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A B S T R A C T

In this work we present a novel methodology for the numerical simulation of patient-specific aortic dissections.
Our proposal, which targets the seamless virtual prototyping of customized scenarios, combines an innovative
two-step segmentation procedure with a CutFEM technique capable of dealing with thin-walled bodies such
as the intimal flap. First, we generate the fluid mesh from the outer aortic wall disregarding the intimal flap,
similarly to what would be done in a healthy aorta. Second, we create a surface mesh from the approximate
midline of the intimal flap. This approach allows us to decouple the segmentation of the fluid volume from
that of the intimal flap, thereby bypassing the need to create a volumetric mesh around a thin-walled body,
an operation widely known to be complex and error-prone. Once the two meshes are obtained, the original
configuration of the dissection into true and false lumen is recovered by embedding the surface mesh into
the volumetric one and calculating a level set function that implicitly represents the intimal flap in terms of
the volumetric mesh entities. We then leverage the capabilities of unfitted mesh methods, specifically relying
on a CutFEM technique tailored for thin-walled bodies, to impose the wall boundary conditions over the
embedded intimal flap. We tested the method by simulating the flow in four patient-specific aortic dissections,
all involving intricate geometrical patterns. In all cases, the preprocess is greatly simplified with no impact on
the computational times. Additionally, the obtained results are consistent with clinical evidence and previous
research.
1. Introduction

With a global incidence between 2.5 and 7.2 cases per 100,000 [1],
the aortic dissection (AD) is a severe cardiovascular disease (CVD) that
stems from the separation of the inner (intima) and middle (media)
layers of the aortic wall. This separation generates a false lumen that
allows the blood to circulate through the aortic tissue, resulting in
abnormal aortic haemodynamics and mechanical behaviour.

The AD survival rates are closely related to the progressive dilation,
which is at the same time influenced by several factors such as the
formation of new intimal tears, the intimal flap (IF) elasticity, the
pressure jump between the true lumen (TL) and false lumen (FL),
and the FL pressure value. Besides, the AD likely leads to other acute
complications such as blood malperfusion, aneurysm formation and,
in the worst scenario, rupture of the outer (adventitia) aortic tissue,
which can cause mortality rates to reach up to the 50% depending on
the patient’s condition and the AD classification [2], which is based on
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the location of the dissection. Hence, in type A (or ascending) ADs the
dissection appears either in the ascending aorta or in the aortic arch
while in type B (or descending) ADs, which are the ones we mainly
focus on, the dissection occurs in the descending aorta. Regarding the
treatment, the rupture risk of type A ADs makes surgical intervention
(aortic segment replacement or endovascular stent implantation) the
preferred option. Concerning type B ADs, these normally develop into
a chronic condition with high long-term morbidity and mortality rates
owing to the recurrent dissections and eventual rupture. The intrin-
sic uncertainty and mortality rate of AD evince the need to provide
clinicians with effective and efficient tools to support the therapy
decision-making. Considering the inherent limitations of ex vivo models
and experimental phantoms, numerical techniques, either in the form of
computational fluid dynamics (CFD) or fluid-structure interaction (FSI)
simulations, have a great potential to serve this purpose.
vailable online 12 July 2024
010-4825/© 2024 The Authors. Published by Elsevier Ltd. This is an open access ar

https://doi.org/10.1016/j.compbiomed.2024.108832
Received 12 March 2024; Received in revised form 6 June 2024; Accepted 29 June
ticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

2024

https://www.elsevier.com/locate/compbiomed
https://www.elsevier.com/locate/compbiomed
mailto:rzorrilla@cimne.upc.edu
mailto:esoudah@cimne.upc.edu
https://doi.org/10.1016/j.compbiomed.2024.108832
https://doi.org/10.1016/j.compbiomed.2024.108832
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compbiomed.2024.108832&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Computers in Biology and Medicine 179 (2024) 108832R. Zorrilla and E. Soudah
It is widely known that one of the challenges appearing in the
numerical simulation of CVDs is the efficient generation of the com-
putational mesh from the medical images. In the particular case of
the AD, the presence of an internal extremely thin layer of tissue
introduces an extra complexity to such operation. As a first approach,
one might consider to do a standard segmentation, that is to say,
generating the TL and FL volumes such that their boundaries fit both
the IF and the aortic walls. Though this is admittedly possible, it
requires generating a volume mesh around a thin-walled body (i.e., the
IF), something that is well-known to be an extremely error-prone
operation as the polygonal representations of each surface side tend
to intersect each other when generating the boundary entities [3,4].
Consequently, the mesh generation becomes in an extremely effort-
and time-consuming procedure, which compromises the applicability
of standard computational techniques to AD scenarios.

In this work we aim at circumventing these complexities by intro-
ducing a novel methodology that targets the seamless simulation of
patient-specific ADs. Our proposal starts by neglecting the thickness of
the IF in order to completely decouple its segmentation from the TL
and FL one. This results in what we called a two-step segmentation
strategy, in which we first generate the volume (fluid) mesh from the
segmentation of the outer aortic wall disregarding the presence of the
IF. This effectively results in a procedure pretty similar to the one to be
followed in a healthy aorta. Secondly, we create an independent surface
(skin) mesh from the segmentation of the (approximate) midline of
the IF. Once the two meshes have been generated, the original TL
and FL configuration of the AD is recovered by ‘‘dropping’’ the surface
mesh into the volume one and calculating a level set function [5]
that implicitly represents the IF in terms of the volumetric fluid one.
Although the level set-based description of the IF greatly simplifies the
segmentation and mesh generation, it comes at the price of requiring
an alternative wall boundary condition treatment as the fluid mesh no
longer has nodes over the IF wall. For such purpose we leverage the
well established unfitted (also known as non-conforming) mesh family
of methods. In particular, we rely on a CutFEM approach that is capable
to impose wall boundary conditions over immersed thin-walled bodies
such as the IF.

