the corresponding secret key, also known as the decryption 
key, associated with the algorithm (Faheem et al., 2017; Yegireddi and 
Kiran Kumar, 2016). The design of the encryption algorithm is based on 
the requirements previously studied and described in the previous sec
tion. The following is a description of how each requirement influences 
algorithm design: 

Maintain message or file size: An encryption function that operates 
at the byte level is essential. This necessitates the use of a hash function 

that returns an element of size equivalent to the plaintext byte. 
Maintain the position of each byte: The position has to influence 

the function, assuming that a byte is used as a clear element. 
Encrypting and decrypting with different operations: The addi

tion operation is proposed for encryption and the subtraction operation 
for decryption. 

Decryption without encryption is valid: In this case, the byte in 
clear is subtracted from the result of the hash function. 

Lightweight Encryption: Design of a lightweight cryptographic 
hash function. 

Statistically Robus: Design of a cryptographic hash function that, 
starting from an input and a key, combines the bits in a diffuse and 
nonlinear way. 

Robust against insider attack scenario: Inclusion of a File Random 
Number (frn) for each file, coming from the brand. 

Table 2 
Requirements for designing an encryption algorithm resistant to insider threats. Own source.  

Type Requirement Description 

Functional Maintain message or file size An application can read the size of a file while it is in use, this requirement is necessary to avoid operating errors. 
Maintain the position of each byte An application can make requests to different positions in a file under certain circumstances. This requirement ensures 

that applications will find the byte in the correct location. 
Encrypting and decrypting with 
different operations 

Encrypting and decrypting must be distinct operations to prevent successive encryption processes from reversing the 
encryption. 

Decryption without encryption is 
valid 

Decryption should be possible even without prior encryption so if you want to share a file with a client using an 
application that encrypts (such as emails), once it is encrypted with the keys generated by the client the file becomes 
clear. In this way, system overloads are avoided by unnecessarily encrypting and decrypting. 

Non- 
Functional 

Lightweight Encryption In a SFS scenario, real-time operations demand encryption algorithms characterized by low computational overhead to 
minimize disruption of the file system’s regular functionality. 

Statistically Robust Ensure protection against external attacks. 
Robust against insider attack 
scenario 

Ensure protection against insider attacks. 

General Minimal encryption and decryption 
time 

Minimum time required to encrypt/decrypt in real time. 

Minimum memory usage The performance of the cipher is influenced by factors such as the size of the key or initialization vectors, as well as the 
type of operations employed within the algorithm. 

Maximum throughput Depending on the encryption time, it influences the power consumption of the algorithm. 
Avalanche effect Determines whether a small change in the plaintext generates changes in the ciphertext. 
Optimal key size This evaluation parameter defines the bandwidth required for transmission. It also helps to determine a size to avoid 

brute force attacks by ensuring that it is computationally impossible. 
Entropy Entropy is used to measure randomness and uncertainty in data. The relationship between the ciphertext and the key 

becomes more complex with high randomness.  

Fig. 1. SFS architecture and operation.  
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3.2. Hash function design mechanism 

A hash function is a mathematical algorithm capable of transforming 
input data into a series of output characters, typically of a fixed length 
regardless of the input data’s length. The output data represents a 
unique summary of all input information (Gupta,Goyal,and Aggarwal, 
2014; Rivero-García et al., 2017). The diffusion in hash functions in
dicates that all input information influences the result, such that any 
alteration in the input data yields a different output. Hash functions, also 
referred to as one-way functions, exhibit confusion, establishing intri
cate relationships between input and output data. Consequently, 
deducing the input data solely from knowledge of the output becomes 
infeasible. To ensure the robustness of a hash function, it is imperative to 
uphold both effective diffusion and confusion properties (Dhanuja et al., 
2020; Zhuoyu and Yongzhen, 2022). 

The proposed encryption algorithm introduces a hash function that 
attempts to enhance the algorithm in both diffusion and confusion, as do 
well-known algorithms such as AES (Rijndael), DES, Serpent (AES 
finalist), Tiny Encryption Algorithm (TEA), among others (Joan and 
Vincent, 2002; Liu,Rijmen,and Leander, 2018; Sajadieh et al., 2012). For 
the development of the proposed hash function, boolean operations are 
studied. These operations allow high-speed byte-level processing and 
provide the cryptographic properties detailed in Table 3. With a well- 
balanced combination of the properties illustrated in Table 3, boolean 
functions are very advantageous in cryptographic applications (García, 
2014). 

