
Computers & Industrial Engineering 194 (2024) 110393

A
0

Contents lists available at ScienceDirect

Computers & Industrial Engineering

journal homepage: www.elsevier.com/locate/caie

Similarity-based decomposition algorithm for two-stage stochastic
scheduling
Daniel Montes a,c,∗, José Luis Pitarch b, César de Prada a,c

a Dpt. of Systems Engineering and Automatic Control, Universidad de Valladolid, C/Dr. Mergelina s/n, Valladolid, 47011, Spain
b Instituto U. de Automática e Informática Industrial (ai2), Universitat Politècnica de Valencia, Cno. de Vera s/n, Valencia, 46022, Spain
c Institute of Sustainable Processes (ISP), Universidad de Valladolid, C/Dr. Mergelina s/n, Valladolid, 47011, Spain

A R T I C L E I N F O

Keywords:
Production planning
Mathematical programming
Uncertainty
Progressive hedging
Mixed-integer optimization

A B S T R A C T

This paper presents a novel decomposition method for two-stage stochastic mixed-integer optimization
problems. The algorithm builds upon the idea of similarity between finite sample sets to measure how similar
the first-stage decisions are among the uncertainty realization scenarios. Using such a Similarity Index, the
non-anticipative constraints are removed from the problem formulation so that the original problem becomes
block-separable on a scenario basis. Then, a term for maximizing the Similarity Index is included in all the
sub-problems objective functions. Such sub-problems are solved iteratively in parallel so that their solutions are
used to update the weighting parameter for maximizing the Similarity Index. The algorithm obtains a feasible
solution when full similarity among scenario first stages is reached, that is, when the incumbent solution is non-
anticipative. The proposal is tested in four instances of different sizes of an industrial-like scheduling problem.
Comparison results show that the Similarity Index Decomposition provides significant speed-ups compared
with the monolithic problem formulation, and provides simpler tuning and improved convergence over the
Progressive Hedging Algorithm.
1. Introduction

Planning and scheduling deal with the optimal assignment of lim-
ited resources to processing tasks over time. Although deterministic
scheduling formulations are mature, with broad industrial acceptance,
they only translate to actual benefits in practice if the involved model
parameters and inputs are precisely known. However, uncertainty over
a future time horizon is inherent to all industrial processes. Some of
the uncertain inputs that have important effects on the operations
planning include: equipment up-time and availability, raw material
arrival, prices, demands, weather, etc. Failing to correctly predict or
estimate these values leads to suboptimal operation and can even result
in infeasibility (Birge, 1995), where some operating constraints might
need to be ignored to obtain a numerical solution.

A well-known approach to incorporating uncertainty into schedul-
ing applications is multi-stage stochastic optimization. In particular,
two-stage formulations are widely adopted due to their relevance to
handle high-impact economic decisions. These formulations split the
decision variables into two sets: first (here and now) and second
(wait and see) stage variables and consider a set of scenarios with
associated probabilities for the realization of the uncertain parameters.
Unfortunately, these formulations increase the number of variables of

∗ Corresponding author.
E-mail address: danielalberto.montes.lopez@uva.es (D. Montes).

the problem proportionally to the number of scenarios. This issue,
combined with the fact that mixed-integer problems are already NP-
hard in general, make two-stage formulations very challenging (or even
impossible) to solve in reasonable amounts of time for online applica-
tions (Legrain, Omer, & Rosat, 2020; Palacín, Pitarch, Vilas, & de Prada,
2023; Sand & Engell, 2004; Simkoff & Baldea, 2020). Indeed, this
strong limitation has received significant attention from the research
community over the years: scenario bundling and reduction (Abouel-
rous, Gabor, & Zhang, 2022; Jiang, Bai, Wallace, Kendall, & Landa-
Silva, 2021), reformulations, and decomposition methods (Ruszczyński,
2003) to split the monolithic problem into sub-problems that are easier
to solve. Nevertheless, the problem still remains open and, regarding
decomposition, the existing families of methods suffer from either
high computational and memory demands (excessive useless Benders
cuts (Lee, Ma, Yu, & Dai, 2021)) or tough parameter tuning to reach
feasibility (multipliers update rules (Torres, Li, Apap, & Grossmann,
2022)).

We aim to contribute in this last way, by proposing a novel decom-
position algorithm that does not build upon the few classical ideas of
Benders, Lagrangean, or Progressive-Hedging decompositions. Here, we
use a similarity indicator to split the monolithic problem into scenario-
based sub-problems, whose solutions can be combined afterwards to
vailable online 17 July 2024
360-8352/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access a

https://doi.org/10.1016/j.cie.2024.110393
Received 9 March 2023; Received in revised form 12 June 2024; Accepted 14 July
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

2024

https://www.elsevier.com/locate/caie
https://www.elsevier.com/locate/caie
mailto:danielalberto.montes.lopez@uva.es
https://doi.org/10.1016/j.cie.2024.110393
https://doi.org/10.1016/j.cie.2024.110393
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cie.2024.110393&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Computers & Industrial Engineering 194 (2024) 110393D. Montes et al.

𝑧

𝑟

h

c
t
p
q

f
b
t
e

m

𝑦

progressively obtain a feasible solution to the original problem while
reducing significantly the overall computation time. Moreover, the
problem size does not grow with iterations and the algorithm sensitivity
to the few tuning parameters is not a critical factor for obtaining a
feasible solution.

This paper extends the authors’ preliminary idea in Montes, Pitarch,
and de Prada (2022a) and Montes, Pitarch, and de Prada (2022b).
While the base algorithm was roughly introduced in this conference
material, a formal convergence and performance analysis still need to
be addressed. Consequently, this paper provides proof of theoretical
convergence and assesses tuning parameters. Furthermore, tuning pa-
rameters’ effect on performance is verified through two-stage stochastic
scheduling problems of varying sizes with binary first-stage variables
compared to the progressive-hedging algorithm (PHA). The results
support our claims of good performance in terms of convergence,
optimality, and tuning easiness compared with the figures given by the
PHA over the same benchmark.

The rest of the paper is organized as follows. Section 2 poses the
problem statement and reviews the existing brands of solution methods
in the literature. Section 3 explains how to use the Similarity Index (SI)
to compare different scenario solutions (schedules). Section 4 describes
the proposed decomposition algorithm based on such an index and
analyzes its convergence properties. Section 5 presents the industrial-
like case study that is used in Section 6 to test different aspects of the
SI-decomposition method in comparison to the PHA. Finally, the paper
closes with some concluding remarks and proposals for future work.

2. Problem statement

Let us consider the following two-stage stochastic scheduling linear
formulation in discrete time and extensive form:

minimize𝑦, 𝑧𝑒, 𝑟𝑒
c𝑇 𝑦 +

∑

𝑒∈
p𝑒q𝑇

[

𝑧𝑒
𝑟𝑒

]

(1a)

subject to

A𝑦 ≥ b (1b)

T𝑒𝑦 + W𝑒𝑧𝑒 + R𝑒𝑟𝑒 ≥ h𝑒 ,∀𝑒 ∈  (1c)

𝑦 ∶= {𝑦𝑡 ∈ {0, 1}𝑛𝑦 |𝑡 ∈ 1} (1d)

𝑒 ∶= {𝑧𝑡𝑒 ∈ {0, 1}𝑛𝑧 |𝑡 ∈ 2, 𝑒 ∈ } (1e)

𝑒 ∶= {𝑟𝑡𝑒 ∈ R𝑛𝑠
|𝑡 ∈ 2, 𝑒 ∈ } (1f)

The scenarios 𝑒 ∈  represent the future uncertainty realizations
ave and associated probabilities p𝑒, such that ∑

𝑒 p𝑒 = 1. Time is
discretized in periods 𝑡 ∈  . The first stage is defined in the time
periods 1 ⊂  by the parameters in A∈ R𝑚1×𝑛𝑦 and b∈ R𝑚1 , weights
∈ R𝑛𝑦 , and variables 𝑦𝑡. The second stage spans over the remaining
ime periods 2 ⊂  and involves constraints per scenario defined by
arameters T𝑒 ∈ R𝑚2×𝑛𝑦 , W𝑒 ∈ R𝑚2×𝑛𝑧 , R𝑒 ∈ R𝑚2×𝑛𝑠 , h𝑒 ∈ R𝑚2 , weights
∈ R𝑛𝑧+𝑛𝑠 , as well as variables 𝑧𝑡𝑒 and 𝑟𝑡𝑒.

To exploit the problem structure for decomposition purposes, the
irst-stage variables are disaggregated for each scenario so that they
ecome 𝑦𝑡𝑒 as in (2). However, for such a problem to be equivalent
o (1), the so-called non-anticipativity constraints (2d) need to be
nforced.

inimize𝑦𝑒, 𝑧𝑒, 𝑟𝑒

∑

𝑒∈
p𝑒

(

c𝑇 𝑦𝑒 + q𝑇
[

𝑧𝑒
𝑟𝑒

])

(2a)

subject to

A𝑦𝑒 ≥ b ,∀𝑒 ∈  (2b)

T𝑒𝑦𝑒 + W𝑒𝑧𝑒 + R𝑒𝑟𝑒 ≥ h𝑒 ,∀𝑒 ∈  , (2c)

𝑡𝑒1 = 𝑦𝑡𝑒2 = … = 𝑦𝑡|| ,∀𝑡 ∈ 1 (2d)
𝑛𝑦
2

𝑦𝑒 ∶= {𝑦𝑡𝑒 ∈ {0, 1} |𝑡 ∈ 1,∀𝑒 ∈ } (2e)
𝑧𝑒 ∶= {𝑧𝑡𝑒 ∈ {0, 1}𝑛𝑧 |𝑡 ∈ 2, 𝑒 ∈ } (2f)

𝑟𝑒 ∶= {𝑟𝑡𝑒 ∈ R𝑛𝑠
|𝑡 ∈ 2, 𝑒 ∈ } (2g)

Note that if the non-anticipativity (2d) constraints were removed
from the formulation, each scenario would represent an independent
optimization problem. This is exactly what enables some of the decom-
position methods available in the literature.

The Progressive Hedging Algorithm (Rockafellar & Wets, 1991)
and Dual Decomposition in stochastic integer optimization (Carøe &
Schultz, 1999) are the most widely used decomposition methods for
two-stage scheduling problems and much of the current research fo-
cuses on building advanced algorithms upon them. Benders Decompo-
sition (Benders, 1962) is also often used, but its main drawbacks are
that the solution of the master problem becomes a limiting factor for
large-scale problems (Mitrai & Daoutidis, 2022), and furthermore the
presence of binary variables in the stage-2 problem produces a dual gap
in the bound predicted by the master problem.