Finally, it is important to make clear that in this work we do not
consider the movement of the IF or, in other words, we simulate the AD
as a rigid wall CFD problem. Nevertheless, we note that the method-
ology that we are proposing can be perfectly extended to account for
the IF displacement, either in the form of a moving boundaries CFD
or a fully-coupled FSI problem [6]. Indeed, unfitted mesh methods
are known to perform extremely well in presence of large boundary
displacements and rotations. Altogether, this makes us conceive this
work as an intermediate but necessary step towards an efficient and
robust methodology for the simulation of patient-specific ADs with
possibly moving boundaries.

The article is organized as follows: Section 2 reviews the state-of-
the-art; Section 3 details the methodology. This comprises the segmen-
tation and mesh generation, the implicit representation of the IF via a
discontinuous level set function and a brief explanation of the CutFEM
method, which is our unfitted mesh method of choice; the governing
equations and variational formulation are presented in Section 4; the
patient-specific simulations setup and results are detailed in Section 5;
the discussion of the results presented in Section 5 can be found in
Section 6; and, finally, conclusions are summarized in Section 7.

2. State-of-the-art

2.1. Experimental and numerical simulation of type B ADs

Traditionally, the study of the AD has been conducted by means
of experimental techniques. Focusing on type B ADs, it is possible to
find successful applications of ex vivo models in [7,8] as well as ex-
perimental phantoms in [9–12]. Though these works proved that both
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ex vivo and phantom experiments can be used for the profound study
of type B ADs, their inherent complexities and economic cost difficult
their practical usage for the rapid-prototyping of patient-specific cases.
Such limitations, combined with the constantly increasing computing
power, led previous decade researchers towards considering numerical
techniques as an alternative for the study and performance assessment
of ADs. Hence, in [13,14] the authors used CFD simulations to validate
previous ex vivo experiments of type B ADs. Similarly, [15–18] per-
formed CFD simulations of patient-specific type B ADs. If one considers
the most recent literature, it is easy to realise that current research
targets accounting for the movement of the IF during the simulation
or, in other words, solving the AD as an FSI problem. In this regard,
we highlight [19–21] in which the authors exploit FSI methods for the
simulation of idealised type B ADs. Similarly, in [22–26] the reader can
find different studies and comparisons involving patient-specific ADs
also based on FSI simulations.

At this point, it is important to make clear that even though all the
previously mentioned works managed to appropriately perform CFD
and FSI simulations of idealised and patient-specific ADs, all of them
rely on standard mesh discretization techniques. Consequently, they
all necessarily need to deal with the aforementioned segmentation and
mesh generation complexities, something that turns into a much less ef-
ficient simulation pipeline that may eventually limit their applicability
for the clinical decision-making. As previously mentioned, the primary
objective of this work is to overcome such limitation by combining
a two-step segmentation procedure with a level set-based unfitted
mesh CFD method. As a difference to [27], in which we validated
the aforementioned unfitted technique using results from four ex vivo
experiments on idealised type B ADs [13], in this work we are applying
our method to patient-specific cases. Compared to [27], dealing with
real ADs naturally presents an additional challenge from the fluid
simulation perspective. Furthermore, it requires the implementation of
a seamless segmentation strategy (our proposed two-step approach) in
order to efficiently deal with the much complex real geometries.

2.2. Unfitted mesh methods for the numerical simulation of CVDs

The main feature that distinguishes unfitted mesh methods from
standard ones is the fact that (all or some of) the boundaries of the
computational mesh do not match those of the analysed bodies, which
are alternatively represented using a level set (distance) function [5].
Though the level set method is normally used to represent volumetric
bodies (i.e., bodies that feature internal volume), it can be also applied
to track the position of thin-walled structures such as the IF. As it is
discussed in [3], this requires switching from a standard continuous
(nodal-based) signed distance function to a (potentially) discontinuous
element-based one.

Once the unfitted boundaries are located via their corresponding
level set representation, the boundary conditions can be imposed by
using a wide variety variational approaches, leading to different fam-
ilies of techniques. Exploring all these methods in detail is beyond
the scope of this work. Nevertheless, we highlight the eXtended Finite
Element Method (X-FEM) [28–31], the Immersed Boundary Method
(IBM) [32–35], the CutCell [36,37] and CutFEM [3,4,38], also known
as Embedded Boundary Method (EBM), as well as the Shifted Bound-
ary Method (SBM) [39–41]. Besides, [3,4,28,31,42] deserve special
mention for presenting different approaches able to deal with IF-like
thin-walled structures.

Unfitted mesh methods have been widely applied for the CFD and
FSI simulation of cardiovascular systems. Among all of them, the IBM
stands out as historically one of the most applied techniques, likely
owing to its simplicity, which facilitated the FSI simulation of hearth
valves since the early 70s [43–46]. Despite the IBM its continued use for
the resolution of complex blood flow simulations [47], overcoming its
intrinsic limitations motivated the apparition of highly advanced tech-

niques such as the immersogeometric analysis [48,49]. More pertinent
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to the approach we aim to follow in this work are the recent studies
that use unfitted mesh discretization techniques to handle complicated
CVDs geometries or to directly simulate over the 4D-PC-MRI images.
Examples of these include [50], where the authors use a CutCell tech-
nique for the CFD analysis of the haemodynamics of an aortic stenosis
model, and [51], which leverages an approach similar to the IBM to
solve the haemodynamics of the mitral valve.

After reviewing the literature, it becomes apparent that the majority
of applications of unfitted mesh methods to the numerical simulation
of CVDs mainly focus on cardiac and valve dynamics. Only one very
recent application to type B ADs can be found in the literature and, as
a difference to our work, it does not consider an unfitted IF. Instead, the
authors use immersed techniques to embed a stent geometry to assess
its impact to the fluid flow after thoracic endovascular aortic repair
(TEVAR) [52]. Hence, up to our knowledge there is no application
of non-conforming mesh methods for the rapid-prototyping of patient-
specific ADs. This is likely due to the limited number of unfitted
approaches capable of handling thin-walled bodies compared to those
designed for immersed bodies with internal volume. In this regard,
we note that applying such techniques to the AD case is theoretically
possible but would necessarily result in an exorbitant computational
cost after the need of having a sufficiently fine mesh to account for
the tiny thickness of the IF. As demonstrated later, our approach does
not require any specific considerations for the volume mesh generation,
meaning that the simulation times remain comparable to those of
traditional techniques. Furthermore, our technique does not require
the addition of extra degrees of freedom for the boundary condition
imposition over the IF, unlike thin-walled approaches based on the X-
FEM [28,31] or the use of Lagrange multipliers [48]. This represents
a great performance advantage for the eventual extension to FSI prob-
lems, not only because the number of unknowns remains constant, but
also because the sparse matrix graph does not need to be rebuilt during
the simulation.

