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A B S T R A C T

In a previous paper, a technique was described to avoid order reduction with exponential
Rosenbrock methods when integrating initial boundary value problems with time-dependent
boundary conditions. That requires to calculate some information on the boundary from the
given data. In the present paper we prove that, under some assumptions on the coefficients
of the method which are mainly always satisfied, no numerical differentiation is required to
approximate that information in order to achieve order 4 for parabolic problems with Dirichlet
boundary conditions. With Robin/Neumann ones, just numerical differentiation in time may be
necessary for order 4, but none for order ≤ 3.

Furthermore, as with this technique it is not necessary to impose any stiff order conditions,
in search of efficiency, we recommend some methods of classical orders 2, 3 and 4 and we give
some comparisons with several methods in the literature, with the corresponding stiff order.

1. Introduction

It is well known that stiff ordinary differential systems are typically those for which an explicit integration with standard methods
is not possible due to a lack of 𝐴-stability [1]. When integrating in space partial differential equations, the space discretized system is
stiff because the eigenvalues associated to the discretization of the spatial differentiation operator can be infinitely large in modulus
when the space grid is refined.

Exponential methods have been developed in the literature in order to get a stable integration of stiff systems in an ‘explicit’
way [2]. Although exponential-type functions of matrices applied over vectors have to be calculated with these methods, the recent
improvement of Krylov techniques to approximate them has made these methods a valuable tool to integrate some initial boundary
value problems [3–5].

However, the phenomenon of order reduction which already turns up when integrating this type of problems with standard
methods also turns up with exponential methods. More explicitly, when the boundary conditions are not periodic or do not satisfy
enough conditions of annihilation on the boundary, the order of accuracy of the time integrators when integrating the space
discretized system is smaller than the order of accuracy which is observed when integrating a nonstiff ODE. Some times convergence
is even lost [6]. Because of that, restrictive stiff order conditions on the coefficients of exponential Runge–Kutta methods have been
firstly suggested in the literature so as to achieve the desired order of accuracy when integrating semilinear parabolic problems with
vanishing boundary conditions [7]. Later, another technique has been given in order to avoid that order reduction without having
to impose restrictions on the coefficients [8–11]. Moreover, the latter technique is valid for time-dependent boundary conditions.
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Furthermore, by assuming that the Jacobian of the vector field can be easily calculated, that extra information can be used
ith Rosenbrock methods so as to achieve a desired accuracy with less stages than their Runge–Kutta counterparts. Because of

hat, for the integration of reaction–diffusion initial boundary value problems, stiff order conditions have also been studied in [12]
or exponential Rosenbrock methods. Moreover, many particular exponential Rosenbrock methods have been constructed satisfying
hose conditions in order to achieve a desired accuracy while trying to be as efficient as possible [3,12–16].

In contrast, in [17], a technique is suggested to avoid order reduction with any exponential Rosenbrock method of any classical
rder without imposing those stiff order conditions. For that, some intermediate initial boundary problems are considered for which
he boundary values have to be calculated in terms of data. If analytic expressions for the latter are known, in [17] it is stated that
hose boundary values can be exactly calculated in order to get local order ≥2. However, in order to get local order ≥3, numerical
ifferentiation is in general required either in space or in time. When that in space is necessary, a weak CFL condition is needed to
rove convergence [17]. Although the latter condition is much less restrictive than that required when integrating with standard
xplicit Runge–Kutta methods, it would be better not to require it and not to resort to numerical differentiation for the ease of
mplementation.

Our aim in this paper is to prove that, under some simplifying assumptions (which are satisfied by mainly all already built
xponential Rosenbrock methods), numerical differentiation in space is not required to achieve local order 3 and 4, so that
o CFL condition is necessary then. Moreover, numerical differentiation in time is just necessary to achieve local order 4 with
obin/Neumann boundary conditions, but not with Dirichlet ones and that order and neither to achieve local order 3. We remark

hat, when integrating with standard Rosenbrock methods, a technique was also given in [18] to avoid order reduction and no
umerical differentiation in space was either required to achieve local order ≤4. Therefore, the conclusions in this paper are similar
o those in [18] for standard Rosenbrock methods. The advantage of using exponential Rosenbrock methods instead of standard ones
orrespond to problems where a good preconditioner is not available to solve linear systems in an efficient way and it is therefore
ore recommendable to use Krylov techniques to approximate exponentials of matrices applied over vectors [16,19–21].

In any case, coming back to the above considerations on exponential Rosenbrock methods, in this paper we also recommend
ome particular ones to get global orders 2, 3 and 4 (the latter for parabolic problems in which, by a summation-by-parts argument,
he local order coincides with the global one). We remind that the local error corresponds to the error after just one step while the
lobal error is the error after the required steps to get a final time. As no stiff order conditions have to be imposed, there are more
arameters to play with in order to achieve a cheaper computation.

The paper is structured as follows. Section 2 gives some preliminaries and particularizes the obtained formulas for the full
iscretization in [17] in order to get local order 𝑝+1 for 𝑝 = 1, 2, 3 when the method has classical order at least 𝑝. Section 3 justifies
ow those formulas greatly simplify under the precise conditions on the coefficients of the method which are stated there. (That
implification must not be seen in the length of formulas, but in the fact that the required boundary values are easier to calculate
nd that the linear combination of 𝜑𝑗 -functions of matrices applied over vectors is given, so that Krylov subroutines can be directly
pplied.) Section 4 gives some theorems and remarks which justify that the simplifying assumptions are satisfied by basically every
onstructed method. Section 5 gives a recommendation for methods of order 2, 3 and 4 and, finally, Section 6 shows convergence
ables and a numerical comparison in CPU time with other methods in the literature.

. Preliminaries

We will assume that the problem to integrate can be written as

�̇�(𝑡) = 𝐴𝑢(𝑡) + 𝛹 (𝑢(𝑡)) + ℎ(𝑡), 0 ≤ 𝑡 ≤ 𝑇 , (1)
𝑢(0) = 𝑢0,

𝜕𝑢(𝑡) = 𝑔(𝑡),

here ⋅ denotes differentiation with respect to time and where 𝐴 ∶ 𝐷(𝐴) ⊂ 𝑋 → 𝑋 is a linear differential operator defined in a
ubset of the Banach space 𝑋 = 𝐿∞(�̄�,C), where 𝛺 is a bounded domain in R𝑑 and the supremum norm is considered. On the other
and, 𝜕 ∶ 𝑋 → 𝑌 corresponds to a boundary operator which arrives at another Banach space 𝑌 = 𝐿∞(𝜕�̄�) with the same supremum
orm. We will assume hypotheses (A1)–(A9) in [17] and, more particularly, if (1) is real and the solution stays in the interval 𝐼 ,
hat 𝛹 ∈ 𝐶2(𝐼,R) and, if (1) is complex, that 𝛹 is holomorphic in a region where the solution stays. Moreover, we will assume that
∈ 𝐶2([0, 𝑇 ], 𝑋).

As stated in [17,18] through [22–24], (A1)–(A4) guarantee that problem (1) is well-posed. However, more particular assumptions
n the regularity of 𝑢 and 𝛹 are stated in (A5)–(A9) and in Theorem 3.1 in [17] in order to get the desired local order 𝑝+1 whenever
he method has non-stiff global order ≥ 𝑝. We do not state them here for the sake of brevity, but it is there justified that all expressions
hich turn up in the rest of the paper exist. Another issue would be to justify in terms of the data of the problem that the exact

olution is regular enough. Although that would be very interesting, it is not an aim of this paper. In any case, we refer to [25–28]
or bounds of some derivatives of the exact solution in the linear case. (The last papers are focused on singularly perturbed problems,
hich are not necessarily the case here, but the bounds which are obtained there are also valid for not so small parameters.)

General Rosenbrock exponential methods are determined by some coefficients 𝑐1,… , 𝑐𝑠 and some coefficient functions in a
Butcher tableau

𝑎𝑖,𝑗 (𝑧) =
𝑟
∑

𝜆𝑖,𝑗,𝑙𝜑𝑙(𝑐𝑖𝑧), 𝑖 = 1,… , 𝑠, 𝑗 = 1,… , 𝑖 − 1,
2

𝑙=1
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𝑏𝑖(𝑧) =
𝑟
∑

𝑙=1
𝜇𝑖,𝑙𝜑𝑙(𝑧), 𝑖 = 1,… , 𝑠, (2)

here

𝜑𝑙(𝑧) = ∫

1

0
𝑒(1−𝜃)𝑧 𝜃𝑙−1

(𝑙 − 1)!
𝑑𝜃, 𝑙 ≥ 1,

nd where it is assumed that
𝑖−1
∑

𝑗=1
𝑎𝑖𝑗 (0) = 𝑐𝑖. (3)

or an autonomous ODE differential system of the type

�̇� (𝑡) = 𝐹 (𝑈 (𝑡)), (4)

the numerical solution 𝑈𝑛+1 at time 𝑡𝑛+1 = 𝑡𝑛 + 𝑘 is given from the numerical solution 𝑈𝑛 at time 𝑡𝑛 through the following formulas

𝐾𝑛,𝑖 = 𝑒𝑐𝑖𝑘𝐽𝑛𝑈𝑛 + 𝑘
𝑖−1
∑

𝑗=1
𝑎𝑖𝑗 (𝑘𝐽𝑛)𝐺𝑛(𝐾𝑛,𝑗 ), 𝑖 = 1,… , 𝑠, (5)

𝑈𝑛+1 = 𝑒𝑘𝐽𝑛𝑈𝑛 + 𝑘
𝑠
∑

𝑖=1
𝑏𝑖(𝑘𝐽𝑛)𝐺𝑛(𝐾𝑛,𝑖), (6)

where

𝐽𝑛 = 𝐹 ′(𝑈𝑛), 𝐺𝑛(𝑈 ) = 𝐹 (𝑈 ) − 𝐽𝑛𝑈. (7)

When the problem is non-autonomous, by rewriting

�̇� (𝑡) = 𝐹 (𝑡, 𝑈 (𝑡))

as an autonomous one, the method reads

𝐾𝑛,𝑖 = 𝑒𝑐𝑖𝑘𝐽𝑛𝑈𝑛 + 𝑐𝑖𝑘𝑡𝑛𝜑1(𝑐𝑖𝑘𝐽𝑛)𝑉𝑛 + 𝑘
𝑖−1
∑

𝑗=1

𝑟
∑

𝑙=1
𝜆𝑖,𝑗,𝑙

[

𝜑𝑙(𝑐𝑖𝑘𝐽𝑛)[𝐹 (𝑡𝑛,𝑗 , 𝐾𝑛,𝑗 ) − 𝑡𝑛,𝑗𝑉𝑛 − 𝐽𝑛𝐾𝑛,𝑗 ] + 𝑐𝑖𝑘𝜑𝑙+1(𝑐𝑖𝑘𝐽𝑛)𝑉𝑛

]

,

𝑈𝑛+1 = 𝑒𝑘𝐽𝑛𝑈𝑛 + 𝑘𝑡𝑛𝜑1(𝑘𝐽𝑛)𝑉𝑛 + 𝑘
𝑠
∑

𝑖=1

𝑟
∑

𝑙=1
𝜇𝑖,𝑙

[

𝜑𝑙(𝑘𝐽𝑛)[𝐹 (𝑡𝑛,𝑖, 𝐾𝑛,𝑖) − 𝑡𝑛,𝑖𝑉𝑛 − 𝐽𝑛𝐾𝑛,𝑖] + 𝑘𝜑𝑙+1(𝑘𝐽𝑛)𝑉𝑛

]

, (8)

here 𝑡𝑛,𝑗 = 𝑡𝑛 + 𝑐𝑗𝑘, and

𝑉𝑛 =
𝜕𝐹
𝜕𝑡

(𝑡𝑛, 𝑈𝑛), 𝐽𝑛 =
𝜕𝐹
𝜕𝑈

(𝑡𝑛, 𝑈𝑛).

