
Expert Systems With Applications 254 (2024) 124470

Available online 12 June 2024
0957-4174/© 2024 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

Securecipher: An instantaneous synchronization stream encryption system
for insider threat data leakage protection

Isabel Herrera Montano a,*, Juan Ramos Diaz b, José Javier García Aranda b,
Sergio Molina-Cardín b, Juan José Guerrero López b, Isabel de la Torre Díez a

a Department of Signal Theory and Communications and Telematics Engineering University of Valladolid, Paseo de Belén, 15, 47011 Valladolid, Spain
b Department of Innovation, Nokia, Maria Tubau Street, 9, 28050 Madrid, Spain

A R T I C L E I N F O

Keywords:
Encryption algorithm
Decryption algorithm
Secure file system
Insider threat
Information security

A B S T R A C T

The paper addresses the persistent challenge of insider threat in cybersecurity. Despite advancements in
detection and prevention technologies and approaches, the complexity of digital environments and the ingenuity
of insiders remain a problem. We propose an encryption algorithm called Securecipher, specifically designed to
protect file systems from insider threats. The requirements that an algorithm must meet in this context are
outlined, along with a method for its development. A context-based key generation mechanism is introduced,
eliminating the need for key storage. A file marking mechanism is proposed that enables protection of the
encryption algorithm against specific insider threat attacks. The proposed encryption algorithm meets the re
quirements posed by insider threats and has successfully passed 87 % of the NIST tests, equivalent to 13 out of 15
tests passed. Compared to conventional algorithms, the proposed encryption algorithm is more efficient in the
context of insider threats, allowing access to distant locations instantaneously. In the specific case of the com
parison with the RC4 algorithm, it showed a 0.25 s higher speed when accessing the last position of a 128-bytes
file. Furthermore, a significant increase in the vocabulary of the encrypted text with Securecipher compared to
the original text is observed, approximately 42 times more.

1. Introduction

In an increasingly interconnected world heavily reliant on electronic
data management, information security becomes an unavoidable pri
ority. The dynamic nature of cyber threats and the myriad of channels
through which data can leak require advanced and proactive solutions
to mitigate external and internal threats (Bandari, 2021). In this context,
external threats refer to cyber-attacks caused by agents external to the
organization, such as phishing, malware, hacking, among others (Her
rera Montano et al., 2022). In contrast, internal threats arise from within
the organization. This type of threat includes incidents caused by people
with authorized access to information, either consciously or uncon
sciously (Pal,Chattopadhyay,and Swarnkar, 2023; Renaud et al., 2024).
In the past, Data Loss Prevention (DLP) systems have emerged as
essential tools to protect sensitive information. These solutions can
address internal threats, negligence or malicious acts by employees, as
well as external threats that seek to exploit vulnerabilities in network

security (Ahmad,Mehfuz,and Beg, 2022; Herrera Montano et al., 2022).
DLP systems are based on various protection methods, from auto

mated data classification and constant monitoring of user activities to
the enforcement of access policies and information encryption. Since the
early 1980 s, Secure File Systems (SFS) received considerable attention
as DLP tools (Gudes, 1980). A SFS refers to a data storage environment
that implements robust measures and controls to protect the integrity,
confidentiality, and availability of stored information. This requires the
integration of other security techniques, where the importance of
encryption algorithms and secure information access techniques is
highlighted (Montano et al., 2022). The key to these systems lies in their
ability to adapt to heterogeneous business environments to ensure data
protection (Ahmad,Mehfuz,and Beg, 2023; Faheem et al., 2017; Ghouse,
Nene, and VembuSelvi. 2019).

The effective adoption of the encryption algorithm in an SFS
strengthens the defenses against external and internal attacks (Faheem
et al., 2017; Herrera Montano et al., 2022). During the last decades, the

* Corresponding author.
E-mail addresses: isabel.herrera.montano@uva.es (I. Herrera Montano), juan.ramos_diaz.ext@nokia.com (J. Ramos Diaz), jose_javier.garcia_aranda@nokia.com

(J.J. García Aranda), sergio.molina_cardin.ext@nokia.com (S. Molina-Cardín), juan.guerrero_lopez.ext@nokia.com (J.J. Guerrero López), isator@tel.uva.es (I. de
la Torre Díez).

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

https://doi.org/10.1016/j.eswa.2024.124470
Received 10 March 2024; Received in revised form 21 May 2024; Accepted 7 June 2024

mailto:isabel.herrera.montano@uva.es
mailto:juan.ramos_diaz.ext@nokia.com
mailto:jose_javier.garcia_aranda@nokia.com
mailto:sergio.molina_cardin.ext@nokia.com
mailto:juan.guerrero_lopez.ext@nokia.com
mailto:isator@tel.uva.es
www.sciencedirect.com/science/journal/09574174
https://www.elsevier.com/locate/eswa
https://doi.org/10.1016/j.eswa.2024.124470
https://doi.org/10.1016/j.eswa.2024.124470
https://doi.org/10.1016/j.eswa.2024.124470
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2024.124470&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Expert Systems With Applications 254 (2024) 124470

2

efficiency against external threat of conventional cryptographic algo
rithms (Djordjevic, 2019; Yegireddi and Kiran Kumar, 2016) such as:
Data Encryption Standard (DES) (Nie and Zhang, 2009; Smid and
Branstad, 1988; Tihanyi, 2022; Zhao, 2023), Advanced Encryption
Standard (AES) (Ahmad et al., 2022,2023; Dworkin, 2023), Rivest–
Shamir–Adleman (RSA) (Burnett and Paine, 2001; Thakare et al., 2024),
Rivest Cipher 4 (RC4) (Paul, 2018; Stallings, 2005), and other conven
tional algorithms (Abujoodeh,Tamimi,and Tahboub, 2023; Bernstein,
2024; Faheem et al., 2017) has been demonstrated. The security of these
algorithms is reduced in the face of the insider threat, because the in
sider has the information in the clear and can generate a set of docu
ments to obtain key information (Huang and Li, 2017).

A study conducted until July 2022 (Herrera Montano et al., 2022),
revealed that 40 % of the studies found in the literature concerning DLP
systems, address information encryption techniques as a fundamental
measure against data leakage. Similar studies such as (Ahmad et al.,
2023) and (Ahmad et al., 2022), propose cryptographic approaches,
based on the AES algorithm, for greater security of data transfer and
storage in the cloud. In (Dhanuja et al., 2020) proposed E-REA, an
extension of the Reverse Encryption Algorithm (REA) algorithm pro
posed in 2013 by the authors of (Bhagat, Satpute, and Palekar, 2013).
The algorithm proposed in (Dhanuja et al., 2020), seeks to improve the
security of data in transit.