According to (García, 2014), a boolean function cannot satisfy all 
properties at the same time. Functions with maximum nonlinearity, or 
functions of perfect nonlinearity have a reduced algebraic degree 
(maximum n/2, where n is the number of variables of the function) and 
are not balanced. The limit for the algebraic degree of resilient functions 
is (n − m − 1), where m is the order of resilience. The higher m denotes 
greater immunity to correlation, being balanced functions, but with non- 
linearity far from the maximum. That is why, for the study of boolean 
functions in this research, the software “Study of Boolean Functions” 
(Ramos Diaz 2022b) was developed, which generates boolean functions 
from their possible truth table, as shown in Fig. 2. 

Fig. 2 presents the method of study of boolean functions used in this 
research. The cryptographic properties of the boolean functions result
ing from a 4-variable truth table (x1, x2, x3, x4 are studied, in terms of 
balance, degree, resilience and nonlinearity. Then the boolean function 
with the best cryptographic properties is chosen. 

3.3. Key generation mechanism 

Conventional key generation mechanisms lack security against 
accidental leaks or theft, as they are typically stored (Ms. S. Suma et al., 
2023). In this study, we introduce a key generation mechanism based on 
context challenge resolution. Specifically, a subkey is generated with the 
completion of each challenge. These challenges have various objectives, 
such as user identification, location, device, date, and time of accessing 

the information. The challenges’ objectives can be resolved in different 
ways; for instance, user identification can be achieved through bio
metric or behavioral information. Biometric identification may involve 
facial recognition, voice recognition, fingerprints, etc., while behavioral 
identification can be through mouse dynamics, keystroke patterns, 
among others. Each objective has multiple methods of fulfillment, each 
generating a subkey. Concatenating these subkeys produces the 
encryption key, as illustrated in Fig. 3. This key generation method al
lows for key calculation rather than storage, enhancing their security. 
The generated key is of variable size. Subsequently, a key size setting 
process is performed to adjust it to a size of 8 bytes, as required by the 
encryption process. It can be seen in the Fig. 3, that in this key size 
setting process, it is checked if the key is greater or less than 8 bytes. If 
the key is larger, it is partitioned into subsets of 8 bytes and XOR op
erations are performed between the partitions. If, on the other hand, the 
key is smaller, a concatenation of the key is performed until it reaches a 
size of 8 bytes. 

3.4. Marking mechanism 

The mark is a mechanism incorporated into the SFS. This mechanism 
is necessary to determine the encryption or decryption action to be 
performed. It also allows the encryption algorithm to be protected 
against file generation attacks by insider threats. The proposed marking 
mechanism is incorporated into the file without changing its size, using 
the Huffman Code (Huffman, 1952). The Fig. 4 shows the structure of 
the marking and Table 4. describes each parameter that composes it. 

The file marking and unmarking procedure is performed before the 
corresponding encryption or decryption action. Algorithms 1 and 2 
describe the marking and unmarking procedure, respectively.  

Algorithm 1 Marking Algorithm. 

Marking Process  
1. Read the first 512 bytes of plain text 
plain_bytes = read plain_text [0:512]  
2. Bytes of plain text are compressed with Huffman Code 
Full_Compression_Result = encoding_Huffman (plain_bytes)  
3. The size of the compressed text is obtained 
FCS = size (Full_Compression_Result)  
4. Check that there is enough space to add the frn and level parameters (5 

bytes). If this condition is true, the compressed text, filling sequence, frn and 
level are concatenated. Then the level is returned. If the condition is false, 
the message “INVALID_MARK_LEVEL” is returned. 

if (512-FCS)>=5: 
plain = Concatenate(Full_Compression_Result, Filing_Sequence, frn, LVL) 
return LVL 
else: 
INVALID_MARK_LEVEL 
End Process   

Algorithm 2 Unmarking Algorithm. 

Unmarking Process  
1. Verify that the following requirements are met: 
if ((ODS == MARK LENGTH == 512) AND (FCS <== (MARK LENGTH − 5)) AND 
(plain[FCS : (MARK LENGTH − 5)] == Filing Sequence) AND (frn! = INVALID FRN)

AND(LVL = = 1ORLVL = = − 1)): 
plain bytes = decoding Huffman(Full Compression Result)
return frn,LVL 
else: 
return 0 
End Process  

The proposed marking mechanism has two known limitations. First, files 
smaller than 512 bytes are not marked and therefore are not encrypted 
or decrypted. This happens because the mechanism we propose needs at 
least 512 bytes to incorporate the compressed information, decom
pression, frn and level parameters. Secondly, it may be the case that the 
file, even if it is large enough to be marked, the compression is not 
enough to incorporate the decompression, frn and level parameters. This 

Table 3 
Cryptographic properties of boolean operations in Securecipher. Own source.  