The Progressive Hedging Algorithm (PHA) combines the proximal
method with the alternating direction method of the multipliers (Boyd,
Parikh, Chu, Peleato, & Eckstein, 2010). It is often used for solving
multi-stage stochastic optimization problems as it enables scenario-
based decomposition by relaxing the non-anticipativity constraints. It
is based on penalizing the deviation of the first-stage solution from an
aggregated reference computed from the results obtained at a previous
iteration. Although it was originally devised to handle convex problems
involving only continuous variables, it is widely used as a heuristic for
problems with integer variables (Khalilabadi, Zegordi, & Nikbakhsh,
2020; Peng, Zhang, Feng, Rong, & Su, 2019). Consequently, the con-
vergence and optimality properties are not guaranteed for this last class
of problems. Nonetheless, according to Gade et al. (2016) it is possible
to assess the quality of the solutions by computing lower bounds at
PHA iterations, and Watson and Woodruff (2011) proposed a set of im-
provements focusing on updating the penalty parameter, accelerating
convergence, and enhancements to the termination criteria, albeit the
main underlying limitations remain.

Dual Decomposition is a popular method for decomposing problems
with continuous variables. Carøe and Schultz (1999) combined the Dual
Decomposition method with a branch and bound algorithm to achieve
convergence in two-stage and multi-stage stochastic problems. In this
method, the non-anticipativity constraints are relaxed and a lower
bound of the problem is obtained by solving the respective Lagrangean
dual problem. This lower bound can be used to guide the computation
of feasible solutions (upper bounds). The main difficulty associated
with the Dual Decomposition method is that getting feasible solutions
from problems without complete recourse is not guaranteed (Kim &
Zavala, 2018). To overcome this limitation, Kim and Zavala (2018)
proposed to add Benders-like cuts in order to tighten the subproblems
and exclude infeasible first-stage solutions. The Dual Decomposition
method has also been used together with the Benders Decomposition
method in a hybrid approach to overcome the main drawbacks of the
latter (Colonetti & Finardi, 2020). Although the literature is extensive,
the success and performance of the available heuristic decomposition
methods for mixed-integer programming is often problem dependent
and strongly depends on finding a good parameter tuning (Torres et al.,
2022).

3. Similarity index

The Jaccard, a.k.a. Tanimoto, coefficient (Gower, 1985; Tanimoto,
1958) is a widely used index in information and computer sciences
to measure similarity among sets of binarized data (Willett, Barnard,
& Downs, 1998). In brief, it is defined as the size of the intersection
divided by the size of the union of the sample sets. Palacín, Pitarch,
Jasch, Méndez, and de Prada (2018) used this concept in two-stage

stochastic scheduling to obtain solutions up to a desired robustness

Computers & Industrial Engineering 194 (2024) 110393D. Montes et al.
Fig. 1. Fuzzifying a decision along the following and previous time periods.

level. To accomplish such an aim, they proposed a Similarity Index (SI)
as a way to quantify the risk of the computed stochastic schedule not
being optimal (or even feasible) in practice, if the realized values of
the uncertain inputs/parameters were not explicitly included within the
scenario-tree approximation. In that context, the SI is a measurement of
the similarity among second-stage decisions. Hence, a desired minimum
robustness level can be enforced via lower bounding the SI in the
mathematical MILP problem. In that case, specifying 𝑆𝐼 = 100% implies
getting the risk-averse solution, whereas 𝑆𝐼 ≥ 0% results in obtaining
the less conservative two-stage stochastic solution.

Remark. Note that Palacín et al. (2018) did not use the SI to perform
any problem decomposition. Their problem formulations remained
monolithic after adding the uncertainty scenarios, which strongly lim-
ited the problem size that could be solved in a reasonable amount
of time. Moreover, computing similarity among second-stage variables
does not allow any kind of decomposition. In this work, the SI is used
to force similarity among first-stage variables to progressively meet the
non-anticipative constraints, as will be explained in Section 4. To the
authors’ knowledge, this is the first time the SI is used as the basis
to build a decomposition algorithm for two-stage stochastic scheduling
problems.

The decomposition method proposed in this paper to handle two-
stage stochastic scheduling problems of the form (2) is based on
the so-called Similarity Index. A single Similarity Index is used to
replace all non-anticipativity constraints, naturally enabling scenario-
based decomposition. The similarity between the scenarios solutions is
then maximized in each iteration of the procedure until the first-stage
solution is equal for all of the scenarios, that is, the first-stage solution
is non-anticipative.

The core idea behind the SI is essentially the same as the Jaccard
index, applied to compare discrete decisions among scenario schedules
(binary decision sets) and weigh similarity if they are made in close,
or neighboring, time periods. In a scheduling context, a given decision
is said to be equal in two scenarios if it is made exactly at the same
time period in both. Therefore, the Jaccard index could directly serve
the task. However, what if, in one of those scenarios, such a decision
is made in the previous or following time period? The schedules would
not be the same, but they might be considered similar. Nevertheless,
the Jaccard index weighs zero in such a case, because the intersection is
null. An idea for providing the MIP optimizer with a better-conditioned
problem and sensitivity is assigning positive weights 𝑤 ∈ R (not
depending upon scenarios) to each decision taken in the schedules
to compare, and then compute the Jaccard index from the resulting
non-binary sets (Willett et al., 1998). The proposed Similarity Index
assigns such weights 𝑤 by fuzzifying the discrete decisions along the
surrounding time periods for each scenario as in Fig. 1. Hence, the
contribution of a decision to the overall similarity decreases the further
away it is made from the time period under comparison (that is, it is
less similar).

Now, consider that there is a decision to be compared at time 𝑡
among two uncertainty realization scenarios (𝐴 and 𝐵). However, the
decision is made at 𝑡−2 and 𝑡+2 in scenario 𝐴 and 𝐵 respectively. The
result of fuzzifying such decisions along two surrounding time periods
3

Fig. 2. Examples of similarity computation when a particular decision is made for two
different scenarios.

is shown in Fig. 2(a). It is clear that the fuzzified areas do not overlap
at instant 𝑡 so, consequently, the schedules are not similar at all. Then,
𝑆𝐼 = 0.

Fig. 2(b) shows the fuzzified areas generated by a decision made
at 𝑡 ± 1 in scenarios 𝐴 and 𝐵. The areas overlap partially in 𝑡, and one
can say that the scheduled decisions are similar to a certain extent. The
intersection area is 25% of the total area generated by the fuzzification.
Then, 𝑆𝐼 = 0.25.

When the decisions are made at the same time instant there is
complete overlap. Then, the generated intersection area at time 𝑡 is the
total one defined by the fuzzification. Thus, the schedules are 100%
similar, that is, 𝑆𝐼 = 1.

The overall Similarity Index is conceptually defined as the total in-
tersection area divided by the maximum intersection possible, i.e., the
total area generated by the fuzzified decisions:

𝑆𝐼 ∶= Intersection Area
Maximum Area Possible (3)

Hence, given a set of schedules corresponding to different scenarios,
the overall SI is computed by aggregation of the intersected areas for
each binary variable and time period in the schedule, divided by the
total full-intersection area.

This concept can be applied to the first-stage variables to replace,
or approximate, the non-anticipativity constraints. These constraints
restrict the first-stage solution to be equal among the scenarios, which
would imply that the Similarity Index is equal to 100%. Our decom-
position method is based precisely on this idea. The non-anticipativity
constraints are replaced by the Similarity Index, which is then it-
eratively pushed up through the objective function until it reaches
100%.

Definition. The overall Similarity Index for the first-stage discrete
variables of a decomposed stochastic scheduling (2) is computed by:

𝑆𝐼 ∶=

∑𝑡𝑅
𝑡=1 ‖min𝑒∈

{

𝑦𝑡𝑒 +
∑𝛥

𝜏=1
𝛥−𝜏
𝛥 (𝑦(𝑡−𝜏)𝑒|𝑡>𝜏 + 𝑦(𝑡+𝜏)𝑒|𝑡+𝜏≤𝑡𝑅)

}

‖1

𝑡𝑅𝛥 − 2
∑𝛥

𝜏=1 𝜏
𝛥−𝜏
𝛥

(4)

where 𝑦𝑡𝑒 ∈ {0, 1} are the binary decisions at time 𝑡 in scenario 𝑒. 𝛥 ∈ N
is the length of the fuzzification horizon in time periods. It includes

Computers & Industrial Engineering 194 (2024) 110393D. Montes et al.

p
𝜏
f

n
v
t

𝑆

I
t
𝑡
T
t
s

t
r

the current time period plus the ones to the right (or the left) which
are considered for weighing similarity. 𝑡𝑅 ∈ N is the number of time
eriods in the first stage, and 𝑡1 is the first time period of this stage.
∈ N is an auxiliary time index used to move along the periods in the

uzzification horizon, and weigh the decision made accordingly.

In this way, setting 𝛥 = 2 results in weighting only the immediate
eighboring periods to the current one for similarity; if the two pre-
ious and following periods, besides the current one, are considered,
hen 𝛥 = 3, and so on. For instance, when 𝛥 = 2, (4) reduces to:

𝐼 = 1
2𝑡𝑅 − 1

𝑡𝑅
∑

𝑡=1
‖min

𝑒∈

{

𝑦𝑡𝑒 + 0.5𝑦(𝑡−1)𝑒|𝑡>𝑡1 + 0.5𝑦(𝑡+1)𝑒|𝑡<𝑡𝑅
}

‖1 (5)

Of course, the area of the extreme tails that would lie outside the
robust horizon is not included in the total intersection area. Hence,
𝛥 ≤ ⌈𝑡𝑅∕2⌉, as there is no sense in fuzzifying each decision outside
the robust horizon.

Remark. Setting 𝛥 = 1 in (4) reduces to the standard Jaccard/
Tanimoto index comparing binary data sets. Moreover, the denomi-
nator (i.e. the union between given sets in the Jaccard index) here
is known beforehand and does not depend on the particular sets to
compare, as any schedule is constrained to provide one and just one
decision each time period. In this case, the union always coincides with
the maximum intersection area. If a particular problem needs to allow
a ‘‘no decision’’ possibility, extra decision variables need to be trivially
added to account for not making any of the other decisions.