Other recent similar studies, focus on the development of encryption
algorithms for SFS, such is the case of (Bhondve, 2023), which proposes
a system that employs the combination of AES and Blowfish algorithms
for the development of a secure file storage system in cloud environ
ments. The authors of (Ms. S. Suma et al., 2023) propose hybrid cryp
tography for a secure storage system, the proposed encryption
mechanism uses the combination of multiple conventional encryption
algorithms. The study described in (Adeniyi et al., 2023) focuses on
modifying the AES algorithm to achieve better performance in protect
ing patient medical information stored in the cloud. However, an
encryption algorithm for DLP systems focused on the special needs of the
insider threat has not been proposed so far.

The main objective of this paper is to propose Securecipher, a new
encryption algorithm for SFS, valid to mitigate the insider threat. In this
research work, we study the main requirements of a valid encryption
algorithm to mitigate the insider threat. A mechanism based on boolean
functions is proposed for the development of this type of encryption
algorithms. Additionally, an encryption algorithm, with context-based
key generation, is presented and evaluated. The main contributions of
this paper are the following:

1. The main requirements necessary for an encryption algorithm to be
valid against the insider threat are presented.

2. A mechanism for the development of valid encryption algorithms to
mitigate the insider threat is proposed.

3. A new encryption algorithm, with key generation mechanism based
on contextual challenge execution, is presented to mitigate the in
sider threat.

4. A file marking mechanism is proposed that enables protection of the
encryption algorithm against specific insider threat attacks.

The remainder of this article is organized as follows: The specificities
and requirements of insider threat security are presented in section 2. In
section 3, the SFS architecture and its component security techniques are
described. Also, the Securecipher encryption algorithm is proposed in
section 4, followed by the security and efficiency analysis of the pro
posed encryption algorithm in section 5. Finally, the main conclusions
reached in this research are presented in section 6.

2. Insider threat security

This section outlines the primary specifications and requirements
that must be considered for the development of an encryption algorithm

within the context of insider threats.

2.1. Specificities of insider threats vs. external threats

In our study, we found that there is a significant difference between
an attack derived from insider threats and one originating from external
threats. An insider has certain “advantages” that an external attacker
usually does not have. Table 1 presents the description of three speci
ficities of an insider compared to an external attacker, studied in this
research.

In Table 1, it is evident that due to the advantages presented by an
insider, attacks known as known-plaintext attacks, chosen-plaintext at
tacks and chosen-ciphertext attacks can be produced (Kremer and Ryan,
2005; Lee,Lin,and Chang, 2011; Stamp and Low, 2007).

2.2. Requirements for designing an encryption algorithm resistant to
insider threats

A valid encryption algorithm insider threats in SFS needs additional
functionalities to those required by a conventional encryption algo
rithm. In this scenario, the user works with encrypted files in real time,
which necessitates requests from applications at random positions.
Table 2 outlines the requirements that an encryption algorithm adapted
to insider threats must satisfy, classified into three types: functional,
non-functional, and general. Functional requirements adapt the SFS in
the context of insider threats. Non-functional requirements refer to the
main considerations during the design of the algorithm. General re
quirements cover criteria applicable to all encryption algorithms.

3. Secure file system architecture

The underpinning of the proposed encryption algorithm’s research
lies in the SFS, as shown in Fig. 1. The SFS is essentially a Virtual File
System (VFS) enhanced with security methodologies. The Dokan tool
has been employed for the development of the VFS (Anon, n.d.; Montano
et al., 2022). Dokan is a library utilized for developing user-mode file
systems on the Windows platform. This tool facilitates the creation of file
systems that mirror the real file system. The VFS intercepts application
calls to the operating system to implement security measures among
them. The primary objective of the SFS, is to safeguard information by
encrypting it upon exit from the VFS. The VFS intercepting write oper
ations to external devices and reads from cloud storage repositories.
Fig. 1 illustrates the architecture and operation of the SFS. Fig. 1
depicting a plaintext file that, upon interaction with the SFS, undergoes

Table 1
Specificities of insider threats vs. external threats. Own source.

Specificities Insider threats External threats

File generation An insider has the
capability to produce
encrypted files, thereby
acquiring as many as
required.

The external attacker may
capture information.
However, unlike the
insider, they cannot
generate it.

Knowledge of the
information

The insider can generate
the files with the
information he wants. This
allows you to create files
that can have very useful
information depending on
the encryption. Either files
of a specific size (1 byte,
512 bytes, etc.), or files
with a specific content (all
bytes at 0x00, 0xFF, etc.).

An external attacker
generally does not know
the content of the captured
information.

Correspondence of
encrypted and
decrypted files

The insider may know the
correspondence between
plaintext and encrypted
files.

The external attacker has
no access to knowledge of
this correspondence.

I. Herrera Montano et al.

Expert Systems With Applications 254 (2024) 124470

3

encryption and marking. The SFS comprises the VFS, a key generation
mechanism based on challenge-solving, file marking mechanism, and
the encryption system. Subsequently, the other components of the SFS
are delineated.

3.1. Encryption algorithm

An encryption system refers to a procedure that uses an algorithm
with a specific key, known as an encryption key. This procedure trans
forms a plain text message into a format unreadable to any individual
who lacks the corresponding secret key, also known as the decryption
key, associated with the algorithm (Faheem et al., 2017; Yegireddi and
Kiran Kumar, 2016). The design of the encryption algorithm is based on
the requirements previously studied and described in the previous sec
tion. The following is a description of how each requirement influences
algorithm design:

Maintain message or file size: An encryption function that operates
at the byte level is essential. This necessitates the use of a hash function

that returns an element of size equivalent to the plaintext byte.
Maintain the position of each byte: The position has to influence

the function, assuming that a byte is used as a clear element.
Encrypting and decrypting with different operations: The addi

tion operation is proposed for encryption and the subtraction operation
for decryption.

Decryption without encryption is valid: In this case, the byte in
clear is subtracted from the result of the hash function.

Lightweight Encryption: Design of a lightweight cryptographic
hash function.

Statistically Robus: Design of a cryptographic hash function that,
starting from an input and a key, combines the bits in a diffuse and
nonlinear way.

Robust against insider attack scenario: Inclusion of a File Random
Number (frn) for each file, coming from the brand.

Table 2
Requirements for designing an encryption algorithm resistant to insider threats. Own source.

Type Requirement Description

Functional Maintain message or file size An application can read the size of a file while it is in use, this requirement is necessary to avoid operating errors.
Maintain the position of each byte An application can make requests to different positions in a file under certain circumstances. This requirement ensures

that applications will find the byte in the correct location.
Encrypting and decrypting with
different operations

Encrypting and decrypting must be distinct operations to prevent successive encryption processes from reversing the
encryption.