3. Methodology

Mesh-based numerical techniques can be roughly classified into
body fitted (i.e., body conforming) and unfitted (i.e., non-conforming)
techniques. Such classification is done according to how the mesh
boundaries adapt to the analysed bodies geometries. Hence, in the
traditional body fitted methods the mesh boundaries match those of the
geometries of interest while this is not the case when using unfitted ap-
proaches. Instead, all or some of the boundaries are somehow dropped
into the so called background mesh. Then, the immersed boundaries
are implicitly represented in terms of the background mesh, typically
by using a level set (i.e., distance) function.

Though unfitted approaches come with some extra complexities,
such as the need for an implicit boundary representation or a more
complex imposition of boundary conditions, they have several ad-
vantages. The best-known one is the capability to naturally handle
arbitrary large boundary displacements and rotations, thus skipping the
need of remeshing due to mesh entanglement. Besides, there are other
advantages related to the simulation preprocess which are of special
interest in this work. The first one is the capability to deal with ill-
conditioned input geometries. By ill-conditioned we mean CAD models
featuring surfaces with undesired holes, overlaps or duplication that
would require a huge amount of human work to be fixed to make the
model compatible with standard meshing algorithms. The second one
is related to the generation of volume meshes involving boundaries
representing thin-walled (i.e., membrane) bodies. This is known to be
en error prone operation since the polygonal representation of the two
sides of the membrane tend to intersect each other when generating
the surrounding volume mesh.

In this work we aim to exploit these preprocessing capabilities
for the efficient simulation of patient specific AD scenarios. Hence,
we start by generating a volume mesh from the segmentation of the
3

external aortic wall. We shall remark that such volume mesh is created
disregarding the interior division in TL and FL. Then the division into
TL and FL is introduced into the model by calculating the level set
function representing the IF. The level set function is automatically
computed by an algorithm from the intersections of a surface mesh
representing the IF (obtained directly from the segmentation of the
medical images). This makes it possible to alternatively locate the
position of the IF within the volume mesh, thus allowing the imposition
of the corresponding wall boundary conditions.

In the following subsections we detail each one of the previous
steps. First we start by describing how we get the required meshes from
the segmentation to then explain the basis of the implicit representation
of immersed structures, with particular emphasis on the calculation of
the discontinuous level set function. Next, we briefly discuss the usage
of such level set in the context of the CutFEM to end the section by
including a flow chart of the complete proposed methodology (Fig. 3).

3.1. Segmentation and mesh generation

In this work we analyse four patient-specific aortic dissection sce-
narios with distinct anatomical characteristics and challenges. We note
that all the patients gave written informed consent for the scientific use
of the radiological explorations and associated clinical data. Besides,
all study procedures were conducted in accordance with the guidelines
approved by the Ethics Committee and the Declaration of Helsinki. The
scanning procedures were performed considering the standards of the
manufacturer. The medical images required for the ADs segmentation
are a CT scan of the patients’ aorta. Such images were obtained by
means of a 16-row multi-slice scanner and have a resolution of 0.625
× 0.625 mm, and an inter-slice distance of 0.6 mm covering the entire
dissected aorta.

Our approach is based on a two-step procedure that consists on a
first segmentation of the entire aorta, followed by a detailed segmen-
tation of the IF (Fig. 1). For the first step, we use a semi-automatic
technique that exploits active contour methods to accurately delineate
the aorta outer boundary (i.e., the aortic external wall). This approach
avoids to initially distinguish the TL and FL, thus enabling a seamless
segmentation of the entire aorta as all the complexities associated
to the IF are completely bypassed at this stage. Subsequently, we
construct a detailed mesh of aorta outer surface, from which the volume
background mesh can be generated.

In a second step, we perform a detailed 3D segmentation of the
IF. In this case the segmentation is not as simple owing to the in-
tricate geometrical patterns (e.g., tear shapes) appearing in the IF.
Previous research explored methods such as graph-based techniques
and spectral phase data to address similar challenges, namely variations
in brightness and/or contrast as well as the artifacts appearing in
CTA images [53,54]. More recent investigations also discuss innovative
methodologies aimed at streamlining the segmentation procedure while
improving its accuracy across different steps [55,56]. Considering that
the focus of this article is not the IF segmentation process on itself but to
leverage unfitted mesh methods to establish a robust methodology for
the numerical simulation of ADs, we opt for a manual segmentation of
the IF. To streamline the segmentation process, all scans were labelled
under uniform conditions: a window width of 680 ± 15 HU and a win-
dow level of 310 ± 20 HU. This standardization minimizes irrelevant
visual interference, ensuring consistency across visualizations. Never-
theless, we note that our approach has no limitation in this regard,
meaning that the manual IF segmentation can be eventually upgraded
in the future. Hence, the result of this second segmentation is a 3D (STL-
type) surface mesh, which we remark is completely independent to the
previous volume (background) one, that represents the IF’s midplane.

Finally, we shall mention that the two-step segmentation process is
crucial for the accurate representation of the AD as it makes possible
to account for all the geometrical complexities of the IF. Furthermore,
our proposal results in a much more robust and efficient generation
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Fig. 1. Two-step segmentation procedure. Left: CT scan of a real AD. Right: sketch of the segmentation. The solid grey region represents the entire aorta (first segmentation step).
The black line does so for the IF (second segmentation step).
of the computational meshes. About this, it is important to highlight
that decoupling the volume and IF segmentation completely avoids
the error-prone operations arising when trying to generate a volume
mesh around a thin-walled body, something that becomes crucial when
considering the geometrical artifacts inherent to the IF. In addition to
this, neglecting the thickness of the IF, which is an assumption fair
to be made, eases an eventual extension of the problem to the FSI
case by enhancing the auxiliary surface mesh with shell (or membrane)
formulation.