Note that the intersection operation, represented by the element-
wise operator min{⋅} in (4), is not linear. As will be stated later, the
SI needs to be computed as part of the optimization problems, so
this nonlinearity would become an issue for usual linear scheduling
formulations.

Lemma 1. The SI (4) can be lower bounded using the set of linear
inequalities (6) and (7) together with slack variables 𝑠 ≥ 0.

𝑆𝐼 ≥
∑

𝑡∈1

‖𝑠𝑡‖1
𝑡𝑅𝛥 − 2

∑𝛥
𝜏=1 𝜏

𝛥−𝜏
𝛥

(6)

𝑠𝑡 ≤ 𝑦𝑡𝑒 +
𝛥
∑

𝜏=1

𝛥 − 𝜏
𝛥

(

𝑦(𝑡−𝜏)𝑒|𝑡>𝜏 + 𝑦(𝑡+𝜏)𝑒|𝑡+𝜏≤𝑡𝑅
)

∀𝑒 ∈  ,∀𝑡 ∈ 1 (7)

Proof. On the one hand, by inequalities (7), 𝑠𝑡 are strictly less than:

min
𝑒∈

{

𝑦𝑡𝑒 +
𝛥
∑

𝜏=1

𝛥 − 𝜏
𝛥

(𝑦(𝑡−𝜏)𝑒|𝑡>𝜏 + 𝑦(𝑡+𝜏)𝑒|𝑡+𝜏≤𝑡𝑅)

}

On the other hand, as the decisions 𝑦𝑡𝑒 are binary and 𝑠𝑡 are non-
negative, the 1-norm in both (4) and (6) just performs the sum of
its elements. Furthermore, 𝑠𝑡 are always bounded by the maximum
possible intersection area:

𝑠𝑡 ≤ 1 + 2
𝛥
∑

𝜏=1

𝛥 − 𝜏
𝛥

Then, summing up for all 𝑡 ∈ 1, excluding the tails that lie outside
from the extreme periods, one obtains (6). □

For the above defined bound to be tight, the slack variables need to
be added to the problem objective function for maximization.

3.1. SI computation example

Consider a two-stage scheduling problem with three discrete de-
cision variables 𝑦𝐴, 𝑦𝐵 , and 𝑦𝐶 to be computed over five time peri-
ods (in the first stage). The uncertain parameters are discretized in
three uncertainty realization scenarios. Table 1 shows a feasible sched-
ule in which the first-stage decisions are equal among the scenarios
(non-anticipativity is met).
4

b

Table 3 shows the contribution to the Similarity Index at each time
period weighing only the following and previous time periods (𝛥 = 2),
that is, the sum of the fuzzified intersection areas of the decisions taken
per scenario at each period. For instance, decision 𝑦𝐶 is made at 𝑡4 and
𝑡5. There is a contribution of 0.5 at 𝑡3 coming from the fuzzified decision
made at the following period. At 𝑡4, there is a contribution of 1 from
the decision made at that period and 0.5 from the 𝑡5 decision for a total
contribution of 1.5. The same applies for 𝑡5. Note that the total area is
equal to 2 in the inner time periods, while in the extreme ones (𝑡1, 𝑡5)
it is equal to 1.5, as the tails of fuzzified areas would lie outside the
first-stage horizon. In this case the intersection area among scenarios is
always the maximum, as decisions are equal for all 𝑒 ∈  .

Eq. (8) shows the computation of the SI for the schedule solution
from Table 1 using (5).

𝑆𝐼 = 1.5 + 2 + 2 + 2 + 1.5
2 ⋅ 5 − 1

= 9
9
= 1 (8)

As expected, the Similarity Index is equal to 100% for the schedule
in Table 1. However, Table 2 shows an unfeasible schedule solution
where some decisions are not the same among scenarios in the first
stage.

As the decisions at 𝑡3 are different, the Similarity Index must be less
than 100%. Table 4 shows the intersection area at each time period,
which is used in (9) to compute the SI. None of the decisions made at
𝑡3 can contribute to the SI as they are non equal among the scenarios.
The only contributions at 𝑡3 come from the decisions made at 𝑡2 and 𝑡4.
Note that the contribution to the SI is computed for each variable at
each time period.

The unfeasible first-stage schedules from scenarios in Table 2 are
then only 77.8% percent similar.

𝑆𝐼 = 1.5 + 1.5 + 1 + 1.5 + 1.5
2 ⋅ 5 − 1

= 7
9
= 0.778 (9)

4. SI Decomposition algorithm

As mentioned in Section 1, removing the non-anticipativity con-
straints from two-stage stochastic scheduling problems allows decom-
posing the problem into smaller and easier-to-solve subproblems. How-
ever, the subproblem solutions would not coincide in the first-stage
stage as nothing is enforcing non-anticipativity anymore. The core idea
of our decomposition method is to solve the subproblems independently
and use the Similarity Index to compare their solutions. An iterative
procedure is set up to progressively increase the Similarity Index until
complete similarity is reached, hence, meeting the non-anticipation
criteria.

However, the SI formula shown in (4) is nonlinear and consequently
cannot be used in the usual MILP formulations found in scheduling
problems. Then, a local bound for the Similarity Index is computed
for each subproblem using inequalities (6) and (7). Anyway, each sub-
problem requires information from the others to estimate the Similarity
Index, and the decomposition would no longer be possible. The PHA
and the Dual Decomposition solve this issue by using the solution
obtained from each subproblem in the previous iteration. In our case,
this is not possible as the inequalities (7) would bound the slack
variables 𝑠𝑡 to the worst contribution of all scenarios to the Similarity
ndex in each time period 𝑠𝑡. Eventually, the optimizer would be unable
o increase the Similarity beyond a certain value. For instance, at time
2 a scenario 𝑗 could bound 𝑠𝑡2 to 0 as its solution is too different.
hen, at time 𝑡3, a scenario 𝑘 could also bound 𝑠𝑡3 to zero. In the end,
he optimizer would not be able to adjust the corresponding scenario
olution to locally increase the similarity.

To solve this issue, our proposal is that subproblems only compare
heir decision variables (and thus measuring similarity) to a single
eference set of decisions, denoted as 𝑦̄. This reference is intended to

e the solution of the subproblem in a previous iteration that is less

Computers & Industrial Engineering 194 (2024) 110393D. Montes et al.

t

𝑦

𝑠

𝑦

Table 1
Feasible first-stage schedule. All decisions are equal among scenarios, so non-anticipativity holds.

𝑡1 𝑡2 𝑡3 𝑡4 𝑡5
𝑒1 𝑒2 𝑒3 𝑒1 𝑒2 𝑒3 𝑒1 𝑒2 𝑒3 𝑒1 𝑒2 𝑒3 𝑒1 𝑒2 𝑒3

𝑦𝐴 1 1 1 1 1 1
𝑦𝐵 1 1 1
𝑦𝐶 1 1 1 1 1 1
Table 2
Unfeasible first-stage schedule. Decisions at 𝑡3 are not equal in the three scenarios, so non-anticipation is not met.

𝑡1 𝑡2 𝑡3 𝑡4 𝑡5
𝑒1 𝑒2 𝑒3 𝑒1 𝑒2 𝑒3 𝑒1 𝑒2 𝑒3 𝑒1 𝑒2 𝑒3 𝑒1 𝑒2 𝑒3

𝑦𝐴 1 1 1 1 1
𝑦𝐵 1 1 1 1
𝑦𝐶 1 1 1 1 1 1
s
p

𝜆

w
r
c
s

I
t
t

𝐽

1
1
1
1
1
1
1

i

Table 3
Contribution of the feasible first-stage schedule in Table 1 to the SI.

𝑡1 𝑡2 𝑡3 𝑡4 𝑡5
𝑦𝐴 1 0.5 + 0.5 1 0.5 0
𝑦𝐵 0.5 1 0.5 0 0
𝑦𝐶 0 0 0.5 1 + 0.5 0.5 + 1

Total 1.5 2 2 2 1.5

Table 4
Contribution of the unfeasible first-stage schedule in Table 2 to the SI.

𝑡1 𝑡2 𝑡3 𝑡4 𝑡5
𝑦𝐴 1 0.5 0 0 0
𝑦𝐵 0.5 1 0.5 0 0
𝑦𝐶 0 0 0.5 1 + 0.5 0.5 + 1

Total 1.5 1.5 1 1.5 1.5

similar to the rest. With this in mind, the || subproblems derived from
he monolithic problem (2), are formulated as in (10).

minimize
𝑒, 𝑧𝑒, 𝑟𝑒, 𝑠

p𝑒

(

c𝑇 𝑦𝑒 + q𝑇
[

𝑧𝑒
𝑟𝑒

])

− 𝜆
∑

𝑡∈1

‖𝑠𝑡‖1
𝑡𝑅𝛥 − 2

∑𝛥
𝜏=1 𝜏

𝛥−𝜏
𝛥

(10a)

subject to

A𝑦𝑒 ≥ b (10b)

T𝑒𝑦𝑒 + W𝑒𝑧𝑒 + R𝑒𝑟𝑒 ≥ h𝑒 (10c)

𝑡 ≤ 𝑦̄𝑡 +
𝛥
∑

𝜏=1

𝛥 − 𝜏
𝛥

(

𝑦̄(𝑡−𝜏)|𝑡>𝜏 + 𝑦̄(𝑡+𝜏)|𝑡+𝜏≤𝑡𝑅
)

,∀𝑡 ∈ 1 (10d)

𝑠𝑡 ≤ 𝑦𝑡𝑒 +
𝛥
∑

𝜏=1

𝛥 − 𝜏
𝛥

(

𝑦(𝑡−𝜏)𝑒|𝑡>𝜏 + 𝑦(𝑡+𝜏)𝑒|𝑡+𝜏≤𝑡𝑅
)

,∀𝑡 ∈ 1 (10e)

𝑒 ∶= {𝑦𝑡𝑒 ∈ {0, 1}𝑛𝑦 |𝑡 ∈ 1} (10f)

𝑧𝑒 ∶= {𝑧𝑡𝑒 ∈ {0, 1}𝑛𝑧 |𝑡 ∈ 2} (10g)

𝑟𝑒 ∶= {𝑟𝑡𝑒 ∈ R𝑛𝑠
|𝑡 ∈ 2} (10h)

𝑠 ∶= {𝑠𝑡 ∈ R𝑛𝑦
|𝑡 ∈ 1} (10i)

The reference values 𝑦̄𝑡 ∈ {0, 1}𝑛𝑦 that appear in (10d) refer to
the solution in the previous iteration of the scenario sub-problem that
yielded the worst local Similarity Index. The parameter 𝜆 weights the
importance of maximizing such index: a value close to zero would mean
that the original objective function is prioritized over maximizing the
similarity; however, if the Similarity Index is not maximized, it is highly
probable that the obtained solutions do not meet the non-anticipation
criteria in the end. Contrarily, a large value of 𝜆 would give more
importance to maximizing the similarity, at the cost of getting to a
worse solution in the terms of optimality. Therefore, inspired by the
5

ub-gradient method (Shor, 1985), we propose to update the weighing
arameter 𝜆 as in (11).