Decryption without encryption is
valid

Decryption should be possible even without prior encryption so if you want to share a file with a client using an
application that encrypts (such as emails), once it is encrypted with the keys generated by the client the file becomes
clear. In this way, system overloads are avoided by unnecessarily encrypting and decrypting.

Non-
Functional

Lightweight Encryption In a SFS scenario, real-time operations demand encryption algorithms characterized by low computational overhead to
minimize disruption of the file system’s regular functionality.

Statistically Robust Ensure protection against external attacks.
Robust against insider attack
scenario

Ensure protection against insider attacks.

General Minimal encryption and decryption
time

Minimum time required to encrypt/decrypt in real time.

Minimum memory usage The performance of the cipher is influenced by factors such as the size of the key or initialization vectors, as well as the
type of operations employed within the algorithm.

Maximum throughput Depending on the encryption time, it influences the power consumption of the algorithm.
Avalanche effect Determines whether a small change in the plaintext generates changes in the ciphertext.
Optimal key size This evaluation parameter defines the bandwidth required for transmission. It also helps to determine a size to avoid

brute force attacks by ensuring that it is computationally impossible.
Entropy Entropy is used to measure randomness and uncertainty in data. The relationship between the ciphertext and the key

becomes more complex with high randomness.

Fig. 1. SFS architecture and operation.

I. Herrera Montano et al.

Expert Systems With Applications 254 (2024) 124470

4

3.2. Hash function design mechanism

A hash function is a mathematical algorithm capable of transforming
input data into a series of output characters, typically of a fixed length
regardless of the input data’s length. The output data represents a
unique summary of all input information (Gupta,Goyal,and Aggarwal,
2014; Rivero-García et al., 2017). The diffusion in hash functions in
dicates that all input information influences the result, such that any
alteration in the input data yields a different output. Hash functions, also
referred to as one-way functions, exhibit confusion, establishing intri
cate relationships between input and output data. Consequently,
deducing the input data solely from knowledge of the output becomes
infeasible. To ensure the robustness of a hash function, it is imperative to
uphold both effective diffusion and confusion properties (Dhanuja et al.,
2020; Zhuoyu and Yongzhen, 2022).

The proposed encryption algorithm introduces a hash function that
attempts to enhance the algorithm in both diffusion and confusion, as do
well-known algorithms such as AES (Rijndael), DES, Serpent (AES
finalist), Tiny Encryption Algorithm (TEA), among others (Joan and
Vincent, 2002; Liu,Rijmen,and Leander, 2018; Sajadieh et al., 2012). For
the development of the proposed hash function, boolean operations are
studied. These operations allow high-speed byte-level processing and
provide the cryptographic properties detailed in Table 3. With a well-
balanced combination of the properties illustrated in Table 3, boolean
functions are very advantageous in cryptographic applications (García,
2014).

According to (García, 2014), a boolean function cannot satisfy all
properties at the same time. Functions with maximum nonlinearity, or
functions of perfect nonlinearity have a reduced algebraic degree
(maximum n/2, where n is the number of variables of the function) and
are not balanced. The limit for the algebraic degree of resilient functions
is (n − m − 1), where m is the order of resilience. The higher m denotes
greater immunity to correlation, being balanced functions, but with non-
linearity far from the maximum. That is why, for the study of boolean
functions in this research, the software “Study of Boolean Functions”
(Ramos Diaz 2022b) was developed, which generates boolean functions
from their possible truth table, as shown in Fig. 2.

Fig. 2 presents the method of study of boolean functions used in this
research. The cryptographic properties of the boolean functions result
ing from a 4-variable truth table (x1, x2, x3, x4 are studied, in terms of
balance, degree, resilience and nonlinearity. Then the boolean function
with the best cryptographic properties is chosen.

3.3. Key generation mechanism

Conventional key generation mechanisms lack security against
accidental leaks or theft, as they are typically stored (Ms. S. Suma et al.,
2023). In this study, we introduce a key generation mechanism based on
context challenge resolution. Specifically, a subkey is generated with the
completion of each challenge. These challenges have various objectives,
such as user identification, location, device, date, and time of accessing

the information. The challenges’ objectives can be resolved in different
ways; for instance, user identification can be achieved through bio
metric or behavioral information. Biometric identification may involve
facial recognition, voice recognition, fingerprints, etc., while behavioral
identification can be through mouse dynamics, keystroke patterns,
among others. Each objective has multiple methods of fulfillment, each
generating a subkey. Concatenating these subkeys produces the
encryption key, as illustrated in Fig. 3. This key generation method al
lows for key calculation rather than storage, enhancing their security.
The generated key is of variable size. Subsequently, a key size setting
process is performed to adjust it to a size of 8 bytes, as required by the
encryption process. It can be seen in the Fig. 3, that in this key size
setting process, it is checked if the key is greater or less than 8 bytes. If
the key is larger, it is partitioned into subsets of 8 bytes and XOR op
erations are performed between the partitions. If, on the other hand, the
key is smaller, a concatenation of the key is performed until it reaches a
size of 8 bytes.

3.4. Marking mechanism

The mark is a mechanism incorporated into the SFS. This mechanism
is necessary to determine the encryption or decryption action to be
performed. It also allows the encryption algorithm to be protected
against file generation attacks by insider threats. The proposed marking
mechanism is incorporated into the file without changing its size, using
the Huffman Code (Huffman, 1952). The Fig. 4 shows the structure of
the marking and Table 4. describes each parameter that composes it.

The file marking and unmarking procedure is performed before the
corresponding encryption or decryption action. Algorithms 1 and 2
describe the marking and unmarking procedure, respectively.

Algorithm 1 Marking Algorithm.

Marking Process
1. Read the first 512 bytes of plain text
plain_bytes = read plain_text [0:512]
2. Bytes of plain text are compressed with Huffman Code
Full_Compression_Result = encoding_Huffman (plain_bytes)
3. The size of the compressed text is obtained
FCS = size (Full_Compression_Result)
4. Check that there is enough space to add the frn and level parameters (5

bytes). If this condition is true, the compressed text, filling sequence, frn and
level are concatenated. Then the level is returned. If the condition is false,
the message “INVALID_MARK_LEVEL” is returned.

if (512-FCS)>=5:
plain = Concatenate(Full_Compression_Result, Filing_Sequence, frn, LVL)
return LVL
else:
INVALID_MARK_LEVEL
End Process

Algorithm 2 Unmarking Algorithm.