Cryptographic 
property 

Description 

Non-linearity Distancing of related functions. Prevents cryptographic 
attacks, making linear cryptanalysis more difficult. 

Degree Degree of the multivariate polynomial that represents the 
boolean function, a high degree implies more linear 
complexity. 

Balance Presence of the same number of ones and zeros in its truth 
table. This avoids statistical dependence between plaintext 
and ciphertext. 

Resilience Immunity to correlation between the values of the function 
and the previous knowledge of the binary values of some of 
its variables.  
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limitation derives from the fact that information is being added to the 
file without changing its length, i.e., inherent to tagging. In these cases, 
we have decided to block the output of these files from the computer. 

4. Securecipher encryption proposal 

The encryption algorithm proposed in our study is called Secure

Fig. 2. Boolean function study method.  

Fig. 3. Operation of the key generation mechanism and key size setting, (B = bytes).  

Fig. 4. Marking mechanism structure.  
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cipher. Securecipher is an instantaneous synchronization stream cipher 
algorithm focused on the requirements needed to help mitigate the in
sider threat. Fig. 5 shows the operation of the encryption algorithm and 
depicts the size of each parameter. From the original file the byte in 
plain (pB) is taken and added to the byte resulting from the function f to 
encrypt. As well as the encrypted byte cB((from an encrypted file) is 
taken and subtracted from the byte resulting from the function f to 
decrypt. Equations (1) and (2) represent the encryption and decryption 
equations of the proposed algorithm, respectively. 

cB = pB+ f(p, frn, k) (1)  

dB = cB − f(p, frn, k) (2)  

Where, cB is the encrypted byte, pB is the plaintext byte, f is the hash 
function, k is the key generated by the context-based key generation 
mechanism, p is the position in the text of the plaintext byte being 
encrypted or decrypted, frn is the random number obtained from the 
marking mechanism and dB is the decrypted byte. The key generated by 
solving the contextual challenges is the same for all encrypted files, but 
the frn is random and unique for each file. 

The parameters p, frn, k are concatenated to create the input message 
to the hash function, as shown in Fig. 5. The lightest possible diffusion 
and confusion mechanisms have been used for the design of f . To pro
vide diffusion, the input message is split into two vectors and a linear 
transformation is performed, as shown in equations (3) and (4). 

c = a+ b (3)  

d = c+2*b (4)  

Where a and b are the vectors into which the input message has been 
divided, c and d are the new vectors created from vectors a and b. For the 
confusion, a study of the truth table of boolean operations with 4 vari
ables was performed, as described above. From the study, equation (5) 
was obtained as the best result. 

f = (t) ∧ (x) ∧ (t&y) ∧ (x&y) ∧ (t&x&z) ∧ (t&y&z) ∧ (x&y&z)

∧ (t&x&y&z) (5)  

Where t, x, y, z are the 5 bytes fragments into which the message is 
divided. The encryption and decryption algorithms in Algorithms 3 and 
4 are shown below, respectively.  

Algorithm 3 Encryption Algorithm. 

Encryption Process  
1. Read pB,p, frn,k, of fixed sizes of 1,8, 4and8 bytes respectively.  
2. Concatenate p, frn, k to create message (20bytes)  
3. Split the message into substrings of 10 bytes to create variables a and b.  
4. Create variables c and d from a and b as shown in equations (3) and (4) 

respectively.  
5. Create substrings t and x of 5 bytes each from variable c.  
6. Create the substrings y and z of 5 bytes each from variable d.  
7. Compute the hash function as shown in equation (5).  
8. Compute the encrypted byte as shown in equation (1). 
End Process 

Table 4 
Description of mark structure.  

Components Description Size 
(bytes) 

Full Compression 
Result 

Information necessary to recover the 
original data and has a variable size. 

FCS 

Huffman Header Information necessary to recover the 
original data and has a variable size. 

FCS 

Original Data Size 
(ODS) 

Indicates the size in bytes of the original data 
and that have been replaced by the mark. 
Must always be MARK_LENGTH ==512. 

2 

Full Compression 
Size (FCS) 

Indicates the size in bytes of the complete 
result (header included) of the compression 
of the original data. Size: 

2 

Huffman 
Table Size (HTS) 

Indicates the size in bits of the Huffman 
table. 

