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• Mixing influenced the aboveground 
biomass of sessile oak, but that of Scots 
pine remained unchanged.

• The biomass of sessile oak trees in mixed 
settings eventually surpassed that of 
monocultures as diameter increased.

• Biomass models were developed sepa
rately for mixed and pure sessile oak 
stands; however, the Scots pine models 
were applied to both.

• Nonlinear mixed-effects models pro
duced a better fit than logarithmic 
regression in predicting aboveground 
biomass.

• Considering tree species mixing in 
biomass modeling is important for ac
curate estimations.
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A B S T R A C T

Mixed forests generally outperform monospecific forests in terms of productivity, stability, and resilience and are 
becoming increasingly important for sustainable forest management. However, accurate estimates of tree 
biomass allocation, as well as aboveground and component biomass in mixed forests, remain scarce. Our study 
addressed three different objectives to identify differences in biomass between mixed and monocultures and 
develop biomass models: (1) identification of biomass growth patterns in mixed and monoculture stands using 
analysis of covariance (ANCOVA), (2) investigation of the best fitting approach to modeling aboveground 
biomass using logarithmic regression and nonlinear mixed-effects models, and (3) fitting compartment biomass 
proportion models by Dirichlet regression, considering the additivity property. We analyzed 52 harvested trees 
from six plots within an experimental triplet in northern Spain, consisting of mixed and single-species stands of 
Scots pine (Pinus sylvestris L.) and sessile oak (Quercus petraea (Matt.) Liebl.). Moreover, diameter at breast height 
and tree height were used as covariate variables to determine the most accurate and unbiased models. The 
research findings showed that (i) allometric patterns of individual-tree biomass in mixed stands significantly 
differed from those in monospecific stands for sessile oak, while those in Scots pine did not change; (ii) nonlinear 
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mixed-effect models demonstrated a better fit – indicated by lower Furnival index values – than logarithmic 
regression models in predicting aboveground biomass; and (iii) the fitted biomass equations provided good 
performance and accurate estimates of biomass component proportions compared to those of existing models. 
Consequently, our results offer a better understanding of biomass and carbon storage within mixed and mono
culture forests in the context of climate change.

1. Introduction

Tree allometry is affected by species mixtures in temperate forests 
(Poudel et al., 2019), impacting biomass and carbon allocation within 
individual trees (Osada, 2011). This connection has triggered increasing 
interest in the use of component biomass for bioenergy production in the 
context of the global effort to calculate the carbon balance in forest 
ecosystems (Poudel et al., 2019). Precise and unbiased tree biomass 
estimations are essential for estimating the aboveground biomass (AGB) 
and component biomass of trees (Næsset, 2004) to account for global 
carbon budgets (Litton and Kauffman, 2008). In forestry, fitting biomass 
models requires data that can be obtained through destructive or non- 
destructive methods (Zianis, 2008). Although some researchers posit 
that destructive measurements are more accurate and reliable for esti
mating tree biomass (Henry et al., 2011; Melson et al., 2011), this 
method is insufficient for large geographical areas. Carbon-related 
research has focused primarily on AGB due to the difficulty in esti
mating belowground biomass (BGB), particularly the complexities 
associated with root systems (Yuen et al., 2016).

The Scots pine (Pinus sylvestris L.), a widely distributed and important 
timber species across Eurasia (Stanners and Bourdeau, 1995) due to its 
ability to thrive on various substrates, in poor soils, in cool wet climates, 
and in extremely cold continental climates (Cañellas et al., 2000). Ac
cording to Stanners and Bourdeau (1995), Scots pine forests contribute 
substantially to Europe's carbon sequestration efforts, covering 24 % of 
the total forested area (75 million km2). Meanwhile, sessile oak (Quercus 
petraea (Matt.) Liebl.), a deciduous broadleaved tree species found 
across Europe (Eaton et al., 2016), provides high-quality timber, fire
wood, acorns, and tree bark. Scots pine and sessile oak commonly 
coexist in mixed European forests, although they exhibit different shade 
tolerance temperaments. Scots pine species are intolerant of shade, 
whereas sessile oak species display a moderate level of shade tolerance 
(Niinemets and Valladares, 2006). Additionally, their rooting patterns 
vary, which allows them to use resources in mixed environments more 
efficiently. As a result of this ecological diversity, mixed-species forests 
may grow faster and increase in biomass, highlighting the importance of 
understanding the effects of mixtures of these two species in forest 
ecosystems.

Single-species stand management and dynamics have been well 
researched and developed in Europe since the early 18th and 19th 
centuries (Griess and Knoke, 2011). However, due to climate change and 
improved resource management, mixed-species stands have gained 
considerable attention in recent years (for instance, Bravo-Oviedo et al., 
2014; Hulvey et al., 2013; Pretzsch and Schütze, 2016; Steckel et al., 
2020). European forest managers have gradually shifted their focus from 
monocultures to mixed forests (Bravo-Oviedo et al., 2014). Some sci
entific literature provides evidence that mixed forests offer greater 
productivity, stability, and ecosystem services than monocultures 
(Bauhus et al., 2017; del Río et al., 2017; Gamfeldt et al., 2013). In 
mixed-species stands, different species can exhibit significant variations 
in growth patterns, crown architecture, and wood density (Bravo et al., 
2019; del Río et al., 2017). As a result of these variations, certain effects 
are observed such as overyielding (Pretzsch and Forrester, 2017) and 
changes in tree allometry (Forrester et al., 2018; Pretzsch, 2019). In 
contrast, Frivold and Frank (2002) examined mixtures of birch and co
nifers in southeast Norway, while del Río and Sterba (2009) studied a 
mix of Pinus sylvestris and Quercus pyrenaica in Spain. Interestingly, both 
studies revealed that tree mixing had neither positive nor negative 

effects. In the last decade, there has been growing interest in how forest 
composition – whether mixed or monospecific – influences both forest 
dynamics and biomass production (Lu et al., 2016). This influence could 
be attributed to how these species utilize and adapt to available re
sources such as low light and specific rooting patterns. Zhang et al. 
(2020) emphasized that tree allometry differs depending on factors such 
as tree architecture and silvicultural management.