Unmarking Process
1. Verify that the following requirements are met:
if ((ODS == MARK LENGTH == 512) AND (FCS <== (MARK LENGTH − 5)) AND
(plain[FCS : (MARK LENGTH − 5)] == Filing Sequence) AND (frn! = INVALID FRN)

AND(LVL = = 1ORLVL = = − 1)):
plain bytes = decoding Huffman(Full Compression Result)
return frn,LVL
else:
return 0
End Process

The proposed marking mechanism has two known limitations. First, files
smaller than 512 bytes are not marked and therefore are not encrypted
or decrypted. This happens because the mechanism we propose needs at
least 512 bytes to incorporate the compressed information, decom
pression, frn and level parameters. Secondly, it may be the case that the
file, even if it is large enough to be marked, the compression is not
enough to incorporate the decompression, frn and level parameters. This

Table 3
Cryptographic properties of boolean operations in Securecipher. Own source.

Cryptographic
property

Description

Non-linearity Distancing of related functions. Prevents cryptographic
attacks, making linear cryptanalysis more difficult.

Degree Degree of the multivariate polynomial that represents the
boolean function, a high degree implies more linear
complexity.

Balance Presence of the same number of ones and zeros in its truth
table. This avoids statistical dependence between plaintext
and ciphertext.

Resilience Immunity to correlation between the values of the function
and the previous knowledge of the binary values of some of
its variables.

I. Herrera Montano et al.

Expert Systems With Applications 254 (2024) 124470

5

limitation derives from the fact that information is being added to the
file without changing its length, i.e., inherent to tagging. In these cases,
we have decided to block the output of these files from the computer.

4. Securecipher encryption proposal

The encryption algorithm proposed in our study is called Secure

Fig. 2. Boolean function study method.

Fig. 3. Operation of the key generation mechanism and key size setting, (B = bytes).

Fig. 4. Marking mechanism structure.

I. Herrera Montano et al.

Expert Systems With Applications 254 (2024) 124470

6

cipher. Securecipher is an instantaneous synchronization stream cipher
algorithm focused on the requirements needed to help mitigate the in
sider threat. Fig. 5 shows the operation of the encryption algorithm and
depicts the size of each parameter. From the original file the byte in
plain (pB) is taken and added to the byte resulting from the function f to
encrypt. As well as the encrypted byte cB((from an encrypted file) is
taken and subtracted from the byte resulting from the function f to
decrypt. Equations (1) and (2) represent the encryption and decryption
equations of the proposed algorithm, respectively.

cB = pB+ f(p, frn, k) (1)

dB = cB − f(p, frn, k) (2)

Where, cB is the encrypted byte, pB is the plaintext byte, f is the hash
function, k is the key generated by the context-based key generation
mechanism, p is the position in the text of the plaintext byte being
encrypted or decrypted, frn is the random number obtained from the
marking mechanism and dB is the decrypted byte. The key generated by
solving the contextual challenges is the same for all encrypted files, but
the frn is random and unique for each file.

The parameters p, frn, k are concatenated to create the input message
to the hash function, as shown in Fig. 5. The lightest possible diffusion
and confusion mechanisms have been used for the design of f . To pro
vide diffusion, the input message is split into two vectors and a linear
transformation is performed, as shown in equations (3) and (4).

c = a+ b (3)

d = c+2*b (4)

Where a and b are the vectors into which the input message has been
divided, c and d are the new vectors created from vectors a and b. For the
confusion, a study of the truth table of boolean operations with 4 vari
ables was performed, as described above. From the study, equation (5)
was obtained as the best result.

f = (t) ∧ (x) ∧ (t&y) ∧ (x&y) ∧ (t&x&z) ∧ (t&y&z) ∧ (x&y&z)

∧ (t&x&y&z) (5)

Where t, x, y, z are the 5 bytes fragments into which the message is
divided. The encryption and decryption algorithms in Algorithms 3 and
4 are shown below, respectively.

Algorithm 3 Encryption Algorithm.

Encryption Process
1. Read pB,p, frn,k, of fixed sizes of 1,8, 4and8 bytes respectively.
2. Concatenate p, frn, k to create message (20bytes)
3. Split the message into substrings of 10 bytes to create variables a and b.
4. Create variables c and d from a and b as shown in equations (3) and (4)

respectively.
5. Create substrings t and x of 5 bytes each from variable c.
6. Create the substrings y and z of 5 bytes each from variable d.
7. Compute the hash function as shown in equation (5).
8. Compute the encrypted byte as shown in equation (1).
End Process

Table 4
Description of mark structure.

Components Description Size
(bytes)

Full Compression
Result

Information necessary to recover the
original data and has a variable size.

FCS

Huffman Header Information necessary to recover the
original data and has a variable size.

FCS

Original Data Size
(ODS)

Indicates the size in bytes of the original data
and that have been replaced by the mark.
Must always be MARK_LENGTH ==512.

2

Full Compression
Size (FCS)

Indicates the size in bytes of the complete
result (header included) of the compression
of the original data. Size:

2

Huffman
Table Size (HTS)

Indicates the size in bits of the Huffman
table.

2

Huffman Table The translations of the original bytes to
encoded bytes necessary to be able to reverse
the compression.

⌈HTS/8⌉

Huffman
Compressed
Data

The compressed data, i.e. the original data
encoded according to the Huffman table.

FCS − 6 −
⌈HTS/8⌉

Padding. This padding only exists if the last byte that
has been filled with the compressed data has
not been completed, occupying up to 7 bits,
so that the padding sequence is always
aligned by bytes.

< 1

Filling Sequence This is a predefined sequence with which the
remaining space is filled and therefore has a
variable size.

507 − FCS

File Random
Number (frn)

Random number specific to this file. 4

Level (LVL) Indicates the encryption level of the file.
Only values − 1 (decrypted) and 1
(encrypted) are valid.

1

Fig. 5. Operation of the encryption algorithm, (B = bytes).

I. Herrera Montano et al.

Expert Systems With Applications 254 (2024) 124470

7

Algorithm 4 Decryption Algorithm.

Decryption Process
1. Read pB,p, frn,k, of fixed sizes of 1, 8,4and8 bytes respectively.
2. Concatenate p, frn, k to create message (20bytes)
3. Split the message into substrings of 10 bytes to create variables a and b.
4. Create variables c and d from a and b as shown in equations (3) and (4)

respectively.
5. Create substrings t and x of 5 bytes each from variable c.
6. Create the substrings y and z of 5 bytes each from variable d.
7. Compute the hash function as shown in equation (5).
8. Compute the encrypted byte as shown in equation (2).
End Process

5. Validation

Validation of the proposed encryption algorithm is performed by
validating the diffusion, confusion and performance analysis (Faheem
et al., 2017). Diffusion is evaluated using software (Ramos Diaz 2022a)
created to evaluate the influence of frn mechanism on the algorithm. The
validation of the confusion is measured using the NIST statistical suite.
The performance analysis is tested by calculating the entropy and the
time required by the proposed algorithm for encryption and decryption.
Moreover, a comparative analysis of our proposal and RC4 algorithm is
performed in terms of entropy and performance.

