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A B S T R A C T

In this work, we approach the solution of a differential problem for pricing commodity futures when the spot
price follows a stochastic diffusion process with memory, that is, it depends on two discrete times: the present
instant and a delayed one. In this kind of models, a closed-form solution is not feasible to obtain and, in
most of the cases, numerical methods should be applied. To this end, it is normal to introduce a bounded
domain for the state variable, so suitable boundary conditions have to be established. The conditions based on
mathematical reasons often introduce difficulties in the boundary and poor accuracy. Here, we propose new
nonstandard boundary conditions based on some financial reasons and then, we face the numerical solution
of the problem that arises. Some experiments are presented which show that the drawbacks in the behavior
of the solutions are overcome, providing more accurate futures prices. This new procedure is implemented in
order to obtain a more precise valuation of gold futures contracts traded on the Commodity Exchange Inc.
(US).
1. Introduction

Commodities are a part of our daily life. They include energy
sources such as crude oil and natural gas; metals such as gold and
silver; agricultural products such as wheat and coffee; and livestock
and meat products such as pork and cattle. Furthermore, investing in
commodities, as an asset class, is a way to diversify an investment
portfolio [1].

Investors can gain exposure to commodities through direct invest-
ment in them or through commodity derivatives. On the one hand,
a direct investment in a commodity provides exhibition to the per-
formance of its spot price. However, it involves taking the physically
holding or delivery of the commodity [2]. On the other hand, commod-
ity derivative contracts allow us to obtain profits from changes in the
commodity price without owning it. Options and futures are the most
famous commodity derivatives, both having their own particularities.
While in a future contract the buyer is obliged to buy the underlying
commodity, in an option the buyer has the right but not the obligation.
Furthermore, commodity futures markets offer transparency in the
price mechanism, low margins, risk management and an organized
marketplace which makes them very attractive for investors. Therefore,
commodity markets are of fundamental importance and a very decisive
part of the global economy. A detailed list and characteristics of the
main commodity exchanges markets in the world can be founded in [3].
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Valuing commodity derivatives requires a deep knowledge of the
behavior of the underlying commodity price, which is different from
other financial assets. For example, as documented in [4,5], commod-
ity prices show strong evidence of mean reversion as producers and
consumers adapt their production and consumption decisions in the
long term. Moreover, many commodity markets are characterized by
exceptional abrupt changes in the price because of different factors:
weather conditions, unanticipated macroeconomic events, etc. Then,
some researchers have considered a jump term, as well as the mean
reversion, when modeling the commodity spot price to value com-
modity futures (see [6–8]). Prior studies [9,10], have reported that
commodity prices show a seasonal behavior, specially some agricultural
and energetic products (see, for example, [11–14]).

In order to price commodity futures contracts, standard non-
arbitrage arguments for valuing financial derivatives allow to obtain
the futures price as the expectation under the risk-neutral measure
of the commodity spot price at maturity. Nevertheless, instead of
calculating this expectation, an alternative procedure arises that consist
in solving an equivalent partial differential equation (PDE) subject to a
final condition (see [15]).

In most of the cases, the dynamics of the commodity spot price
is chosen with the aim of building a tractable and easy-to-implement
https://doi.org/10.1016/j.chaos.2024.115476
Received 19 March 2024; Received in revised form 26 July 2024; Accepted 30 Aug
vailable online 5 September 2024 
960-0779/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access ar
c-nd/4.0/ ). 
ust 2024

ticle under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by- 

https://www.elsevier.com/locate/chaos
https://www.elsevier.com/locate/chaos
https://data.nasdaq.com
https://data.nasdaq.com
https://data.nasdaq.com
https://data.nasdaq.com
https://data.nasdaq.com
https://data.nasdaq.com
https://data.nasdaq.com
https://data.nasdaq.com
https://data.nasdaq.com
https://data.nasdaq.com
https://data.nasdaq.com
https://data.nasdaq.com
https://data.nasdaq.com
https://data.nasdaq.com
https://data.nasdaq.com
https://data.nasdaq.com
https://data.nasdaq.com
https://data.nasdaq.com
https://data.nasdaq.com
https://data.nasdaq.com
https://data.nasdaq.com
https://data.nasdaq.com
https://data.nasdaq.com
mailto:lourdes.gomez@uva.es
mailto:malm@uva.es
mailto:juliamr@uva.es
https://doi.org/10.1016/j.chaos.2024.115476
https://doi.org/10.1016/j.chaos.2024.115476
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2024.115476&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


L. Gómez-Valle et al.

w
o
t
i
p

m
n


𝑑

w
d

t
d
T
t
i

𝑡
T
c

𝐹

[

𝐹

w

o
P

𝐹

H
v
v
i

𝐹

𝐹

f
e
i
d
T
d

𝑑

𝑆

w

Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 187 (2024) 115476 
model (see [7,13,16]). These restrictive properties have made this
kind of models very popular and standard in commercial applications.
However, on the one hand, they fail to incorporate the most realistic
features of the commodity prices which could improve the futures
valuation. In this paper, we consider the valuation problem in the more
general case, where the resulting equation is not so easily tractable. On
the other hand, considering that the spot price process depends only on
its present value does not adjust to reality. Thus, this study proposes
further credibility adding the dependence on its past value.

If a more realistic model is considered, usually a closed-form solu-
tion is not known. As a result, numerical methods would be necessary
to provide approximated solutions. In previous studies, this problem
has usually solved using the Monte Carlo (MC) simulation approach (as
in [8,14]), although it is not very efficient due to its low accuracy and
high computational cost. An alternative choice is considering discretiza-
tion techniques for the PDE, such as finite difference methods [17]. In
this particular case, one of the main issues is that a bounded domain
for the state variables must usually be considered. Hence, suitable
boundary conditions for the emerging problems have to be estab-
lished (see [18,19], for pricing renewable energy certificate derivatives,
and [20,21], for mining projects). However, these boundary conditions
are sometimes arbitrarily chosen without taking into account the fi-
nancial characteristics of the derivative to valuate, giving as a result
poor approximations. In [22], we face this problem for zero-coupon
bond models by assuming boundary conditions specially adapted to this
derivative. Nevertheless, the literature on the commodity futures shows
a lack of research in this issue.

In this paper, we introduce specific boundary conditions, based on
financial arguments, for the numerical pricing of commodity futures
contracts with and without memory, when a closed-form solution is not
known. The incorporation of these boundary requirements will be the
previous step for the numerical treatment of the model. The suitability
of these conditions will be exemplified by considering a second or-
der discretization of them, coupled to the well-known Crank–Nicolson
discretization technique for the PDE. Our test problem confirms that
dealing with this numerical method which incorporates these novel
restrictions offers a competitive choice for pricing. In particular, it
reveals as a very valuable tool in its application to the gold market.

Other approximation formulas for these financial boundary con-
ditions could be proposed. Furthermore, the problem posed on the
bounded interval can be addressed using other PDE discretization
techniques, other than the Crank–Nicolson method, which might be
more suitable for its numerical integration. Finally, the boundary con-
ditions proposed here, together with their designed discretization, are
consistent with other numerical techniques for the PDE problem such
as the method of lines.