Despite mixed-species forests accounting for a large proportion of 
global forested areas and their ecological importance, tree biomass 
estimation models usually focus on monospecific forests, with mixed- 
species forests receiving very little attention, with a few relevant ex
ceptions (Bravo et al., 2019; Briseño-Reyes et al., 2020; Pretzsch et al., 
2015). This leads to a substantial research gap. This limitation may be 
due to the complexity of mixed forests and the absence of standardized 
methods to estimate their biomass. Therefore, models developed for 
monospecific forests are often employed for mixed forests (Forrester and 
Pretzsch, 2015), potentially resulting in biases and inaccuracies in 
estimating tree biomass in mixed stands (Bravo et al., 2019; Dutcă et al., 
2018). Hence, it becomes necessary to either validate the accuracy of the 
models before applying them in mixed forests or modify the models to 
incorporate the influence of mixed forests in the biomass equations. In 
cases where monospecific models are unsuitable for mixed forests, new 
biomass models should be developed and fitted. The use of biomass data 
from mixed forests and adequate modeling approaches are needed 
(Weiskittel et al., 2015). The use of classical linear and nonlinear 
regression methods to fit biomass models is the standard method in 
forestry, with diameter at breast height (dbh), either alone or in com
bination with tree height (ht), as the main independent variable. Inde
pendent fitting by biomass compartments leads to incompatible 
estimations of biomass fractions and AGB. Methods such as seemingly 
unrelated regressions (SUR) (Parresol, 1999), nonlinear seemingly un
related regression (NSUR) (Dong et al., 2014), and Dirichlet regression 
(Eker et al., 2017) employ simultaneous equations to ensure additivity 
and predict biomass proportions for different tree components (Wharton 
and Cunia, 1987). In our present study, we developed compatible 
equations to estimate the single-tree aboveground and component bio
masses of mixed pine-oak stands and pure stands of each species. The 
aim of this study was to understand the effects of species composition on 
tree biomass allometry in mixed and pure stands of Scots pine and sessile 
oak. A comprehensive evaluation of the hypothesis posited the 
following: (1) the allometric patterns of individual-tree biomass for 
Scots pine and sessile oak do not differ between mixed stands and 
monospecific stands; (2) the AGB equations for both species are not 
affected by forest composition (mixed versus monospecific); and (3) the 
percentage of biomass in different tree components of Scots pine and 
sessile oak is not affected by mixture versus monoculture. Subsequently, 
we compared our fitted models with those available for the study area 
developed by Ruiz-Peinado et al. (2011) for Scots pine (Pinus sylvestris 
L.) and Balboa-Murias et al. (2006) for pedunculate oak (Quercus robur 
L.), both of which use SUR fitting for tree components. The comparison 
used models for Q. robur because there was no existing biomass model 
for Q. petraea in Spain. Additionally, our fitted models were also 
compared to those of Menéndez-Miguélez et al. (2021), who fitted with a 
slightly different approach using the crown ratio proportion for crown 
biomass estimation, observing additivity using SUR.
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2. Materials and methods

2.1. Study area

In our study, we used the triplet-based approach as detailed by 
Pretzsch et al. (2020). This method consists of an observational site with 
three different types of plots located within the same place in order to 
ensure uniform growth conditions such as site quality, soil type, eleva
tion, slope, environmental conditions, silvicultural practices, stand age 
and tree density. The triplet includes a monospecific Scots pine (Pinus 
sylvestris L.) plot, a monospecific sessile oak (Quercus petraea (Matt.) 
Liebl.) plot, and a mixed plot where both tree species are grown together 
at the same place. This allows the comparison of biomass accumulation 
and growth dynamics under the same environmental conditions be
tween mixed-species stands and corresponding pure stands. The triplets 
were found in two locations in the Cantabrian Mountains of the Castilla 
y León region in northern Spain. The first location was Busnela, which is 
in Burgos province (03◦47′19 W, 43◦02′52 N), and the second location 
was Valberzoso, which is in Palencia province (04◦14′32 W, 42◦53′41 N) 
(see Fig. 1). Table 1 provides information on the forest stands investi
gated in this study. The triplets are rectangular in shape and range in size 
from 580 to 890 m2. The forest stands in Busnela were initially planted 
with Scots pine 58 years ago, which was accompanied by natural 
regeneration of sessile oak. The stands in Valberzoso, however, have 
naturally regenerated with both Scots pine and sessile oak, averaging 60 
years.