On the other hand, we will consider a general space discretization for the differential operator 𝐴, such that, when applied to the
lliptic problem

𝐴𝑢 = 𝐹 , 𝜕𝑢 = 𝑔,

he nodal values on the grid are given by the solution 𝑈ℎ ∈ C𝑁 of this system

𝐴ℎ,0𝑈ℎ + 𝐶ℎ𝑔 = 𝑃ℎ𝐹 +𝐷ℎ𝜕𝐹 ,

here 𝐴ℎ,0 discretizes 𝐴 restricted to Ker(𝜕), 𝑃ℎ is the nodal projection and 𝐶ℎ, 𝐷ℎ ∶ 𝑌 → C𝑁 are other linear operators over
functions on the boundary.

We will assume hypotheses (H1)–(H3) in [17] and will consider the matrix

𝐽𝑛,ℎ,0 = 𝐴ℎ,0 + 𝛹 ′(𝑈𝑛
ℎ ),

which discretizes the Jacobian with respect to 𝑈 of the vector field which defines (1) at 𝑡 = 𝑡𝑛 = 𝑛𝑘, where 𝑘 is the timestepsize.
In [17], a technique is suggested to achieve local order 𝑝 + 1 with a method which has classical global order at least 𝑝. For the

precise values 𝑝 = 1, 2, 3, the modified exponential Rosenbrock method to achieve that goal when integrating the non-autonomous
problem (1) reads as follows.

For 𝑝 = 1,

𝐾𝑛,𝑖,ℎ = 𝑒𝑐𝑖𝑘𝐽𝑛,ℎ,0𝑈𝑛
ℎ + 𝑐𝑖𝑘𝜑1(𝑐𝑖𝑘𝐽𝑛,ℎ,0)[𝑡𝑛𝑃ℎℎ̇(𝑡𝑛) + 𝐶ℎ𝜕𝑢(𝑡𝑛)]

+ 𝑘
𝑖−1
∑

𝑗=1

𝑟
∑

𝑙=1
𝜆𝑖,𝑗,𝑙[𝜑𝑙(𝑐𝑖𝑘𝐽𝑛,ℎ,0)𝐺𝑛,𝑗,ℎ + 𝑐𝑖𝑘𝜑𝑙+1(𝑐𝑖𝑘𝐽𝑛,ℎ,0)𝑃ℎℎ̇(𝑡𝑛)],

𝑈𝑛+1
ℎ = 𝑒𝑘𝐽𝑛,ℎ,0𝑈𝑛

ℎ + 𝑘𝜑1(𝑘𝐽𝑛,ℎ,0)[𝑡𝑛𝑃ℎℎ̇(𝑡𝑛) + 𝐶ℎ𝜕𝑢(𝑡𝑛) −𝐷ℎ𝜕𝐽 (𝑡𝑛)𝑢(𝑡𝑛)]
2 ̄ ̇
3

+ 𝑘 𝜑2(𝑘𝐽𝑛,ℎ,0)𝐶ℎ𝜕[𝐽 (𝑡𝑛)𝑢(𝑡𝑛) + 𝑡𝑛ℎ(𝑡𝑛)]
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𝑠
∑

𝑖=1

𝑟
∑

𝑙=1
𝜇𝑖,𝑙

[

𝜑𝑙(𝑘𝐽𝑛,ℎ,0)𝐺𝑛,𝑖,ℎ

+𝑘𝜑𝑙+1(𝑘𝐽𝑛,ℎ,0)[𝑃ℎℎ̇(𝑡𝑛) + 𝐶ℎ𝜕 ̂̄𝐺𝑛]
]

(9)

where

𝐺𝑛,𝑗,ℎ = 𝛹 (𝐾𝑛,𝑗,ℎ) + 𝑃ℎℎ(𝑡𝑛,𝑗 ) − 𝑡𝑛,𝑗𝑃ℎℎ̇(𝑡𝑛) − diag(𝛹 ′(𝑈𝑛
ℎ ))𝐾𝑛,𝑗,ℎ,

with 𝑡𝑛,𝑗 = 𝑡𝑛 + 𝑐𝑗𝑘, and

̂̄𝐺𝑛 = 𝛹 (𝑢(𝑡𝑛)) + ℎ(𝑡𝑛) − 𝑡𝑛ℎ̇(𝑡𝑛) − 𝛹 ′(𝑢(𝑡𝑛))𝑢(𝑡𝑛). (10)

As for 𝑝 = 2, we get

𝐾𝑛,𝑖,ℎ = 𝑒𝑐𝑖𝑘𝐽𝑛,ℎ,0𝑈𝑛
ℎ

+ 𝑐𝑖𝑘𝜑1(𝑐𝑖𝑘𝐽𝑛,ℎ,0)[𝑡𝑛𝑃ℎℎ̇(𝑡𝑛) + 𝐶ℎ𝜕𝑢(𝑡𝑛) −𝐷ℎ𝜕𝐽 (𝑡𝑛)𝑢(𝑡𝑛)]

+ (𝑐𝑖𝑘)2𝜑2(𝑐𝑖𝑘𝐽𝑛,ℎ,0)𝐶ℎ𝜕[𝐽 (𝑡𝑛)𝑢(𝑡𝑛) + 𝑡𝑛ℎ̇(𝑡𝑛)]

+ 𝑘
𝑖−1
∑

𝑗=1

𝑟
∑

𝑙=1
𝜆𝑖,𝑗,𝑙

[

𝜑𝑙(𝑐𝑖𝑘𝐽𝑛,ℎ,0)𝐺𝑛,𝑗,ℎ + 𝑐𝑖𝑘𝜑𝑙+1(𝑐𝑖𝑘𝐽𝑛,ℎ,0)[𝑃ℎℎ̇(𝑡𝑛) + 𝐶ℎ𝜕 ̂̄𝐺𝑛]
]

,

𝑈𝑛+1
ℎ = 𝑒𝑘𝐽𝑛,ℎ,0𝑈𝑛

ℎ + 𝑘𝜑1(𝑘𝐽𝑛,ℎ,0)[𝑡𝑛𝑃ℎℎ̇(𝑡𝑛) + 𝐶ℎ𝜕𝑢(𝑡𝑛) −𝐷ℎ𝜕𝐽 (𝑡𝑛)𝑢(𝑡𝑛)]

+ 𝑘2𝜑2(𝑘𝐽𝑛,ℎ,0)
[

𝐶ℎ𝜕[𝐽 (𝑡𝑛)𝑢(𝑡𝑛) + 𝑡𝑛ℎ̇(𝑡𝑛)] −𝐷ℎ𝜕[𝐽 (𝑡𝑛)2𝑢(𝑡𝑛) + 𝑡𝑛𝐽 (𝑡𝑛)ℎ̇(𝑡𝑛)]
]

+ 𝑘3𝜑3(𝑘𝐽𝑛,ℎ,0)𝐶ℎ𝜕[𝐽 (𝑡𝑛)2𝑢(𝑡𝑛) + 𝑡𝑛𝐽 (𝑡𝑛)ℎ̇(𝑡𝑛)]

+ 𝑘
𝑠
∑

𝑖=1

𝑟
∑

𝑙=1
𝜇𝑖,𝑙

[

𝜑𝑙(𝑘𝐽𝑛,ℎ,0)𝐺𝑛,𝑖,ℎ + 𝑘𝜑𝑙+1(𝑘𝐽𝑛,ℎ,0)[𝑃ℎℎ̇(𝑡𝑛) + 𝐶ℎ𝜕 ̂̄𝐺𝑛 −𝐷ℎ𝜕𝐽 (𝑡𝑛) ̂̄𝐺𝑛]

+𝑘2𝜑𝑙+2(𝑘𝐽𝑛,ℎ,0)𝐶ℎ𝜕[𝐽 (𝑡𝑛) ̂̄𝐺𝑛 + ℎ̇(𝑡𝑛)]
]

. (11)

Finally, for 𝑝 = 3, we have

𝐾𝑛,𝑖,ℎ = 𝑒𝑐𝑖𝑘𝐽𝑛,ℎ,0𝑈𝑛
ℎ

+ 𝑐𝑖𝑘𝜑1(𝑐𝑖𝑘𝐽𝑛,ℎ,0)[𝑡𝑛𝑃ℎℎ̇(𝑡𝑛) + 𝐶ℎ𝜕𝑢(𝑡𝑛) −𝐷ℎ𝜕𝐽 (𝑡𝑛)𝑢(𝑡𝑛)]

+ (𝑐𝑖𝑘)2𝜑2(𝑐𝑖𝑘𝐽𝑛,ℎ,0)
[

𝐶ℎ𝜕[𝐽 (𝑡𝑛)𝑢(𝑡𝑛) + 𝑡𝑛ℎ̇(𝑡𝑛)] −𝐷ℎ𝜕[𝐽 (𝑡𝑛)2𝑢(𝑡𝑛) + 𝑡𝑛𝐽 (𝑡𝑛)ℎ̇(𝑡𝑛)]
]

+ (𝑐𝑖𝑘)3𝜑3(𝑐𝑖𝑘𝐽𝑛,ℎ,0)𝐶ℎ𝜕[𝐽 (𝑡𝑛)2𝑢(𝑡𝑛) + 𝑡𝑛𝐽 (𝑡𝑛)ℎ̇(𝑡𝑛)]

+ 𝑘
𝑖−1
∑

𝑗=1

𝑟
∑

𝑙=1
𝜆𝑖,𝑗,𝑙

[

𝜑𝑙(𝑐𝑖𝑘𝐽𝑛,ℎ,0)𝐺𝑛,𝑗,ℎ + 𝑐𝑖𝑘𝜑𝑙+1(𝑐𝑖𝑘𝐽𝑛,ℎ,0)[𝑃ℎℎ̇(𝑡𝑛) + 𝐶ℎ𝜕 ̂̄𝐺𝑛 −𝐷ℎ𝜕𝐽 (𝑡𝑛) ̂̄𝐺𝑛]

+(𝑐𝑖𝑘)2𝜑𝑙+2(𝑐𝑖𝑘𝐽𝑛,ℎ,0)𝐶ℎ𝜕[𝐽 (𝑡𝑛) ̂̄𝐺𝑛 + ℎ̇(𝑡𝑛)]
]

.