The remainder of this work is organized as follows. In Section 2, we
describe one-factor commodity futures pricing models and their corre-
sponding valuation problems with and without delay in the stochastic
process. In Section 3, we deal with the discretization of the non-delayed
problem. In Section 3.1 we incorporate some widely used boundary
conditions, and show the adverse effects appearing in the approxima-
tion of the solution to a test problem based on the Schwartz model.
In Section 3.2, we propose novel boundary conditions which take into
account the behavior of the commodity futures contracts. We present
a discretization of the corresponding problem and validate the effec-
tiveness of this technique by means of some numerical experiments.
In Section 4, we go one step further, addressing the problem with
delay, by relating its treatment to the previous case without memory.
In Section 5, we carry out a valuation of the gold futures contracts,
traded on the Commodity Exchange Inc. (COMEX), by means of the
new procedure. We compare the results with those obtained with the

MC method. Section 6 concludes. i

2 
2. Pricing commodity futures

In this section, we present a framework to price commodity futures
with a single state variable which follows a stochastic diffusion process
(with and without delay).

Firstly, we assume that the commodity spot price 𝑆 follows the be-
low stochastic differential equation (SDE), which is the usual dynamics
in the one-factor case:

𝑑𝑆(𝑡) = 𝜇(𝑆(𝑡)) 𝑑𝑡 + 𝜎(𝑆(𝑡)) 𝑑𝑊 (𝑡), 𝑡 ∈ (0, 𝑇 ],

here 𝜇 and 𝜎 are deterministic continuous functions which depend
n the spot price and are, respectively, the drift and volatility of
he process, verifying suitable regularity conditions [23], whereas 𝑊
s a Wiener process. Here, we consider (𝛺, , , {𝑡}𝑡≥0) a filtered
robability space satisfying the usual conditions [23,24].

As we consider that the market is arbitrage-free, there exists a
artingale measure , equivalent to  , which is known as the risk-
eutral measure [15]. Thus, the commodity spot price 𝑆, under the
-measure, follows the SDE

𝑆(𝑡) = 𝜇(𝑆(𝑡)) 𝑑𝑡 + 𝜎(𝑆(𝑡)) 𝑑𝑊 (𝑡), 𝑡 ∈ (0, 𝑇 ], (1)

here 𝑊  is a Wiener process, 𝜇 is the new drift, and the volatility
oes not change with the measure.

Commodity futures are financial derivative contracts that obligate
he buyer to purchase, and the seller to sell, a commodity at a pre-
etermined future date (delivery date) and price (delivery price) [25].
hen, the futures price is defined as the delivery price which makes
he initial value of the non-arbitrage futures price zero. Therefore, no
nitial investment is required for the futures contracts.

The price at time 𝑡, of a commodity futures maturing at time 𝑇 (with
≤ 𝑇 ), under the above assumptions, will be expressed as 𝐹 (𝑆, 𝑡; 𝑇 ).
his futures contract is assumed to have a maturity value equal to the
ommodity spot price, that is,

(𝑆, 𝑇 ; 𝑇 ) = 𝑆. (2)

On the one hand, by means of standard non-arbitrage arguments
15], the futures price at time 𝑡 can be expressed as

(𝑆, 𝑡; 𝑇 ) = 𝐸[𝑆(𝑇 )|𝑡
]

, (3)

here 𝐸 denotes the conditional expectation under the -measure.
On the other hand, the Feynman–Kac theorem [15], allows us to

btain the commodity futures price (3) as the solution of the following
DE

𝑡(𝑆, 𝑡)+𝜇(𝑆)𝐹𝑆 (𝑆, 𝑡)+
1
2
𝜎2(𝑆)𝐹𝑆𝑆 (𝑆, 𝑡) = 0, 𝑆 > 0, 0 ≤ 𝑡 < 𝑇 . (4)

ere, in order to obtain the futures price, we have to solve the final
alue problem (4), (2). To this end, as usual, a change on the time
ariable is introduced, 𝜏 = 𝑇 − 𝑡, which transforms the original problem
nto the following initial value problem

𝜏 (𝑆, 𝜏) = 𝜇(𝑆)𝐹𝑆 (𝑆, 𝜏) +
1
2
𝜎2(𝑆)𝐹𝑆𝑆 (𝑆, 𝜏), 𝑆 > 0, 0 < 𝜏 ≤ 𝑇 , (5)

(𝑆, 0) = 𝑆, 𝑆 > 0. (6)

However, the need for improving the valuation of the commodity
utures has motivated us to take into account the influence of past
vents as well as present ones on the current and future prices. Then,
t seems natural to consider a commodity spot price process where the
rift, the volatility, or both functions depend on the past spot price.
hat is, we assume that the commodity spot price follows a stochastic
elay differential equation (SDDE) as (see [26])

𝑆(𝑡) = 𝜇(𝑆(𝑡), 𝑆(𝑡 − 𝛿)) 𝑑𝑡 + 𝜎(𝑆(𝑡), 𝑆(𝑡 − 𝛿)) 𝑑𝑊 (𝑡), 𝑡 ∈ (0, 𝑇 ], (7)
(𝑡) = 𝜙(𝑡), 𝑡 ∈ [−𝛿, 0], (8)

here 𝛿 is a positive constant (a fixed delay) which is incorporated
nto the drift and volatility terms in order to take into account past
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events. Again, 𝜇 and 𝜎 are deterministic continuous functions (the drift
nd volatility of the process, respectively), satisfying suitable regularity
onditions (see [23]). Therefore, these functions depend on the spot
rice in two instants of time: 𝑡 and 𝑡−𝛿. Here, 𝑊 is a Wiener process and
𝜙 ∈ ([−𝛿, 0],R), in (8), represents previous known price information.

gain, as we assume that the market is arbitrage-free, there exists an
quivalent martingale measure (the risk-neutral measure). Then, we
onsider that the spot price, under this risk-neutral measure , follows
he process:

𝑆(𝑡) = 𝜇(𝑆(𝑡), 𝑆(𝑡 − 𝛿)) 𝑑𝑡 + 𝜎(𝑆(𝑡), 𝑆(𝑡 − 𝛿)) 𝑑𝑊 (𝑡), 𝑡 ∈ (0, 𝑇 ], (9)
𝑆(𝑡) = 𝜙(𝑡), 𝑡 ∈ [−𝛿, 0], (10)

where 𝑊  is a Wiener process and 𝜇 is the new drift.
Then, as in the previous case, the commodity futures price is given

by the conditional expectation (3) or, by means of a riskless strategy
(see [26]), we can obtain it as the solution of the following PDE

𝐹𝑡 + 𝜇(𝑆, 𝑆(𝑡 − 𝛿))𝐹𝑆 + 1
2
𝜎2(𝑆, 𝑆(𝑡 − 𝛿))𝐹𝑆𝑆 = 0, 𝑆 > 0, 0 ≤ 𝑡 < 𝑇 ,

with the final condition (2). Note that the function 𝑆(𝑡 − 𝛿), in the 𝜇
and 𝜎 coefficients, follows a stochastic process so, following [27], the
PDE can be labeled as a random partial differential equation (RPDE).

As we did in (4) to reach (5), we introduce the change on the time
variable 𝜏 = 𝑇 − 𝑡, and obtain the equivalent RPDE

𝐹𝜏 =𝜇(𝑆, 𝑆(𝑇 − 𝜏 − 𝛿))𝐹𝑆 + 1
2
𝜎2(𝑆, 𝑆(𝑇 − 𝜏 − 𝛿))𝐹𝑆𝑆 ,

𝑆 > 0, 0 < 𝜏 ≤ 𝑇 . (11)

3. Numerical solution of the model without delay

In this section, we deal with the numerical solution of the prob-
lem (5)–(6). When numerical methods are used to approximate the
solution of the model, it is usually restricted to a suitable bounded
domain of the state variable. Thus, the incorporation of appropriate
boundary conditions is mandatory. In the commodity derivatives pric-
ing literature, several boundary conditions have been considered. For
example, Baamonde-Seoane et al. [18] assume that the first derivative
with respect to one of the state variables is zero on the boundary,
while Aminrostamkolaee et al. [21] consider that the second derivative
with respect to the spot price is canceled. However, these artificial
conditions are not based on financial but on mathematical reasons
and, as we will show, they are not appropriate for pricing commodity
futures.