2.2. Data collection and measurements

The surveys and biomass sampling took place in April 2018 at the 
Busnela site and in March 2020 at the Valberzoso site. Within each plot, 
the diameter at breast height (dbh) and tree height (ht) were recorded 
for all the standing trees. This procedure was crucial for determining the 
distribution of tree sizes within the study sites. We ensured that species 
size variability was represented while considering resource and time 
constraints by adhering to the following criteria: (a) 5 to 8 trees per 
species from each plot were selected across the observed dbh range to 
enable more accurate biomass estimation; (b) suppressed trees, trees 
showing signs of disease and structural deformity trees, were ignored in 
all stands; (c) dead trees and trees with dead tops were neglected in the 
selection; and (d) in the mixed forests, the sample trees selected were 
those that grew under different species competition conditions to cap
ture diverse interspecific competition conditions.

The dataset included 52 trees obtained across 6 plots (2 triplets). In 
Busnela, 8 trees were sampled in each monospecific plot and 16 were 
sampled in the mixed plot (8 of each species), while in Valberzoso, 5 
trees were sampled in each monospecific plot, and 10 were sampled in 
the mixed plot (5 of each species). Trees were meticulously allocated to 
ensure a representative sample across the plots, taking into account the 
specific composition of each plot. A direct measurement technique was 
used to estimate the individual tree AGB based on the methodologies 
described by Ruiz-Peinado et al. (2012, 2011). As part of the destructive 
biomass sampling method, trees designated for harvesting were selected 
through a random selection process across the observed dbh range 
following established criteria. The tree biomass was divided into four 

Fig. 1. Map of the study area in the Cantabrian Mountains of the Castilla y León region in Spain, with triplet locations.
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primary categories: i) stem with bark, ii) thick branches (diameter > 2 
cm), iii) thin branches (diameter < 2 cm), and iv) foliage (oak leaves 
were not present at the time of sampling). Table 2 provides the summary 
statistics of the harvested trees for the estimation of individual tree AGB 
and its various components. The fresh biomass of each component in the 
field was weighed using a digital hanging balance (accuracy 50 g) with a 
maximum working load of 50 kg. The dry weight of each component of 
the AGB was determined by bringing a representative subsample (be
tween 2000 g and 4000 g) to the laboratory in a sealed plastic bag. All 
the collected subsamples were reweighed before being oven-dried at a 
suitable temperature of 102 ◦C (Williamson and Wiemann, 2010) until a 
constant mass was reached. As it was not possible to weigh the stem 
directly in the field, the stem diameter was recorded every 1 m from the 
base up to a minimum diameter of 7 cm (merchantable volume). Af
terwards, the volume was calculated using Smalian's formula. Wood 
disks, approximately 1–3 cm in width, were harvested from each tree at 
the base, breast height, and top to accurately ascertain the average wood 
density to estimate the stem biomass. Water displacement was used to 
determine the fresh volume of these disks in a graduated cylinder suit
able for their size. The disks were then oven-dried after recording their 
fresh volume. We calculated the wood density for each tree by dividing 
the dry mass of each disk by its fresh volume. The approach of sampling 
wood disks at three different heights along the stem, accurately captures 
the variations in wood density (Demol et al., 2021). The calculated wood 
density was multiplied by the stem volume to estimate the biomass dry 
weight. The total dry weight of the AGB and the biomasses of the 
different components (stems with bark, thick branches, thin branches, 
and foliage) were finally calculated with the aid of the following Eqs. 
(1)–(3): 

Biomassstem = volumestem*wood density (1) 

Biomasscomponent = FWcomponent*
SDWcomponent

SFWcomponent
(2) 

AGB = Biomassstem +Biomassbranches +Biomassfoliage (3) 

where volumestem is the stem volume, and wood density is the wood 
density. FWcomponent is the fresh weight of each component, SDWcomponent 

is the subsample dry weight of the component, and SFWcomponent is the 
subsample fresh weight of the component. Biomassstem, Biomassbranches, 
and Biomassfoliage are the biomasses of the stem, branches, and foliage, 
respectively.

2.3. Data analysis

The common data assumptions were checked to confirm normality, 
homogeneity of variance, independence, and linearity. Our data analysis 
followed a five-step sequential process. ANCOVA was first applied to 
determine the differences between mixtures and monocultures. The 
second step involved fitting both logarithmic regression and nonlinear 
mixed-effect (NLME) models to AGB. In the third step, the proportions of 
biomass components were fitted via Dirichlet regression (Douma and 
Weedon, 2019). In the fourth step, we evaluated and ranked all the 
models to determine the most appropriate model for providing insight 
into biomass allocation and accurate estimates of biomass use. As a final 
step, the best-performing models chosen from the pool of candidate 
models were compared with previously published models to evaluate 
their performance. Each of these steps is explained in the following 
sections.

Table 1 
General characteristics of the studied locations (Busnela and Valberzoso, Spain).

Location Plot Longitude (◦W) Latitude (◦N) Altitude (m) Slope (%) Area (ha) Number of trees (tree ha− 1) Basal area (m2 ha− 1)

Busnela Pure pine 03◦ 47′19” 43◦02′55” 810 22 0.062 1102 66.17
Pure oak 03◦ 47′21” 43◦02′51” 760 34 0.058 1461 47.65
Mixed 03◦ 47′19” 43◦02′52” 785 28 0.089 1203 52.65

Valberzoso Pure pine 04◦14′31” 42◦53′52” 897 16 0.062 1134 71.30
Pure oak 04◦14′22” 42◦53′43” 880 10 0.062 1240 58.70
Mixed 04◦14′32” 42◦53′41” 810 11 0.089 1165 54.20

The longitude and latitude are presented in degrees (◦), minutes (‘), and seconds (“); the altitude is measured in meters (m); the slope is indicated as a percentage (%); 
the plot area is measured in hectares (ha); the number of trees is reported per hectare (trees ha− 1); and the basal area is expressed in square meters per hectare (m2 

ha− 1).