𝑈𝑛+1
ℎ = 𝑒𝑘𝐽𝑛,ℎ,0𝑈𝑛

ℎ + 𝑘𝜑1(𝑘𝐽𝑛,ℎ,0)[𝑡𝑛𝑃ℎℎ̇(𝑡𝑛) + 𝐶ℎ𝜕𝑢(𝑡𝑛) −𝐷ℎ𝜕𝐽 (𝑡𝑛)𝑢(𝑡𝑛)]

+ 𝑘2𝜑2(𝑘𝐽𝑛,ℎ,0)
[

𝐶ℎ𝜕[𝐽 (𝑡𝑛)𝑢(𝑡𝑛) + 𝑡𝑛ℎ̇(𝑡𝑛)] −𝐷ℎ𝜕[𝐽 (𝑡𝑛)2𝑢(𝑡𝑛) + 𝑡𝑛𝐽 (𝑡𝑛)ℎ̇(𝑡𝑛)]
]

+ 𝑘3𝜑3(𝑘𝐽𝑛,ℎ,0)
[

𝐶ℎ𝜕[𝐽 (𝑡𝑛)2𝑢(𝑡𝑛) + 𝑡𝑛𝐽 (𝑡𝑛)ℎ̇(𝑡𝑛)] −𝐷ℎ𝜕[𝐽 (𝑡𝑛)3𝑢(𝑡𝑛) + 𝑡𝑛𝐽 (𝑡𝑛)2ℎ̇(𝑡𝑛)]
]

+ 𝑘4𝜑4(𝑘𝐽𝑛,ℎ,0)𝐶ℎ𝜕[𝐽 (𝑡𝑛)3𝑢(𝑡𝑛) + 𝑡𝑛𝐽 (𝑡𝑛)2ℎ̇(𝑡𝑛)]

+ 𝑘
𝑠
∑

𝑖=1

𝑟
∑

𝑙=1
𝜇𝑖,𝑙

[

𝜑𝑙(𝑘𝐽𝑛,ℎ,0)𝐺𝑛,𝑖,ℎ + 𝑘𝜑𝑙+1(𝑘𝐽𝑛,ℎ,0)[𝑃ℎℎ̇(𝑡𝑛) + 𝐶ℎ𝜕
̂̂̂
�̄�𝑛,𝑖 −𝐷ℎ𝜕𝐽 (𝑡𝑛) ̂̄𝐺𝑛]

+𝑘2𝜑𝑙+2(𝑘𝐽𝑛,ℎ,0)
[

𝐶ℎ𝜕[𝐽 (𝑡𝑛) ̂̄𝐺𝑛 + ℎ̇(𝑡𝑛)] −𝐷ℎ𝜕[𝐽 (𝑡𝑛)2 ̂̄𝐺𝑛 + 𝐽 (𝑡𝑛)ℎ̇(𝑡𝑛)]
]

+𝑘3𝜑𝑙+3(𝑘𝐽𝑛,ℎ,0)𝐶ℎ𝜕[𝐽 (𝑡𝑛)2 ̂̄𝐺𝑛 + 𝐽 (𝑡𝑛)ℎ̇(𝑡𝑛)]
]

. (12)

where

̂̂̂
�̄�𝑛,𝑖 = 𝛹 (𝑢(𝑡𝑛)) + ℎ(𝑡𝑛) − 𝑡𝑛ℎ̇(𝑡𝑛) − 𝛹 ′(𝑢(𝑡𝑛))𝑢(𝑡𝑛) +

𝑐2𝑖 𝑘
2

2
[𝛹 ′′(𝑢(𝑡𝑛))�̇�(𝑡𝑛)2 + ℎ̈(𝑡𝑛)].

ow we must see how to calculate the terms on the boundary taking into account that our data is just 𝜕𝑢(𝑡) = 𝑔(𝑡), ℎ(𝑡) and 𝑢0 in
1). As stated in [17], for 𝑝 ≥ 2, it is in principle necessary to resort to numerical differentiation either in space or in time for both
irichlet and Robin/Neumann boundary conditions in order to approximate those boundary values. In order to avoid that as far
s possible, we will see that many times some simplifications can be performed which allow to calculate the required boundaries
xactly in terms of data.
4
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3. Further simplifications and calculation of required boundaries in terms of data

In this section, we will see that, under the assumptions
𝑠
∑

𝑖=1
𝜇𝑖,1 = 1,

𝑠
∑

𝑖=1
𝜇𝑖,𝑙 = 0 (𝑙 = 2,… , 𝑟), (13)

𝑖−1
∑

𝑗=1
𝜆𝑖,𝑗,1 = 𝑐𝑖,

𝑖−1
∑

𝑗=1
𝜆𝑖,𝑗,𝑙 = 0 (𝑙 = 2,… , 𝑟), 𝑖 = 1,… , 𝑠, (14)

some terms in the general expressions (9), (11), (12) can be simplified. In a first place, the required terms on the boundary can
be calculated in a much more direct way in terms of data, i.e. without resorting to numerical differentiation either in space nor
in time, except for the case of Robin/Neumann boundary conditions and 𝑝 = 3, for which numerical differentiation for the first
erivative in time will be required. Secondly, some other terms not concerning the boundary also simplify under those assumptions
nd moreover, the evaluation of 𝐺𝑛,𝑖,ℎ can be performed except for terms which lead to 𝑂(𝑘𝑝+2)-residues in 𝑈𝑛+1

ℎ and therefore do not
change either the local neither the global order. (This last simplification just concerns 𝑝 = 1 for both the equations on the stages and
he solution and 𝑝 = 2 for the stages. It corresponds to the use of �̃�𝑛,𝑖,ℎ in the formulas below.) Moreover, we will gather together all
erms in the same 𝜑𝑗 so that Krylov subroutines can be directly applied to calculate a linear combination of those matrix functions
pplied over the corresponding vectors.

.1. 𝑝 = 1

We notice that, in this case, for the stages, just the term 𝜕𝑢(𝑡𝑛) = 𝑔(𝑡𝑛) on the boundary is required (see (9)). Moreover, taking
nto account that

𝐺𝑛,𝑗,ℎ = 𝛹 (𝐾𝑛,𝑗,ℎ) + 𝑃ℎℎ(𝑡𝑛) − 𝑡𝑛𝑃ℎℎ̇(𝑡𝑛) − diag(𝛹 ′(𝑈𝑛
ℎ ))𝐾𝑛,𝑗,ℎ + 𝑂(𝑘2), (15)

nd the first part of (14), the terms in 𝜑1(𝑐𝑖𝑘𝐽𝑛,ℎ,0) without boundaries can be simplified to

𝑘𝜑1(𝑐𝑖𝑘𝐽𝑛,ℎ,0)[𝑐𝑖𝑃ℎℎ(𝑡𝑛) +
∑

𝜆𝑖,𝑗,1�̃�𝑛,𝑗,ℎ],

here

�̃�𝑛,𝑗,ℎ = 𝛹 (𝐾𝑛,𝑗,ℎ) − diag(𝛹 ′(𝑈𝑛
ℎ ))𝐾𝑛,𝑗,ℎ.

n the other hand, the term in 𝜑2(𝑐𝑖𝑘𝐽𝑛,ℎ,0), considering the second part of (14) is

𝑘𝜑2(𝑐𝑖𝑘𝐽𝑛,ℎ,0)
[
∑

𝜆𝑖,𝑗,2�̃�𝑛,𝑗,ℎ + 𝑐2𝑖 𝑘𝑃ℎℎ̇(𝑡𝑛)
]

.

umming up,

𝐾𝑛,𝑖,ℎ = 𝑒𝑐𝑖𝑘𝐽𝑛,ℎ,0𝑈𝑛
ℎ + 𝑘𝜑1(𝑐𝑖𝑘𝐽𝑛,ℎ,0)

[

𝑐𝑖[𝑃ℎℎ(𝑡𝑛) + 𝐶ℎ𝜕𝑢(𝑡𝑛)] +
∑

𝜆𝑖,𝑗,1�̃�𝑛,𝑗,ℎ
]

+ 𝑘𝜑2(𝑐𝑖𝑘𝐽𝑛,ℎ,0)
[
∑

𝜆𝑖,𝑗,2�̃�𝑛,𝑗,ℎ + 𝑐2𝑖 𝑘𝑃ℎℎ̇(𝑡𝑛)
]

+ 𝑘
𝑟
∑

𝑙=3
𝜑𝑙(𝑐𝑖𝑘𝐽𝑛,ℎ,0)

∑

𝜆𝑖,𝑗,𝑙�̃�𝑛,𝑗,ℎ.