𝑘+1 = 𝜆𝑘 − 𝛼
(

𝑆𝐼𝑘 − 1
)

(11)

here 𝑘 represents the current iteration, 𝛼 is a tuning parameter that
epresents the step size, and 𝑆𝐼𝑘 is the exact global Similarity Index
omputed a posteriori using (4) in each iteration from the subproblems
olutions.

Algorithm 1 provides the pseudo-code of the decomposition method.
n the algorithm, 𝐽𝑒 stands for the cost of scenario 𝑒, that also represents
he contribution of each scenario solution to the overall cost according
o the probability distribution, i.e.:

𝑒 ∶= p𝑒

(

c𝑇 𝑦𝑒 + q𝑇
[

𝑧𝑒
𝑟𝑒

])

(12)

Algorithm 1 Similarity Index Decomposition
Require: 𝛼, kmax, 𝛥
1: 𝑘 ← 0, 𝜆0 ← 0, 𝑒 ← ∅ ⊳ Initialization
2: 𝑦̄ ← argmin

𝑦
𝑐𝑇 𝑦, s.t.: 𝑡 ∈ 1 ⊳ Solve first-stage deterministic

problem
3: repeat
4: parallel for 𝑒 in ∕𝑒 do
5: 𝑦∗𝑒 , 𝑧

∗
𝑒 , 𝑟

∗
𝑒 ← arg min

𝑦𝑒 ,𝑧𝑒 ,𝑟𝑒 ,𝑠
𝐽𝑒 − 𝜆𝑘𝑆𝐼𝑒 ⊳ Solve (10)

6: end parallel for
7: 𝓁 ← arg min

𝑒∈∕𝓁
𝑆𝐼𝑒(𝑦∗𝑒 , 𝑦̄) ⊳ Scenario(s) with worst local SI

8: 𝑒 ← argmax
𝑒∈𝓁

𝐽𝑒(𝑦∗𝑒 , 𝑧
∗
𝑒 , 𝑟

∗
𝑒) ⊳ Scen. with higher cost contribution

9: 𝑦̄ ← 𝑦∗𝑒
0: SI ← 𝑆𝐼(𝑦∗𝑒∈) ⊳ Global SI computation
1: 𝜆𝑘+1 ← 𝜆𝑘 − 𝛼 ⋅ (SI − 1)
2: 𝑘 ← 𝑘 + 1
3: until SI = 1 ∨ 𝑘 = kmax ⊳ Convergence check
4: if SI=1 then return 𝑦∗𝑡𝑒, 𝑧

∗
𝑡𝑒, 𝑟

∗
𝑡𝑒

5: else No feasible solution found
6: end if

The algorithm begins by initializing the weighing parameter 𝜆 and the
teration counter 𝑘 to zero, and an empty set 𝑒. Then, the reference

values 𝑦̄ are initially set to the solution of the deterministic problem
consisting in formulation (1) restricted to the first stage, i.e., just
considering variables and constraints for 𝑡 ∈ 1. Note that this is a
fast-to-obtain initial guess required to compute local similarity indexes
𝑆𝐼𝑒 in the first iteration. Then, the subproblems (10) can be solved
in parallel and their solutions are collected (line 4). Afterwards (line
7), the algorithm seeks for the subset of scenarios 𝓁 ∈  that showed
the lowest 𝑆𝐼𝑒 value (computed a posteriori by (4) with just the
solution 𝑦∗𝑒 of each subproblem and the reference 𝑦̄). Subsequently,
the scenario from those in 𝓁 which is contributing most to the overall

cost function is selected (line 8) and used to set the new reference 𝑦̄

Computers & Industrial Engineering 194 (2024) 110393D. Montes et al.

f
a
i

R
c
t
s
T
s
a
s
s

4

p
i
t
s
s
t
s
t
f
i
o
‘
a

L
n

𝛿

i

P
b
h

P
i

a

P
l

P
t
o
s

T
r
r

P
a
b
s

𝛩

b
p
𝛿
s
c
𝛩
t
z
t
f
g
o

o

𝑡

w

(line 9). The global SI is computed (line 7) and used to update the
weighing parameter 𝜆 (line 9) by rule (11). The process repeats until
ull similarity (convergence) or the maximum number of iterations 𝑘𝑚𝑎𝑥
re reached (line 13). If convergence is reached, the algorithm output
s the first-stage and recourse decisions.

emark. Note that, in any iteration 𝑘 > 0, the scenario subproblem 𝑒
orresponding to the current reference 𝑦̄ does not need to be solved in
he next iteration. This is because 𝜆𝑘+1 > 𝜆𝑘 so, evidently, the optimal
olution for this subproblem is again 𝑦∗𝑒 = 𝑦̄ that makes 𝑆𝐼𝑒 = 1.
his is of utmost importance with limited CPU resources, as it frees
ome threads/cores to be directly assigned to other subproblems. Note
lso that for 𝑘 > 0, the computations benefit from the native warm-
tart feature of the MILP solvers and extra time is saved by initializing
ubproblems at their previous solutions.

.1. Convergence & optimality

The procedure that Algorithm 1 describes seeks to progressively
ush the scenario different solutions together to reach 100% similarity
n the first stage. In brief, the procedure uses the local 𝑆𝐼𝑒 to select
he scenario whose solution is less similar to the reference one, and
o on. Informally, this is, the first-stage decisions for the ‘‘reference
cenario’’ are frozen and the other scenario solutions are pushed closer
o them. Then, at next iteration, such reference is changed to the
cenario whose solution in the first stage remained further away from
he reference. In case there are multiple scenario solutions at ‘‘equally
ar distance’’, the one that contributes most to the overall cost function
s set as an heuristic for the reference choice. Note that this concept
f distance between two discrete-decision schedules (a measure of how

‘far apart’’ they are) can be formally stated by its symmetric difference,
.k.a. disjunctive union (Flament, 1963).

emma 2. Given two vectors 𝑦1 and 𝑦2 of dimension 𝑛 over the binary
umbers and the Similarity Index defined in (4), its symmetric difference

(𝑦1, 𝑦2) ∶= 1 − 𝑆𝐼(𝑦1, 𝑦2) (13)

s a proper measure of the distance between them.

roof. The SI is a real-valued function 𝛹 ∶ {0, 1}𝑛 → R+ upper bounded
y 1 by definition, so it is 𝛿 too. In addition, the following properties
old:

1. 𝛿(𝑦, 𝑦) = 0 ∀𝑦 ∈ {0, 1}𝑛

2. 𝛿(𝑦1, 𝑦2) = 𝛿(𝑦2, 𝑦1) ∀𝑦1, 𝑦2 ∈ {0, 1}𝑛

3. 𝛿(𝑦1, 𝑦3) ≤ 𝛿(𝑦1, 𝑦2) + 𝛿(𝑦2, 𝑦3) ∀𝑦1, 𝑦2, 𝑦3 ∈ {0, 1}𝑛

roperty 3 (triangle inequality) is proven from the property of the
nverses in a Boolean group (Rudin et al., 1976). □

Hence, 𝛿 = 0 means full similarity whilst 𝛿 = 1 means no similarity
t all.

roposition 1. Assume that a feasible solution for problem (1), equiva-
ently (2), exists. Then:

1. The solution of (10) with 𝜆 = 0 also exists for each scenario 𝑒 ∈  .
Thus, cost (2a) computed from such solutions states a lower bound
on the optimal cost (1a).

2. Any solution set obtained from independent sub-problems (10) with
𝜆 > 0, fulfilling 𝑆𝐼 = 1 is an upper bound on the optimal cost (1a).

roof. Problem (10) stated for each scenario with 𝜆 = 0 is equivalent
o (2) without non-anticipativity constraints (2d). That is, a relaxation
f (1), which proves statement 1. Statement 2 is evident, as any solution
6

et fulfilling all constraints in (2) is a feasible solution for (1). □ c
heorem. If a feasible solution for (2) exists, Algorithm 1 with 𝛼 > 0
eaches it in a finite number of iterations. Moreover, with 𝛼 large enough it
eaches a feasible solution in || + 1 iterations at most.

roof. Consider the set of solutions 𝑦∗𝑒∈ provided by Algorithm 1 at
ny iteration 𝑘. Denote by 𝛩 to the sum of all peer-to-peer distances
etween solutions 𝑦∗𝑒 . Let 𝑦̄ = 𝑦∗𝑒 be the solution of the selected reference
cenario 𝑒. Then,

∶=
𝑙||
∑

𝑖=1

||
∑

𝑗>𝑖
𝛿(𝑦∗𝑖 , 𝑦

∗
𝑗) =

∑

𝑖,𝑗∈∕𝑒
𝑗>𝑖

𝛿(𝑦∗𝑖 , 𝑦
∗
𝑗) +

||
∑

𝑒=1
𝛿(𝑦∗𝑒 , 𝑦̄)

≤
∑

𝑖,𝑗∈∕𝑒
𝑗>𝑖

(

𝛿(𝑦∗𝑖 , 𝑦̄) + 𝛿(𝑦∗𝑗 , 𝑦̄)
)

+
||
∑

𝑒=1
𝛿(𝑦∗𝑒 , 𝑦̄)

y 𝛿(⋅, ⋅) satisfying the triangle inequality (Lemma 2). Algorithm 1
rogressively maximizes each 𝑆𝐼𝑒(𝑦∗𝑒 , 𝑦̄) through 𝜆𝑘, thus minimizing
(𝑦∗𝑒 , 𝑦̄) ∀𝑒 ∈  and, in particular, the largest distance by setting 𝑦̄ to the
cenario with worst local SI. Furthermore, as 𝜆𝑘 increases monotoni-
ally with 𝑘, Algorithm 1 performs a contractive process. Consequently,
𝑘 ≤ 𝛩𝑘−1 holds. Then, two situations can occur: either 𝛩 converges

o a positive value or to zero. 𝛩 converging to a value different from
ero would mean that there is no feasible solution, which contradicts
he main assumption of the theorem. Therefore, if a feasible solution
or (2) exists, eventually 𝛩 must reach zero which, in turn, means the
lobal SI = 1 as 𝛩 ≤ ||

(

1 − 𝑆𝐼(𝑦∗𝑒∈)
)

by definition (recall the min
perator in (4)).