Table 2 
Summary of tree characteristics for the sampled trees in pure and mixed forest stands.

Variables n Min Mean Max sd Variables n Min Mean Max sd

Scots pine sampled trees in pure stands Scots pine sampled trees in mixed stands
dbh (cm) 13 15.1 25.7 38.0 7.2 dbh (cm) 13 17.2 24.9 33.3 4.6
ht (m) 13 15.0 17.2 21.3 2.1 ht (m) 13 14.9 18.8 21.6 2.4
Volume (m3) 13 0.12 0.45 1.14 0.32 Volume (m3) 13 0.15 0.42 0.77 0.19
Stem biomass (kg) 13 55.7 212.7 538.0 150.4 Stem biomass (kg) 13 72.3 195.7 374.9 84.7
Thick branch biomass (kg) 13 3.4 26.2 69.1 24.3 Thick branch biomass (kg) 13 4.4 17.4 39.7 12.7
Thin branch biomass (kg) 13 3.7 15.4 31.0 9.3 Thin branch biomass (kg) 13 1.3 9.0 27.1 7.7
Foliage biomass (kg) 13 1.9 8.7 27.3 8.0 Foliage biomass (kg) 13 1.7 5.8 23.4 6.2
AGB-tree (kg) 13 66.0 263.0 665.2 189.4 AGB-tree (kg) 13 80.0 227.9 448.2 102.5

Sessile oak sampled trees in pure stands Sessile oak sampled trees in mixed stands
dbh (cm) 13 7.6 14.8 22.0 4.7 dbh (cm) 13 8.3 15.6 25.0 5.4
ht (m) 13 6.7 15.5 20.9 3.7 ht (m) 13 9.8 16.4 20.8 3.3
Volume (m3) 13 0.02 0.17 0.39 0.11 Volume (m3) 13 0.02 0.18 0.50 0.16
Stem biomass (kg) 13 2.1 121.9 277.4 77.4 Stem biomass (kg) 13 14.1 123.8 297.3 97.6
Thick branch biomass (kg) 13 0.5 10.2 36.8 10.3 Thick branch biomass (kg) 13 7.5 20.9 47.4 14.2
Thin branch biomass (kg) 13 0.5 2.2 8.2 2.4 Thin branch biomass (kg) 13 0.8 6.4 26.4 7.2
AGB-tree (kg) 13 23.9 134.3 322.4 85.2 AGB-tree (kg) 13 22.7 151.1 360.1 114.6

dbh: diameter at breast height; ht: tree height; AGB-tree: aboveground biomass per tree; n: number of sampled trees; Min: minimum value; Max: maximum value; sd: 
standard deviation.
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2.3.1. Differences in aboveground and component biomasses between 
mixed and monospecific stands

As a preliminary analysis, the Spearman correlation test (using 
Spearman's rank correlation coefficient) was conducted to analyze the 
degree of correlation between AGB and other variables namely dbh and 
ht. During this initial step, we were able to understand how our data 
were related. We subsequently used analysis of covariance (ANCOVA) to 
determine the primary focus of the study, which was to examine the 
significant variations in aboveground and component biomasses in 
mixed versus monospecific stands. Log-transformation of variables was 
needed, with dbh used as a covariate for the regression models. For our 
analysis to be valid, we ensured that all the models satisfied the 
ANCOVA assumptions. The Johnson-Neyman procedure was applied, as 
implemented in the R package ‘JNplots’ (Toyama, 2023), to identify 
regions with significant slope differences when the homogeneity of slope 
conditions was not met.

2.3.2. Fitting biomass models
Subsequently, biomass models were fitted separately for trees in 

mixed stands and those in monospecific stands when the mixture had a 
statistically significant difference. Whenever there were no significant 
differences between the mixed and monospecific stands, the same 
biomass models were applied to the whole species-specific dataset. The 
fitting of the biomass models involved two procedures. First, we fitted 
the AGB biomass models and then performed simultaneous fitting of the 
biomass proportions for the different tree compartments through the 
Dirichlet regression technique. The selection of the appropriate method 
for fitting AGB models has long been debated (Packard, 2013). However, 
the AGB and component biomass of each species have incorporated 
diverse model forms documented in the literature. In particular, we 
adapted models as outlined by Menéndez-Miguélez et al. (2022) and 
Ruiz-Peinado et al. (2012) which were related to dbh and total height as 
independent variables, applying them to fit the data for individual 
species. We used two different methods grounded in a power-law dis
tribution (Eq. (4)). The first approach was linear regression on log- 
transformed data with additive error (Eq. (5)), which addresses heter
oscedasticity problems in biomass data. The second approach was 
nonlinear regression on original data with multiplicative error (Eq. (6)) 
(Huy et al., 2019; Picard et al., 2012). The tested models comprised 
linear regression forms with log-transformed equations (Eqs. (7)–(13)), 
as well as the NLME models (Eqs. (11)–(14)). These methods ensure that 
the models follow the regression assumptions while also producing the 
most promising results (Addo-Fordjour and Rahmad, 2013). When 
converting logarithmic transformations back to biomass weight units, a 
correction factor (CF) is needed. The value of the CF can be calculated 
using the formula CF = exp.[SEE2/2], as suggested by Baskerville 
(1972), where SEE is the standard error of the estimate. Within the 
framework of the NLME models, dbh and ht served as fixed effects that 
captured the main predictors for predicting AGB. We included the ‘plot’ 
variable as a random effect, which accounted for individual differences 
across the different study plots. In these models, weights based on a 
variance function are applied to account for heteroscedasticity and re
sidual distributions, ensuring that variance across observations is 
appropriately managed, thereby improving model fit and accuracy 
(Balboa-Murias et al., 2006; Parresol, 2001). By employing these stra
tegies, we overcame any concerns about data dispersion and improved 
the trustworthiness of our results. 