As for 𝑈𝑛+1
ℎ in (9), multiplying 𝑘𝜑1(𝑘𝐽𝑛,ℎ,0)𝐶ℎ, just 𝜕𝑢(𝑡𝑛) = 𝑔(𝑡𝑛) turns up again; on the other hand, the term in 𝐷ℎ𝜕𝐽 (𝑡𝑛)𝑢(𝑡𝑛) can

be written as

−𝑘𝜑1(𝑘𝐽𝑛,ℎ,0)𝐷ℎ𝜕[�̇�(𝑡𝑛) − 𝛹 (𝑢(𝑡𝑛)) + 𝛹 ′(𝑢(𝑡𝑛))𝑢(𝑡𝑛) − ℎ(𝑡𝑛)]. (16)

This term can be exactly calculated when considering Dirichlet boundary conditions and, with Robin/Neumann boundary conditions,
it can be approximated through the numerical approximation at the boundary given by the space discretization of (1) itself, but
without resorting to numerical differentiation. On the other hand, notice that, by using the first part of (13), some terms cancel and
the term multiplying 𝑘2𝜑2(𝑘𝐽𝑛,ℎ,0)𝐶ℎ is just 𝜕�̇�(𝑡𝑛). Therefore, that boundary can be calculated exactly in terms of data as �̇�(𝑡𝑛). As
for the terms in 𝑘2𝜑𝑙+1(𝑘𝐽𝑛,ℎ,0)𝐶ℎ with 𝑙 ≥ 2, notice that they vanish in (9) because of the second part of (13). Moreover, considering
(15) and the first part of (13), the terms in 𝜑1(𝑘𝐽𝑛,ℎ,0) without boundaries can be simplified to

𝑘𝜑1(𝑘𝐽𝑛,ℎ,0)
[

𝑃ℎℎ(𝑡𝑛) +
∑

𝜇𝑖,1�̃�𝑛,𝑖,ℎ
]

.

In a similar way, but using now also the second part of (13), the terms in 𝜑2(𝑘𝐽𝑛,ℎ,0) and 𝜑𝑙(𝑘𝐽𝑛,ℎ,0) without boundaries, with 𝑙 ≥ 3,
can be simplified to

𝑘𝜑2(𝑘𝐽𝑛,ℎ,0)
[
∑

𝜇𝑖,2�̃�𝑛,𝑖,ℎ + 𝑘𝑃ℎℎ̇(𝑡𝑛)
]

𝑘𝜑𝑙(𝑘𝐽𝑛,ℎ,0)
[
∑

𝜇𝑖,𝑙�̃�𝑛,𝑖,ℎ
]

, 𝑙 ≥ 3.

Summing up, under assumptions (13), 𝑈𝑛+1
ℎ in (9) can be simplified to

𝑈𝑛+1 = 𝑒𝑘𝐽𝑛,ℎ,0𝑈𝑛 + 𝑘𝜑 (𝑘𝐽 )
[

𝑃 ℎ(𝑡 ) +
∑

𝜇 �̃� + 𝐶 𝜕𝑢(𝑡 ) −𝐷 𝜕[�̇�(𝑡 ) − 𝛹 (𝑢(𝑡 )) + 𝛹 ′(𝑢(𝑡 ))𝑢(𝑡 ) − ℎ(𝑡 )]
]

5

ℎ ℎ 1 𝑛,ℎ,0 ℎ 𝑛 𝑖,1 𝑛,𝑖,ℎ ℎ 𝑛 ℎ 𝑛 𝑛 𝑛 𝑛 𝑛
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+ 𝑘𝜑2(𝑘𝐽𝑛,ℎ,0)
[
∑

𝜇𝑖,2�̃�𝑛,𝑖,ℎ + 𝑘[𝑃ℎℎ̇(𝑡𝑛) + 𝐶ℎ𝜕�̇�(𝑡𝑛)]
]

+ 𝑘
𝑟
∑

𝑙=3
𝜑𝑙(𝑘𝐽𝑛,ℎ,0)

∑

𝜇𝑖,𝑙�̃�𝑛,𝑖,ℎ.

3.2. 𝑝 = 2

With similar arguments as those for 𝑝 = 1, the stages for 𝑝 = 2 in (11) can be simplified to the following formulas:

𝐾𝑛,𝑖,ℎ = 𝑒𝑐𝑖𝑘𝐽𝑛,ℎ,0𝑈𝑛
ℎ

+ 𝑘𝜑1(𝑐𝑖𝑘𝐽𝑛,ℎ,0)
[

∑

𝜆𝑖,𝑗,1�̃�𝑛,𝑗,ℎ + 𝑐𝑖
[

𝑃ℎℎ(𝑡𝑛) + 𝐶ℎ𝜕𝑢(𝑡𝑛) −𝐷ℎ𝜕[�̇�(𝑡𝑛) − 𝛹 (𝑢(𝑡𝑛)) + 𝛹 ′(𝑢(𝑡𝑛))𝑢(𝑡𝑛) − ℎ(𝑡𝑛)]
]

]

+ 𝑘𝜑2(𝑐𝑖𝑘𝐽𝑛,ℎ,0)
[
∑

𝜆𝑖,𝑗,2�̃�𝑛,𝑗,ℎ + 𝑐2𝑖 𝑘[𝑃ℎℎ̇(𝑡𝑛) + 𝐶ℎ𝜕�̇�(𝑡𝑛)]
]

+ 𝑘
𝑟
∑

𝑙=3
𝜑𝑙(𝑐𝑖𝑘𝐽𝑛,ℎ,0)

∑

𝜆𝑖,𝑗,𝑙�̃�𝑛,𝑗,ℎ.

s for 𝑈𝑛+1
ℎ in (11), now the term multiplying 𝑘2𝜑2(𝑘𝐽𝑛,ℎ,0)𝐶ℎ is again 𝜕�̇�(𝑡𝑛). As for 𝑘2𝜑2(𝑘𝐽𝑛,ℎ,0)𝐷ℎ, we have

−𝜕
[

𝐽 (𝑡𝑛)2𝑢(𝑡𝑛) + 𝐽 (𝑡𝑛)[𝛹 (𝑢(𝑡𝑛)) + ℎ(𝑡𝑛) − 𝛹 ′(𝑢(𝑡𝑛))𝑢(𝑡𝑛)]
]

= −𝜕𝐽 (𝑡𝑛)�̇�(𝑡𝑛) = −𝜕[�̈�(𝑡𝑛) − ℎ̇(𝑡𝑛)],

here, for the last equality, we have just considered the differentiation of Eq. (1). On the other hand, the term multiplying in
3𝜑3(𝑘𝐽𝑛,ℎ,0)𝐶ℎ is

𝜕
[

𝐽 (𝑡𝑛)2𝑢(𝑡𝑛) + 𝐽 (𝑡𝑛)[𝛹 (𝑢(𝑡𝑛)) + ℎ(𝑡𝑛) − 𝛹 ′(𝑢(𝑡𝑛))𝑢(𝑡𝑛)] + ℎ̇(𝑡𝑛)
]

= 𝜕[𝐽 (𝑡𝑛)�̇�(𝑡𝑛) + ℎ̇(𝑡𝑛)] = 𝜕�̈�(𝑡𝑛),

nd the term in 𝜑3(𝑘𝐽𝑛,ℎ,0)𝐷ℎ vanishes because ∑

𝜇𝑖,2 = 0. In a similar way, the terms in 𝜑𝑙(𝑘𝐽𝑛,ℎ,0)𝐶ℎ and 𝜑𝑙(𝑘𝐽𝑛,ℎ,0)𝐷ℎ for 𝑙 ≥ 4
anish because of the second part of (13). Considering this, 𝑈𝑛+1

ℎ in (11) can be calculated as

𝑈𝑛+1
ℎ = 𝑒𝑘𝐽𝑛,ℎ,0𝑈𝑛

ℎ + 𝑘𝜑1(𝑘𝐽𝑛,ℎ,0)
[
∑

𝜇𝑖,1 ̃̃𝐺𝑛,𝑖,ℎ + 𝐶ℎ𝜕𝑢(𝑡𝑛) −𝐷ℎ𝜕[�̇�(𝑡𝑛) − 𝛹 (𝑢(𝑡𝑛)) + 𝛹 ′(𝑢(𝑡𝑛))𝑢(𝑡𝑛) − ℎ(𝑡𝑛)]
]

+𝑘𝜑2(𝑘𝐽𝑛,ℎ,0)
[
∑

𝜇𝑖,2 ̃̃𝐺𝑛,𝑖,ℎ + 𝑘[𝑃ℎℎ̇(𝑡𝑛) + 𝐶ℎ𝜕�̇�(𝑡𝑛) −𝐷ℎ𝜕[�̈�(𝑡𝑛) − ℎ̇(𝑡𝑛)]]
]

+𝑘𝜑3(𝑘𝐽𝑛,ℎ,0)[
∑

𝜇𝑖,3 ̃̃𝐺𝑛,𝑖,ℎ + 𝑘2𝐶ℎ𝜕�̈�(𝑡𝑛)]

+𝑘
𝑟
∑

𝑙=4
𝜑𝑙(𝑘𝐽𝑛,ℎ,0)

∑

𝜇𝑖,𝑙 ̃̃𝐺𝑛,𝑖,ℎ,

where
̃̃𝐺𝑛,𝑗,ℎ = 𝛹 (𝐾𝑛,𝑗,ℎ) − diag(𝛹 ′(𝑈𝑛

ℎ ))𝐾𝑛,𝑗,ℎ + 𝑃ℎℎ(𝑡𝑛,𝑗 ) − 𝑐𝑗𝑘𝑃ℎℎ̇(𝑡𝑛).

We notice that again a term like (16) turns up, which can either be calculated exactly or approximated without resorting to
numerical differentiation. As for the other terms on the boundary, they can be calculated in terms of data with both Dirichlet
and Robin/Neumann boundary conditions since 𝜕�̇�(𝑡) = �̇�(𝑡) and 𝜕�̈�(𝑡) = �̈�(𝑡).