Now, let 𝛼 ≫ 0 be large enough such that 𝜆𝑘 ≥ 𝜆∗ ∀𝑘, being 𝜆∗ the
ptimal value1 of the Lagrange multiplier in problem (10)2 to fulfill:
∑

∈1

‖𝑠𝑡‖1
𝑡𝑅𝛥 − 2

∑𝛥
𝜏=1 𝜏

𝛥−𝜏
𝛥

= 1

In this case, problem (10) focuses on fulfilling the equality above. All
solutions 𝑦𝑒∈ are forced to fully meet the reference 𝑦̄ (Lemma 1) from
𝑘 > 0. In this setup, if any 𝑦∗𝐞 ≠ 𝑦̄ after solving the sub-problems, it is
because 𝑦̄ is infeasible for that sub-problem e. Consequently, Algorithm
1 sets 𝑦̄ = 𝑦∗𝐞 for 𝑘 + 1 and forces the remaining 𝑦𝑒∈ to meet that
reference. In the worst case, Algorithm 1 has tested all vertices 𝑦∗𝑒∈
as reference in 𝑘 = || + 1 iterations, so a feasible solution must have
been reached. □

Of course, reaching a global feasible solution does not guarantee
optimality, as any feasible solution different from the optimal is just an
upper bound, see Proposition 1.

Corollary. The optimal solution for (2) lies in the convex hull formed by
the || vertices of optimal solutions 𝑦∗𝑒∈ computed from (10) with 𝜆 = 0.

Proof. These scenario optimal solutions 𝑦∗𝑒∈ define a lower bound on
the cost (Proposition 1). Indeed, this bound is the lowest possible to be
computed from independent scenario solutions, otherwise would mean
that the solution for any scenario is suboptimal. This also means that
there cannot exist a different set of solutions 𝑦𝑒∈ yielding better overall
cost with higher peer-to-peer distance sum 𝛩. Consequently, as (2) is
a linear programming problem, its optimal solution 𝑦∗ must lie in the
convex hull defined by 𝑦∗𝑒∈ obtained with 𝜆 = 0. □

1 Karush-Kuhn–Tucker (KKT) necessary optimality conditions.
2 The duality statement and KKT conditions are extended to problems
here some of the variables are integer and the objective and constraints are

onvex (Baes, Oertel, & Weismantel, 2016).

Computers & Industrial Engineering 194 (2024) 110393D. Montes et al.

e

4.2. Parameter tuning

Algorithm 1 has mainly two tunable parameters: the step size 𝛼 ∈ R
and the length of the fuzzification horizon 𝛥 ∈ {2, 3, 4,…}. Intuitively,
step size 𝛼 balances solution optimality with convergence speed: a large
value of 𝛼 implies that more importance is given to maximizing the
Similarity Index at the cost of possibly reaching a suboptimal solution.
On the contrary, small 𝛼 provides more flexibility for the subproblems
to progressively adapt their schedules towards the feasible optimum,
but many iterations might be required to converge.

The length of the fuzzification horizon 𝛥 affects the granularity of
the SI function. Although 𝑆𝐼 ∈ R, by definition, it can only take a
finite number of values. Thus, larger 𝛥 increases the number of possible
values the SI can take. There is no clear insight on what is the influence
of this parameter in the solution quality for any general case. On the
one hand, large 𝛥 implies that, for each decision that is not coincident
in a given period 𝑡 among the scenarios, more neighboring periods get
their SI reduced, thus reducing the overall SI value. This means that
finding the right path to improve the SI at first iterations is harder for
the optimizer, because the SI sensitivity is lower. On the other hand,
the smallest 𝛥 may affect SI sensitivity in a similar way if a decision
is scheduled very close in time among scenarios but just outside the
fuzzification horizon. For instance, if certain constraints in a scenario
impede to take as first decision (at 𝑡1) the one that is considered optimal
for the rest of scenarios (e.g. a maintenance task), and then it is taken
with a delay of just 𝛥 periods, the schedules could be exactly the
same but slightly delayed in time. Clearly some similarity exists in
this hypothetical case. However, the overall SI will be zero as only the
immediate neighboring period is considered towards similarity.

From this analysis one can infer that the problem definition itself is
which could determine the optimal length of the fuzzification horizon:
same decision taken with a difference of 𝛥 periods may be seen as
relatively similar if the scheduling horizon (more precisely, |1|) is
large, or dissimilar if the opposite. Hence, for problems where the first
stage involves many periods, 𝛥 shall be increased from the default value
2 (by which only periods 𝑡−1 and 𝑡+1 are weighted towards similarity)
to keep a desired ratio 𝛥∕|1|.

5. Case study

The performance of the Similarity Index Decomposition is analyzed
with the industrial case studied by Palacín et al. (2018) under the
umbrella of a European Research and Innovation Action (CoPro, 2020).
In such a work, a discrete-time MILP formulation was proposed to
schedule the production and maintenance tasks in an evaporation
network of a cellulose fibers manufacturing plant. In this process, some
chemicals (henceforth products) are used in the spinning process to
provide the fibers with some desired mechanical properties. These
products have a lower concentration after going through the main
process, so they are sent to a network of evaporators to be concentrated.
Each of these evaporation plants consists of a series of heat exchangers,
evaporation chambers, condensers, and cooling systems. A surrogate
model was built to estimate the operating costs of each evaporation
plant. This cost model depends on the efficiency of its cooling system,
the nominal efficiency of the evaporation plant, the increased costs due
to fouling, and the product load.

The goal of the optimization problem is to minimize the operating
costs of the evaporation network over a finite horizon denoted by
discrete time periods 𝑡 ∈  . The evaporation plants 𝑣 ∈  can only
process a product 𝑝 ∈  at a time. Unfortunately, the plants need to be
regularly cleaned as fouling decreases their efficiency increasing steam
consumption and thus the operating costs. The continuous fouling effect
is discretized over a set of consecutive states {𝑠1,… , 𝑠40} ∈  with
decreasing plant efficiency. The optimizer needs to decide when to
stop the plants to perform either a deep (A) or a light (B) cleaning,
which are denoted by states 𝑠 , 𝑠 ⊆ . The plants can also be put on
7

𝐴 𝐵 t
stand-by either before or after a cleaning task. Time is discretized in
one-day-long periods as that is what usually cleaning the plants takes.

The optimization problem seeks to optimally schedule the evapo-
ration plants and their maintenance (cleaning). Production is modeled
by non-negative real variables 𝑃𝑣𝑡𝑝. Product assignment and plant states
are decided using binary variables 𝐴𝑣𝑡𝑝 and 𝐸𝑣𝑡𝑠 respectively.

The model accounts for several constraints including:

• Evaporation plants can only be in one and only one state at each
time period.

• Evaporation plants can only process one product at a time.
• Due to personnel limitations, only one cleaning task can occur per

time period.
• After an evaporation plant is cleaned, it can only be cleaned again

after several time periods in operation.
• An evaporation plant in operation can stay in such a state, go

to stand-by, or get cleaned. A fouled plant on standby can only
remain on standby or be cleaned. A clean plant can remain on
stand-by or start operating.

• The evaporation plants cannot change products unless a cleaning
task is performed.

Uncertainty is very important for the adequate operation of the
network. The product demand 𝐷𝑝 can vary over the prediction horizon
depending on the market and the main process. Additionally, the
maximum load of the evaporation plants depends on the ambient air
temperature. The model is then formulated as a two-stage stochastic
scheduling problem with scenarios 𝑒 ∈  . This additional index 𝑒 is
added to the decision variables, together with non-anticipation con-
straints. For a detailed description of the model and its equations, refer
to Palacín et al. (2018).

The SI formula needs to be updated to the case study nomenclature
and additional sets. The SI will only be calculated with respect to the
evaporation plant state variables 𝐸𝑣𝑡𝑠𝑒 (binary). Due to the problem’s
particular structure, fixing 𝐸𝑣𝑡𝑠𝑒 implies unique values for product
allocation (𝐴𝑣𝑡𝑝𝑒) and plant load (𝑃𝑣𝑡𝑝𝑒) decisions.3 Of course, this would
not be the case in general, but the reader may note that the SI-
decomposition algorithm can trivially combine with PHA for instance,
to handle continuous variables appearing in the first stage. Details
omitted for brevity.

Hence, the formula to compute the overall SI in this case, shown
in (14), only accounts for 𝐸𝑣𝑡𝑠𝑒. The corresponding formula for the local
SI (𝑆𝐼𝑒) is omitted, as it can be easily derived from (14).

𝑆𝐼 =
∑

𝑣∈

∑

𝑠∈

∑

𝑡∈1

‖min𝑒∈
{

𝐸𝑣𝑡𝑠𝑒 + 0.5𝐸𝑣(𝑡−1)𝑠𝑒 + 0.5𝐸𝑣(𝑡+1)𝑠𝑒
}

‖1

𝑛𝑣
(

2𝑡𝑅 − 1
) (14)

The main apparent difference of (14) with respect to the formula (5)
in the SI definition is that there are two extra summations according to
the sets defining the binary variables: the evaporation plants  and the
operation state . Note that the original denominator is multiplied by
the number of evaporators 𝑛𝑣, but not by the number of states, as the
evaporators can only be at one state at a time.

The PHA was used to assess the performance of the SI decomposi-
tion. Our implementation of the PHA is shown in Algorithm 2. Note
that no update rule was performed for the parameter 𝜌, so it remains
constant for every iteration.

6. Benchmark results & discussion

This section presents the performance assessment among the Sim-
ilarity Index Decomposition, the Progressive Hedging Algorithm, and

3 Plants current state (at 𝑡0) is not a decision variable. So, once 𝐸𝑣𝑡𝑠𝑒 is fixed
qually for all 𝑒 ∈  , constraints on product changeover and cleaning prevent
he existence of different allocations among scenarios.