Y = β0Xβ1*ε (4) 

logY = logβ0 + β1logX+ ε (5) 

Y = β0Xβ1 + ε (6) 

where Y = aboveground dry biomass, X = tree dimension variable (e.g., 
dbh or ht), and ε = residual error term. β0, and β1 = model parameters or 

fitted coefficients.
Next, the Dirichlet regression approach was used to fit the biomass 

proportions for the following tree compartments: stems, thick branches, 
thin branches, and foliage (specifically for pine trees) using the ‘Diri
chReg’ package (Maier, 2014). This approach ensures the additivity 
property so that the prediction of the different components sums to the 
aboveground biomass. The predicted proportions were subsequently 
applied to the predicted AGB to obtain the predicted biomass estimates 
for the tree components. The Dirichlet regression presented the pre
dicted proportions for each component of biomass (i.e., pstem, pthick 
branch, pthin branch, and pfoliage). These predicted proportions were 
then multiplied by the predicted AGB to calculate the predicted biomass 
estimates for the various components. Refer to the Supplementary 
Methods for comprehensive procedures for calculating biomass pro
portions. In recent years, the use of this method for calculating biomass 
has significantly increased (e.g., Eker et al., 2017; Poudel et al., 2019; 
Poudel and Temesgen, 2016). Dirichlet regression outperforms other 
fitting algorithms (Poudel and Temesgen, 2016). Furthermore, we fitted 
the most commonly used biomass estimation models with logarithmic 
transformations (Eqs. (7)–(10)), but alternatively, we fitted their coun
terparts using nonlinear approaches through NLME models. To ensure a 
thorough and correct assessment of the aboveground biomass distribu
tion in our study, these customized models played a crucial role in 
accurately predicting the percentage of biomass for different tree 
components. 

logAGB = β0 + β1logdbh (7) 

logAGB = β0 + β1loght (8) 

logAGB = β0 + β1logdbh2
+ β2loght (9) 

logAGB = β0 + β1log
(
dbh2ht

)
(10) 

AGB = β0dbhβ1 (11) 

AGB = β0htβ1 (12) 

AGB = β0
(
dbh2)β1

htβ2 (13) 

AGB = β0
(
dbh2ht

)β1
(14) 

2.3.3. Model evaluation
The most accurate model was chosen for each species, considering 

the proposed model structure (Cao and Li, 2019; Xiao et al., 2011). The 
models were compared based on a combination of criteria comprising 
the Akaike information criterion (AIC) and root mean square error 
(RMSE) (Eq. (15)). Additionally, observed versus predicted plots and the 
biological behavior of the models were used to evaluate the biological 
significance and reliability of the models. However, applying the same 
methodology to compare models with different dependent variables 
could lead to misleading findings (Parresol, 1999). Furnival's index (FI), 
as delineated in Eq. (16), was used to compare the logarithmic versus 
NLME models. This index was tailored to models with different depen
dent variables (Furnival, 1961). 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(yi − ŷi)

)
2

n − p

√
√
√
√
√

(15) 

FI =
1

[fʹ(Y) ]
̅̅̅̅̅̅̅̅̅̅
MSE

√
(16) 

Bias =

∑n

i=1
(yi − ŷi)

n
(17) 

E. Cudjoe et al.                                                                                                                                                                                                                                  Science of the Total Environment 953 (2024) 176061 

5 



Bias (%) = 100×
Bias

Y
% (18) 

where n is the total number of trees, yi and ŷi are the observed and 
predicted values of AGB or its component, respectively, p is the number 
of parameters of the equation, and Y is the mean aboveground or 
component biomass. Additionally, f’(Y) represents the derivative of the 
dependent variable concerning biomass, and MSE represents the mean 
square error of the fitted equation. The geometric mean is denoted by 
the square bracket symbol ([]). The analysis was carried out with Sta
tistical R software 3.6.3 (R Core Team, 2020) coupled with the ‘per
formance’ package. The package ‘nlme’ (Pinheiro and Bates, 2017) was 
used for the NLME models.