3.3. 𝑝 = 3

Similarly to the calculation of 𝑈𝑛+1
ℎ with 𝑝 = 2, but using (14), the stages in (12) can be simplified to

𝐾𝑛,𝑖,ℎ = 𝑒𝑐𝑖𝑘𝐽𝑛,ℎ,0𝑈𝑛
ℎ + 𝑘𝜑1(𝑐𝑖𝑘𝐽𝑛,ℎ,0)

[

∑

𝜆𝑖,𝑗,1 ̃̃𝐺𝑛,𝑗,ℎ + 𝑐𝑖
[

𝐶ℎ𝜕𝑢(𝑡𝑛) −𝐷ℎ𝜕[�̇�(𝑡𝑛) − 𝛹 (𝑢(𝑡𝑛)) + 𝛹 ′(𝑢(𝑡𝑛))𝑢(𝑡𝑛) − ℎ(𝑡𝑛)]
]

]

+𝑘𝜑2(𝑐𝑖𝑘𝐽𝑛,ℎ,0)
[

∑

𝜆𝑖,𝑗,2 ̃̃𝐺𝑛,𝑗,ℎ + 𝑐2𝑖 𝑘
[

𝑃ℎℎ̇(𝑡𝑛) + 𝐶ℎ𝜕�̇�(𝑡𝑛) −𝐷ℎ𝜕[�̈�(𝑡𝑛) − ℎ̇(𝑡𝑛)]
]

]

+𝑘𝜑3(𝑐𝑖𝑘𝐽𝑛,ℎ,0)
[
∑

𝜆𝑖,𝑗,3 ̃̃𝐺𝑛,𝑗,ℎ + 𝑐3𝑖 𝑘
2𝐶ℎ𝜕�̈�(𝑡𝑛)

]

+𝑘
𝑟
∑

𝑙=4
𝜑𝑙(𝑐𝑖𝑘𝐽𝑛,ℎ,0)

∑

𝜆𝑖,𝑗,𝑙 ̃̃𝐺𝑛,𝑗,ℎ. (17)

As for the terms concerning boundaries to calculate 𝑈𝑛+1
ℎ in (12), using the left part of (13) and (14), the term in 𝜑2(𝑘𝐽𝑛,ℎ,0)𝐶ℎ𝜕 can

be simplified to

𝑘2𝜑2(𝑘𝐽𝑛,ℎ,0)𝐶ℎ𝜕
[

�̇�(𝑡𝑛) +
𝑘2

2
(
∑

𝜇𝑖,1𝑐
2
𝑖 )[𝛹

′′(𝑢(𝑡𝑛))�̇�(𝑡𝑛)2 + ℎ̈(𝑡𝑛)]
]

,

which can again be calculated exactly in terms of data with Dirichlet boundary conditions and can be approximated with
Robin/Neumann ones considering the error from the approximation itself at the boundary and resorting to numerical differentiation
just for the first time derivative �̇�.

On the other hand, the term in 𝜑2(𝑘𝐽𝑛,ℎ,0)𝐷ℎ𝜕 can be simplified to

−𝑘2𝜑 (𝑘𝐽 )𝐷 𝜕
[

𝐽 (𝑡 )2𝑢(𝑡 ) + 𝐽 (𝑡 )[𝛹 (𝑢(𝑡 )) − 𝛹 ′(𝑢(𝑡 ))𝑢(𝑡 ) + ℎ(𝑡 )]
]

6

2 𝑛,ℎ,0 ℎ 𝑛 𝑛 𝑛 𝑛 𝑛 𝑛 𝑛
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= −𝑘2𝜑2(𝑘𝐽𝑛,ℎ,0)𝐷ℎ𝜕𝐽 (𝑡𝑛)�̇�(𝑡𝑛) = −𝑘2𝜑2(𝑘𝐽𝑛,ℎ,0)𝐷ℎ𝜕[�̈�(𝑡𝑛) − ℎ̇(𝑡𝑛)],

which is exactly calculable in terms of data for both Dirichlet and Robin/Neumann boundary conditions.
As for the terms in 𝜑3(𝑘𝐽𝑛,ℎ,0)𝐶ℎ𝜕, they can be written as

𝑘2𝜑3(𝑘𝐽𝑛,ℎ,0)𝐶ℎ𝜕
[

𝑘2

2
(
∑

𝜇𝑖,2𝑐
2
𝑖 )[𝛹

′′(𝑢(𝑡𝑛))�̇�(𝑡𝑛)2 + ℎ̈(𝑡𝑛)]

+𝑘
[

𝐽 (𝑡𝑛)2𝑢(𝑡𝑛) + 𝐽 (𝑡𝑛)[𝛹 (𝑢(𝑡𝑛)) − 𝛹 ′(𝑢(𝑡𝑛))𝑢(𝑡𝑛) + ℎ(𝑡𝑛)] + ℎ̇(𝑡𝑛)
]

]

= 𝑘2𝜑3(𝑘𝐽𝑛,ℎ,0)𝐶ℎ𝜕
[𝑘2

2
(
∑

𝜇𝑖,2𝑐
2
𝑖 )[𝛹

′′(𝑢(𝑡𝑛))�̇�(𝑡𝑛)2 + ℎ̈(𝑡𝑛)] + 𝑘[𝐽 (𝑡𝑛)�̇�(𝑡𝑛) + ℎ̇(𝑡𝑛)]
]

= 𝑘2𝜑3(𝑘𝐽𝑛,ℎ,0)𝐶ℎ𝜕
[𝑘2

2
(
∑

𝜇𝑖,2𝑐
2
𝑖 )[𝛹

′′(𝑢(𝑡𝑛))�̇�(𝑡𝑛)2 + ℎ̈(𝑡𝑛)] + 𝑘�̈�(𝑡𝑛)
]

.

Similarly, the term in 𝜑3(𝑘𝐽𝑛,ℎ,0)𝐷ℎ𝜕 can be written as

−𝑘3𝜑3(𝑘𝐽𝑛,ℎ,0)𝐷ℎ𝜕
[

𝐽 (𝑡𝑛)3𝑢(𝑡𝑛) + 𝐽 (𝑡𝑛)2[𝛹 (𝑢(𝑡𝑛)) + ℎ(𝑡𝑛) − 𝛹 ′(𝑢(𝑡𝑛))𝑢(𝑡𝑛)] + 𝐽 (𝑡𝑛)ℎ̇(𝑡𝑛)
]

= −𝑘3𝜑3(𝑘𝐽𝑛,ℎ,0)𝐷ℎ𝜕
[

𝐽 (𝑡𝑛)[𝐽 (𝑡𝑛)�̇�(𝑡𝑛) + ℎ̇(𝑡𝑛)]
]

= −𝑘3𝜑3(𝑘𝐽𝑛,ℎ,0)𝐷ℎ𝜕𝐽 (𝑡𝑛)�̈�(𝑡𝑛)

= −𝑘3𝜑3(𝑘𝐽𝑛,ℎ,0)𝐷ℎ𝜕[
…
𝑢 (𝑡𝑛) − ℎ̈(𝑡𝑛) − 𝛹 ′′(𝑢(𝑡𝑛))�̇�(𝑡𝑛)2],

here the last equality comes from differentiating (1) three times.
In a similar way, it can be deduced that the term in 𝜑4(𝑘𝐽𝑛,ℎ,0)𝐶ℎ is

𝑘4𝜑4(𝑘𝐽𝑛,ℎ,0)𝐶ℎ𝜕
[

1
2
(
∑

𝜇𝑖,3𝑐
2
𝑖 )[𝛹

′′(𝑢(𝑡𝑛))�̇�(𝑡𝑛)2 + ℎ̈(𝑡𝑛)]+
…
𝑢 (𝑡𝑛) − ℎ̈(𝑡𝑛) − 𝛹 ′′(𝑢(𝑡𝑛))�̇�(𝑡𝑛)2

]

,

ut that in 𝜑4(𝑘𝐽𝑛,ℎ,0)𝐷ℎ𝜕 vanishes, as well as the possible terms 𝜑𝑙(𝑘𝐽𝑛,ℎ,0)𝐶ℎ𝜕 and 𝜑𝑙(𝑘𝐽𝑛,ℎ,0)𝐷ℎ𝜕 for 𝑙 ≥ 5.
Summing up, under the assumptions in (14), 𝑈𝑛+1

ℎ in (12) can be written as

𝑈𝑛+1
ℎ = 𝑒𝑘𝐽𝑛,ℎ,0𝑈𝑛

ℎ + 𝑘𝜑1(𝑘𝐽𝑛,ℎ,0)
[
∑

𝜇𝑖,1 ̃̃𝐺𝑛,𝑖,ℎ + 𝐶ℎ𝜕𝑢(𝑡𝑛) −𝐷ℎ𝜕[�̇�(𝑡𝑛) − 𝛹 (𝑢(𝑡𝑛)) + 𝛹 ′(𝑢(𝑡𝑛))𝑢(𝑡𝑛) − ℎ(𝑡𝑛)]
]

+𝑘𝜑2(𝑘𝐽𝑛,ℎ,0)
[

∑

𝜇𝑖,2 ̃̃𝐺𝑛,𝑖,ℎ + 𝑘
[

𝑃ℎℎ̇(𝑡𝑛) + 𝐶ℎ𝜕
[

�̇�(𝑡𝑛) +
𝑘2

2
(
∑

𝜇𝑖,1𝑐
2
𝑖 )[𝛹

′′(𝑢(𝑡𝑛))�̇�(𝑡𝑛)2 + ℎ̈(𝑡𝑛)]
]

−𝐷ℎ𝜕[�̈�(𝑡𝑛) − ℎ̇(𝑡𝑛)]
]

]

+𝑘𝜑3(𝑘𝐽𝑛,ℎ,0)
[

∑

𝜇𝑖,3 ̃̃𝐺𝑛,𝑖,ℎ + 𝑘2
[

𝐶ℎ𝜕
[𝑘
2
(
∑

𝜇𝑖,2𝑐
2
𝑖 )[𝛹

′′(𝑢(𝑡𝑛))�̇�(𝑡𝑛)2 + ℎ̈(𝑡𝑛)] + �̈�(𝑡𝑛)
]

−𝐷ℎ𝜕[
…
𝑢 (𝑡𝑛) − ℎ̈(𝑡𝑛) − 𝛹 ′(𝑢(𝑡𝑛))�̇�(𝑡𝑛)2]

]

]

+𝑘𝜑4(𝑘𝐽𝑛,ℎ,0)
[

∑

𝜇𝑖,4 ̃̃𝐺𝑛,𝑖,ℎ + 𝑘3𝐶ℎ𝜕
[…
𝑢 (𝑡𝑛) + ( 1

2
∑

𝜇𝑖,3𝑐
2
𝑖 − 1)[𝛹 ′′(𝑢(𝑡𝑛))�̇�(𝑡𝑛)2 + ℎ̈(𝑡𝑛)]

]

]

+𝑘
𝑟
∑

𝑙=5
𝜑𝑙(𝑘𝐽𝑛,ℎ,0)

∑

𝜇𝑖,𝑙 ̃̃𝐺𝑛,𝑖,ℎ (18)

gain all the terms at the boundary in this expression can be exactly calculated in terms of data with Dirichlet boundary conditions
nd in an approximated way with Robin/Neumann boundary ones taking into account the approximated values of the space
iscretization of (1) at the boundary and the approximation of �̇� through numerical differentiation in time.

.3.1. Concluding remarks

emark 3.1. We notice that, in any case, no numerical differentiation in space is required to approximate the required boundary
alues, so that no weak CFL condition is required to prove the classical order of the method, as it was in principle necessary in the
ore general case [17].

emark 3.2. Although, for the sake of brevity, we do not show the calculations here, for 𝑝 = 4, numerical differentiation in space
ould be required to approximate boundary values with both Dirichlet and Robin/Neumann boundary conditions, even under
ssumptions (13)–(14).