5.1. Diffusion validation

In Securecipher, the main objective of the broadcast is to protect the
encryption algorithm from the insider threat. For this purpose, the
parameter frn is introduced to protect the encryption algorithm from
specific insider threat attacks. To measure the influence of frn on the
encryption algorithm, the following parameters were considered: plain
files filled with zeros of size equal to 2;8; 26and260bytes; 100 different
of size equal to 8bytes encryption keys and 512 different frn values of
size 9 bits. To analyze the influence of frn on the cipher, a specific
program (Ramos Diaz 2022a) that performs the sequence of steps shown
in Algorithm 5. In this way, the avalanche effect of our encryption

algorithm is also analyzed.
Algorithm 5 Diffusion Validation Algorithm.

Diffusion Validation Process
1. Generate as many files as there are frn and key possibilities, as follows:
For j = 0 to key number
For i = 0 to frn number
While size generated file < size plainfile
cB = Encryption(p, frn,k)
2. Count the number of distinct files generated for each file size.
3. Calculate the number of expected files for each file size, as shown in the

equation 6.
number files expected = key number*frn number(6)
4. Calculate the Mean Square Error (MSE) between the number of expected files

and the number of distinct files generated, as shown in the equation 7.

MSE =
(number files distinct − number files expected)2

key number*frn number
(7)

End Process

Where j and i are iterators; key number is the number of keys to test with;
frn number is the number of frns to test with; size generated file and
size plain file are the size of the generated file and the size of the key file,
respectively; cB is the encrypted byte; p is the byte position in the blank
file; frn is the random single parameter generated by flag, k is the key;
number files expected is the number of different files expected and
number files distinct is the number of different files generated.

The test has been carried out with small files, because the smaller the
file size, the more difficult it is to generate different files. As shown in
Fig. 6, the MSE is reduced in 8, 16 and 260 byte files with respect to the 2
byte file. In other words, the 2 byte file is less likely to change because of
its smaller size. Consequently, the diffusion and avalanche effect tends
to increase as the file size increases.

5.2. Confusion Validation

To statistically validate the encryption algorithm, the tests defined
by NIST (National Institute of Standards and Technology) to statistically
validate pseudo-random number generators are performed (Schneier,
1996). The NIST 800–22 test suite is a statistical package consisting of
15 tests for testing the randomness of binary (arbitrarily long) sequences
produced by hardware or software cryptographic random or pseudo-
random number generators (Rukhin et al., 2001). These tests focus on

Fig. 6. Evolution of the MSE in files of size 2; 8; 16 and 260 bytes (B).

I. Herrera Montano et al.

Expert Systems With Applications 254 (2024) 124470

8

the different types of randomness that might exist in a sequence, and
how it resembles what a sequence should really look like (Sýs et al.,
2015).

The results of the NIST tests performed on Securecipher and the
parameters used in each of them are shown in Table 5. Securecipher is
considered to have successfully passed the NIST tests, despite failing two
of them. Because according to (Sýs et al., 2015) a true pseudo-random
number generator has an 80 % probability of failing at least one of the
15 tests. In the Overlapping Template Matching Test the input data does
not match the test, which causes 119 subtests out of a total of 148.

5.3. Performance analysis

The performance analysis of the algorithm was performed by eval
uating the time required for encryption and decryption, avalanche effect
and entropy. Table 6 describes the tests performed in this study and their
description.

To measure the encryption and decryption time of the proposed al
gorithm, a computer with Intel(R) Core(TM) i7-9850H CPU @ 2,60 GHz
and 16 GB RAM was used. Fig. 7 shows the encryption and decryption
time for 1 KB, 1 MB, 10 MB and 128 MB files. This test demonstrates that
the encryption and decryption process occurs in a manner compatible
with normal computer use. The encryption time of this test for a 10 MB
text file is 0.54 s and the decryption time 0.52 s. In comparison with the
study (Adeniyi et al., 2023), the results are significantly higher,
considering that for an 8 MB file the encryption time is 7.2 s and the
decryption time is 8.2 s, with the proposed Modified AES algorithm.

To measure the entropy of Securecipher, the frequencies of each
word of the original file (Don Quixote Spanish version, size 128MB) are
counted in binary, to obtain the vocabulary and the frequency of these.
Then the same operation is performed for the file encrypted with
Securecipher and compared. From the plaintext vocabulary 1.080 words
were obtained and from the ciphertext vocabulary 45.152 words were
obtained. Fig. 8 a and b show the frequencies of the words obtained in
the vocabulary of each case. It is possible to observe an increase in the
dictionary of distinct words, and a greater uniformity in the frequency of
these once the original file has been encrypted. Although an optimal
distribution of word frequency is not achieved.

5.4. Comparative analysis

During the study, cost and efficiency comparisons were made with
the RC4 algorithm. The test was performed by calculating the encryption
and decryption time of the Securecipher and RC4 algorithms; as well as
the last byte access time for 0,001;1; 10and128MB files.

Table 7 shows that the RC4 algorithm is significantly faster than

Securecipher. However, in an insider threat scenario, Securecipher is
more effective than RC4 or any other known encryption algorithm
because it allows instant access to the contents of any position in the file.
In the specific case of RC4, due to its operation, it must encrypt or
decrypt the entire file to access the last position, with a delay time of
0.25 s. Consequently, RC4, as well as any algorithm developed without
considering the specificities of the insider threat scenario, has a delay
time to access the last byte of a file longer than Securecipher.

Fig. 9 shows a comparison of the entropy behavior of the Don
Quixote Spanish version file (size 128 MB) encrypted with Securecipher
and RC4 algorithms. A vocabulary of 65,256 words was obtained with
RC4, while with Securecipher only 45,152 words. Furthermore, as
shown in the figure, RC4 has a much more uniform frequency than
Securecipher, which is a limitation against cryptanalytic attacks. To
counter this limitation, Securecipher has been complemented by the

Table 5
NIST 800–22 test results applied to Securecipher. Own source.

TEST n M STREAMS STATUS

Frequency (Monobit) Test 1000 − 25 ✓
Frequency (Block) Test 2000 20 15 ✓
Runs Test 1000 − 15 ✓
Longest Run of Ones in a Block Test 2000 − 15 ✓
Binary Matrix Rank Test 128 − 15 ✓
Discrete Fourier Transform

(Spectral) Test
2000 − 10 ✓

Non-overlapping Template
Matching Test

2000 − 25 ✓

Overlapping Template Matching
Test

20,000 10 500 101✓
18✕

Maurer’s Universal Statistical Test 6500 9 25 ✓
Linear Complexity Test − − − ✕
Serial Test 2000 3 10 ✓
Approximate Entropy Test 1,000,000 − 1000 ✓
Cumulative Sums Test 1,000,000 − 1000 ✓
Random Excursions Test 2000 8 20 ✓
Random Excursions Variant Test 1,000,000 500 25 ✓

Table 6
Description of the Securecipher performance analysis. Own source.