2.3.4. Comparing the developed models to existing models for performance 
analysis

A comparison of the developed models for each species in this study 
(denoted Model I) was carried out with two commonly used models in 
Spain to evaluate model performance. Model II included the represen
tative of Ruiz-Peinado et al. (2011) for Scots pine and Balboa-Murias 
et al. (2006) for pedunculate oak, both of which were fitted through 
SUR. Given that there is no biomass model for sessile oak in Spain, the 
model for pedunculated oak was used. Both Quercus species could be 
considered very similar in terms of their traits and growth patterns, and 
volume estimations are usually developed together in Spain. Model III 
(Menéndez-Miguélez et al., 2021) incorporates an equation used for 
estimating tree biomass with a novel approach that includes stem 
biomass and crown ratio estimations through SUR fitting for both spe
cies. Both authors fitted models (models II and III) using data from 
monospecific stands. Among the criteria used in evaluating newly 
developed biomass models against earlier models, particularly in the 
prediction of AGB, stem biomass, and crown biomass, were bias per
centage (Eqs. (17)–(18)) and RMSE. We used this methodology to ensure 
a rigorous analysis of the effectiveness of our newly developed biomass 
models against established models in Spain.

3. Results

3.1. Descriptive and analytical differences in forest types (mixture versus 
monoculture)

We assessed the distribution of biomass in stands with different tree 
species, including trees growing in mixed pine-oak stands, monospecific 
pine stands, and monospecific oak stands. Within the observed dataset, 
80.9 %, 10.0 %, 5.8 %, and 3.3 % of the trees sampled from the 
monospecific pine stands had mean dry biomass distributions in the 
stems, thick branches, thin branches, and needles, respectively, of the 
mean AGB. Moreover, in the mixed pine stands, the mean dry biomass in 
the stems, thick branches, thin branches, and needles accounted for 
85.9 %, 7.6 %, 3.9 %, and 2.6 %, respectively, of the mean AGB. For the 
pure oak stands, the mean aboveground dry biomasses represented by 
the stem, thick branches, and thin branches were 90.8 %, 7.6 %, and 1.6 
%, respectively. Additionally, the oak-mixed stands exhibited different 
distributions of aboveground dry biomass, with 82.0 % aboveground dry 
biomass in stems, 13.8 % in thick branches, and 4.2 % in thin branches 
(see Table 2). The AGB and dbh were positively correlated in both mixed 
and pure stands of pine and oak trees. The correlation between AGB and 
ht. for pines was moderately positive. However, the correlation for oak 
trees varied between mixed oak trees and pure oak trees (see Supple
mentary Table S1).

3.2. Differences between AGB and tree components (stem, branches, and 
foliage) between mixed and monospecific stands

The ANCOVA analysis revealed that, for the pine trees, no 

statistically significant differences were detected in the interaction effect 
when comparing mixed versus monospecific trees for all biomass cate
gories, including AGB, thick branches, thin branches, and needle 
biomass compartments (Fig. 2). However, in the case of oak trees, the 
significant effect of the interaction term for AGB and stem biomass 
suggested that the growth patterns of trees in the mixed settings were 
different from those in the monocultures. Notably, the significant dif
ferences in AGB between mixed and monospecific oak trees were due to 
substantial differences in stem biomass. The Johnson-Neyman proced
ure identified dbh ranges where slope differences in mixtures versus 
monocultures were significant. Among the specific dbh ranges, 
including 11.0 to 26.9 cm for AGB and 12.6 to 33.5 cm for stem biomass, 
the slope differences were not significant. In this way, when the trees 
were small (early stages), the oak trees in the mixed stands had signif
icantly lower AGB than those in the monospecific stands. In contrast, as 
the trees grew, the oak trees in the mixed stands eventually surpassed 
the oak trees in the monospecific stands in terms of AGB (as illustrated in 
Fig. 2).

3.3. Estimation of aboveground biomass (AGB)

From the logarithmic fitting, the best model for predicting the AGB of 
Scots pine trees was the Eq. (9), which depended jointly on dbh and ht as 
independent variables. This model showed the highest goodness of fit 
among all the tested models (Table 3). Upon shifting our focus to oak 
trees, we found that the best models varied with forest composition. For 
monospecific oak stands, Eq. (9), which depends on dbh and ht., again 
emerged as the best model. Conversely, for mixed oak stands, Eq. (7), 
which relies exclusively on dbh, performs best. The fitting of the NLME 
models revealed that Eq. (13), which depended on dbh and ht, notably 
produced the lowest AIC value when predicting the AGB of Scots pine 
(Table 4). Eq. (13) also performed best in pure oak settings. However, for 
mixed oak trees, Eq. (11) relies solely on a single variable (dbh) and 
yields the lowest AIC value. After examining Furnival's index values in 
detail, the comparative analysis clearly confirmed that NLME models 
were unequivocally superior to the logarithmic models. Conclusively, 
Eqs. (13), (13), and (11) demonstrated the lowest FI values (0.033, 
0.300, and 0.075, respectively, for pine, pure oak, and mixed oak). The 
models were found to be highly accurate in predicting AGB variations, 
with residual variations measured between the observed and predicted 
values quantified at 0.004 kg tree− 1, 0.008 kg tree− 1, and 0.005 kg 
tree− 1, respectively. Despite the residual variations not presented in the 
tables, these contributions illustrate the effectiveness of the models in 
capturing subtle dynamics in AGB. We observed that the selected models 
had superior fitting statistics and did not exhibit any problems with 
heteroscedasticity in AGB.