. Conditions under which the simplifying assumptions are satisfied

In this section, we will see why assumptions (13) and (14) are nearly always satisfied for methods of classical order ≤ 4. For that,
e will consider the classical order conditions on the coefficients of the Rosenbrock method (2) and, from them, we will justify when

13) and (14) are guaranteed. Classical order conditions till order four were derived in [13], although just assuming that 𝑠 = 2 and
hat ∑ 𝑏𝑖(𝑧) = 𝜑1(𝑧). In the general case, just considering Taylor expansions of (5)–(6) on the timestepsize, the fact that 𝐺′

𝑛(𝑈𝑛) = 0
ecause of (7), and comparing with the Taylor expansion of the exact solution of (4), the order conditions of Table 1 turn up.
7

Then, we have the following result:
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Table 1
Classical order conditions for exponential Rosenbrock methods.
Order Conditions

1 ∑

𝑏𝑖(0) = 1
2 ∑

𝑏′𝑖(0) =
1
2

3 ∑

𝑏′′𝑖 (0) =
1
3

∑

𝑏𝑖(0)𝑐2𝑖 = 1
3

4 ∑

𝑏′′′𝑖 (0) = 1
4

∑

𝑏′𝑖(0)𝑐
2
𝑖 = 1

12

∑

𝑏𝑖(0)𝑐𝑖𝑎′𝑖𝑗 (0) =
1
8

∑

𝑏𝑖(0)𝑐3𝑖 = 1
4

Theorem 4.1. If 𝑞 denotes the classical order of an exponential Rosenbrock method (1 ≤ 𝑞 ≤ 4) and 𝑟 in (2) satisfies 𝑟 ≤ 𝑞, then (13) is
atisfied.

roof. We firstly notice that, considering (2), the first column of conditions in Table 1 is equivalent to
𝑟
∑

𝑙=1

1
𝑙!

𝑠
∑

𝑖=1
𝜇𝑖,𝑙 = 1,

𝑟
∑

𝑙=1

1
(𝑙 + 1)!

𝑠
∑

𝑖=1
𝜇𝑖,𝑙 = 1

2
,

𝑟
∑

𝑙=1

1
(𝑙 + 2)!

𝑠
∑

𝑖=1
𝜇𝑖,𝑙 = 1

6
,

𝑟
∑

𝑙=1

1
(𝑙 + 3)!

𝑠
∑

𝑖=1
𝜇𝑖,𝑙 = 1

24
. (19)

Therefore, when 𝑞 = 1, just the first equation must hold and, when 𝑟 = 1, (13) follows directly.
When 𝑞 = 2, the first two equations must hold. When 𝑟 = 1, both equations are the same and again (13) follows immediately.

hen 𝑟 = 2, we have a linear system of two equations in the two unknowns ∑

𝜇𝑖,1 and ∑

𝜇𝑖,2. The matrix associated to that system
s clearly nonsingular. Because of that, there is a unique solution of that system, which obviously corresponds to ∑

𝜇𝑖,1 = 1 and
𝜇𝑖,2 = 0.
When 𝑞 = 3, the first three equations must hold. When 𝑟 ≤ 2, the first two of them lead to (13) with the same arguments than

efore and the corresponding solution happen to also satisfy the third equation. When 𝑟 = 3, we have a linear system of three
quations and three unknowns, which matrix is again non-singular and the unique solution of the system is ∑

𝜇𝑖,1 = 1, ∑𝜇𝑖,2 = 0
nd ∑

𝜇𝑖,3 = 0.
For 𝑞 = 4, a similar argument leads to the result. □

Let us see now under which conditions (14) is guaranteed.

heorem 4.2.

(i) If 𝑟 = 1 or 𝜆𝑖,𝑗,𝑙 = 0 for 𝑙 ≥ 2, (14) is always satisfied.
(ii) If 𝑟 = 2 or 𝜆𝑖,𝑗,𝑙 = 0 for 𝑙 ≥ 3, 𝑠 = 2 and 𝑞 = 4, (14) is satisfied.

roof. (i) comes directly from (3), which can be written like this considering (2)
𝑟
∑

𝑙=1

1
𝑙!

𝑖−1
∑

𝑗=1
𝜆𝑖,𝑗,𝑙 = 𝑐𝑖, 𝑖 = 1,… , 𝑠. (20)

In order to prove (ii), we notice that, for 𝑞 = 4 and 𝑠 = 2, the last two conditions in the last row of Table 1 read

𝑏2(0)𝑐2𝑎′21(0) =
1
8
, 𝑏2(0)𝑐32 = 1

4
.

onsidering (2) again, the latter can also be written as

𝑐22
(

𝑟
∑

𝑙=1
𝜇2,𝑙

1
𝑙!
)(

𝑟
∑

𝑙=1
𝜆2,1,𝑙

1
(𝑙 + 1)!

)

= 1
8
, 𝑐32

𝑟
∑

𝑙=1
𝜇2,𝑙

1
𝑙!

= 1
4
,

hich imply that
𝑟
∑

𝑙=1
𝜆2,1,𝑙

1
(𝑙 + 1)!

=
𝑐2
2
.

aking here 𝑟 = 2 as well as in (20) with 𝑖 = 2, a uniquely solvable linear systems of two equations and two unknowns turn up,
hich lead to 𝜆 = 𝑐 and 𝜆 = 0. □
8

2,1,1 2 2,1,2
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Remark 4.3. We notice that the conditions which guarantee that the simplifying assumptions are satisfied mainly concern the
maximum value 𝑟 for the index 𝑙 in the 𝜑𝑙-functions, which must be small enough with respect to the classical order which wants
to be achieved. This is not a serious drawback since, for the sake of simplicity, in the construction of methods, 𝑟 is taken as small
as possible. Only in case (ii) of Theorem 4.2 there is also a restriction for order 𝑞 = 4 on the number of stages if 𝜑2 is turning up in
the coefficients 𝑎𝑖𝑗 . However, this is not restrictive either since, as stated in the introduction, with Rosenbrock methods, very few
stages are required to get a desired accuracy. In particular, classical order 4 can be obtained with just 2 stages.

Remark 4.4. We also remark that the simplifying assumptions (13)–(14) are equivalent to the simplifying assumptions in [12]
𝑠
∑

𝑖=1
𝑏𝑖(𝑧) = 𝜑1(𝑧),

𝑖−1
∑

𝑗=1
𝑎𝑖𝑗 (𝑧) = 𝑐𝑖𝜑1(𝑐𝑖𝑧), 1 ≤ 𝑖 ≤ 𝑠,

under which it was assured that equilibria of autonomous problems were preserved and which allowed to simplify stiff order
conditions in that paper. More particularly, stiff order 2 was assured under those assumptions when integrating that type of
problems when considering vanishing boundary conditions. Because of that, assumptions (13)–(14) are satisfied by mainly all already
constructed methods. As distinct, in this paper, we justify through Theorems 4.1 and 4.2 that those assumptions are assured to be
satisfied in many cases, without the need to resort to stiff order conditions of any kind or the preservation of equilibria.

5. Recommended methods depending on the desired accuracy

In this section, considering the results on the previous ones, we will suggest what we think is the best choice up to the moment
of exponential Rosenbrock methods to achieve the particular orders of accuracy 𝑞 = 2, 3 and 4.

5.1. 𝑞 = 2

Rosenbrock-Euler method, which just has one stage and corresponds to 𝑏1(𝑧) = 𝜑1(𝑧), is well-known to have classical order 2.
y looking at Table 1, we can see that not only the conditions for classical order 2 are satisfied, but also one of the conditions for
lassical order 3. Moreover, the other condition to achieve the latter accuracy cannot be satisfied with any method which just has
ne stage since, in such a case, because of (3), 𝑐1 = 0. Therefore, this seems to be an unbeatable second-order method. What is more,
t happens to satisfy (13) and (14). (In fact, that could also be deduced directly from Theorems 4.1 and 4.2.) Because of that, the
echnique in [17] with 𝑝 = 2 can be applied to achieve local order 3 without resorting to numerical differentiation to calculate the
equired boundary values. (We notice that Euler-Rosenbrock method has stiff order 2 according to [12], but just shows local order
when implemented through the standard method of lines when the boundary condition 𝑔(𝑡) is time-dependent).

Numerical results in [17] show the big advantage in computational time of using the modified Rosenbrock-Euler method against
osenbrock-Euler with the standard method of lines. The simplifications for that particular simple modified Rosenbrock-Euler
ethod were already done in [17], where it was observed that the difference with the standard method of lines just consisted

n adding a term of the form 𝑘3𝜑3(𝑘𝐽𝑛,ℎ,0)𝐶ℎ𝜕�̈�(𝑡𝑛), when calculating 𝑈𝑛+1
ℎ from 𝑈𝑛

ℎ .

5.2. 𝑞 = 3

As stated before, it is impossible to get an exponential Rosenbrock method of classical order 3 with just one stage. Because of
that, we look for one with two stages. Trying to be as efficient as possible, we take 𝑐2 = 1 so that possible evaluations at 𝑡 = 𝑡𝑛 + 𝑐2𝑘
can also be used at the next step. The simpler function 𝑎21(𝑧) of the form (2) satisfying (3) is then 𝑎2,1(𝑧) = 𝜑1(𝑧). If we now look for
functions 𝑏1(𝑧) and 𝑏2(𝑧) satisfying the four necessary conditions in Table 1, we can see that we can achieve that just by considering
𝑟 = 1. Although a linear system of four equations with two unknowns is obtained, three of them are equivalent and altogether lead
to

𝑏1(𝑧) =
2
3
𝜑1(𝑧), 𝑏2(𝑧) =

1
3
𝜑1(𝑧).

This method again satisfies conditions (13) and (14), as it was also assured through Theorems 4.1 and 4.2. By considering 𝑟 = 2, a
one-parameter family of methods turn up, which correspond to

𝜇1,1 =
2
3
+

𝜇2,2
2

, 𝜇1,2 = −𝜇2,2, 𝜇2,1 =
1
3
−

𝜇2,2
2

. (21)

e notice that with all these methods, the first equation in the last row of Table 1 is satisfied. As for the third and fourth equation
n the same row, they are never satisfied. However, the second equation in that row is just satisfied for 𝜇2,2 = 1, and that leads to

𝑏1(𝑧) =
7
6
𝜑1(𝑧) − 𝜑2(𝑧), 𝑏2(𝑧) = −1

6
𝜑1(𝑧) + 𝜑2(𝑧).