Then, for the numerical solution of the pricing problem by means of
a finite difference method, a suitable bounded interval [𝑆𝑚𝑖𝑛, 𝑆𝑚𝑎𝑥] for
the spot price variable 𝑆 must be introduced. To adequately represent
the dynamics of the problem, this interval should contain a sufficiently
large number of market observations to provide an accurate estimate
of the model functions, but adjusting its size to avoid biased estimates.
Once this interval has been set, appropriate constrains on the solution
at the boundary should be detailed.

3.1. Artificial boundary conditions

As used in [21] for other derivatives, we impose that 𝐹𝑆𝑆 = 0 on the
boundary (note that the initial data in (6) verifies it). Then, we consider
the initial boundary value problem consisting of (5)–(6) on (𝑆𝑚𝑖𝑛, 𝑆𝑚𝑎𝑥),
together with

𝐹𝑆𝑆 (𝑆𝑚𝑖𝑛, 𝜏) = 0, 0 ≤ 𝜏 ≤ 𝑇 , (12)
𝐹𝑆𝑆 (𝑆𝑚𝑎𝑥, 𝜏) = 0, 0 ≤ 𝜏 ≤ 𝑇 . (13)

In order to discretize this problem, firstly we introduce a uniform
grid on the state variable interval [𝑆𝑚𝑖𝑛, 𝑆𝑚𝑎𝑥]: given a positive integer
𝐽 , we use the constant step ℎ = (𝑆𝑚𝑎𝑥 − 𝑆𝑚𝑖𝑛)∕𝐽 to define the discrete

prices 𝑆𝑗 = 𝑆𝑚𝑖𝑛 + 𝑗 ℎ, 𝑗 = 0, 1,… , 𝐽 . Secondly, we introduce a uniform

3 
grid on the time variable interval [0, 𝑇 ]: given a positive integer 𝑁 , we
define the time step 𝑘 = 𝑇 ∕𝑁 , and the discrete time levels 𝜏𝑛 = 𝑛 𝑘,
𝑛 = 0, 1,… , 𝑁 . Finally, 𝐹 𝑛𝑗 , represents an approximation to 𝐹 (𝑆𝑗 , 𝜏𝑛),
𝑗 = 0, 1,… , 𝐽 , 𝑛 = 0, 1,… , 𝑁 .

A suitable approximation to the initial condition of the problem
must be taken as initial data of the numerical method. For the numer-
ical simulation, we choose the grid restriction of (6), that is,

𝐹 0
𝑗 = 𝑆𝑗 , 𝑗 = 0, 1,… , 𝐽 . (14)

For 𝑛 = 1,… , 𝑁 , at the inner grid points of the interval [𝑆𝑚𝑖𝑛, 𝑆𝑚𝑎𝑥],
we consider the discretization of the PDE (5) based on the second-order
Crank–Nicolson scheme: denoting 𝜇𝑗 = 𝜇(𝑆𝑗 ) and 𝜎𝑗 = 𝜎(𝑆𝑗 ), then

𝐹 𝑛𝑗 − 𝐹 𝑛−1𝑗

𝑘
= 1

2
𝜇𝑗

[

𝐹 𝑛𝑗+1 − 𝐹
𝑛
𝑗−1

2ℎ
+
𝐹 𝑛−1𝑗+1 − 𝐹 𝑛−1𝑗−1

2ℎ

]

+ 1
4
𝜎2𝑗

[

𝐹 𝑛𝑗+1 − 2𝐹 𝑛𝑗 + 𝐹 𝑛𝑗−1
ℎ2

+
𝐹 𝑛−1𝑗+1 − 2𝐹 𝑛−1𝑗 + 𝐹 𝑛−1𝑗−1

ℎ2

]

,

𝑗 = 1, 2,… , 𝐽 − 1. (15)

Now, we discretize the boundary conditions (12) and (13) by means
of second order approximations to 𝐹𝑆𝑆 : forward finite differences on
𝑆𝑚𝑖𝑛, and backward on 𝑆𝑚𝑎𝑥. In this way, we obtain, for 𝑛 = 1,… , 𝑁 ,

2𝐹 𝑛0 + 5𝐹 𝑛1 + 4𝐹 𝑛2 − 𝐹 𝑛3 = 0, (16)

𝐹 𝑛𝐽 + 5𝐹 𝑛𝐽−1 + 4𝐹 𝑛𝐽−2 − 𝐹
𝑛
𝐽−3 = 0. (17)

Denoting as 𝐅𝑛 = [𝐹 𝑛0 ,… , 𝐹 𝑛𝐽 ]
𝑇 , the (𝐽 + 1)-dimensional vector that

ollects the approximations to the solution over the spot price grid at
ime 𝜏𝑛, 𝑛 = 0,… , 𝑁 , we can write the numerical method described

by (14)–(17), in vectorial form: starting from the initial approximation
𝐅0 = 𝐒 = [𝑆0,… , 𝑆𝐽 ]𝑇 , we have to solve the following linear system to
obtain 𝐅𝑛 from 𝐅𝑛−1:

𝑀𝐅𝑛 = 𝑃𝐅𝑛−1, 𝑛 = 1,… , 𝑁, (18)

where 𝑀 and 𝑃 are tridiagonal matrices, except the first and the last
rows which represent the discretizations of the boundary conditions.
Denoting 𝑐 = 𝑘∕ℎ and 𝑑 = 𝑘∕ℎ2, the matrices 𝑀 and 𝑃 are given in
Box I.

Note that the numerical method represented by (18) describes a
one-step linearly-implicit method. The matrix of the system that must
be solved at each time step is always the same, which allows us to
implement the method in an efficient way. However, this simple and
cheap procedure exhibits failures in the numerical approach of the
futures price.

In order to illustrate that the obtained approximation is not satisfac-
tory, we consider a test problem with an affine stochastic process for
the spot dynamics, which provides an explicitly solvable model. As a
particular case, we look at the very well-known Schwartz model [16],
where the spot price follows the diffusion process (1) with

𝜇(𝑆) = 𝛼(𝜇 − ln𝑆)𝑆, (19)
𝜎(𝑆) = 𝜎𝑆, (20)

where 𝜇, 𝛼 and 𝜎 are constant. In this case, the solution to the equiva-
lent problem (5)–(6) is

𝐹 (𝑆, 𝜏) = exp
[

e−𝛼𝜏 ln𝑆 +
(

𝜇 − 𝜎2

2𝛼

)

(1 − e−𝛼𝜏 ) + 𝜎2

4𝛼
(

1 − e−2𝛼𝜏
)

]

. (21)

Note that the previous assumptions about the functions of the spot
price process (19) and (20) can be considered very restrictive and, as a
consequence, the model could provide prices very different from those
observed in the markets. The performance of these models may be
improved by means of more general functions for the spot price (for
example, those obtained with nonparametric techniques). Nonetheless,
in most of the cases, a feasible expression of the solution of the initial
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𝑀 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