3.4. Estimation of biomass proportions using the Dirichlet method

The results obtained from fitting the Dirichlet regression models, 
showing the parameter estimates and the efficacy of the models, are 
presented in Table 5. We observed changes in biomass proportions 
across the dbh and ht gradients in Scots pine, pure oak, and mixed oak, 
as depicted in Fig. 3. In the Scots pine trees, an increase in dbh was 
associated with a decrease in stem biomass, while the biomass of thick 
branches, thin branches, and foliage simultaneously increased. Never
theless, as ht increased, the trend reversed, with the stem proportion 
increasing and the other compartments decreasing (Fig. 3a,b). For both 
mixed and pure sessile oaks, the proportion of stem biomass increased, 
whereas the biomass of thick branches and thin branches decreased as 
dbh and ht increased (Fig. 3c-f). From the tested biomass Eqs. (11)–(14), 
Eq. (13), which includes both dbh and ht., provided the most accurate 
predictions for pine species in our candidate models. This selected 
equation showed strong statistical fit and had the lowest AIC value, as 
shown in Table 5. In particular, Eq. (12), which relies solely on ht as the 
predictor variable, performed the best for both pure oak species and 
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mixed oak species. While Eq. (12) had the lowest AIC value, it did not 
exhibit the smallest deviance compared to the other equations for both 
species. The model predicted that the mean biomass proportion of stems 
with respect to the AGB was 81.99 %, whereas that of thick branches was 
8.70 %, that of thin branches was 5.61 % and that of needles was 3.69 % 
in Scots pine. Stems accounted for 83.34 % of the AGB in pure sessile 
oak, while thick branches and thin branches accounted for 11.36 % and 
5.30 %, respectively. On the other hand, in mixed sessile oak, stem 
accounted for 74.00 % of the AGB, whereas thick branches accounted for 
19.27 % and thin branches accounted for 6.74 %. Based on the Dirichlet 
regression method for both pine and oak species, unbiased predictions of 
component proportions could be made, as well as more precise estimates 
of component biomass, as shown in Table 5.

3.5. Unraveling the performance of fitted models: a comparative analysis 
of new biomass equations versus previously developed models

In terms of bias, Models II and III performed worse than the models 
fitted in this study (Model I) across the AGB, stem, and crown compo
nents of the pine and oak species (see Fig. 4). Model I overestimated the 
AGB and crown biomass and underestimated the stem biomass for all the 
species. A greater bias was evident in models II and III, indicating a 
limited ability to capture the true variability in mixed oak biomass. 
Model II showed an RMSE slightly greater than that of Model I for all the 
species, with Model II showing the highest RMSE values, especially for 
the AGB and crown compartments. Therefore, the statistics for Model I 
indicated more accurate estimations and superior predictive accuracy 
across pine and oak species than did the existing models, indicating that 
Model I is preferable for estimating ABG, stem, and crown components.

4. Discussion

4.1. Assessing biomass allometry in mixed-stand and pure-stand forests: 
comparative study and implications

Our results provide compelling evidence that the biomass growth 
patterns of Scots pine are similar in mixed and monospecific environ
ments. In contrast, sessile oak biomass development, particularly the 
AGB and stem biomass, differed in both environments. Previous findings 
by Pretzsch (2020) suggested that oaks in mixed settings would have 
wider crowns. However, our study indicated that oak trees with wider 
crowns may not necessarily have greater crown biomass. Both mixed 
and monoculture forests produced similar crown biomasses for oak 
trees. The reason for this difference may be that oak trees in mixed 
forests have a lower ratio of woody biomass to crown area than mono
cultures. Furthermore, as pine trees grow quickly in the early stages, 
there may be less interspecific competition among species in mixed 
stands for light. Similarly, intraspecific competition within mono
cultures is equally important. In contrast, the AGB and stem biomass of 
oak trees exhibited different biomass patterns but there was no signifi
cant impact on branch development, resulting in sessile oak crown 
biomass being equally affected by both intra- and interspecific compe
tition. In other mixtures, it was observed that Norway spruce growing 
with European beech showed a reduction in branches and needle 
biomass, which was attributed to increased crown competition (Dutcă 
et al., 2018). We found that oak trees in mixtures had lower AGB and 
stem biomass at smaller dbh ranges than oak trees in monocultures. This 
suggests that there may be competition or limited resources in mixed 
environments that affect the early stages of oak development (Forrester 
et al., 2018). However, as the dbh range increases, there is a noticeable 
change in the trend. Oak trees in mixtures gradually catch up to, and 
eventually exceed, oak trees in monocultures, reaching equal or greater 
AGB and stem biomass at the end of the range that was sampled. This 
increase in the biomass growth of the oaks in the mixed stands could be 
attributed to the search for sunlight. When light cannot pass through 

Fig. 2. Biomass allometry for mixed and pure stand trees (pine spans a1 to a5 and oak depicts from b1 to b4). log(dbh) represents the covariate, and log(AGB), log 
(ST), log(TB), log(tB), and log(FL) represent the dependent variable (ST: stem, TB: thick branches, tB: thin branches, FL: foliage, respectively). Solid red lines and dots 
represent mixed trees and dashed blue lines and triangles represent monospecific trees.
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pine crowns, oaks are forced to grow more as they adjust to the available 
light (Amoroso and Turnblom, 2006). This explains why trees encounter 
less competition or even facilitation in interspecific competition than in 
intraspecific competition (Ngo Bieng et al., 2013; Strieder and Vosper
nik, 2021). These findings are consistent with those of Toïgo et al. 
(2015), who reported that sessile oak overyielded when mixed with 
Scots pine. In mixed and monospecific stands, sessile oak exhibits 
distinct growth patterns and biomass allocation strategies.