3.2. Discontinuous level set function

At this point we can distinguish two entities, a volumetric mesh
representing the entire aorta and a surface mesh coming from the
segmentation of the IF. We stress that the volume mesh is generated
without taking into consideration the IF, something that, as already
mentioned, greatly simplifies the segmentation. However, such im-
provement introduces the need of describing the IF segmentation using
the volume mesh as a support for an implicit representation.

In a generic scenario, the implicit representation of the immersed
bodies is achieved by the use of a standard level set (i.e., distance)
function that relies on the inside/outside concept [5]. Hence, those
nodes of the volume mesh that are outside the embedded bodies have
positive distance values. On the contrary, the volume mesh nodes lying
in the interior of the immersed geometry have a negative distance
value. In consequence, the zero isosurface of the distance field is indeed
the representation of the analysed geometries’ skin.

However, such nodal-based level set is not suitable for the IF case
as the inside/outside concept makes no sense in presence of thin-
walled bodies featuring negligible thickness. As it is described in [3], in
this case one necessarily needs to switch to an element-wise distance.
Hence, the idea is to calculate the intersections of each element of the
background volume mesh with the surface elements representing the IF.
Therefore, the level set is stored at the element level as a vector-valued
magnitude which contains the distance from each intersected element’s
node to the IF. Consequently, the same node can have different distance
value depending on the element considered. Because of this reason, this
element-wise distance is also denoted as discontinuous level set.

Aiming at clarifying the discussion at hand, in Fig. 2 we present
the discontinuous level set calculation workflow for a simplified case.
Fig. 2(a) represents an ideal 2D AD scenario, from which we would
eventually obtain the segmentation in Fig. 2(b). Hence, Fig. 2(b) in-
volves two meshes, a volume (surface in 2D) one that comprises both
the TL and FL regions and a surface (line in 2D) one that represents
the IF. As depicted in Fig. 2(c), the identification of the TL and FL
4

regions is achieved by embedding the IF mesh into the volume one
and calculating the corresponding discontinuous level set function.
This operation is schematically represented for a few representative
elements, namely A, B and C.

The discontinuous distance calculation starts by searching for the
possible intersections between each element of the volume mesh and
the IF. This can be efficiently achieved by setting up an octree-based
search structure from the IF mesh. If there are candidates to intersect, as
it happens for instance in elements A and B, the next step is to compute
the intersection points between the IF mesh and current element’s edges
(i.e., line-line intersection in 2D and surface-line intersection in 3D),
yielding the points denoted by rounds in Fig. 2(c). The intersection
points allow to define the intersection plane (black dashed lines in
Fig. 2(c)). Finally, the element distance vector entries are computed as
the closest distance from each element’s node to such intersection plane
(i.e., point-line distance in 2D and point-triangle distance in 3D). The
sign of such distance values is set according to the orientation of the
IF intersecting entities. On the contrary, if there are no intersections
(element C) the distance vector entries are simply initialized to a
constant positive (or negative) value. As depicted in Fig. 2(c), the sign
of the elemental distances allows to define a positive (light green) and
a negative (light red) distance region, thus implying that the IF can be
locally tracked at each element as the zero value distance isosurface,
which coincides with the intersection plane previously defined.

3.3. The CutFEM method

Though it implies an admittedly more intricate implementation, in
this work we opt for the CutFEM technique owing to its optimal con-
vergence and accuracy in the boundary representation. In particular,
we follow the approach presented in [4] as it makes possible to solve
the flow around thin-walled bodies without introducing extra degrees
of freedom. We highlight that this avoids the need of modifying the
sparse matrix graph, something that becomes crucial for the eventual
extension of this work to the FSI case. The method presented in [4] is
based on the substitution of the standard Finite Element (FE) space by
an alternative one in those elements of background mesh that are inter-
sected by the IF (i.e., the elements featuring both positive and negative
elemental distance values). Such alternative space, which we refer to as
Ausas FE space after the name of the original author [57], is capable to
represent the discontinuity in the velocity and pressure fields coming
from the presence of the IF. The FE space substitution is complemented
a relocation of the integration points (i.e., subintegration) and a weak
imposition of the boundary condition over the IF intersection (zero
distance isosurface) by using the Nitche’s method [58]. For further
technical details the reader is referred to [59–64].
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Fig. 2. Simplified 2D aortic dissection. Left: schematic representation of the simplified 2D problem. Centre: volume (top) and IF segmentation (bottom). Right: embedding of the IF
segmentation and discontinuous level set calculation. The elements of interest A, B and C are highlighted in light grey. The round markers denote the IF and edge intersections. Black
dashed lines represent the intersection plane stemming from the edge intersections. Light green and light red fill represent the positive and negative distance regions respectively.

Fig. 3. Simulation flow chart. The two circle nodes attached to the dashed lines represent the required (patient-specific) inputs. The dashed rectangles highlight the main
components of our proposal. These are the two-step segmentation procedure, from which the volume background and the IF surface meshes are obtained, and the unfitted CFD
solver.
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4. Formulation

In this section we briefly present the formulation. First we state
the governing equations as well as their boundary conditions to subse-
quently present the corresponding variational form. Finally, we briefly
discuss about the FE discretization and the stabilisation technique.