2 

Huffman Table The translations of the original bytes to 
encoded bytes necessary to be able to reverse 
the compression. 

⌈HTS/8⌉ 

Huffman 
Compressed 
Data 

The compressed data, i.e. the original data 
encoded according to the Huffman table. 

FCS − 6 −
⌈HTS/8⌉ 

Padding. This padding only exists if the last byte that 
has been filled with the compressed data has 
not been completed, occupying up to 7 bits, 
so that the padding sequence is always 
aligned by bytes. 

< 1 

Filling Sequence This is a predefined sequence with which the 
remaining space is filled and therefore has a 
variable size. 

507 − FCS 

File Random 
Number (frn) 

Random number specific to this file. 4 

Level (LVL) Indicates the encryption level of the file. 
Only values − 1 (decrypted) and 1 
(encrypted) are valid. 

1  

Fig. 5. Operation of the encryption algorithm, (B = bytes).  
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Algorithm 4 Decryption Algorithm. 

Decryption Process  
1. Read pB,p, frn,k, of fixed sizes of 1, 8,4and8 bytes respectively.  
2. Concatenate p, frn, k to create message (20bytes)  
3. Split the message into substrings of 10 bytes to create variables a and b.  
4. Create variables c and d from a and b as shown in equations (3) and (4) 

respectively.  
5. Create substrings t and x of 5 bytes each from variable c.  
6. Create the substrings y and z of 5 bytes each from variable d.  
7. Compute the hash function as shown in equation (5).  
8. Compute the encrypted byte as shown in equation (2). 
End Process  

5. Validation 

Validation of the proposed encryption algorithm is performed by 
validating the diffusion, confusion and performance analysis (Faheem 
et al., 2017). Diffusion is evaluated using software (Ramos Diaz 2022a) 
created to evaluate the influence of frn mechanism on the algorithm. The 
validation of the confusion is measured using the NIST statistical suite. 
The performance analysis is tested by calculating the entropy and the 
time required by the proposed algorithm for encryption and decryption. 
Moreover, a comparative analysis of our proposal and RC4 algorithm is 
performed in terms of entropy and performance. 

5.1. Diffusion validation 

In Securecipher, the main objective of the broadcast is to protect the 
encryption algorithm from the insider threat. For this purpose, the 
parameter frn is introduced to protect the encryption algorithm from 
specific insider threat attacks. To measure the influence of frn on the 
encryption algorithm, the following parameters were considered: plain 
files filled with zeros of size equal to 2;8; 26and260bytes; 100 different 
of size equal to 8bytes encryption keys and 512 different frn values of 
size 9 bits. To analyze the influence of frn on the cipher, a specific 
program (Ramos Diaz 2022a) that performs the sequence of steps shown 
in Algorithm 5. In this way, the avalanche effect of our encryption 

algorithm is also analyzed.  
Algorithm 5 Diffusion Validation Algorithm. 

Diffusion Validation Process 
1. Generate as many files as there are frn and key possibilities, as follows: 
For j = 0 to key number 
For i = 0 to frn number 
While size generated file < size plainfile 
cB = Encryption(p, frn,k)
2. Count the number of distinct files generated for each file size. 
3. Calculate the number of expected files for each file size, as shown in the 

equation 6. 
number files expected = key number*frn number(6)
4. Calculate the Mean Square Error (MSE) between the number of expected files 

and the number of distinct files generated, as shown in the equation 7. 

MSE =
(number files distinct − number files expected)2

key number*frn number
(7)

End Process  

Where j and i are iterators; key number is the number of keys to test with; 
frn number is the number of frns to test with; size generated file and 
size plain file are the size of the generated file and the size of the key file, 
respectively; cB is the encrypted byte; p is the byte position in the blank 
file; frn is the random single parameter generated by flag, k is the key; 
number files expected is the number of different files expected and 
number files distinct is the number of different files generated. 

The test has been carried out with small files, because the smaller the 
file size, the more difficult it is to generate different files. As shown in 
Fig. 6, the MSE is reduced in 8, 16 and 260 byte files with respect to the 2 
byte file. In other words, the 2 byte file is less likely to change because of 
its smaller size. Consequently, the diffusion and avalanche effect tends 
to increase as the file size increases. 