Test Description

Time required for
encryption and decryption

Encryption time required to adapt the cipher to the
desired context (a very slow cipher is not suitable for
real-time use).

Avalanche effect It determines whether a small change in the plaintext
generates large changes in the output. In the case of
Securecipher, depending on the position, the
avalanche effect is diminished, but thanks to the frn
mechanism, this effect is maintained automatically
since it changes the input of the hash function at each
modification, and therefore the result of the
cryptographic hash, allowing not only the position
byte to change, but all the bytes of the file. This
property is validated in the diffusion validation
study.

Entropy Entropy is used to measure randomness and
uncertainty in the data. The relationship between the
ciphertext and the key becomes more complex with
high randomness. Entropy is measured by counting
the frequencies of each word in the original file in
binary, to obtain the “vocabulary”, i.e. the number of
hexadecimal words used and their frequency. The
more the vocabulary grows in the encrypted file with
respect to the clear one and the more similar their
frequency is, the higher the entropy will be in the
encrypted file.

Fig. 7. Encryption and decryption time of 0,001;1; 10and128megabite(MB)
files with Securecipher.

I. Herrera Montano et al.

Expert Systems With Applications 254 (2024) 124470

9

FRN parameter introduced by the marking mechanism. Thus, each file
the user creates will generate a different FRN result and thus a different
encrypted file, even if the file in clear is the same.

6. Conclusions

In this paper, we propose a new encryption algorithm for SFS against
the insider threat, and the requirements that an algorithm must meet for
this purpose. A mechanism for the development of this type of encryp
tion algorithms is described and a file marking mechanism is presented.
In addition, a software that allows the study of boolean functions is
proposed, and another software for the advanced study of the diffusion
of this type of algorithm.

Starting from the requirements imposed by the DLP use case, an
algorithmic definition of a novel cipher has been arrived at. The pro
posed encryption algorithm passes 87 % of the NIST tests successfully,
equivalent to 13 successful tests out of 15. It has been proven that for the
insider threat use case the proposed algorithm is more efficient than the
RC4 encryption algorithm, since it is faster when accessing a given file
position. It was further proved that the incorporation of the document
marking mechanism is necessary in a valid algorithm for SFS against the
insider threat. The proposed marking mechanism, despite having some
limitations in applying the security techniques to files smaller than 512

bytes in size, allows increasing the diffusion and security of the algo
rithm. Although an increase in the vocabulary of Securecipher cipher
text with respect to natural language of approximately 42 times and in
the stability of word frequencies has been demonstrated, the RC4 al
gorithm was found to have more stability in frequencies and a larger
number of words in the vocabulary. This means that the confusion of our
algorithm presents limitations in the face of cryptanalysis attacks.
However, this limitation has been countered by the inclusion of the FRN
parameter that makes each encrypted file different, even if the file in
clear is the same. For this reason, we consider Securecipher to be valid
for insider threat scenarios, as it meets the design criteria required in this
type of scenario and has a high diffusion.

Therefore, as future work, we propose to continue investigating this
type of encryption algorithms to obtain an optimal algorithm, both for
insider and external threats. Also, we intend to address the limitations of
the tagging mechanism so that users can share any type of files with
built-in security techniques.

7. Original article statement

This manuscript is the authors’ original work and has not been
published or has it been submitted simultaneously elsewhere.

Fig. 8. A) entropy of plaintext. b) entropy of ciphertext with securecipher.

Table 7
Comparison of the performance analysis and time required to access the last byte of the file with Securecipher and RC4.

File Size Securecipher RC4 Last Byte Access
Encryption Decryption Encryption/ Decryption Securecipher RC4

1 KB − − − − −

1 MB 0,052 0,052 0.002 − 0.002
10 MB 0,542 0,515 0,018 − 0.018
128 MB 7,69 7,6 0.25 − 0.25

Fig. 9. A) entropy of the ciphertext with securecipher. b) entropy of the ciphertext with rc4.

I. Herrera Montano et al.

Expert Systems With Applications 254 (2024) 124470

10

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgment

This research has been partially supported by the Center for the
Development of Industrial Technology (CDTI), Spanish Ministry of Sci
ence and Innovation under the project named “Secureworld: Technol
ogies for secure digital relationships in a hyperconnected world”, IDI-
20200518. Isabel Herrera Montano has been funded through the UVa
2022 predoctoral contracts call, co-financed by Santander Bank.

References

Abujoodeh, Mohammed, Liana Tamimi, and Radwan Tahboub. 2023. “Toward
Lightweight Cryptography: A Survey.” in Computational Semantics. IntechOpen.

Adeniyi, A. E., Abiodun, K. M., Awotunde, J. B., Olagunju, M., Ojo, O. S., & Edet, N. P.
(2023). Implementation of a Block Cipher Algorithm for Medical Information
Security on Cloud Environment: Using Modified Advanced Encryption Standard
Approach. Multimedia Tools and Applications, 82(13), 20537–20551. https://doi.org/
10.1007/s11042-023-14338-9

Ahmad, S., Mehfuz, S., & Beg, J. (2022). “Cloud Security Framework and Key
Management Services Collectively for Implementing DLP and IRM”. Materials Today
Proceedings. https://doi.org/10.1016/j.matpr.2022.03.420

Ahmad, S., Mehfuz, S., & Beg, J. (2023). Hybrid Cryptographic Approach to Enhance the
Mode of Key Management System in Cloud Environment. The Journal of
Supercomputing, 79(7), 7377–7413. https://doi.org/10.1007/s11227-022-04964-9

Anon. n.d. “Dokan.” Retrieved (https://github.com/dokan-dev/dokany/wiki/Build).
Bandari, V. (2021). Enterprise Data Security Measures: A Comparative Review of

Effectiveness and Risks Across Different Industries and Organization Types.
International Journal of Business Intelligence and Big Data Analytics, 6, 1–11.

Bernstein, D. J. (2024). Cryptographic Competitions. Journal of Cryptology, 37(1), 7.
https://doi.org/10.1007/s00145-023-09467-1

v. Bhagat, Priti, Kaustubh S. Satpute, and Vikas R. Palekar. 2013. “Reverse Encryption
Algorithm: A Technique for Encryption \& Decryption.” International Journal of
Latest Trends in Engineering and Technology (IJLTET) 2:90–95.

Bhondve, Mrs. Pooj. Sameer. 2023. “Efficiently Encryption Decryption Schema for Secure
File Storage System in Cloud Computing.” Interantional Journal Of Scientific Research
In Engineering And Management 07(07). doi: 10.55041/IJSREM25005.