2 5 4 −1 ⋯ 0
1
4 (𝑐𝜇1 − 𝑑𝜎

2
1 ) 1 + 1

2𝑑𝜎
2
1 − 1

4 (𝑐𝜇1 + 𝑑𝜎
2
1 ) 0 ⋱ ⋮

0 ⋱ ⋱ ⋱ ⋱ 0
⋮ ⋱ ⋱ 1

4 (𝑐𝜇𝐽−1 − 𝑑𝜎
2
𝐽−1) 1 + 1

2𝑑𝜎
2
𝐽−1 − 1

4 (𝑐𝜇𝐽−1 + 𝑑𝜎
2
𝐽−1)

0 ⋯ −1 4 5 2

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

𝑃 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 ⋯ 0
− 1

4 (𝑐𝜇1 − 𝑑𝜎
2
1 ) 1 − 1

2𝑑𝜎
2
1

1
4 (𝑐𝜇1 + 𝑑𝜎

2
1 ) ⋱ ⋮

0 ⋱ ⋱ ⋱ 0
⋮ ⋱ − 1

4 (𝑐𝜇𝐽−1 − 𝑑𝜎
2
𝐽−1) 1 − 1

2𝑑𝜎
2
𝐽−1

1
4 (𝑐𝜇𝐽−1 + 𝑑𝜎

2
𝐽−1)

0 ⋯ 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.
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able 1
stimated parameter values in (21), obtained from corn futures prices traded on the
BOT from January 2013 to December 2019.
Corn 𝜇 𝛼 𝜎

6.1568 0.7891 0.0003497

value problem (5)–(6) is not known. Then, we need to use numerical
methods for providing approximated solutions.

The Schwartz model will be used as an academic problem along
this section with the values of the parameters shown in Table 1. These
values have been estimated with data obtained in the Nasdaq Data
Link (https://data.nasdaq.com) from corn1 futures, traded on the CBOT
(Chicago Board of Trade) from January 2013 to December 2019, and
minimizing the quadratic pricing error (see [28]).

On the one hand, the interval [𝑆𝑚𝑖𝑛, 𝑆𝑚𝑎𝑥] must be determined by the
values of the market observations used to estimate the functions. The
estimations obtained outside the interval of observations may have a
bias that would be transmitted to the approximation of the computed
price. Taking into account the observations of the corn prices in the
market, and trying to fit the minimum and maximum values that the
spot price reaches, we consider that 𝑆𝑚𝑖𝑛 = 30 and 𝑆𝑚𝑎𝑥 = 130 provide
a representative interval. However, note that the solution (21) does not
satisfies the boundary conditions (12)–(13).

On the other hand, in the experiments we chose 𝑇 = 1 (one year).
This is one of the maturities for which we have observations of the
futures prices.

For prescribed values of the discretization parameters ℎ and 𝑘, we
rice the futures contracts with the numerical method, and measure the
rror produced by the approximation with respect to the exact solution,
ffered by (21), at the grid points. So, for 𝑛 = 0, 1,… , 𝑁 , the vector
𝑛 = [𝑒𝑛0, 𝑒

𝑛
1,… , 𝑒𝑛𝐽 ] recovers the errors along the spot grid at time 𝜏𝑛,

escribed by
𝑛
𝑗 = |𝐹 𝑛𝑗 − 𝐹 (𝑆𝑗 , 𝜏𝑛)|, 𝑗 = 0, 1,… , 𝐽 .

In Fig. 1, we show the distribution of the error 𝐞𝑛 along the spot
rice interval, obtained in the simulation at a very short time 𝜏𝑛 = 0.05,
or different values of the step parameters.

On the one hand, for ℎ = 0.625 and 𝑘 = 0.003125 (dash-dotted line),
e observe that the errors are small, but their highest values are at the
oundary (in particular, in the right extreme of the interval). On the
ther hand, when the discretization parameters are halved (ℎ = 0.3125
nd 𝑘 = 0.0015625, dashed line), we notice that the errors decrease at
he center of the interval as these parameters are reduced (according to

1 We achieved similar conclusions with other commodity data on the CME
roup.
4 
the well-known convergence property of the Crank–Nicolson method),
but not at the right boundary.

Therefore, the maximum error at time 𝜏𝑛:

𝐞𝑛‖ = max
𝑗=0,1,…,𝐽

𝑒𝑛𝑗 , (22)

oes not decrease as we would expect from a convergent method.
Besides, this malfunction intensifies with time. In Fig. 2, we show

he distribution of the error in spot price at several times until the matu-
ity: we see that the problems at the boundary are transmitted towards
he center of the interval. So, the maximum error, at the maturity time,
s very high, and the price of the commodity is unreliable.

.2. Financial boundary conditions

To avoid errors on the boundary from being transmitted towards
he center, we look for new boundary conditions for this futures pricing
roblem. To this end, we analyze the financial behavior of the prices.

In the case of certainty, the relation between the spot price 𝑆 and
he futures price 𝐹 with maturity 𝜏, is given by

(𝑆, 𝜏) = 𝑆e𝑎𝜏 ,

here 𝑎 is a constant known as cost of carry [2]. In general, when
tochastic models are considered (see [16]), the futures prices are
epresented as

(𝑆, 𝜏) = e𝐴(𝜏) ln𝑆+𝐵(𝜏). (23)

ote that this expression is equivalent to

(𝑆, 𝜏) = 𝑆𝐴(𝜏)e𝐵(𝜏),

hich is quite similar to that presented for the certainty case, with 𝐴(𝜏)
nd 𝐵(𝜏) being more general functions of the maturity, and depending
n the particular problem that we want to analyze.

From (23), we conclude that the logarithm of the futures price is
inear with respect to the logarithm of the spot price. Thus, we pay
ttention to the following restriction obtained from (23) to obtain ho-
ogeneous boundary conditions that, in addition to retain this linearity
roperty, do not involve the unknown functions 𝐴(𝜏) and 𝐵(𝜏):

𝜕
𝜕𝑆

(

𝑆
𝜕
(

ln𝐹 (𝑆𝑚𝑖𝑛, 𝜏)
)

𝜕𝑆

)

= 0, 0 ≤ 𝜏 ≤ 𝑇 , (24)

𝜕
𝜕𝑆

(

𝑆
𝜕
(

ln𝐹 (𝑆𝑚𝑎𝑥, 𝜏)
)

𝜕𝑆

)

= 0, 0 ≤ 𝜏 ≤ 𝑇 . (25)

Note that, again, the initial condition (6) satisfies these proposed
boundary conditions.

https://data.nasdaq.com
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Fig. 1. Distribution of the error along the spot price interval, for different values of the discretization parameters, with the boundary condition 𝐹𝑆𝑆 = 0.