We may therefore expect that this leads to the smallest local errors inside the family (21).
All previous methods have stiff order 2 but not stiff order 3 according to [12] since

𝑏1(𝑧) + 𝑏2(𝑧) = 𝜑1(𝑧), 𝑎21(𝑧) = 𝑐2𝜑1(𝑐2𝑧), 𝑏2(𝑧)𝑐22 ≠ 2𝜑3(𝑧).

However, the technique in [17] can be applied to avoid order reduction. Again the simplifying assumptions (13) and (14) are
satisfied and therefore, the advantages of the simplified formulas in Section 3 can be used.
9
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5.3. q = 4

As a method of classical order 4 to apply our technique to avoid order reduction, we have chosen exprb42N in [13], since it
seems to be the best for mildly stiff problems in that paper. It is also a two-stage method where 𝑐2 = 3∕4 and the coefficients which
determine the method are

𝑎21(𝑧) =
3
4
𝜑1(

3
4
𝑧), 𝑏1(𝑧) =

35
27

𝜑1(𝑧) −
48
27

𝜑2(𝑧), 𝑏2(𝑧) = − 8
27

𝜑1(𝑧) +
48
27

𝜑2(𝑧).

Theorems 4.1 and 4.2 can be applied, so that the simplifications in Section 3 can be performed. With our technique to avoid order
eduction using 𝑝 = 3, we manage to get order 4 although the method just has stiff order 2 according to [12].

. Numerical comparisons with other methods

Our aim in this section is not to show an exhaustive comparison of the recommended methods (implemented without order
eduction as suggested in Section 3) against others in the literature (implemented through the standard method of lines). Our aim
s not either to improve the techniques to calculate the linear combination of exponential matrix functions over some vectors which
urn up in all methods. Our aim is just to defend that the technique well described in Section 3 must be taken into account if one
ants to integrate accurately and efficiently initial boundary value problems of the type (1) with exponential Rosenbrock methods.

For that, we have chosen a particular example of (1) with time-dependent boundary conditions, which satisfies the hypotheses
n [17] so that the technique there can be applied to avoid order reduction and which also satisfies the hypotheses in [12] so that

method satisfying the corresponding stiff order conditions also lead to the classical order of the method (at least for vanishing
oundary conditions). We have also considered a particular space discretization which also satisfies hypotheses (H1)–(H2) in [17],
s justified there. The problem is

𝑢𝑡(𝑥, 𝑡) = 𝑢𝑥𝑥(𝑥, 𝑡) + 𝑢2(𝑥, 𝑡) + ℎ(𝑥, 𝑡),

𝑢(𝑥, 0) = 𝑢0(𝑥),

𝑢(0, 𝑡) = 𝑔0(𝑡), 𝑢(1, 𝑡) = 𝑔1(𝑡), (22)

where ℎ, 𝑢0, 𝑔0 and 𝑔1 are taken so that the exact solution of the problem is 𝑢(𝑥, 𝑡) = cos(𝑥+ 𝑡). As for the space discretization of the
second derivative in space, we have considered the standard second-order symmetric difference scheme, which leads to

𝐴ℎ,0 =
1
ℎ2

tridiag(1,−2, 1), 𝐶ℎ[𝑔0, 𝑔1] =
1
ℎ2

[𝑔0(𝑡),… , 𝑔1(𝑡)], 𝐷ℎ ≡ 0.

We have integrated till time 𝑇 = 1 with a fixed value of ℎ = 1∕1000, for which the error in space can be considered negligible
when taking as timestepsizes 𝑘 = 1∕5, 1∕10, 1∕20,…

.1. 𝑞 = 3

For the methods suggested in Section 5.2, which corresponds to Butcher tableaux

0
1 𝜑1

2
3𝜑1

1
3𝜑1

,
0
1 𝜑1

7
6𝜑1 − 𝜑2 𝜑2 −

1
6𝜑1

, (23)

e consider the technique described in Section 3 to avoid order reduction with 𝑝 = 3, so that local order 4 and global order 3 are
chieved according to [17]. We will refer to them as methods M1 and M2 respectively. In this case, the final formulas (17) for the
tages reduce to this for both methods

𝐾𝑛,1,ℎ = 𝑈𝑛
ℎ ,

𝐾𝑛,2,ℎ = 𝑒𝑘𝐽𝑛,ℎ,0𝑈𝑛
ℎ + 𝑘𝜑1(𝑘𝐽𝑛,ℎ,0)[ ̃̃𝐺𝑛,1,ℎ + 𝐶ℎ𝜕𝑢(𝑡𝑛)]

+𝑘2𝜑2(𝑘𝐽𝑛,ℎ,0)[𝑃ℎℎ̇(𝑡𝑛) + 𝐶ℎ𝜕�̇�(𝑡𝑛)] + 𝑘3𝜑3(𝑘𝐽𝑛,ℎ,0)𝐶ℎ𝜕�̈�(𝑡𝑛), (24)

and the final formula (18) to this for method M1

𝑈𝑛+1
ℎ = 𝑒𝑘𝐽𝑛,ℎ,0𝑈𝑛

ℎ + 𝑘𝜑1(𝑘𝐽𝑛,ℎ,0)[
1
3
(2 ̃̃𝐺𝑛,1,ℎ + ̃̃𝐺𝑛,2,ℎ) + 𝐶ℎ𝜕𝑢(𝑡𝑛)]

+ 𝑘2𝜑2(𝑘𝐽𝑛,ℎ,0)
[

𝑃ℎℎ̇(𝑡𝑛) + 𝐶ℎ𝜕[�̇�(𝑡𝑛) +
𝑘2

6
[𝛹 ′′(𝑢(𝑡𝑛))�̇�(𝑡𝑛)2 + ℎ̈(𝑡𝑛)]]

]

+ 𝑘3𝜑3(𝑘𝐽𝑛,ℎ,0)𝐶ℎ𝜕�̈�(𝑡𝑛)

+ 𝑘4𝜑4(𝑘𝐽𝑛,ℎ,0)𝐶ℎ𝜕[
…
𝑢 (𝑡𝑛) − 𝛹 ′′(𝑢(𝑡𝑛))�̇�(𝑡𝑛)2 − ℎ̈(𝑡𝑛)] (25)

and to this for method M2

𝑈𝑛+1 = 𝑒𝑘𝐽𝑛,ℎ,0𝑈𝑛 + 𝑘𝜑 (𝑘𝐽 )[ 7 ̃̃𝐺 − 1 ̃̃𝐺 + 𝐶 𝜕𝑢(𝑡 )]
10

ℎ ℎ 1 𝑛,ℎ,0 6 𝑛,1,ℎ 6 𝑛,2,ℎ ℎ 𝑛
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Table 2
Global errors when integrating (22) with nonvanishing boundary conditions, using method (27) and method (28)
with the standard method of lines, ℎ = 1∕1000.

k 1/5 1/10 1/20 1/40 1/80

Method (27) 1.3868e−4 1.7442e−5 2.0928e−6 2.5018e−7 3.0287e−8
Order 2.9912 3.0590 3.0644 3.0462
Method (28) 3.1444e−4 3.8446e−5 4.7354e−6 5.8548e−7 7.2448e−8
Order 3.0319 3.0213 3.0158 3.0146

+𝑘𝜑2(𝑘𝐽𝑛,ℎ,0)
[

− ̃̃𝐺𝑛,1,ℎ + ̃̃𝐺𝑛,2,ℎ + 𝑘
[

𝑃ℎℎ̇(𝑡𝑛) + 𝐶ℎ𝜕[�̇�(𝑡𝑛) −
𝑘2

12
[𝛹 ′′(𝑢(𝑡𝑛))�̇�(𝑡𝑛)2 + ℎ̈(𝑡𝑛)]]

]

]

+ 𝑘3𝜑3(𝑘𝐽𝑛,ℎ,0)𝐶ℎ𝜕
[𝑘
2
[𝛹 ′′(𝑢(𝑡𝑛))�̇�(𝑡𝑛)2 + ℎ̈(𝑡𝑛)] + �̈�(𝑡𝑛)

]

+ 𝑘4𝜑4(𝑘𝐽𝑛,ℎ,0)𝐶ℎ𝜕[
…
𝑢 (𝑡𝑛) − 𝛹 ′′(𝑢(𝑡𝑛))�̇�(𝑡𝑛)2 − ℎ̈(𝑡𝑛)]. (26)

We will compare these methods with the standard method of lines implementation of the main method in exprb32 [12], which
is also a two-stage method of classical order 3, but which shows stiff order 3. For that method, it also happens that 𝑐2 = 1 and the
Butcher tableau is

0
1 𝜑1

𝜑1 − 2𝜑3 2𝜑3

. (27)

In fact, this is the only two-stage method of stiff order 3 with 𝑐2 = 1. The standard method of lines implementation of this method
onsists of applying (8) to

�̇�ℎ(𝑡) = 𝐴ℎ,0𝑈ℎ(𝑡) + 𝛹 (𝑈ℎ(𝑡)) + 𝑃ℎℎ(𝑡) + 𝐶ℎ𝜕𝑢(𝑡),

and leads to

𝐾𝑛,1,ℎ = 𝑈𝑛
ℎ ,

𝐾𝑛,2,ℎ = 𝑒𝑘𝐽𝑛,ℎ,0𝑈𝑛
ℎ + 𝑘𝜑1(𝑘𝐽𝑛,ℎ,0)[ ̃̃𝐺𝑛,1,ℎ + 𝐶ℎ𝜕𝑢(𝑡𝑛)]

+ 𝑘2𝜑2(𝑘𝐽𝑛,ℎ,0)[𝑃ℎℎ̇(𝑡𝑛) + 𝐶ℎ𝜕�̇�(𝑡𝑛)],

𝑈𝑛+1
ℎ = 𝑒𝑘𝐽𝑛,ℎ,0𝑈𝑛

ℎ + 𝑘𝜑1(𝑘𝐽𝑛,ℎ,0)[ ̃̃𝐺𝑛,1,ℎ + 𝐶ℎ𝜕𝑢(𝑡𝑛)]

+ 𝑘2𝜑2(𝑘𝐽𝑛,ℎ,0)[𝑃ℎℎ̇(𝑡𝑛) + 𝐶ℎ𝜕�̇�(𝑡𝑛)]

+ 2𝑘𝜑3(𝑘𝐽𝑛,ℎ,0)
[

− ̃̃𝐺𝑛,1,ℎ + ̃̃𝐺𝑛,2,ℎ + 𝐶ℎ𝜕[𝑢(𝑡𝑛+1) − 𝑢(𝑡𝑛) − 𝑘�̇�(𝑡𝑛)]
]

.