5.2. Confusion Validation 

To statistically validate the encryption algorithm, the tests defined 
by NIST (National Institute of Standards and Technology) to statistically 
validate pseudo-random number generators are performed (Schneier, 
1996). The NIST 800–22 test suite is a statistical package consisting of 
15 tests for testing the randomness of binary (arbitrarily long) sequences 
produced by hardware or software cryptographic random or pseudo- 
random number generators (Rukhin et al., 2001). These tests focus on 

Fig. 6. Evolution of the MSE in files of size 2; 8; 16 and 260 bytes (B).  
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the different types of randomness that might exist in a sequence, and 
how it resembles what a sequence should really look like (Sýs et al., 
2015). 

The results of the NIST tests performed on Securecipher and the 
parameters used in each of them are shown in Table 5. Securecipher is 
considered to have successfully passed the NIST tests, despite failing two 
of them. Because according to (Sýs et al., 2015) a true pseudo-random 
number generator has an 80 % probability of failing at least one of the 
15 tests. In the Overlapping Template Matching Test the input data does 
not match the test, which causes 119 subtests out of a total of 148. 

5.3. Performance analysis 

The performance analysis of the algorithm was performed by eval
uating the time required for encryption and decryption, avalanche effect 
and entropy. Table 6 describes the tests performed in this study and their 
description. 

To measure the encryption and decryption time of the proposed al
gorithm, a computer with Intel(R) Core(TM) i7-9850H CPU @ 2,60 GHz 
and 16 GB RAM was used. Fig. 7 shows the encryption and decryption 
time for 1 KB, 1 MB, 10 MB and 128 MB files. This test demonstrates that 
the encryption and decryption process occurs in a manner compatible 
with normal computer use. The encryption time of this test for a 10 MB 
text file is 0.54 s and the decryption time 0.52 s. In comparison with the 
study (Adeniyi et al., 2023), the results are significantly higher, 
considering that for an 8 MB file the encryption time is 7.2 s and the 
decryption time is 8.2 s, with the proposed Modified AES algorithm. 

To measure the entropy of Securecipher, the frequencies of each 
word of the original file (Don Quixote Spanish version, size 128MB) are 
counted in binary, to obtain the vocabulary and the frequency of these. 
Then the same operation is performed for the file encrypted with 
Securecipher and compared. From the plaintext vocabulary 1.080 words 
were obtained and from the ciphertext vocabulary 45.152 words were 
obtained. Fig. 8 a and b show the frequencies of the words obtained in 
the vocabulary of each case. It is possible to observe an increase in the 
dictionary of distinct words, and a greater uniformity in the frequency of 
these once the original file has been encrypted. Although an optimal 
distribution of word frequency is not achieved. 

5.4. Comparative analysis 

During the study, cost and efficiency comparisons were made with 
the RC4 algorithm. The test was performed by calculating the encryption 
and decryption time of the Securecipher and RC4 algorithms; as well as 
the last byte access time for 0,001;1; 10and128MB files. 

Table 7 shows that the RC4 algorithm is significantly faster than 

Securecipher. However, in an insider threat scenario, Securecipher is 
more effective than RC4 or any other known encryption algorithm 
because it allows instant access to the contents of any position in the file. 
In the specific case of RC4, due to its operation, it must encrypt or 
decrypt the entire file to access the last position, with a delay time of 
0.25 s. Consequently, RC4, as well as any algorithm developed without 
considering the specificities of the insider threat scenario, has a delay 
time to access the last byte of a file longer than Securecipher. 

Fig. 9 shows a comparison of the entropy behavior of the Don 
Quixote Spanish version file (size 128 MB) encrypted with Securecipher 
and RC4 algorithms. A vocabulary of 65,256 words was obtained with 
RC4, while with Securecipher only 45,152 words. Furthermore, as 
shown in the figure, RC4 has a much more uniform frequency than 
Securecipher, which is a limitation against cryptanalytic attacks. To 
counter this limitation, Securecipher has been complemented by the 

Table 5 
NIST 800–22 test results applied to Securecipher. Own source.  

TEST n M STREAMS STATUS 

Frequency (Monobit) Test 1000 − 25 ✓ 
Frequency (Block) Test 2000 20 15 ✓ 
Runs Test 1000 − 15 ✓ 
Longest Run of Ones in a Block Test 2000 − 15 ✓ 
Binary Matrix Rank Test 128 − 15 ✓ 
Discrete Fourier Transform 

(Spectral) Test 
2000 − 10 ✓ 

Non-overlapping Template 
Matching Test 

2000 − 25 ✓ 

Overlapping Template Matching 
Test 

20,000 10 500 101✓ 
18✕ 

Maurer’s Universal Statistical Test 6500 9 25 ✓ 
Linear Complexity Test − − − ✕ 
Serial Test 2000 3 10 ✓ 
Approximate Entropy Test 1,000,000 − 1000 ✓ 
Cumulative Sums Test 1,000,000 − 1000 ✓ 
Random Excursions Test 2000 8 20 ✓ 
Random Excursions Variant Test 1,000,000 500 25 ✓  

Table 6 
Description of the Securecipher performance analysis. Own source.  