Fig. 2. Distribution of the error along the spot price interval at different times, with the boundary condition 𝐹𝑆𝑆 = 0.
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If we expand the left-hand side of (24) and (25), we obtain the
following equivalent equalities

𝐹 (𝑆𝑚𝑖𝑛, 𝜏)
(

𝐹𝑆 (𝑆𝑚𝑖𝑛, 𝜏) + 𝑆𝑚𝑖𝑛 𝐹𝑆𝑆 (𝑆𝑚𝑖𝑛, 𝜏)
)

− 𝑆𝑚𝑖𝑛 𝐹 2
𝑆 (𝑆𝑚𝑖𝑛, 𝜏) = 0,

0 ≤ 𝜏 ≤ 𝑇 , (26)
𝐹 (𝑆𝑚𝑎𝑥, 𝜏)

(

𝐹𝑆 (𝑆𝑚𝑎𝑥, 𝜏) + 𝑆𝑚𝑎𝑥 𝐹𝑆𝑆 (𝑆𝑚𝑎𝑥, 𝜏)
)

− 𝑆𝑚𝑎𝑥 𝐹 2
𝑆 (𝑆𝑚𝑎𝑥, 𝜏) = 0,

0 ≤ 𝜏 ≤ 𝑇 . (27)

Therefore, we propose to solve the problem (5)–(6) on [𝑆𝑚𝑖𝑛, 𝑆𝑚𝑎𝑥] with
the boundary conditions (26)–(27). To this end, we design a specific
numerical method for the approximation of its solution.

As in the previous subsection, we introduce a uniform meshgrid
on [𝑆𝑚𝑖𝑛, 𝑆𝑚𝑎𝑥] × [0, 𝑇 ], with discrete steps ℎ and 𝑘 for the spot price
and time variables, defined by the discretizations parameters 𝐽 and 𝑁 ,
respectively. Again, we choose (14) as initial approximation (the grid
restriction of the initial condition (6)), and the discretization (15) as
the approximation to the PDE (5) at the inner grid points. Finally, we
have to introduce appropriate discretizations of the boundary condi-
tions (26)–(27). With this goal, given a sufficiently smooth function 𝐻
of the real variable 𝑆, we will build approximation formulas for

𝐻(𝑆∗)
(

𝐻 ′(𝑆∗) + 𝑆∗𝐻(𝑆∗)
)

− 𝑆∗ (𝐻 ′(𝑆∗)
)2 , (28)

at the boundary grid points 𝑆∗ = 𝑆𝑚𝑖𝑛 and 𝑆∗ = 𝑆𝑚𝑎𝑥, based on
quadratic values of the function 𝐻 over the grid; that is 𝐻𝑖𝐻𝑗 , 𝑖, 𝑗 =
0, 1,… , 𝐽 (again, we denote 𝐻𝑗 = 𝐻(𝑆𝑗 ), 𝑗 = 0, 1,… , 𝐽 ). Different
alternatives for these numerical formulas can be chosen, but we take
in mind that they will be substituted into (26) and (27) in order to
obtain estimations to 𝐹 𝑛0 and 𝐹 𝑛𝐽 , 𝑛 = 1,… , 𝑁 , respectively. On the
one hand, we develop numerical formulas that contain few grid values.
These grid values should be as close as possible to the point where
the approximation is desired, and we look for preserving the order
of convergence obtained with the Crank–Nicolson method (15). On
the other hand, when we consider, for example, 𝑆∗ = 𝑆𝑚𝑖𝑛 = 𝑆0 in
order to obtain a simple explicit expression of 𝐹 𝑛0 , in the approximation
formula of (28) we avoid using 𝐻2

0 (same considerations can be made
in the 𝑆∗ = 𝑆𝑚𝑎𝑥 = 𝑆𝐽 case, to avoid 𝐻2

𝐽 ). Therefore, by using Taylor
expansions of the function 𝐻 , it is easy to achieve to the following
result:

Lemma 1. Assuming 𝐻 ∈ 4([𝑆𝑚𝑖𝑛, 𝑆𝑚𝑎𝑥]) and, for a positive integer 𝐽 ,
let 𝑆𝑗 = 𝑆𝑚𝑖𝑛 + 𝑗 ℎ, 𝑗 = 0, 1,… , 𝐽 , be the uniform meshgrid with diameter
ℎ = (𝑆𝑚𝑎𝑥 − 𝑆𝑚𝑖𝑛)∕𝐽 defined on the interval [𝑆𝑚𝑖𝑛, 𝑆𝑚𝑎𝑥]. Then, as ℎ → 0,

𝐻(𝑆0)
(

𝐻 ′(𝑆0) + 𝑆0𝐻(𝑆0)
)

− 𝑆0
(

𝐻 ′(𝑆0)
)2 = − 13

3ℎ
𝐻0𝐻1

+
(

13
6ℎ

+
3𝑆0

ℎ2

)

𝐻0𝐻2

+
(

1
3ℎ

−
𝑆0

ℎ2

)

𝐻0𝐻3

+
(

22
3ℎ

−
3𝑆0

ℎ2

)

𝐻2
1

+ 11
6ℎ
𝐻2

2 +
(

−22
ℎ

+
𝑆0

ℎ2

)

× 𝐻1𝐻2 + (ℎ2), (29)

𝐻(𝑆𝐽 )
(

𝐻 ′(𝑆𝐽 ) + 𝑆𝐽𝐻(𝑆𝐽 )
)

− 𝑆𝐽
(

𝐻 ′(𝑆𝐽 )
)2 = 13

3ℎ
𝐻𝐽𝐻𝐽−1

−
(

13
6ℎ

−
3𝑆𝐽
ℎ2

)

𝐻𝐽𝐻𝐽−2

−
(

1
3ℎ

+
𝑆𝐽
ℎ2

)

𝐻𝐽𝐻𝐽−3

−
(

22
3ℎ

+
3𝑆𝐽
ℎ2

)

𝐻2
𝐽−1

− 11
6ℎ
𝐻2
𝐽−2 +

( 22
3ℎ

+
3𝑆𝐽
ℎ2

)

𝐻𝐽−1𝐻𝐽−2

+ (ℎ2). (30)
6 
Therefore, the discretization of the boundary conditions (26)–(27)
by means of the formulas (29)–(30), respectively, produces the follow-
ing numerical boundary conditions: for 𝑛 = 1,… , 𝑁 ,

− 13
3ℎ
𝐹 𝑛0 𝐹

𝑛
1 +

(

13
6ℎ

+
3𝑆0

ℎ2

)

𝐹 𝑛0 𝐹
𝑛
2 +

(

1
3ℎ

−
𝑆0

ℎ2

)

𝐹 𝑛0 𝐹
𝑛
3 +

(

22
3ℎ

−
3𝑆0

ℎ2

)

× (𝐹 𝑛1 )
2 + 11

6ℎ
(𝐹 𝑛2 )

2 +
(

− 22
3ℎ

+
𝑆0

ℎ2

)

𝐹 𝑛1 𝐹
𝑛
2 = 0, (31)

13
3ℎ
𝐹 𝑛𝐽𝐹

𝑛
𝐽−1−

(

13
6ℎ

−
3𝑆𝐽
ℎ2

)

𝐹 𝑛𝐽𝐹
𝑛
𝐽−2−

(

1
3ℎ

+
𝑆𝐽
ℎ2

)

𝐹 𝑛𝐽𝐹
𝑛
𝐽−3−

(

22
3ℎ

+
3𝑆𝐽
ℎ2

)

× (𝐹 𝑛𝐽−1)
2− 11

6ℎ
(𝐹 𝑛𝐽−2)

2+
(

22
3ℎ

+
3𝑆𝐽
ℎ2

)

𝐹 𝑛𝐽−1𝐹
𝑛
𝐽−2= 0. (32)

ote that the discrete initial data in (14), 𝐹 0
𝑗 , 𝑗 = 0, 1,… , 𝐽 , satisfies

oth numerical boundary conditions (31)–(32).
As a conclusion, the numerical method requires, at each time level

= 1,… , 𝑁 , the solution of the linearly implicit system of Eqs. (15),
coupled with the two nonlinear equations (31) and (32), starting from
the initial data (14).