4.1. Governing equations

As it is customary in blood flow simulations, we neglect the com-
pressibility of the fluid, meaning that the governing equations of the
problem are the standard viscous incompressible Navier–Stokes equa-
tions. Hence, after denoting the fluid computational domain as 𝛺
nd the total simulation time as 𝑇 , the problem to be solved can be
xpressed as

𝜕𝐯
𝜕𝑡

+ 𝜌𝐯 ⋅ ∇𝐯 − ∇ ⋅ 𝝈 − 𝜌𝐠 = 𝟎 in 𝛺 × (0, 𝑇 ] , (1a)

∇ ⋅ 𝐯 = 0 in 𝛺 × (0, 𝑇 ] . (1b)

Here 𝜌 is the fluid density, 𝐯 and 𝑝 are the velocity and pressure fields
and 𝐠 is the volume acceleration (i.e., gravity). ∇ and ∇⋅ are the gradient
nd divergence operators, respectively. The Cauchy stress is denoted by
and can be computed from the velocity and pressure fields as

= C∇𝑠𝐯 − 𝑝𝐈 , (2)

eing C the viscous constitutive tensor and ∇𝑠𝐯 the strain rate tensor,
hich is defined as

𝑠𝐯 = 1
2
(

∇𝐯 + ∇𝐯𝑇
)

. (3)

Eq. (1) needs to be completed with its corresponding boundary
onditions. These are applied on the computational domain boundary
𝛺 = 𝛤 , which is defined as the union of the Dirichlet boundary 𝛤𝐷, the
eumann boundary 𝛤𝑁 and the embedded boundary representing the

F, denoted as 𝛤𝐼𝐹 , such that 𝛤𝐷 ∪𝛤𝑁 ∪𝛤𝐼𝐹 = 𝛤 and 𝛤𝐷 ∩𝛤𝑁 ∩𝛤𝐼𝐹 = ∅.
s usual, the Dirichlet and Neumann boundary conditions are

𝐯 − �̄� = 𝟎 on 𝛤𝐷 × (0, 𝑇 ] , (4a)

⋅ 𝐧 − �̄� = 𝟎 on 𝛤𝑁 × (0, 𝑇 ] , (4b)

eing �̄� the prescribed wall velocity, �̄� the traction to be imposed and 𝐧
he outward unit normal vector. For the sake of generality, on 𝛤𝐼𝐹 we

opt for a Navier-slip boundary condition, which is nothing but a simple
wall model that behaves linearly according to the slip length parameter
𝜀. In this regard, we note that the standard pure stick (i.e., no-slip)
condition is recovered as 𝜀 → 0. Similarly, the pure slip condition is
recovered as 𝜀 → ∞. It is also interesting to mention that the Navier-slip
imposition turns into a standard Dirichlet constraint in the wall normal
direction and a Robin-type boundary condition in the tangential one.
Hence, we can split the condition to be applied on 𝛤𝐼𝐹 into a normal
and tangential contribution as

𝐏𝑛 (𝐯 − �̄�) = 𝟎 on 𝛤𝐼𝐹 × (0, 𝑇 ] , (5a)

𝐏𝑡 (𝜀 (C∇𝑠𝐯) ⋅ 𝐧 + 𝜇 (𝐯 − �̄�)) = 𝟎 on 𝛤𝐼𝐹 × (0, 𝑇 ] . (5b)

𝜇 denotes the effective dynamic viscosity while 𝐏𝑛 and 𝐏𝑡 are the
normal and tangential projection operators obtained as

𝐏𝑛 = 𝐧⊗ 𝐧

and

𝑡 𝑛
6

𝐏 = 𝐈 − 𝐏 = 𝐈 − 𝐩⊗ 𝐧 . c
4.2. Variational form

Prior to the discussion of the variational form, let us first define the
notation

(𝑎, 𝑏)𝛺 = ∫𝛺
𝑎𝑏 and (𝐚,𝐛)𝛺 = ∫𝛺

𝐚𝐛

or the scalar and vector 𝐿2(𝛺)-inner products on the interior of 𝛺 and

𝑎, 𝑏⟩𝛤 = ∫𝛤
𝑎𝑏 and ⟨𝐚,𝐛⟩𝛤 = ∫𝛤

𝐚𝐛

or the boundary ones on 𝛤 . Complementary, we also introduce the
unctional spaces 𝑽 ∶= 𝑯1

0(𝛺) (i.e., the space of functions in 𝑯1(𝛺)
anishing on 𝛤𝐷) and 𝑄 ∶= 𝐿2(𝛺)∕R (i.e., the space of square-integrable
unctions in R) for the velocity and pressure approximations.

The previously defined functional spaces allow us to define the
ariational form as follows. Find 𝐮 ∈ 𝑽 and 𝑝 ∈ 𝑄 such that

(

𝐰, 𝜌 𝜕𝐯
𝜕𝑡

)

𝛺
+ (𝐰, 𝜌𝐯 ⋅ ∇𝐯)𝛺 + (∇𝐰,C∇𝑠𝐯)𝛺 − (∇ ⋅ 𝐰, 𝑝)𝛺 − (𝐰, 𝜌𝐠)𝛺

+ (𝑞,∇ ⋅ 𝐯)𝛺 − ⟨𝐰, �̄�⟩𝛤𝑁
− ⟨𝐰, (C∇𝑠𝐯 − 𝑝𝐈) ⋅ 𝐧⟩𝛤𝐼𝐹 +

𝜇 + 𝛽
𝛾ℎ

⟨𝐰,𝐏𝑛 (𝐯 − �̄�)⟩𝛤𝐼𝐹

+ ⟨C∇𝑠𝐰 − 𝑞𝐈,𝐏𝑛 (𝐯 − �̄�)⟩𝛤𝐼𝐹
+ 1

𝜀 + 𝛾ℎ
⟨𝐰,𝐏𝑡 (𝜀 (C∇𝑠𝐯) ⋅ 𝐧 + 𝜇 (𝐯 − �̄�))⟩𝛤𝐼𝐹

+
𝛾ℎ

𝜀 + 𝛾ℎ
⟨(∇𝑠𝐰) ⋅ 𝐧,𝐏𝑡 (𝜀 (C∇𝑠𝐯) ⋅ 𝐧 + 𝜇 (𝐯 − �̄�))⟩𝛤𝐼𝐹 = 0

(6)

or all 𝐰 ∈ 𝑽 and 𝑞 ∈ 𝑄. We shall remark that the variational form
n previous equation already includes the 𝛤𝐼𝐹 contributions, which are
he usual boundary term coming from the integration by parts of the
tress plus the weak imposition of the Navier-slip condition. About the
atter, 𝛾 is a user-definable penalty constant and 𝛽 is a stability constant,
hich value can be found in [64].

For further details on the convergence and stability properties of the
avier-slip Nitsche’s technique in Eq. (6) we refer the reader to [64].
omplementary, the extension of such technique to the thin-walled
odies case can be found in [4].