Computers & Industrial Engineering 194 (2024) 110393D. Montes et al.

a

Algorithm 2 Progressive Hedging Algorithm
Require: 𝜌, kmax
1: 𝑘 ← 0, 𝜆0𝑣𝑠𝑡𝑒 ← 0 ⊳ Initialization
2: for 𝑒 in  do ⊳ Decomposition
3: 𝐸∗

𝑣𝑠𝑡𝑒 ← argmin𝐸𝑣𝑠𝑡𝑒
𝐽𝑒

4: end for
5: repeat
6: 𝑘 ← 𝑘 + 1
7: 𝐸𝑣𝑠𝑡𝑅 = 1

||
∑

𝑒∈ 𝐸
∗
𝑣𝑠𝑡𝑅𝑒

⊳ Aggregation

8: 𝜆𝑘𝑣𝑠𝑡𝑅𝑒 ← 𝜆𝑘−1𝑣𝑠𝑡𝑅𝑒
+ 𝜌

(

𝐸𝑣𝑠𝑡𝑅𝑒 − 𝐸𝑣𝑠𝑡𝑅

)

⊳ Price update
9: for 𝑒 in  do ⊳ Decomposition

10: 𝐸∗
𝑣𝑠𝑡𝑒 ← argmin𝐸𝑣𝑠𝑡𝑒

𝐽𝑒 + 𝜆𝑘𝑣𝑠𝑡𝑅𝑒 ⋅ 𝐸𝑣𝑠𝑡𝑅𝑒 +
1
2𝜌‖𝐸𝑣𝑠𝑡𝑅𝑒 − 𝐸𝑣𝑠𝑡𝑅‖

2

11: end for
12: until ‖𝐸∗

𝑣𝑠𝑡𝑅𝑒
− 𝐸𝑣𝑠𝑡𝑅‖ = 0 ∨ 𝑘 = kmax ⊳ Stop criteria

13: return 𝐸∗
𝑣𝑠𝑡𝑒

the Monolithic formulation, in solving four instances of the above case
study but of increasing size. The performance criteria chosen to assess
the algorithms are solution quality, computation speed, and sensitivity
to the tuning parameters. The four problem instances are defined by:

• Instance A: 3 plants, 2 products, 4 scenarios and 25 days horizon.
21 869 variables.

• Instance B: 9 plants, 3 products, 16 scenarios and 25 days horizon.
187 202 variables.

• Instance C: 9 plants, 3 products, 16 scenarios and 30 days horizon.
224 642 variables.

• Instance D: 23 plants, 5 products, 16 scenarios and 30 days
horizon. 618 242 variables.

For the sake of comparison, the robust horizon 1 was set to 7 days
for all the instances. It shall be noted that approximately 90% of the
variables are binary. The modeling environment GAMS 42.1.0 together
with Gurobi 10.0 as MIP solver were used for implementation. The
monolithic and SI decomposition instances resulted in MILPs, while the
PHA ones lead to MIQPs.

6.1. Efficiency and effectiveness

Table 5 presents a comparison of the cost objective value and com-
putation time of the different approaches in all the case study instances.
The stop criterion for the optimizer Gurobi was the optimality gap4

in the decomposition approaches whilst a time limit of 10 days of
computation is set for the monolithic approach. The step sizes 𝜌, 𝛼, for
the PHA and SI decomposition respectively, were tuned to obtain the
minimum cost (objective function) at the lowest possible computation
time. 𝛥 = 2 was set for the SI decomposition.

In Instance A, both decomposition methods were considerably
slower than their monolithic counterpart. The reported objective values
were identical. However, this instance is apparently too small to truly
realize the benefits of decomposition. Instance B showed significant
time reductions for both decomposition approaches, two orders of
magnitude faster than the monolithic approach. Note that this is even
stopping the time count in the monolithic resolution at 0.49% gap,
when the finally proven (after 4412 s) optimal value was first found. In
this instance, while SI Decomposition reached the optimal cost value,
the PHA reported a slightly worse cost. For instance C, both decom-
position approaches greatly outperformed the monolithic approach in
terms of computation time, again despite of stopping the clock of the
monolithic resolution when the optimal solution is first found, almost

4 Gap between the incumbent solution and the theoretically best possible
s for the current branch-and-bound exploration.
8

Table 5
Comparison on the four problem instances solved by the monolithic approach, the PH
algorithm, and the SI decomposition.

Instance Approach Step size Cost Time (s) Iter. Gap (%)

A
Monolithic – 10 051.6 8 – 0
PHA 2.5 10 051.6 27 5 0
SI-D 460 10 051.6 24 3 0

B
Monolithic – 91 819.6 1305 – 0.49
PHA 45 91 843.05 37 4 0
SI-D 700 91 819.6 40 3 0

C
Monolithic – 108 698.4 48 569 – 0.97
PHA 45 108 698.4 417 4 0
SI-D 1500 108 730.4 565 3 0

D
Monolithic – 527 617 864 000 – > 1
PHA 45 527 298 12 737 6 0.01
SI-D 2500 527 037 15 470 4 0.01

Fig. 3. Computed distances through the optimization process of Instance D with SI-D.
Solutions 𝑦∗𝑒 = 2, 8 and 3 were chosen as reference in iterations 𝑘 = 1, 2 and 3,
respectively.

at 1% gap (to reduce such gap to 0, Gurobi spent 176.5 h in total). In
this case, PHA slightly outperformed SI Decomposition for the chosen
setups. Finally, in the largest instance D, the SI Decomposition only
needed 4 iterations to converge to a solution whose cost is better than
the one obtained by PHA after comparable computation time, and much
better than what the monolithic approach is able to provide after ten
days.

For completeness, Fig. 3 graphically shows the progress of Algo-
rithm 1 with the iterations. Note that, although some distances 𝛿 can

Computers & Industrial Engineering 194 (2024) 110393D. Montes et al.

d

s
l
s

6

(
n

Table 6
Effect of 𝛥 on the SI decomposition algorithm.

Instance 𝛥 Cost Iter. Time (s)

A

1 10 051.6 3 28
2 10 051.6 3 24
3 10 051.6 3 27
4 10 051.6 3 28

B

1 91 819.6 3 38
2 91 819.6 3 40
3 91 819.6 3 45
4 91 819.6 3 43

C

1 108 698.4 4 630
2 108 730.4 3 565
3 108 730.4 3 726
4 108 730.4 3 620

D

1 527 375.6 3 13 347
2 527 037.1 4 15 470
3 527 375.3 5 21 332
4 527 375.3 5 21 660

eventually increase after switching the reference solution, 𝛩 always
ecreases towards zero with the iterations.

All tests and parallel computations were performed on a Dell Preci-
ion T5500 workstation with two Intel Xeon X5650 CPUs (24 available
ogical processors in total), setting three threads in Gurobi to solve each
ubproblem.

.2. Effect of the fuzzification horizon

As discussed in Section 4.2, the length of the fuzzification horizon
in which similarity is considered among variables in different sce-
arios) is determined by the parameter 𝛥. Hence, 𝛥 = 2 means that

similarity is considered only within the previous and following period.
For 𝛥 = 3, two previous and two following days are taken into account,
and so on.

To test the influence of 𝛥 in the SI Decomposition, all problem
instances were solved for 𝛥 ∈ {1, 2, 3, 4} so that the number of sur-
rounding days to weight in the SI is between 2 and 7. The objective
values and computation times are shown in Table 6.

The parameter 𝛥 did not significantly impact the cost value and
computation times in the small problem instances. However, some
differences can be observed both in optimality and computation time
for the larger instances, especially instance D. On instance C, 𝛥 = 2
provided the shortest computation time by approximately 10%, but
yielded higher cost than with 𝛥 = 1. Effects look more appreciable on
instance D, where computation times monotonically increase with 𝛥,
but note that the best cost value is obtained with 𝛥 = 2.

These numerical tests seem to confirm that the effect of 𝛥 on the
decomposition method is minor and might depend on the problem
structure and size. As a tuning guideline, the modeler may set 𝛥 to low
values and only increase it to explore if there is an extra improvement
to unlock in problems where |1| is large, i.e., fine discretized robust
horizons.

6.3. Effect of the step size in the SI decomposition

Instances A and D were solved for different values of 𝛼. Fig. 4
shows the computation time and the iterations required to converge in
such instances for the tested values. For this evaluation, the problem
objective functions were not scaled in neither case.

The algorithm converged regardless of the value of 𝛼, as expected
from theory. Small values of 𝛼 lead to many iterations and, conse-
quently, to larger computation times. For large values of 𝛼, although the
computation time was shorter in both instances, the resulting solutions
deviated slightly from optimality: the gap became 0.2% for 𝛼 >= 500
9

in Instance A, whilst an increase of 0.4% for 𝛼 >= 5000 was reported
in Instance D. Values in the ranges of 100 < 𝛼 < 500 in Instance A
and of 1000 < 𝛼 < 5000 in Instance D are the ones which reported the
best performance if optimality is prioritized. For larger 𝛼 values the
computation times continue decreasing, but tend to converge to the
minimum number of iterations possible. Consequently, the impact of
varying 𝛼 within relatively large values is not significant.

As a suggestion, the algorithm shall be tuned starting with a large
value of 𝛼 and then decrease it until the computation time increases
significantly (i.e. exceeds what is considered acceptable for a particular
application). Then, the value for which the best objective is obtained
at the lowest CPU time would be the choice. The opposite path is
not recommended, as the algorithm would need many iterations to
converge in the first trials.

6.4. Effect of the step size in the PHA

Although the step sizes of the PHA and our algorithm are not
directly comparable because of their different meaning in the formula-
tions, the performance of the PHA was evaluated as well using different
values of 𝜌. Fig. 5 shows the computation time and the required number
of iterations in Instance A for different values of 𝜌.

The PHA converged to the optimal solution for 𝜌 ∈ [0.1, 3). As
seen in figure, the computation time tends to decrease as 𝜌 increases,
until reaching a limit value where the algorithm did not converge to
any feasible solution. Outside the provided interval, the error criterion
‖𝐸∗

𝑣𝑠𝑡𝑅𝑒
−𝐸𝑣𝑠𝑡𝑅‖ gets stuck in a positive value after some iterations. This

issue was amplified in instances B, C and D where, despite the different
problem sizes and initial conditions, convergence was only achieved in
a small range around 𝜌 = 45.