For simplicity, the numerical method will be described in vector
form. Again, we denote 𝐅𝑛 = [𝐹0,… , 𝐹𝐽 ]𝑇 the (𝐽+1)-dimensional vector
that recovers the approximations to the solution at the time level 𝜏𝑛,
𝑛 = 0, 1,… , 𝑁 , but also, we use its reduced (𝐽 − 1)-dimensional version
�̃�𝑛 = [𝐹1,… , 𝐹𝐽−1]𝑇 , that only incorporates the approximations at the
inner values of the spot price. Then, starting from 𝐅0, with components
described by (14), we obtain 𝐅𝑛 from 𝐅𝑛−1, 𝑛 = 1,… , 𝑁 , solving the
following nonlinear system of 𝐽 + 1 equations:

𝐿 �̃�𝑛 = 𝑅 �̃�𝑛−1 + 𝐛 (𝐹 𝑛−10 , 𝐹 𝑛−1𝐽 ) + 𝐛 (𝐹 𝑛0 , 𝐹
𝑛
𝐽 ), (33)

𝐹 𝑛0 =
6𝑆0𝐹 𝑛1

(

𝐹 𝑛2 − 3𝐹 𝑛1
)

+ 11ℎ
(

2𝐹 𝑛1 − 𝐹 𝑛2
)2

6𝑆0
(

𝐹 𝑛3 − 3𝐹 𝑛2
)

+ ℎ
[

13
(

2𝐹 𝑛1 − 𝐹 𝑛2
)

− 2𝐹 𝑛3
] , (34)

𝑛
𝐽 =

−6𝑆𝐽𝐹 𝑛𝐽−1
(

𝐹 𝑛𝐽−2 − 3𝐹 𝑛𝐽−1
)

+ 11ℎ
(

2𝐹 𝑛𝐽−1 − 𝐹
𝑛
𝐽−2

)2

−6𝑆𝐽
(

𝐹 𝑛𝐽−3 − 3𝐹 𝑛𝐽−2
)

+ ℎ
[

13
(

2𝐹 𝑛𝐽−1 − 𝐹
𝑛
𝐽−2

)

− 2𝐹 𝑛𝐽−3
] , (35)

where, denoting 𝑐 = 𝑘∕ℎ, and 𝑑 = 𝑘∕ℎ2 as in the previous subsection,
then we obtain the matrices as shown in Box II.

Note that, at each time step 𝑛 = 1, 2,… , 𝑁 , the nonlinear system
(33)–(35) must be solved, unlike in the previous subsection where
the corresponding system (18) was linear. To this end, an iterative
procedure is used: starting from a suitable initial guess of the solution at
time 𝜏𝑛 (that we denote 𝐅𝑛,0), we compute a new iterant 𝐅𝑛,𝜈+1 in terms
of the previous one 𝐅𝑛,𝜈 , 𝜈 = 0, 1,…. In this case, taken into account
the special structure of the nonlinear system, the following iteration,
which involves a linear system at each iteration, is of practical interest

𝐹 𝑛,𝜈+10 =
6𝑆0𝐹

𝑛,𝜈
1

(

𝐹 𝑛,𝜈2 − 3𝐹 𝑛,𝜈1
)

+ 11ℎ
(

2𝐹 𝑛,𝜈1 − 𝐹 𝑛,𝜈2
)2

6𝑆0
(

𝐹 𝑛,𝜈3 − 3𝐹 𝑛,𝜈2
)

+ ℎ
[

13
(

2𝐹 𝑛,𝜈1 − 𝐹 𝑛,𝜈2
)

− 2𝐹 𝑛,𝜈3
] , (36)

𝑛,𝜈+1
𝐽 =

−6𝑆𝐽𝐹
𝑛,𝜈
𝐽−1

(

𝐹 𝑛,𝜈𝐽−2 − 3𝐹 𝑛,𝜈𝐽−1
)

+ 11ℎ
(

2𝐹 𝑛,𝜈𝐽−1 − 𝐹
𝑛,𝜈
𝐽−2

)2

−6𝑆𝐽
(

𝐹 𝑛,𝜈𝐽−3 − 3𝐹 𝑛,𝜈𝐽−2
)

+ ℎ
[

13
(

2𝐹 𝑛,𝜈𝐽−1 − 𝐹
𝑛,𝜈
𝐽−2

)

− 2𝐹 𝑛,𝜈𝐽−3
] , (37)

�̃�𝑛,𝜈+1 = 𝑅 �̃�𝑛−1 + 𝐛 (𝐹 𝑛−10 , 𝐹 𝑛−1𝐽 ) + 𝐛 (𝐹 𝑛,𝜈+10 , 𝐹 𝑛,𝜈+1𝐽 ). (38)

ut the linear system (38) can be solved in an efficient way: the
atrices 𝐿 and 𝑅 of this linear system do not change with iteration

ver time, so they are always the same, and only the right-hand side of
he system must be updated.

With respect to the initial iterant, note than only 𝐹 𝑛,01 , 𝐹 𝑛,02 , 𝐹 𝑛,03 are
equired to produce 𝐹 𝑛,10 in (36) and, respectively, 𝐹 𝑛,0𝐽−3, 𝐹

𝑛,0
𝐽−2, 𝐹

𝑛,0
𝐽−1 to

produce 𝐹 𝑛,1𝐽 in (37). Thus, observing (38) at 𝜈 = 0, we conclude that
nly these six values of the 𝐅𝑛,0 are needed to calculate the full vector
𝑛,1. Here, we propose to compute these few components of 𝐅𝑛,0 using
he explicit Euler method, that is:

𝑛,0
𝑗 = − 1

2
(2𝑐𝜇𝑗 − 𝑑𝜎2𝑗 )𝐹

𝑛−1
𝑗−1 + (1 − 𝑑𝜎2𝑗 )𝐹

𝑛−1
𝑗 + 1

2
(2𝑐𝜇𝑗 + 𝑑𝜎2𝑗 )𝐹

𝑛−1
𝑗+1 ,

𝑗 =1, 2, 3, 𝐽 − 3, 𝐽 − 2, 𝐽 − 1.
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𝐿 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 + 1
2𝑑𝜎

2
1 − 1

4 (𝑐𝜇1 + 𝑑𝜎
2
1 ) 0 ⋯ 0

1
4 (𝑐𝜇2 − 𝑑𝜎

2
2 ) 1 + 1

2𝑑𝜎
2
2 − 1

4 (𝑐𝜇2 + 𝑑𝜎
2
2 ) ⋱ ⋮

0 ⋱ ⋱ ⋱ 0
⋮ ⋱ 1

4 (𝑐𝜇𝐽−2 − 𝑑𝜎
2
𝐽−2) 1 + 1

2𝑑𝜎
2
𝐽−2 − 1

4 (𝑐𝜇𝐽−2 + 𝑑𝜎
2
𝐽−2)

0 ⋯ 0 1
4 (𝑐𝜇𝐽−1 − 𝑑𝜎

2
𝐽−1) 1 + 1

2𝑑𝜎
2
𝐽−1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

𝑅 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 − 1
2𝑑𝜎

2
1

1
4 (𝑐𝜇1 + 𝑑𝜎

2
1 ) 0 ⋯ 0

− 1
4 (𝑐𝜇2 − 𝑑𝜎

2
2 ) 1 − 1

2𝑑𝜎
2
2

1
4 (𝑐𝜇2 + 𝑑𝜎

2
2 ) ⋱ ⋮

0 ⋱ ⋱ ⋱ 0
⋮ ⋱ − 1

4 (𝑐𝜇𝐽−2 − 𝑑𝜎
2
𝐽−2) 1 − 1

2𝑑𝜎
2
𝐽−2

1
4 (𝑐𝜇𝐽−2 + 𝑑𝜎

2
𝐽−2)