Burnett, S., & Paine, S. (2001). RSA Security’s Official Guide to Cryptography. USA:
McGraw-Hill Inc.

Dhanuja, B., Prabadevi, B., Bhavani Shankari, K., & Sathiya, G. (2020). E-REA Symmetric
Key Cryptographic Technique. In in 2020 International Conference on Emerging Trends
in Information Technology and Engineering (ic-ETITE). IEEE (pp. 1–8).

Djordjevic, I. B. (2019). Conventional Cryptography Fundamentals. In Physical-Layer
Security and Quantum Key Distribution (pp. 65–91). Cham: Springer International
Publishing.

Dworkin, Morris J. 2023. Advanced Encryption Standard (AES).
Faheem, M., Jamel, S., Hassan, A., Zahraddeen, A., Shafinaz, N., & Mat, M. (2017).

A Survey on the Cryptographic Encryption Algorithms. International Journal of
Advanced Computer Science and Applications, 8(11). https://doi.org/10.14569/
IJACSA.2017.081141

García, F. J. (2014). Soporte, Grado y No Linealidad Perfecta de Funciones Booleanas.
Universitat d’Alacant/Universidad de Alicante.

Ghouse, M., Nene, M. J., & VembuSelvi, C. (2019). Data Leakage Prevention for Data in
Transit Using Artificial Intelligence and Encryption Techniques. In in 2019
International Conference on Advances in Computing, Communication and Control
(ICAC3). IEEE (pp. 1–6).

Gudes, E. (1980). The Design of a Cryptography Based Secure File System. IEEE
Transactions on Software Engineering SE-6(5):411–20.. https://doi.org/10.1109/
TSE.1980.230489

Gupta, S., Goyal, N., & Aggarwal, K. (2014). A Review of Comparative Study of MD5 and
SSH Security Algorithm. International Journal of Computer Applications, 104(14), 1–4.
https://doi.org/10.5120/18267-9305

Herrera Montano, Isabel, José Javier García Aranda, Juan Ramos Diaz, Sergio Molina
Cardín, Isabel de la Torre Díez, and Joel J. P. C. Rodrigues. 2022. “Survey of
Techniques on Data Leakage Protection and Methods to Address the Insider Threat.”
Cluster Computing 25(6):4289–4302. doi: 10.1007/s10586-022-03668-2.

Huang, Q., & Li, H. (2017). An Efficient Public-Key Searchable Encryption Scheme
Secure against inside Keyword Guessing Attacks. Information Sciences, 403–404,
1–14. https://doi.org/10.1016/j.ins.2017.03.038

Huffman, D. (1952). A Method for the Construction of Minimum-Redundancy Codes.
Proceedings of the IRE, 40(9), 1098–1101. https://doi.org/10.1109/
JRPROC.1952.273898

Joan, D., & Vincent, R. (2002). The Design of Rijndael: AES-the Advanced Encryption
Standard. Information Security and. Cryptography.

Kremer, S., & Ryan, M. D. (2005). Analysing the Vulnerability of Protocols to Produce
Known-Pair and Chosen-Text Attacks. Electronic Notes in Theoretical Computer Science,
128(5), 87–104. https://doi.org/10.1016/j.entcs.2004.11.043

Lee, C.-C., Lin, T.-H., & Chang, R.-X. (2011). A Secure Dynamic ID Based Remote User
Authentication Scheme for Multi-Server Environment Using Smart Cards. Expert
Systems with Applications. https://doi.org/10.1016/j.eswa.2011.04.190

Liu, Y., Rijmen, V., & Leander, G. (2018). Nonlinear Diffusion Layers. Designs, Codes and
Cryptography, 86(11), 2469–2484. https://doi.org/10.1007/s10623-018-0458-5

Montano, Isabel Herrera, Isabel de La Torre Diez, Jose Javier Garcia Aranda, Juan Ramos
Diaz, Sergio Molina Cardin, and Juan Jose Guerrero Lopez. 2022. “Secure File
Systems for the Development of a Data Leak Protection (DLP) Tool Against Internal
Threats.” pp. 1–7 in 2022 17th Iberian Conference on Information Systems and
Technologies (CISTI). IEEE.

Ms, S., Suma, S. F., Rahuman, A. G., & Hari Ganesh, R. (2023). File Storage System Using
Hybrid Cryptography. International Journal of Advanced Research in Science,
Communication and Technology, 45–49. https://doi.org/10.48175/IJARSCT-8659

Nie, Tingyuan, and Teng Zhang. 2009. “A Study of DES and Blowfish Encryption
Algorithm.” Pp. 1–4 in TENCON 2009 - 2009 IEEE Region 10 Conference. IEEE.

Pal, P., Chattopadhyay, P., & Swarnkar, M. (2023). Temporal Feature Aggregation with
Attention for Insider Threat Detection from Activity Logs. Expert Systems with
Applications, 224, Article 119925. https://doi.org/10.1016/j.eswa.2023.119925

Paul, B. (2018). Steganography in XML Files Using RC4 Stream Encryption Algorithm.
International Journal for Research in Applied Science and Engineering Technology, 6(4),
4727–4731. https://doi.org/10.22214/ijraset.2018.4776

Ramos Diaz, Juan. 2022a. “Securecipher Difussion Validation.”.
Ramos Diaz, Juan. 2022b. “Study of Boolean Functions.”.
Renaud, K., Warkentin, M., Pogrebna, G., & van der Schyff, K. (2024). VISTA: An

Inclusive Insider Threat Taxonomy, with Mitigation Strategies. Information &
Management, 61(1), Article 103877. https://doi.org/10.1016/j.im.2023.103877

Rivero-García, Alexandra, Iván Santos-González, Candelaria Hernández-Goya, and Pino
Caballero-Gil. 2017. “IBSC System for Victims Management in Emergency
Scenarios.” Pp. 276–83 in IoTBDS 2017 - Proceedings of the 2nd International
Conference on Internet of Things, Big Data and Security.

Rukhin, Andrew, Juan Soto, James Nechvatal, Miles Smid, Elaine Barker, Stefan Leigh,
Mark Levenson, Mark Vangel, David Banks, Alan Heckert, James Dray, and San Vo.
2001. “NIST Special Publication 800-22.” 22.

Sajadieh, Mahdi, Mohammad Dakhilalian, Hamid Mala, and Pouyan Sepehrdad. 2012.
“Recursive Diffusion Layers for Block Ciphers and Hash Functions.” Pp. 385–401 in.

Schneier, Bruce. 1996. Applied Cryptography Protocols.
Smid, M. E., & Branstad, D. K. (1988). Data Encryption Standard: Past and Future.