We notice that, although with this method, we just arrive at 𝜑3 and with the previous ones to 𝜑4, what is multiplying 𝜑3 and 𝜑4 in
(25) and (26) is just information on the boundary, which is very cheap to calculate. This method shows order 3 when integrating
(22) in spite of the fact that non-vanishing boundary conditions are considered (See Table 2).

A similar implementation with the standard method of lines can be done with the main method in exprb42 [13] given by

0
3
4

3
4𝜑1,2

𝜑1 −
32
9 𝜑3

32
9 𝜑3

, (28)

here 𝜑𝑖,𝑗 (𝑧) denotes 𝜑𝑖(𝑐𝑗𝑧). In spite of having 𝑐2 ≠ 1, this method has classical order 4. Its stiff order is also 4 according to [12],
ut that just applies to problems with vanishing boundary conditions. With non-vanishing boundary conditions, it just shows order
(See Table 2).

We have implemented all methods in Matlab using directly the subroutine phipm.m in [5] but rewriting in all formulas 𝑒𝛼𝑘𝐽𝑛,ℎ,0𝑈𝑛
ℎ

s

𝑈𝑛
ℎ + 𝛼𝑘𝐽𝑛,ℎ,0𝜑1(𝛼𝑘𝐽𝑛,ℎ,0)𝑈𝑛

ℎ

nd thus incorporating a term 𝛼𝐽𝑛,ℎ,0𝑈𝑛
ℎ in the term multiplying 𝜑1(𝛼𝑘𝐽𝑛,ℎ,0). This was recommended in [12] and later used

n [13–16], although we do not think this implementation is the best when ℎ is very small.
As we can see in Fig. 1, both methods in (23), implemented through formulas (24)–(25)–(26) behave very similarly. The global

rder 3 is recovered in both cases (see Tables 4 and 6) and the computational cost is better than method (28) for all the considered
alues of 𝑘 and better than (27) for global errors less than 10−6. We also remark the great improvement in computational cost with
he technique being described in this paper from 𝑝 = 2 to 𝑝 = 3. (We remind that 𝑝 = 2 also leads to global order 3 in parabolic
roblems, but just local order 3 [17], see Tables 3 and 5.) In spite of adding more terms in the formulas after full discretization,
he computational cost for a fixed stepsize decreases. An explanation for that is given in [29].

We also remind that all boundary values in formulas (24)–(25)–(26) can be exactly calculated in terms of data if an analytic
xpression is known for them.
11
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Fig. 1. Error against CPU time when integrating problem (22) with nonvanishing boundary conditions, using the first exponential Rosenbrock method in (23)
continuous line) with the suggested technique corresponding to 𝑝 = 2 (magenta, asterisk) and 𝑝 = 3 (blue, circle); the second exponential Rosenbrock method
n (23) (discontinuous line) with the suggested technique corresponding to 𝑝 = 2 (magenta, asterisk) and 𝑝 = 3 (blue, circle); method (27) (green, square) and
ethod (28) (black, diamond) with the standard method of lines.

Table 3
Local and global error when integrating (22) with nonvanishing boundary conditions, using the first exponential
Rosenbrock method (M1) in (23) with the suggested technique corresponding to 𝑝 = 2, ℎ = 1∕1000.

k 1/5 1/10 1/20 1/40 1/80

Local error 1.1536e−3 1.4197e−4 1.7585e−5 2.1850e−6 2.7179e−7
Order 3.0225 3.0132 3.0086 3.0071
Global error 1.2786e−3 1.5602e−4 1.9220e−5 2.3832e−6 2.9659e−7
Order 3.0348 3.0210 3.0116 3.0064

Table 4
Local and global error when integrating (22) with nonvanishing boundary conditions, using the first exponential
Rosenbrock method (M1) in (23) with the suggested technique corresponding to 𝑝 = 3, ℎ = 1∕1000.

k 1/5 1/10 1/20 1/40 1/80

Local error 6.6350e−5 4.1489e−6 2.5927e−7 2.0669e−8 2.1560e−9
Order 3.9993 4.0002 3.6489 3.2611
Global error 1.3650e−4 1.7394e−5 2.1603e−6 2.6970e−7 3.5321e−8
Order 2.9722 3.0093 3.0018 2.9328

Table 5
Local and global error when integrating (22) with nonvanishing boundary conditions, using the second exponential
Rosenbrock method (M2) in (23) with the suggested technique corresponding to 𝑝 = 2, ℎ = 1∕1000.

k 1/5 1/10 1/20 1/40 1/80

Local error 1.1519e−3 1.4171e−4 1.7540e−5 2.1770e−6 2.7038e−7
Order 3.0230 3.0142 3.0102 3.0093
Global error 1.2761e−3 1.5552e−4 1.9125e−5 2.3657e−6 2.9341e−7
Order 3.0365 3.0236 3.0152 3.0113

Table 6
Local and global error when integrating (22) with nonvanishing boundary conditions, using the second exponential
Rosenbrock method (M2) in (23) with the suggested technique corresponding to 𝑝 = 3, ℎ = 1∕1000.

k 1/5 1/10 1/20 1/40 1/80

Local error 6.6527e−5 4.1505e−6 2.5861e−7 1.6082e−8 1.1963e−9
Order 4.0026 4.0045 4.0073 3.7487
Global error 5.9715e−5 3.6612e−6 3.1846e−7 2.9967e−8 4.7893e−9
Order 4.0277 3.5231 3.4097 2.6455
12
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Table 7
Global errors when integrating (22) with nonvanishing boundary conditions, using methods (30), (31), EPIRK4s3
and EPIEK4s3A with the standard method of lines, ℎ = 1∕1000.

k 1/5 1/10 1/20 1/40

Method (30) 4.3607e−5 2.9478e−6 1.9171e−7 1.1496e−8
Order 3.8869 3.9426 4.0597
Method (31) 1.5573e−5 8.7267e−7 5.1437e−8 3.8709e−9
Order 4.1575 4.0846 3.7321
Method EPIRK4s3 3.9766e−5 2.4662e−6 1.5065e−7 8.9167e−9
Order 4.0112 4.0330 4.0785
Method EPIRK4s3A 4.5137e−5 2.9593e−6 1.8858e−7 1.1213e−8
Order 3.9310 3.9720 4.0719

6.2. 𝑞 = 4

For the method suggested in Section 5.3, which will be denoted by M3,

0
3
4

3
4𝜑1,2

35
27𝜑1 −

48
27𝜑2 − 8

27𝜑1 +
48
27𝜑2

, (29)

we have again considered the technique in Section 3 with 𝑝 = 3. In such a way, we get both local and global order 4. We have again
considered phipm.m in [5] for the implementation of the corresponding results, writing the stages and 𝑈𝑛+1

ℎ as linear combinations
of {𝜑𝑙(𝛼𝐽𝑛,ℎ,0)}𝑙≥1, as stated before.

In order to compare with methods which show order 4 when integrating (1) through the standard method of lines, we have
chosen the main method in pexprb43 in [15] since it seems to be the best among 4th-order methods in that paper. It is a 3-stage
method in which the second and third stage can be calculated in parallel since 𝑎32(𝑧) = 0. More particularly, the method is

0
1
2

1
2𝜑1(

1
2 ⋅)

1 𝜑1
𝜑1 − 14𝜑3 + 36𝜑4 16𝜑3 − 48𝜑4 −2𝜑3 + 12𝜑4

. (30)

e have implemented this method in parallel using the subroutines phipm.m (as in [15]) and also with a horizontal/vertical
mplementation using the subroutine phipm_simul_iom2 in [16]. It happens to show order 4 in our problem, as it can be observed in

Table 7.
On the other hand, we have also chosen for the comparison the best among 5th-order methods in [14]. It is called exprb53s3

here together with its embedded one and it happens to show just order 4 for problems where the boundary condition 𝑔(𝑡) is
ime-dependent, as it can be observed in Table 7. It has 3 stages and its tableau is

0

1
2

1
2𝜑1(

1
2 ⋅)

9
10

9
10𝜑1,3 −

27
25𝜑3,2 −

729
125𝜑3,3

27
25𝜑3,2 +

729
125𝜑3,3

𝜑1 −
1208
81 𝜑3 +

1120
27 𝜑4 18𝜑3 − 60𝜑4 − 250

81 𝜑3 +
500
27 𝜑4

. (31)

We have implemented the method with phipm.m subroutine directly and also using the subroutine phipm_simul_iom2 in [16].
Finally, we have also considered for the comparisons the stiffly accurate 4th-order integrators EPIRK4s3 and EPIRK4s3 A in [3].

These methods are especially designed for autonomous problems, and special Krylov subroutines (called KIOPS) are designed for
them so as to take profit of the fact that the 𝜑𝑗 matrix functions in the stages are applied over the same vector. We have then
rewritten our problem (22) as an autonomous problem introducing the time variable into the equations and then we have applied
the subroutines in [3] for the particular methods already mentioned. These methods also happen to show order 4 in our problem,
as Table 7 shows. The results in terms of computational time turn up in Fig. 2, where we can see the comparison between all
the methods and different Krylov subroutines. It is clearly observed that the recommended method (29) with the implementation
corresponding to 𝑝 = 3 in Section 3 is the most efficient of all methods for all values of the timestepsize. (Its fourth order can be
also checked in Table 8.)

Moreover, we again remind that no numerical differentiation has been required to be used for the calculation of the necessary
boundary values with this technique.
13
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Table 8
Local and global error when integrating (22) with nonvanishing boundary conditions, using exponential
Rosenbrock method (M3) in (29) with the suggested technique corresponding to 𝑝 = 3, ℎ = 1∕1000.

k 1/5 1/10 1/20 1/40

Local error 6.6319e−5 4.1433e−6 2.5846e−7 1.6092e−8
Order 4.0006 4.0028 4.0055
Global error 4.4211e−5 2.5046e−6 1.4784e−7 8.9314e−9
Order 4.1418 4.0825 4.0490

Fig. 2. Error against CPU time when integrating problem (22) with nonvanishing boundary conditions, using the exponential Rosenbrock method (29) (continuous
line) with the suggested technique corresponding to 𝑝 = 3 (magenta, asterisk); method (30) in parallel (blue, circle, continuous line) and using subroutine
phipm_simul_iom2 (blue, circle, discontinuous line); method (31) with phipm.m subroutine (green, square, continuous line) and using subroutine phipm_simul_iom2
(green, square, discontinuous line); method EPIRK4s3 (black, diamond) and method EPIRK4s3 A (red, star).

Data availability

The codes used in this paper are available online in [30].
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