0 ⋯ 0 − 1
4 (𝑐𝜇𝐽−1 − 𝑑𝜎

2
𝐽−1) 1 − 1

2𝑑𝜎
2
𝐽−1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

𝐛 (𝐹 𝑛0 , 𝐹
𝑛
𝐽 ) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

− 1
4 (𝑐𝜇1 − 𝑑𝜎

2
1 )𝐹

𝑛
0

0
⋮
0

1
4 (𝑐𝜇𝐽−1 + 𝑑𝜎

2
𝐽−1)𝐹

𝑛
𝐽

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, 𝑛 = 0,… , 𝑁,

Box II.
In contrast to the technique presented in the previous subsection,
this new approach corrects the shortcomings at the boundary. We show
it considering the same test problem (the Schwartz model) with the
same parameters values (Table 1). Remember that the solution (21)
satisfies the boundary conditions (26)–(27), regardless of the 𝑆𝑚𝑖𝑛 and
𝑆𝑚𝑎𝑥 values chosen. In practice, the iterative procedure is performed
until convergence, the iteration will be stopped when the distance
between two consecutive iterants is less than a very small prescribed
tolerance.

Taking the behavior observed in Fig. 1 as a guide, we compare
the distribution of the errors along the spot price interval at 𝜏𝑛 =
0.05, obtained with both procedures. For example, for ℎ = 0.625 and
𝑘 = 0.003125, in Fig. 3 we plot again the errors obtained with the
technique presented in Section 3.1 (dashed line), and the errors that
the new method proposed in this subsection causes (dash-dotted line).
We observe that the inaccuracies on the boundary disappear.

This good performance is maintained even over time. In Fig. 4, we
show the distribution of the error for the times 𝜏𝑛 = 0.05, 0.25 and 1 (the
maturity of the futures contract priced) with the same discretization
steps as in the previous experiments. Although the maximum error
increases over time, the approximation at the boundary does not distort
the values at the center of the interval, offering a very accurate solution
at maturity time.

Finally, note that the accuracy of the approximation obtained with
this method can be improved by refinement of the discretization pa-
rameters. In Fig. 5 we present a dash-dotted line, the maximum error
defined in (22) at the maturity time 𝑇 = 1, for the values of the step
values ℎ = 5, 2.5, 1.25, 0.625, 0.3125 and 0.15625, and the associated
𝑘 = 𝑐ℎ, with 𝑐 = 0.0025. We observe the second order of convergence
of the new procedure, confirmed by the solid line plotted in the lower
right-hand corner which describes the quadratic behavior.

4. Numerical solution of the model with delay

In this section, we consider the futures pricing model with delay.
Therefore, we have to deal with the numerical approximation of the
RPDE (11) with the initial condition (6). To this end, we adapt a
procedure that has already been used for pricing futures and other
derivatives (see, [26,27,29]). Note that, unlike the case without delay,
a new source of difficulty arises: the commodity spot price not also
appears in the coefficients of (11) as an independent variable 𝑆, but
also as a function that follows a stochastic process evaluated at different
7 
times involving the discrete delay. As a consequence, we are impelled
to use some procedure to estimate 𝜇(𝑆, 𝑆(𝑇−𝜏−𝛿)) and 𝜎(𝑆, 𝑆(𝑇−𝜏−𝛿)).

From a theoretical point of view, if the values of a specific trajectory
of the stochastic process (7)–(8) were known, we could substitute them
in the coefficients of Eq. (11) to price the futures along the prescribed
trajectory. Thus, as these coefficients, which depend on the trajectory,
would now be deterministic: the initial RPDE would be understood
as a deterministic PDE. By taking a large number of trajectories 𝑆(𝑖),
𝑖 = 1,… ,𝑀 , and denoting as 𝐹(𝑖)(𝑆, 𝜏) the corresponding solution of
the PDE along the 𝑖th trajectory, 𝑖 = 1,… ,𝑀 , we can consider

1
𝑀

𝑀
∑

𝑖=1
𝐹(𝑖)(𝑆, 𝜏),

a good estimation of 𝐹 (𝑆, 𝜏), solution of the problem (11), (6), assum-
ing 𝑀 is large enough.

For the numerical procedure that we propose, we reproduce this
schedule with numerical approximations. In such a case, taking into
account that the RPDE (11) is basically a PDE equation like (5) over
a trajectory of (7)–(8), we will adapt the advantageous technique
presented in Section 3.2 for the no-delay scenario.

Again, we introduce a uniform meshgrid on [𝑆𝑚𝑖𝑛, 𝑆𝑚𝑎𝑥]×[0, 𝑇 ], with
discrete steps ℎ and 𝑘 for the spot price and time variables, respectively,
associated to the discretizations parameters 𝐽 and 𝑁 : 𝑆𝑗 = 𝑆𝑚𝑖𝑛 + 𝑗 ℎ,
𝑗 = 0, 1,… , 𝐽 ; 𝜏𝑛 = 𝑛 𝑘, 𝑛 = 0, 1,… , 𝑁 . Taking a sufficiently large value
of 𝑀 (the number of considered trajectories of (7)–(8) to be used), for
𝑖 = 1,… ,𝑀 , we propose:

• Computing numerical approximations to 𝑆(𝑇 − 𝜏𝑛 − 𝛿), 𝑛 =
0, 1,… , 𝑁 , by means of the Euler discretization (see [30]) of
the stochastic delay process (7)–(8) with constant step 𝑘. Let us
denote them 𝜓𝑛 ≈ 𝑆(𝑇 − 𝜏𝑛 − 𝛿), 𝑛 = 0, 1,… , 𝑁 .

• Obtaining, from the previous computed 𝜓𝑛, 𝑛 = 0, 1,… , 𝑁 , esti-
mates of the coefficients 𝜇(𝑆𝑗 , 𝑆(𝑇 −𝜏𝑛−𝛿)) and 𝜎(𝑆𝑗 , 𝑆(𝑇 −𝜏𝑛−𝛿))
(denoted by 𝜇𝑛𝑗 and 𝜎𝑛𝑗 , respectively), 𝑗 = 0, 1,… , 𝐽 , 𝑛 = 0, 1,… , 𝑁 .
For parametric expressions of these functions, we can use 𝜇𝑛𝑗 =
𝜇(𝑆𝑗 , 𝜓𝑛) and 𝜎𝑛𝑗 = 𝜎(𝑆𝑗 , 𝜓𝑛), 𝑗 = 0, 1,… , 𝐽 , 𝑛 = 0, 1,… , 𝑁 .

• Using the discretization (33)–(35), which incorporates the finan-
cial boundary conditions (26)–(27), to approximate the solution
of the problem (11) and (6), along the computed trajectory, by
means of the approximations 𝜇𝑛𝑗 and 𝜎𝑛𝑗 , 𝑗 = 0, 1,… , 𝐽 , 𝑛 =
0, 1,… , 𝑁 . Note that now, the coefficients associated to 𝜇 and
𝜎 depend on 𝜏𝑛, 𝑛 = 0, 1,… , 𝑁 . Therefore, now we have the
matrices 𝐿𝑛 and 𝑅𝑛, and vectors 𝐛𝐧 in (33), that change with each
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Fig. 3. Distribution of the error along the spot price interval, for ℎ = 6.250𝑒 − 1 and 𝑘 = 3.1250𝑒 − 3, with the boundary conditions 𝐹𝑆𝑆 = 0 and 𝐹 (𝐹𝑆 + 𝑆𝐹𝑆𝑆 ) − 𝑆𝐹 2
𝑆 = 0.