An explanation for this unwanted behavior is in the discontinuity
of the feasible region due to binary decision variables (Rockafellar &
Wets, 1991). What probably happens in this case is that, when a few
scenario optimal solutions diverge from the rest and cannot approach
the reference (mean) values 𝐸𝑣𝑠𝑡𝑅 for some reason (either a specific con-
straint or because multiplier 𝜆 already became too large), all scenario
solutions keep invariant. And this can happen for too large or too small
values of 𝜌, as scheduling problems often involve numerous lower cost
operational decisions. Besides, oscillation phenomena can also occur
if 𝜆 grows too fast (Watson & Woodruff, 2011). Consequently, in a
complex setting, tuning 𝜌 is a non-directed trial-and-error process for
finding a value that just gets convergence, becoming tougher if best
performance-optimality tradeoff is sought.

7. Conclusions

This work shows how to use a similarity measure among dis-
crete data sets to replace the non-anticipativity constraints in two-
stage stochastic scheduling problems. This allows decomposing the
monolithic problem into smaller subproblems on a scenario basis.
The proposed method significantly reduced the required computation
time to obtain a solution in realistic-size instances of the presented
case study, without sacrificing the actual optimization objective. The
results gathered indicate that such speed-up would enable considering
uncertainty in near real-time plant scheduling: note that the largest
instance presented is similar in size to the actual industrial facility
the work is based on, and it would have been impossible to solve in
sensible time without a decomposition approach. Moreover, in about
four hours of computation, the SI Decomposition provided a higher
quality solution than the one reached by the monolithic formulation
in ten days of computation.

Compared to the existing alternatives in the literature, such as the
Progressive Hedging Algorithm, this new method is advantageous in
the sense that the formulation is more compact (non-anticipativity in
all first-stage variables is merged into a single indicator) and simpler
to tune: the modeler can balance between optimality and conver-

gence speed by just varying the step size 𝛼. In contrast, for the PHA

Computers & Industrial Engineering 194 (2024) 110393D. Montes et al.
Fig. 4. Performance evaluation with 𝛼 in SI decomposition.
Fig. 5. Performance evaluation with 𝜌 in PHA.
to reach optimal (even feasible) solutions at lower times, a tedious
trial-and-error process is required to tune its step size 𝜌.

Although the proposed SI Decomposition algorithm could arrive at
least at the same objective value as the monolithic approach in all
tested instances, in other cases, large values of the weighing parameter
𝛼 can result in an optimality gap. The presented analysis about the
effect of the tuning parameters on the algorithm performance is prelim-
inary. It is necessary to test the method on more two-stage scheduling
problems of different nature in order to draw general conclusions.

Nonetheless, there are also some drawbacks. It is well known that
arriving at a proven optimal solution is an extremely time consum-
ing and computationally intensive task in large-scale mixed-integer
problems. Therefore, high-quality solutions that can be obtained in
reasonable amounts of time are usually preferred in the scheduling
practice. The monolithic formulation naturally provides this feature by
setting a time limit or an optimality gap as termination criteria in the
10
MILP solver. However, the SI Decomposition cannot cope with either of
such criteria: due to its nature, there is no guarantee of having a feasible
solution until the algorithm has converged to 𝑆𝐼 = 1, and the number
of needed iterations for this is not known beforehand. Nevertheless,
and as opposed to other decomposition algorithms in the literature,
convergence can be forced in a finite number of iterations if 𝛼 is large
enough and a feasible solution exists, of course.

The reader may note that decomposition algorithms can be sped
up by not solving the subproblems to proven optimality (zero gap).
However, this does not pose any bound on the actual optimality gap
once a solution for the global problem is reached. Furthermore, relax-
ing the local optimality gap criterion too much causes oscillations in
decomposition algorithms and hampers convergence.

The proposed decomposition algorithm always converged to a fea-
sible and near-optimal solution in the tested case study, no matter
the values set for the tuning parameters. Future work will focus on

Computers & Industrial Engineering 194 (2024) 110393D. Montes et al.

d
F

C

extending the method to also handle continuous decision variables
in a formal way, as well as on tackling continuous-time scheduling
formulations.

CRediT authorship contribution statement

Daniel Montes: Writing – review & editing, Writing – original
raft, Visualization, Validation, Software, Methodology, Investigation,
ormal analysis, Data curation, Conceptualization. José Luis Pitarch:

Writing – review & editing, Writing – original draft, Visualization,
Validation, Supervision, Software, Methodology, Investigation, Formal
analysis, Data curation, Conceptualization. César de Prada: Writing
– review & editing, Writing – original draft, Validation, Supervision,
Resources, Project administration, Investigation, Funding acquisition,
Conceptualization.

Data availability

No data was used for the research described in the article.

Acknowledgments

This research is funded by the Spanish MCIN/AEI through research
projects a-CIDiT (PID2021-123654OB-C31, PID2021-123654OB-C32)
and LOCPU (PID2020-116585GB-I00). The first author has received
financial support from the 2020 call of the pre-doctoral contracts of
the University of Valladolid, Spain, co-financed by Banco Santander.

References

Abouelrous, A., Gabor, A. F., & Zhang, Y. (2022). Optimizing the inventory and fulfill-
ment of an omnichannel retailer: a stochastic approach with scenario clustering.
Computers & Industrial Engineering, 173, Article 108723. http://dx.doi.org/10.1016/
J.CIE.2022.108723.

Baes, M., Oertel, T., & Weismantel, R. (2016). Duality for mixed-integer convex
minimization. Mathematical Programming, 158, 547–564.

Benders, J. F. (1962). Partitioning procedures for solving mixed-variables programming
problems. Numerische Mathematik, 4(1), 238–252.

Birge, J. R. (1995). Models and model value in stochastic programming. Annals of
Operations Research, 59(1), 1–18.

Boyd, S., Parikh, N., Chu, E., Peleato, B., & Eckstein, J. (2010). Distributed optimiza-
tion and statistical learning via the alternating direction method of multipliers.
Foundations and Trends in Machine Learning, 3(1), 1–122.

Carøe, C. C., & Schultz, R. (1999). Dual decomposition in stochastic integer
programming. Operations Research Letters, 24(1–2), 37–45.

olonetti, B., & Finardi, E. C. (2020). Combining Lagrangian relaxation, benders
decomposition, and the level bundle method in the stochastic hydrothermal
unit-commitment problem. International Transactions on Electrical Energy Systems,
30(9).

CoPro (2020). Improved energy and resource efficiency by better coordina-
tion of production in the process industries. http://dx.doi.org/10.3030/723575,
H2020-SPIRE-2016-723575. (Accessed 25 April 2024). https://www.aspire2050.eu/
copro.

Flament, C. (1963). Applications of Graph Theory to Group Structure. Englewood Cliffs,
NJ: Prentice-Hall.

Gade, D., Hackebeil, G., Ryan, S. M., Watson, J., Wets, R. J., & Woodruff, D. L. (2016).
Obtaining lower bounds from the progressive hedging algorithm for stochastic
mixed-integer programs. Mathematical Programming, 157, 47–67.

Gower, J. C. (1985). Measures of similarity, dissimilarity and distance. Vol. 5, In
Encyclopedia of statistical sciences, johnson and CB read (pp. 397–405). John Wiley
and Sons.
11
Jiang, X., Bai, R., Wallace, S. W., Kendall, G., & Landa-Silva, D. (2021). Soft clustering-
based scenario bundling for a progressive hedging heuristic in stochastic service
network design. Computers & Operations Research, 128, http://dx.doi.org/10.1016/
J.COR.2020.105182.

Khalilabadi, S. M. G., Zegordi, S. H., & Nikbakhsh, E. (2020). A multi-stage stochastic
programming approach for supply chain risk mitigation via product substitution.
Computers & Industrial Engineering, 149, Article 106786. http://dx.doi.org/10.1016/
J.CIE.2020.106786.

Kim, K., & Zavala, V. M. (2018). Algorithmic innovations and software for the dual
decomposition method applied to stochastic mixed-integer programs. Mathematical
Programming Computation, 10(2), 225–266.

Lee, M., Ma, N., Yu, G., & Dai, H. (2021). Accelerating generalized benders decompo-
sition for wireless resource allocation. IEEE Transactions on Wireless Communication,
20(2), 1233–1247. http://dx.doi.org/10.1109/TWC.2020.3031920.

Legrain, A., Omer, J., & Rosat, S. (2020). An online stochastic algorithm for a
dynamic nurse scheduling problem. European Journal of Operational Research,
285(1), 196–210.

Mitrai, I., & Daoutidis, P. (2022). A multicut generalized benders decomposition
approach for the integration of process operations and dynamic optimization for
continuous systems. Computers & Chemical Engineering, 164, Article 107859.

Montes, D., Pitarch, J. L., & de Prada, C. (2022a). Decomposition of two-stage stochastic
scheduling problems via similarity index. Vol. 51, In Computer aided chemical
engineering (pp. 985–990). http://dx.doi.org/10.1016/B978-0-323-95879-0.50165-
X.

Montes, D., Pitarch, J. L., & de Prada, C. (2022b). The similarity index to decompose
two-stage stochastic scheduling problems. IFAC-PapersOnLine, 55(7), 821–826. http:
//dx.doi.org/10.1016/j.ifacol.2022.07.546.

Palacín, C. G., Pitarch, J. L., Jasch, C., Méndez, C. A., & de Prada, C. (2018). Robust in-
tegrated production-maintenance scheduling for an evaporation network. Computers
& Chemical Engineering, 110, 140–151. http://dx.doi.org/10.1016/j.compchemeng.
2017.12.005.

Palacín, C. G., Pitarch, J. L., Vilas, C., & de Prada, C. (2023). Integrating continuous
and batch processes with shared resources in closed-loop scheduling: A case study
on tuna cannery. Industrial & Engineering Chemistry Research, 62(23), 9278–9289.
http://dx.doi.org/10.1021/acs.iecr.3c00754.

Peng, Z., Zhang, Y., Feng, Y., Rong, G., & Su, H. (2019). A progressive hedging-based
solution approach for integrated planning and scheduling problems under demand
uncertainty. Industrial & Engineering Chemistry Research, 58(32), 14880–14896.

Rockafellar, R., & Wets, R. J. (1991). Scenarios and policy aggregation in optimization
under uncertainty. Mathematics of Operations Research, 16(1), 119–147.

Rudin, W., et al. (1976). Vol. 3, Principles of mathematical analysis. New York:
McGraw-Hill.

Ruszczyński, A. (2003). Decomposition methods. In Handbooks in operations research
and management science: vol. 10, Stochastic programming (pp. 141–211). Elsevier,
http://dx.doi.org/10.1016/S0927-0507(03)10003-5.

Sand, G., & Engell, S. (2004). Modeling and solving real-time scheduling problems
by stochastic integer programming. Computers & Chemical Engineering, 28(6–7),
1087–1103.