.3. Discretization and stabilisation

The discrete version of the problem in Eq. (6) is obtained from the
artition of 𝛺 into a collection of non-overlapping elements. We shall
ention that we only consider simplicial elements, that is to say linear

etrahedra. Furthermore, we also note that a linear interpolation is used
or both velocity and pressure fields. This interpolation pair is known to
e LBB-unstable and thus requires a stabilisation technique. Among the
everal alternatives present in the literature, in this work we opt for the
ariational MultiScales (VMS) method [65–67], in particular, we use

he quasi-static Algebraic SubGrid Scales (ASGS) approach. Considering
hat the stabilisation is out of the scope of this work as well as the fact
hat any other option would be equivalently valid, we decided to omit
he corresponding terms from the discussion at hand. Nevertheless, we
efer the reader to [4] in case these are required.

. Numerical simulations

This section presents the numerical experiments that we conduct
n order to validate the aforementioned methodology. These reproduce
our AD scenarios, namely case 1, 2, 3, and 4, coming from real
atient-specific medical images. In the following subsections we de-
cribe the models setup (geometries, material properties and boundary

onditions) and present the obtained results.
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5.1. Geometries

In this work we consider four real AD scenarios involving patient-
specific medical images. Table 1 presents the AD meshes obtained by
applying the segmentation procedure detailed in Section 3.1 to the
aforementioned medical images. For the four AD cases we show a
render of the volume (i.e., background) mesh in the first table’s row,

render of the IF (i.e., surface) mesh in the second one and the result
f embedding the IF meshes into the volume ones, that is to say, the
iscontinuous level set intersections in the third row.

It can be observed that the four ADs present complex geometrical
atterns. On the one hand, cases 1 and 2 feature particularly complex
F configurations, either because of the tear(s) positioning (case 1) or
ts shape and sizing (case 2). Besides this, case 1 becomes particularly
hallenging as the dissection is developing further towards the brachio-
ephalic trunk and the left common carotid and subclavian arteries.
n the other hand, cases 3 and 4 present a highly dilated FL. To what
oncerns the presence of reentry tears, these appear in both cases 2 and
. Despite the presence of such complexities, the proposed methodology
anages to effectively represent all the AD scenarios (Table 1).

Besides, it is also interesting to comment on the imperfections
ppearing at the IF discretization boundary edges. These come from
he segmentation of the IF midplane, which reaches the aortic wall
s described in Section 3.1. Nevertheless, such imperfections have no
ffectation to the final calculations as they are automatically filtered by
he level set calculation algorithm. Again, this is evinced by the cyan
urfaces in Table 1, which depict the zero isosurface of the level set
unction that is used for the problem resolution.

Complementary, we also collect the mesh features of each one of
he cases in Table 2. In this regard, we note that the magnitude that
ctually matters for the problem resolution is the number of elements
f the background mesh. In other words, the skin (i.e., IF) mesh is
nly used for the calculation of the level set, meaning that it has a
urely auxiliary purpose. Finally, we also note that the computational
verhead coming from the calculation of the level set is absolutely
egligible when compared to the simulation time.

.2. Material properties

In all the numerical experiments we consider a Newtonian fluid
hich properties are density 𝜌 = 1.05 ⋅ 10−6 g/mm3 and dynamic

viscosity 𝜇 = 3.5 ⋅ 10−6 g/mm s. Hence, the C tensor in Eq. (2) can
e expressed in Voigt notation as

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

4𝜇
3 − 2𝜇

3 − 2𝜇
3 0 0 0

− 2𝜇
3

4𝜇
3 − 2𝜇

3 0 0 0

− 2𝜇
3 − 2𝜇

3
4𝜇
3 0 0 0

0 0 0 𝜇 0 0

0 0 0 0 𝜇 0

0 0 0 0 0 𝜇

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

5.3. Boundary conditions

The boundary conditions are an imposed inflow velocity in the
aortic inlet, an imposed outflow velocity in the brachiocephalic trunk
as well as in the left subclavian and carotid arteries, a traction free
condition in the outlet, and a standard no-slip (i.e., stick) wall condition
in both the aortic wall and the IF.

Owing to the lack of further information, we consider the same flow
rate profiles in the four AD scenarios (Fig. 4). It must be mentioned that
such profiles do not correspond to any of the patients’ real ones. Nev-
ertheless, we note that in case of these being available, they could be
equivalently applied. Hence, an inflow parabolic velocity distribution
is created for each AD scenario from the corresponding ascending aorta
flow rate profile in Fig. 4. Similarly, we do so for the outflow velocity
7

profiles of the brachiocephalic trunk and the left carotid and subclavian
arteries. The velocity profiles are applied with a time increment of 0.05
s to solve the problem for five complete cycles of 0.87 s, resulting in a
total simulation time of 4.35 s.

5.4. Results

The results described in this section have been obtained with the
KratosMultiphysics open-source finite element framework (Kratos) [68,
69]. Among other capabilities, Kratos implements the level set and
CutFEM techniques required in this work as well as the nonlinear
(Newton–Raphson) solution strategy, which leverages the highly effi-
cient AMGCL [70,71] algebraic multigrid iterative linear solver. All the
simulations have been run in a desktop machine equipped with a 12th
Generation Intel® Core™ i9-12900 processor. Both preprocessing and
and mesh generation have been done by means of the GiDsimulation
software (GiD) [72,73]. GiD has been also used for the postprocessing
together with ParaView [74]. For each AD case, we present three hori-
zontal cross-sections (proximal, mid and distal) as well as a frontal one
at three time instants representative of the cardiac cycle. Specifically,
we discuss the velocity and pressure results obtained at 𝑡 = 3.6 s,
𝑡 = 3.9 s and 𝑡 = 4.2 s, which correspond to the systolic phase, the
dicrotic notch and the diastolic phase of the fifth (last) cardiac cycle.
Furthermore, we also present a snapshot of the streamlines at 𝑡 = 3.6 s
and 𝑡 = 4.2 s for each one of the AD scenarios.