Fig. 4. Distribution of the error along the spot price interval at different times, with the boundary condition 𝐹 (𝐹𝑆 + 𝑆𝐹𝑆𝑆 ) − 𝑆𝐹 2
𝑆 = 0.
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Fig. 5. Maximum error at the maturity time, for different refinements of the discretization parameters ℎ, and 𝑘 = 𝑐ℎ with the boundary condition 𝐹 (𝐹𝑆 + 𝑆𝐹𝑆𝑆 ) − 𝑆𝐹 2
𝑆 = 0. The

ine plotted in the lower right-hand corner represents quadratic slope.
time step. Let us denote 𝐅𝑛(𝑖), 𝑛 = 0, 1,… , 𝑁 , the vectors with the
computed numerical approximations, at each time level.

inally, we obtain a numerical approximation to the solution of the
PDE problem (11) and (6) by

𝑛 = 1
𝑀

𝑀
∑

𝑖=1
𝐅𝑛(𝑖), 𝑛 = 0, 1,… , 𝑁.

. Empirical application: pricing gold futures

Finally, we apply the different models and the new numerical
ethods to price gold futures. On the one hand, we will evaluate the

nterest of introducing memory in the process. On the other hand,
e will corroborate the usefulness of the numerical approximations
esigned for each of the situations: with and without delay. For this
urpose, we will compare the prices obtained in this problem with
he approximations provided by the MC simulation method, which is
ommonly used by researchers and partitioners in the markets.

From the high variety of commodities traded on the markets we
ave chosen the gold because of its relevance in the global word. Gold
s one of the most malleable, ductile, brilliant and beautiful metals, but
t is also one of the oldest way to store wealth. In fact, it is also used
s an investment asset, especially in periods of crisis or high inflation,
nd also serves as a reserve for central banks [31]. Gold is mainly
raded on 7 different markets and the most important are the London
ver-the-Counter (OTC) market and the COMEX in New York.

For the present empirical application and comparison of the tech-
iques, we use daily gold futures prices traded on the COMEX obtained
rom Nasdaq Data Link, with maturities from 1 to 6 months. More
recisely, we use data from October 2012 to March 2021 to estimate
he risk-neutral functions. We keep data from April 2021 to June 2021
o make an out-of-sample analysis of the futures prices. As usual in
he literature (see [32,33]), we use the front-month futures prices as

proxy to the spot price. Fig. 6 shows the spot prices (top) and their

9 
Table 2
Summary of the main statistics of the gold spot price and their first differences, from
October 2012 to June 2021.

Gold Variable N Mean Std. dev. Max Min

𝑆(𝑡) 2191 1429.0596 212.768 2097 1120.1
𝑆(𝑡 + 1) − 𝑆(𝑡) 2190 0.0032 14.6021 108.7 −140.4

first differences (bottom) along the time interval. Table 2 reports its
main descriptive statistics.

In order to avoid imposing arbitrary restrictions to the model, we
estimate the functions of the spot risk-neutral process 𝜇 and 𝜎 (in (1)
for the non-delayed case, and in (9) for the delayed one) by means
of nonparametric techniques and futures prices traded in the COMEX
(see [26]). More precisely, we use the Nadaraya–Watson estimator [34]
with a Gaussian kernel (for commodity futures see [8,26]). Unlike
the case without delay (in which the functions only depend on one
variable 𝑆), in the case with delay we use a nonparametric estimation
procedure with two independent variables (𝑆, 𝜂). From the prices in the
market we obtain the values of the functions 𝜇 and 𝜎 on a discrete grid
over a rectangle. Here, we use the gold price vector and its delayed
(represented by 𝜂). Finally, we compute the values in each (𝑆𝑗 , 𝜓(𝜏𝑛)),
𝑗 = 0, 1,… , 𝐽 , 𝑛 = 0, 1,… , 𝑁 , by means of interpolation.

With respect to the classic Monte Carlo approach, we approximate
the futures prices in the out-of-sample period by means of (3). In the ex-
periments we compute 5.000 trajectories with the Euler method applied
to the associated stochastic equation (that is, (1) in the case without
delay, and (9) in the case with delay), with a daily time step (1∕250),
and the antithetic variate as a variance reduction technique [35].

Regarding the new techniques that we propose (in Section 3.2 for
the case without delay, and in Section 4 for the case with delay), we
choose 𝑆𝑚𝑖𝑛 = 1000 and 𝑆𝑚𝑎𝑥 = 2200 (see the top picture of Fig. 6). For
the numerical experiments, we provide the results obtained with the
discretization parameters ℎ = 3 (𝐽 = 400), and 𝑘 = 𝑐 ℎ with 𝑐 = 0.0025
(𝑁 = 12096).
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Fig. 6. Daily gold spot prices (top) and their differences (bottom): from October 2012 to June 2021.
Fig. 7. Futures prices in the gold market and their numerical approximations, for 6-months maturity. (For interpretation of the references to color in this figure legend, the reader
s referred to the web version of this article.)
Fig. 7 presents the results obtained in the out-sample period. The
utures prices for a maturity equal to 6 months2 observed in the COMEX
re represented with a solid line; their approximations obtained by
he MC technique for the model without delay, with a light-colored
otted line; the approximations with the MC technique for the model

2 Similar conclusions are obtained for other maturities.
10 
with delay, with a dark dotted line; the numerical procedure proposed
in Section 3.2, with a dashed line; and the numerical procedure in
the model with delay described in Section 4, with a dash-dotted line.
Firstly, we observe that all methods capture approximately the profile
shown by the observed futures prices. Secondly, the incorporation of
memory in the model improves the valuation process, and notably in
the MC approach. The new numerical approaches we have designed
provide much more accurate approximations than the MC method for
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the whole prediction period. Note that the approximation with the
numerical procedure for the model with delay provides values prac-
tically indistinguishable from the observed ones. Finally, we observe
that the technique based on PDE discretizations, slightly overestimates
the observed prices in the COMEX along the whole out-sample period;
but the MC technique underestimates them systematically.

6. Conclusions

In the financial literature, it is very common to be confronted with
the task of solving a final value problem, based on PDEs, to price
derivatives. In most of the cases, a feasible expression of the solution
to this kind of problems does not exist or it is not easy to find. In these
cases, numerical methods are necessary to approximate the solution. In
general, a bounded region for the state variables must be introduced,
and then, appropriate boundary conditions must be incorporated.

In this paper, we focus on approximating commodity futures prices
in a single-factor diffusion model (with and without memory in the pro-
cess) by discretization of the corresponding PDE problem. We conclude
that the inclusion of boundary conditions based on financial character-
istics of the derivative paves the way for its accurate valuation.

We infer that incorporating a discrete delay in the stochastic process
of the continuous model improves the valuation of the futures price.
Moreover, the best approximation is obtained when applying the nu-
merical technique we propose, which discretizes the PDE problem with
the boundary conditions based on financial reasons, is applied.

Finally, we corroborate the effectiveness of the proposed techniques
by performing a very accurate pricing of gold futures contracts traded
on the COMEX.
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