Shor, N. Z. (1985). Vol. 3, Minimization methods for non-differentiable functions (1). (pp.
1–36).

Simkoff, J. M., & Baldea, M. (2020). Stochastic scheduling and control using data-
driven nonlinear dynamic models: Application to demand response operation
of a Chlor-Alkali plant. Industrial & Engineering Chemistry Research, 59(21),
10031–10042.

Tanimoto, T. T. (1958). Elementary mathematical theory of classification and prediction:
Internal IBM technical report, International Business Machines Corp..

Torres, J. J., Li, C., Apap, R. M., & Grossmann, I. E. (2022). A review on the per-
formance of linear and mixed integer two-stage stochastic programming software.
Algorithms, 15(4), 103.

Watson, J.-P., & Woodruff, D. L. (2011). Progressive hedging innovations for a class of
stochastic mixed-integer resource allocation problems. Computational Management
Science, 8(4), 355–370.

Willett, P., Barnard, J. M., & Downs, G. M. (1998). Chemical similarity searching.
Journal of Chemical Information and Computer Sciences, 38(6), 983–996. http://dx.
doi.org/10.1021/ci9800211.

http://dx.doi.org/10.1016/J.CIE.2022.108723
http://dx.doi.org/10.1016/J.CIE.2022.108723
http://dx.doi.org/10.1016/J.CIE.2022.108723
http://refhub.elsevier.com/S0360-8352(24)00514-X/sb2
http://refhub.elsevier.com/S0360-8352(24)00514-X/sb2
http://refhub.elsevier.com/S0360-8352(24)00514-X/sb2
http://refhub.elsevier.com/S0360-8352(24)00514-X/sb3
http://refhub.elsevier.com/S0360-8352(24)00514-X/sb3
http://refhub.elsevier.com/S0360-8352(24)00514-X/sb3
http://refhub.elsevier.com/S0360-8352(24)00514-X/sb4
http://refhub.elsevier.com/S0360-8352(24)00514-X/sb4
http://refhub.elsevier.com/S0360-8352(24)00514-X/sb4
http://refhub.elsevier.com/S0360-8352(24)00514-X/sb5
http://refhub.elsevier.com/S0360-8352(24)00514-X/sb5
http://refhub.elsevier.com/S0360-8352(24)00514-X/sb5
http://refhub.elsevier.com/S0360-8352(24)00514-X/sb5
http://refhub.elsevier.com/S0360-8352(24)00514-X/sb5
http://refhub.elsevier.com/S0360-8352(24)00514-X/sb6
http://refhub.elsevier.com/S0360-8352(24)00514-X/sb6
http://refhub.elsevier.com/S0360-8352(24)00514-X/sb6
http://refhub.elsevier.com/S0360-8352(24)00514-X/sb7
http://refhub.elsevier.com/S0360-8352(24)00514-X/sb7
http://refhub.elsevier.com/S0360-8352(24)00514-X/sb7
http://refhub.elsevier.com/S0360-8352(24)00514-X/sb7
http://refhub.elsevier.com/S0360-8352(24)00514-X/sb7
http://refhub.elsevier.com/S0360-8352(24)00514-X/sb7
http://refhub.elsevier.com/S0360-8352(24)00514-X/sb7
http://dx.doi.org/10.3030/723575
https://www.aspire2050.eu/copro
https://www.aspire2050.eu/copro
https://www.aspire2050.eu/copro
http://refhub.elsevier.com/S0360-8352(24)00514-X/sb9
http://refhub.elsevier.com/S0360-8352(24)00514-X/sb9
http://refhub.elsevier.com/S0360-8352(24)00514-X/sb9
http://refhub.elsevier.com/S0360-8352(24)00514-X/sb10
http://refhub.elsevier.com/S0360-8352(24)00514-X/sb10
http://refhub.elsevier.com/S0360-8352(24)00514-X/sb10
http://refhub.elsevier.com/S0360-8352(24)00514-X/sb10
http://refhub.elsevier.com/S0360-8352(24)00514-X/sb10
http://refhub.elsevier.com/S0360-8352(24)00514-X/sb11
http://refhub.elsevier.com/S0360-8352(24)00514-X/sb11
http://refhub.elsevier.com/S0360-8352(24)00514-X/sb11
http://refhub.elsevier.com/S0360-8352(24)00514-X/sb11
http://refhub.elsevier.com/S0360-8352(24)00514-X/sb11
http://dx.doi.org/10.1016/J.COR.2020.105182
http://dx.doi.org/10.1016/J.COR.2020.105182
http://dx.doi.org/10.1016/J.COR.2020.105182
http://dx.doi.org/10.1016/J.CIE.2020.106786
http://dx.doi.org/10.1016/J.CIE.2020.106786
http://dx.doi.org/10.1016/J.CIE.2020.106786
http://refhub.elsevier.com/S0360-8352(24)00514-X/sb14
http://refhub.elsevier.com/S0360-8352(24)00514-X/sb14
http://refhub.elsevier.com/S0360-8352(24)00514-X/sb14
http://refhub.elsevier.com/S0360-8352(24)00514-X/sb14
http://refhub.elsevier.com/S0360-8352(24)00514-X/sb14
http://dx.doi.org/10.1109/TWC.2020.3031920
http://refhub.elsevier.com/S0360-8352(24)00514-X/sb16
http://refhub.elsevier.com/S0360-8352(24)00514-X/sb16
http://refhub.elsevier.com/S0360-8352(24)00514-X/sb16
http://refhub.elsevier.com/S0360-8352(24)00514-X/sb16
http://refhub.elsevier.com/S0360-8352(24)00514-X/sb16
http://refhub.elsevier.com/S0360-8352(24)00514-X/sb17
http://refhub.elsevier.com/S0360-8352(24)00514-X/sb17
http://refhub.elsevier.com/S0360-8352(24)00514-X/sb17
http://refhub.elsevier.com/S0360-8352(24)00514-X/sb17
http://refhub.elsevier.com/S0360-8352(24)00514-X/sb17
http://dx.doi.org/10.1016/B978-0-323-95879-0.50165-X
http://dx.doi.org/10.1016/B978-0-323-95879-0.50165-X
http://dx.doi.org/10.1016/B978-0-323-95879-0.50165-X
http://dx.doi.org/10.1016/j.ifacol.2022.07.546
http://dx.doi.org/10.1016/j.ifacol.2022.07.546
http://dx.doi.org/10.1016/j.ifacol.2022.07.546
http://dx.doi.org/10.1016/j.compchemeng.2017.12.005
http://dx.doi.org/10.1016/j.compchemeng.2017.12.005
http://dx.doi.org/10.1016/j.compchemeng.2017.12.005
http://dx.doi.org/10.1021/acs.iecr.3c00754
http://refhub.elsevier.com/S0360-8352(24)00514-X/sb22
http://refhub.elsevier.com/S0360-8352(24)00514-X/sb22
http://refhub.elsevier.com/S0360-8352(24)00514-X/sb22
http://refhub.elsevier.com/S0360-8352(24)00514-X/sb22
http://refhub.elsevier.com/S0360-8352(24)00514-X/sb22
http://refhub.elsevier.com/S0360-8352(24)00514-X/sb23
http://refhub.elsevier.com/S0360-8352(24)00514-X/sb23
http://refhub.elsevier.com/S0360-8352(24)00514-X/sb23
http://refhub.elsevier.com/S0360-8352(24)00514-X/sb24
http://refhub.elsevier.com/S0360-8352(24)00514-X/sb24
http://refhub.elsevier.com/S0360-8352(24)00514-X/sb24
http://dx.doi.org/10.1016/S0927-0507(03)10003-5
http://refhub.elsevier.com/S0360-8352(24)00514-X/sb26
http://refhub.elsevier.com/S0360-8352(24)00514-X/sb26
http://refhub.elsevier.com/S0360-8352(24)00514-X/sb26
http://refhub.elsevier.com/S0360-8352(24)00514-X/sb26
http://refhub.elsevier.com/S0360-8352(24)00514-X/sb26
http://refhub.elsevier.com/S0360-8352(24)00514-X/sb27
http://refhub.elsevier.com/S0360-8352(24)00514-X/sb27
http://refhub.elsevier.com/S0360-8352(24)00514-X/sb27
http://refhub.elsevier.com/S0360-8352(24)00514-X/sb28
http://refhub.elsevier.com/S0360-8352(24)00514-X/sb28
http://refhub.elsevier.com/S0360-8352(24)00514-X/sb28
http://refhub.elsevier.com/S0360-8352(24)00514-X/sb28
http://refhub.elsevier.com/S0360-8352(24)00514-X/sb28
http://refhub.elsevier.com/S0360-8352(24)00514-X/sb28
http://refhub.elsevier.com/S0360-8352(24)00514-X/sb28
http://refhub.elsevier.com/S0360-8352(24)00514-X/sb29
http://refhub.elsevier.com/S0360-8352(24)00514-X/sb29
http://refhub.elsevier.com/S0360-8352(24)00514-X/sb29
http://refhub.elsevier.com/S0360-8352(24)00514-X/sb30
http://refhub.elsevier.com/S0360-8352(24)00514-X/sb30
http://refhub.elsevier.com/S0360-8352(24)00514-X/sb30
http://refhub.elsevier.com/S0360-8352(24)00514-X/sb30
http://refhub.elsevier.com/S0360-8352(24)00514-X/sb30
http://refhub.elsevier.com/S0360-8352(24)00514-X/sb31
http://refhub.elsevier.com/S0360-8352(24)00514-X/sb31
http://refhub.elsevier.com/S0360-8352(24)00514-X/sb31
http://refhub.elsevier.com/S0360-8352(24)00514-X/sb31
http://refhub.elsevier.com/S0360-8352(24)00514-X/sb31
http://dx.doi.org/10.1021/ci9800211
http://dx.doi.org/10.1021/ci9800211
http://dx.doi.org/10.1021/ci9800211

	Similarity-based decomposition algorithm for two-stage stochastic scheduling
	Introduction
	Problem Statement
	Similarity Index
	SI computation example

	SI Decomposition Algorithm
	Convergence & optimality
	Parameter tuning

	Case study
	Benchmark results & discussion
	Efficiency and effectiveness
	Effect of the fuzzification horizon
	Effect of the step size in the SI decomposition
	Effect of the step size in the PHA

	Conclusions
	CRediT authorship contribution statement
	Data availability
	Acknowledgments
	References