Considering that the pressure jump between the TL and the FL
is an extremely valuable indicator of the AD status as well as of its
potential evolution, we start the results discussion by analysing the
obtained pressure fields. First, we observe large pressure fluctuations
in scenarios 1 and 3, which feature a main solitary tear (Figs. 6 and
10). On the contrary, in cases 2 and 4 (Figs. 8 and 12) the large
reentry tears result in a more homogeneous pressure distribution across
both lumina (TL and FL). It is also interesting to comment on the
differences between cases 2 and 4 since these both feature distal tear(s)
but with a quite different proximal tear. While in case 2 the proximal
(entry) tear is large, which results in a much homogeneous velocity
distribution (Fig. 7), in case 4 the entry tear is much smaller, leading
to a jet-like velocity and pressure distributions (Figs. 11 and 12). As
it is discussed in [75], the abrupt pressure variations between the TL
and the FL combined with the location of small tears in the aortic
arch are signals of potential aortic enlargement. This phenomenon, but
without the reentry tear, can be also observed in case 3, in which the
FL enlargement is even more evident (Figs. 9 and 10). Furthermore, we
dare say that case 1 is pretty similar to 3 in this regard, but still at a
preliminary stage. As discussed in [76], elevated pressure within the FL
(Fig. 6) may turn into AD enlargement, and thus constriction of the TL,
with potential risk of rupture.

To what concerns the velocity fields, we note that the proposed
methodology is able to accurately capture the flow patterns arising
from the AD. We consider this a direct consequence of our two-step
segmentation proposal, which makes possible to precisely determine
the complicated three-dimensional shapes appearing in real (patient-
specific) tears. Such proper representation of the IF geometry allows the
study of the correlation between the tears’ geometrical features and the
inflow from the TL to the FL, which directly influences the evolution
of the AD. Hence, we observe that in cases 1 (Fig. 5) and 3 (Fig. 9),
which feature a relatively small tear, the TL to FL inflow occurs at a
high velocity that may cause an elongation of the FL. As commented in
previous paragraph, such elongation produces an imbalance between
the velocity and pressure waves, which at the same time can affect the
blood flow dynamics and contribute to the growth of the FL, something
that can eventually affect the haemodynamics of the suprarenal and
iliac arteries. Focusing on case 4, we observe that the enlargement of
the FL led to the formation of a new reentry tear near to the external
aortic wall. This results in a modification in the flow dynamics that

turns into a less pronounced midplane enlargement than that of case

https://github.com/KratosMultiphysics
https://github.com/ddemidov/amgcl
https://www.gidsimulation.com/
https://www.paraview.org/
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Table 1
Preprocess snapshots of the different AD scenarios. First row: render view of the mesh resulting from the outer wall
segmentation (first step, see Section 3.1). Second row: render view of the mesh resulting from the IF segmentation
(second step, see Section 3.1). Third row: distance function isosurface (cyan) representing the IF.
Table 2
Number of elements of IF (triangles) and background (tetrahedra) meshes and simulation elapsed times.

Case 1 Case 2 Case 3 Case 4

IF mesh 5.1 K 6.3 K 11.9 K 36.8 K

Background mesh 2.3 M 2.3 M 3 M 3 M

Simulation elapsed time 46 min 16 s 26 min 20 s 32 min 48 s 31 min 7 s
2. Nevertheless, the recirculation occurring between the proximal and
distal tears might have influenced the growth in the proximal region.
This same phenomenon can be noticed in case 2 as well, but with a
less pronounced effect owing to the proximity of the entry and reentry
tears. To what concerns the affectation of the AD evolution to the flow,
the streamlines (Fig. 13) reveal that in less developed ADs (cases 1
and 2) the FL flow is more streamlined. Contrariwise, those patients
with highly developed ADs (cases 3 and 4) present more vortical flow
structures in the FL.

Last but important, we would like to spend some words regarding
the calculation elapsed times, which are collected in Table 2. As it can
be observed, the times range from 26 min (case 2) to 46 min (case
1). It is important to note that the computation times are comparable
8

to those of traditional CFD simulations, demonstration the satisfactory
performance of our implementation.

6. Discussion

It is widely known that one of the main challenges appearing in
the numerical simulation of patient-specific ADs is the generation of
the computational model. Typically, this involves generating a separate
segmentation of the TL and FL, which must then be combined to
obtain the final AD configuration. This combination requires to expand
the previously obtained TL model by following a series of boolean
operations, which must ensure that the resulting IF features a uniform
thickness [26,77–79]. Besides requiring the use of different image/CAD
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Fig. 4. Flow rate profiles. The solid lines represent the ascending aorta inflow flow rate profile as well as the brachiocephalic trunk and left carotid and subclavian arteries outlet
flow rates for one cardiac cycle. The red square markers highlight the time location of the snapshots used for the results assessment.
Fig. 5. Case 1 velocity modulus (mm3/s) frontal cross-section at three different instants of a cardiac cycle.
processing programs, such operations often become very complex and
time consuming.

The two-step procedure we are proposing greatly simplifies the
preprocess by completely avoiding such operations. Instead, we only
require two segmentation: the entire aorta (TL and FL) and the IF
midline. Though including the extra IF segmentation might seem a
great disadvantage, we shall remark that it is straightforward and did
not take more than a few minutes for any of the cases in this work.
Furthermore, we believe that integrating image processing machine
learning techniques [80] has the potential to improve the segmentation
accuracy and enhance the scalability of the method for broader clinical
applications. Additionally, we also note that our approach avoids any
manual operation after the medical images have been segmented, as
the distance representation of the IF is automatically handled by the
level set algorithm. Furthermore, we bypass all the common errors as-
sociated to the volume mesh generation around thin-walled structures.
Altogether, our approach results in a much more efficient simulation
pipeline that reduces the AD modelling times.