Test Description 

Time required for 
encryption and decryption 

Encryption time required to adapt the cipher to the 
desired context (a very slow cipher is not suitable for 
real-time use). 

Avalanche effect It determines whether a small change in the plaintext 
generates large changes in the output. In the case of 
Securecipher, depending on the position, the 
avalanche effect is diminished, but thanks to the frn 
mechanism, this effect is maintained automatically 
since it changes the input of the hash function at each 
modification, and therefore the result of the 
cryptographic hash, allowing not only the position 
byte to change, but all the bytes of the file. This 
property is validated in the diffusion validation 
study. 

Entropy Entropy is used to measure randomness and 
uncertainty in the data. The relationship between the 
ciphertext and the key becomes more complex with 
high randomness. Entropy is measured by counting 
the frequencies of each word in the original file in 
binary, to obtain the “vocabulary”, i.e. the number of 
hexadecimal words used and their frequency. The 
more the vocabulary grows in the encrypted file with 
respect to the clear one and the more similar their 
frequency is, the higher the entropy will be in the 
encrypted file.  

Fig. 7. Encryption and decryption time of 0,001;1; 10and128megabite(MB)
files with Securecipher. 
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FRN parameter introduced by the marking mechanism. Thus, each file 
the user creates will generate a different FRN result and thus a different 
encrypted file, even if the file in clear is the same. 

6. Conclusions 

In this paper, we propose a new encryption algorithm for SFS against 
the insider threat, and the requirements that an algorithm must meet for 
this purpose. A mechanism for the development of this type of encryp
tion algorithms is described and a file marking mechanism is presented. 
In addition, a software that allows the study of boolean functions is 
proposed, and another software for the advanced study of the diffusion 
of this type of algorithm. 

Starting from the requirements imposed by the DLP use case, an 
algorithmic definition of a novel cipher has been arrived at. The pro
posed encryption algorithm passes 87 % of the NIST tests successfully, 
equivalent to 13 successful tests out of 15. It has been proven that for the 
insider threat use case the proposed algorithm is more efficient than the 
RC4 encryption algorithm, since it is faster when accessing a given file 
position. It was further proved that the incorporation of the document 
marking mechanism is necessary in a valid algorithm for SFS against the 
insider threat. The proposed marking mechanism, despite having some 
limitations in applying the security techniques to files smaller than 512 

bytes in size, allows increasing the diffusion and security of the algo
rithm. Although an increase in the vocabulary of Securecipher cipher
text with respect to natural language of approximately 42 times and in 
the stability of word frequencies has been demonstrated, the RC4 al
gorithm was found to have more stability in frequencies and a larger 
number of words in the vocabulary. This means that the confusion of our 
algorithm presents limitations in the face of cryptanalysis attacks. 
However, this limitation has been countered by the inclusion of the FRN 
parameter that makes each encrypted file different, even if the file in 
clear is the same. For this reason, we consider Securecipher to be valid 
for insider threat scenarios, as it meets the design criteria required in this 
type of scenario and has a high diffusion. 

Therefore, as future work, we propose to continue investigating this 
type of encryption algorithms to obtain an optimal algorithm, both for 
insider and external threats. Also, we intend to address the limitations of 
the tagging mechanism so that users can share any type of files with 
built-in security techniques. 

7. Original article statement 

This manuscript is the authors’ original work and has not been 
published or has it been submitted simultaneously elsewhere. 

Fig. 8. A) entropy of plaintext. b) entropy of ciphertext with securecipher.  

Table 7 
Comparison of the performance analysis and time required to access the last byte of the file with Securecipher and RC4.  

File Size Securecipher RC4 Last Byte Access 
Encryption Decryption Encryption/ Decryption Securecipher RC4 

1 KB − − − − −

1 MB 0,052 0,052 0.002 − 0.002 
10 MB 0,542 0,515 0,018 − 0.018 
128 MB 7,69 7,6 0.25 − 0.25  

Fig. 9. A) entropy of the ciphertext with securecipher. b) entropy of the ciphertext with rc4.  
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