Proceedings of the IEEE, 76(5), 550–559. https://doi.org/10.1109/5.4441
Stallings, William. 2005. “The RC4 Stream Encryption Algorithm.”.
Stamp, M., & Low, R. M. (2007). Applied Cryptanalysis: Breaking Ciphers in the Real World.

Wiley.
Sýs, M., Říha, Z., Matyáš, V., Márton, K., & Suciu, A. (2015). On the Interpretation of

Results from the NIST Statistical Test Suite. Romanian Journal of Information Science
and Technology, 18(1), 18–32.

Thakare, R. D., Suryawanshi, Y., Jain, S., Bhagat, A. R., Patil, P. T., & Chore, N. M.
(2024). Analysis of RSA Cryptosystem to Secure Messages in Vehicular Adhoc
Network. International Journal of Intelligent Systems and Applications in Engineering, 12
(10s), 360–1338.

Tihanyi, N. (2022). Report on the First DES Fixed Points for Non-Weak Keys: Case-Study
of Hacking an IoT Environment. IEEE Access, 10, 77802–77809. https://doi.org/
10.1109/ACCESS.2022.3192399

Yegireddi, R., & Kiran Kumar, R. (2016). A Survey on Conventional Encryption
Algorithms of Cryptography. In in 2016 International Conference on ICT in Business
Industry & Government (ICTBIG) (pp. 1–4). IEEE.

Zhao, J. (2023). DES-Co-RSA: A Hybrid Encryption Algorithm Based on DES and RSA. In
in 2023 IEEE 3rd International Conference on Power, Electronics and Computer
Applications (ICPECA) (pp. 846–850). IEEE.

Zhuoyu, H., & Yongzhen, L.i. (2022). Design and Implementation of Efficient Hash
Functions. In in 2022 IEEE 2nd International Conference on Power, Electronics and
Computer Applications (ICPECA) (pp. 1240–11123). IEEE.

I. Herrera Montano et al.

https://doi.org/10.1007/s11042-023-14338-9
https://doi.org/10.1007/s11042-023-14338-9
https://doi.org/10.1016/j.matpr.2022.03.420
https://doi.org/10.1007/s11227-022-04964-9
http://refhub.elsevier.com/S0957-4174(24)01336-8/h0030
http://refhub.elsevier.com/S0957-4174(24)01336-8/h0030
http://refhub.elsevier.com/S0957-4174(24)01336-8/h0030
https://doi.org/10.1007/s00145-023-09467-1
http://refhub.elsevier.com/S0957-4174(24)01336-8/h0050
http://refhub.elsevier.com/S0957-4174(24)01336-8/h0050
http://refhub.elsevier.com/S0957-4174(24)01336-8/h0055
http://refhub.elsevier.com/S0957-4174(24)01336-8/h0055
http://refhub.elsevier.com/S0957-4174(24)01336-8/h0055
http://refhub.elsevier.com/S0957-4174(24)01336-8/h0060
http://refhub.elsevier.com/S0957-4174(24)01336-8/h0060
http://refhub.elsevier.com/S0957-4174(24)01336-8/h0060
https://doi.org/10.14569/IJACSA.2017.081141
https://doi.org/10.14569/IJACSA.2017.081141
http://refhub.elsevier.com/S0957-4174(24)01336-8/h0075
http://refhub.elsevier.com/S0957-4174(24)01336-8/h0075
http://refhub.elsevier.com/S0957-4174(24)01336-8/h0080
http://refhub.elsevier.com/S0957-4174(24)01336-8/h0080
http://refhub.elsevier.com/S0957-4174(24)01336-8/h0080
http://refhub.elsevier.com/S0957-4174(24)01336-8/h0080
https://doi.org/10.1109/TSE.1980.230489
https://doi.org/10.1109/TSE.1980.230489
https://doi.org/10.5120/18267-9305
https://doi.org/10.1016/j.ins.2017.03.038
https://doi.org/10.1109/JRPROC.1952.273898
https://doi.org/10.1109/JRPROC.1952.273898
http://refhub.elsevier.com/S0957-4174(24)01336-8/h0110
http://refhub.elsevier.com/S0957-4174(24)01336-8/h0110
https://doi.org/10.1016/j.entcs.2004.11.043
https://doi.org/10.1016/j.eswa.2011.04.190
https://doi.org/10.1007/s10623-018-0458-5
https://doi.org/10.48175/IJARSCT-8659
https://doi.org/10.1016/j.eswa.2023.119925
https://doi.org/10.22214/ijraset.2018.4776
https://doi.org/10.1016/j.im.2023.103877
https://doi.org/10.1109/5.4441
http://refhub.elsevier.com/S0957-4174(24)01336-8/h0200
http://refhub.elsevier.com/S0957-4174(24)01336-8/h0200
http://refhub.elsevier.com/S0957-4174(24)01336-8/h0205
http://refhub.elsevier.com/S0957-4174(24)01336-8/h0205
http://refhub.elsevier.com/S0957-4174(24)01336-8/h0205
http://refhub.elsevier.com/S0957-4174(24)01336-8/h0210
http://refhub.elsevier.com/S0957-4174(24)01336-8/h0210
http://refhub.elsevier.com/S0957-4174(24)01336-8/h0210
http://refhub.elsevier.com/S0957-4174(24)01336-8/h0210
https://doi.org/10.1109/ACCESS.2022.3192399
https://doi.org/10.1109/ACCESS.2022.3192399
http://refhub.elsevier.com/S0957-4174(24)01336-8/h0220
http://refhub.elsevier.com/S0957-4174(24)01336-8/h0220
http://refhub.elsevier.com/S0957-4174(24)01336-8/h0220
http://refhub.elsevier.com/S0957-4174(24)01336-8/h0225
http://refhub.elsevier.com/S0957-4174(24)01336-8/h0225
http://refhub.elsevier.com/S0957-4174(24)01336-8/h0225
http://refhub.elsevier.com/S0957-4174(24)01336-8/h0230
http://refhub.elsevier.com/S0957-4174(24)01336-8/h0230
http://refhub.elsevier.com/S0957-4174(24)01336-8/h0230

	Securecipher: An instantaneous synchronization stream encryption system for insider threat data leakage protection
	1 Introduction
	2 Insider threat security
	2.1 Specificities of insider threats vs. external threats
	2.2 Requirements for designing an encryption algorithm resistant to insider threats

	3 Secure file system architecture
	3.1 Encryption algorithm
	3.2 Hash function design mechanism
	3.3 Key generation mechanism
	3.4 Marking mechanism

	4 Securecipher encryption proposal
	5 Validation
	5.1 Diffusion validation
	5.2 Confusion Validation
	5.3 Performance analysis
	5.4 Comparative analysis

	6 Conclusions
	7 Original article statement
	Declaration of competing interest
	Data availability
	Acknowledgment
	References