It is also important to note that our methodology has no restrictions
on the size of the elements, meaning that it allows the for the mesh
9

refinement in specific areas of interest such as tears or the arterial wall.
In addition, our method also facilitates the simulation of various scenar-
ios without modifying (i.e., remeshing) the possibly large background
mesh by simply updating the IF surface one, which is much easier to
handle and generate. We think that this will allow clinicians to more
accurately predict the outcomes of different surgical approaches, such
as aortic fenestration or tear occlusion, and potentially reduce the risks
associated to them. The capability to easily update the surface mesh,
whether for fenestration or patching of tears, allows for to quickly
establishing modified IF models. For the sake of clarity, let us for
instance consider the case of the aortic fenestration. Aortic fenestration,
which is designed to alleviate high pressures in hypertensive FLs and
thus the risk of dilation, consists in creating an incision in the IF
to redirect blood flow from the FL to the TL. Hence, our approach
allows for easy creation and simulation of virtual fenestrations by
simply removing the surface elements close to a certain location of
the IF. Indeed, this can be automatically done from the radius and the
approximate location of the fenestration as it is discussed in [27].

In terms of reliability, we observe that our method’s results are con-
sistent with those reported in previous patient-specific computational
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Fig. 6. Case 1 pressure (Pa) and velocity modulus (mm3/s) horizontal cross-sections at three different instants of a cardiac cycle. From top to bottom, the cross-sections are sorted
as proximal, mid and distal.

Fig. 7. Case 2 velocity modulus (mm3/s) frontal cross-section at three different instants of a cardiac cycle.
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Fig. 8. Case 2 pressure (Pa) and velocity modulus (mm3/s) horizontal cross-sections at three different instants of a cardiac cycle. From top to bottom, the cross-sections are sorted
as proximal, mid and distal.
Fig. 9. Case 3 velocity modulus (mm3/s) frontal cross-section at three different instants of a cardiac cycle.
studies [75,76,81,82]. Besides, they align also with the conclusions
found in studies such as [83,84], where the authors employed the 4D-
Flow MRI technique to predict aortic dilatation and rupture in AD.
Hence, we observe that less developed ADs present more laminar flow
patterns in the FL, something that indicates a more stable condition
of the AD. Contrariwise, patients with more developed ADs feature
higher vorticity flows, with the subsequent higher risk of complications.
Therefore, we can conclude that using our two-step segmentation plus
11
CutFEM approach has no practical implication from the perspective of
velocity and pressure fields.

At this point, it is important to discuss the rigid IF assumption,
which is of course a limitation of our approach that overlooks the
IF potential deformations as well as their impact on the haemody-
namic predictions. In this regard, we should bear in mind that the
increased numerical effort required for the FSI modelling is reported to
be five to twenty times greater than that of rigid wall simulations [77].
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Fig. 10. Case 3 pressure (Pa) and velocity modulus (mm3/s) horizontal cross-sections at three different instants of a cardiac cycle. From top to bottom, the cross-sections are
sorted as proximal, mid and distal.
Fig. 11. Case 4 velocity modulus (mm3/s) frontal cross-section at three different instants of a cardiac cycle.
Similarly, [26] reports an increment in the simulation times between
eight to ten times. Recent findings indicate that certain haemodynamic
indicators (e.g., shear stress-based biomarkers) can be properly mod-
elled using rigid wall simulations [77]. This is the same for predicting
the aortic dilation in surgically repaired ADs, obtaining the pressure
difference between TL and FL with a rigid wall CFD approach is
likely sufficient. Furthermore, it might not be feasible to conduct FSI
simulations in a large cohort study. However, it is undoubtedly true
that including the movement of the aortic vessel and IF leads to a more
accurate estimation of the TL and FL pressure drop, besides providing
a better comprehension on the AD initiation, propagation and rupture
underlying mechanisms [22–26].
12
We want to emphasize that our method has no technical limitation
in this regard, meaning that our proposal can be perfectly extended
to account for the deformation of the IF, making the FSI analysis the
most immediate further research line. For that purpose, we conceive
two different approaches. The first, and more traditional one, is to
follow the approach in [6] in order to apply current methodology in
the resolution of a fully coupled FSI problem in which the CFD and
the structural (the IF) domains are solved together. This would require
knowing the mechanical properties of the IF, which are challenging to
estimate [77]. This difficulty leads us to the second approach, that is to
directly impose the movement of the IF, obtainable by 4D-PC-MRI [82,
85–87]. This simplifies the FSI problem to a moving boundaries CFD
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Fig. 12. Case 4 pressure (Pa) and velocity modulus (mm3/s) horizontal cross-sections at three different instants of a cardiac cycle. From top to bottom, the cross-sections are
sorted as proximal, mid and distal.
one that does not require solving the IF mechanical problem. On top
of resulting in a much simpler simulation, this completely circumvents
the need to obtain the IF mechanical properties. Finally, we also note
that the moving boundaries CFD approach also opens the possibility
of virtually estimating the patient-specific IF material parameters by
solving an inverse problem from the imposed IF movement and the
obtained pressure field.

7. Conclusion

The objective of this work is to develop a robust and efficient
methodology for the accurate CFD analysis of patient-specific ADs. To
achieve this, we conceive a novel two-step segmentation process that
significantly improves the simulation pipeline without compromising
the precision of the AD numerical simulation. Specifically, we use a
discontinuous level set technique to introduce a representation of the
IF that, in combination with a suitable CutFEM approach, makes it pos-
sible to represent the velocity and pressure discontinuities appearing at
the IF, as well as to impose the IF wall conditions. The obtained results
showcase the capabilities of the proposed CutFEM technique to handle
complex patient-specific AD geometries. Furthermore, although this is
not a clinical study, the outcomes from using our methodology in four
patient-specific cases are consistent with those in similar computational
and experimental studies [75,76,81–84]. Such agreement is remarkably
achieved without the complexity typically associated with AD model
generation, highlighting the robustness and efficiency of our proposal.
The presented methodology represents a significant step forward in the
simulation of patient-specific ADs, offering accuracy, efficiency and less
time consuming model generation. This study also sets a foundation for
further innovations in the modelling of complex CVDs using unfitted
approaches.
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Fig. 13. Streamlines of the four different AD scenarios. For each case, the left and right figures show the streamlines at 𝑡 = 03.6 s (systole) and 𝑡 = 4.2 s (diastole). The streamlines
are superimposed on both AD volume (grey) and IF surface (magenta) meshes, also shown first and second rows in Table 1.
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