4.2. Differences in the AGB equation between mixed and monospecific 
stands

Our study contributes to the ongoing debate regarding the most 
effective modeling approaches for addressing data heterogeneity in 
biomass studies (Huy et al., 2021; Jabłońska, 2018; Zeng and Tang, 
2011). NLME models are considered to be more effective than tradi
tional models in forestry research due to their ability to handle data 
heterogeneity better than traditional models (Bravo et al., 2019; Porté 
et al., 2002; Pretzsch et al., 2015). The findings presented in this paper 
aligned with the conclusions of Bronisz and Mehtatalo (2020), who 
advocated for mixed-effect models in the estimation of AGB. Our results 
revealed that the NLME models performed better than logarithmic re
gressions, reinforcing the preference for this fitting approach. These 
convergences challenge conventional practices and support more 
effective methodological decisions and greater research effectiveness. 
Generally, NLME models display minimal downward bias, suggesting 
their accuracy in predicting data. NLME models are ideal for analyzing 
data involving repeated observations and spatial dependencies. As 
demonstrated in our study, these models create a variance-covariance 
architecture that effectively mitigates the effects of random variables, 
such as plots. A common challenge when applying NLME models is the 
identification of mixed parameters and the calculation of random effects 
(Xu et al., 2014). Different biomass patterns were identified for sessile 
oak but not for Scots pine trees. Hence, species-specific biomass esti
mation models must be developed to accurately reflect species dy
namics. Moreover, the inclusion of ht and dbh as an independent 
variable for predicting AGB in Scots pine and pure sessile oak is 
consistent with the findings of previous studies (Dong et al., 2014; Litton 
and Kauffman, 2008; Moore, 2010; Ruiz-Peinado et al., 2011). We found 
that using both dbh and ht. yielded more accurate AGB estimates due to 
the robustness of these estimates, as demonstrated by the superior 
goodness of fit of these models compared to that of the other models 
tested. The addition of ht. included some information about stand site 
quality and tree competitive status. For oak trees in mixed-species 
stands, the AGB biomass model depended only on dbh, indicating that 
less complex models are sufficient (Wang et al., 2018). This decision 
emphasizes the suitability of diverse models for different tree species 
and types, highlighting that a one-size-fits-all approach may not be 

appropriate. The differences in the models may reflect variations in 
stand structure, tree density, or other species-specific factors. Few 
published studies have developed general biomass equations, especially 
for pine species (Brown et al., 2018; Johnson et al., 2016) and oak 
species (Forrester et al., 2017; Menéndez-Miguélez et al., 2022). It may 
not be useful to apply such general equations in sessile oak mixed stands. 
The differential response of oaks in mixed stands suggests that separate 
biomass equations should be developed specifically for mixed and 
monoculture oak stands to accurately estimate their biomass. Sessile oak 
trees exhibit different biomass patterns between mixed and mono
cultures. This observation is consistent with the findings of a previous 
study revealing the unique competitive advantage and resource acqui
sition ability of oaks (Abrams, 1998). Our study underscores the 
importance of selecting appropriate regression models tailored to tree 
species composition, such as mixed and pure models, when estimating 
AGB.

4.3. Estimation of tree components (stem, branches, and foliage) in mixed 
and pure stands

We stated that modeling proportions are more suitable for address
ing some problems associated with biomass models. Thus, the models 
may be used outside the range that they were fitted, avoiding great 
biomass overestimation due to the poor behavior of the models. It is well 
established that dbh, ht. and biomass are closely related. However, there 
is some disagreement about the inclusion of height in biomass equations, 
as it is strongly correlated with dbh and generally results in limited 
predictive accuracy when combined (Johansson, 1999; Porté et al., 
2002). In fact, some studies have suggested that tree height alone can 
serve as a sufficient parameter for certain species (Annighöfer et al., 
2016; Juan-Ovejero et al., 2023; Menéndez-Miguélez et al., 2022). The 
biomass prediction model for Scots pine performed best when both dbh 
and ht. were considered. Conversely, when dealing with both mixed and 
pure oak stands, the biomass proportion models were exclusively related 
to tree height, suggesting that interspecific interactions strongly influ
ence growth rates. The dominance of stem biomass suggested that pine 
trees may prioritize vertical growth and stem biomass production as key 
strategies for light acquisition and structural support (Pretzsch et al., 
2020). Increasing tree size alters the distribution of biomass among 
various tree components (Forrester et al., 2017; Menéndez-Miguélez 
et al., 2021) Similarly, as dbh increases, the proportion of biomass 
allocated to the stem decreases, whereas the proportion assigned to 
crown biomass (branches and needles) increases. This decrease may be 
attributed to the heightened lateral competition pressure (Pretzsch 
et al., 2010). Pine trees appear to shift their focus away from vertical 
growth as they grow older, perhaps to prioritize canopy development 
and lateral growth (Harper et al., 2009). The presence of oak trees 
growing with conifer species likely introduces competition for resources 

Table 5 
Parameter estimates (standard errors in parenthesis), bias and root mean square error (RMSE) for the component biomass models (proportions) for Scots pine, pure 
sessile oak, and mixed sessile oak trees using Dirichlet regression.

Species type Biomass component Parameter estimates Evaluation metrics

Intercept dbh2 ht Bias (%) RMSE (kg)

Scots pine Stem 2.1618 (1.2376) 0.0005 (0.0007) 0.1340 (0.0754) 0.0006 0.0013
Thick branches 1.8751 (1.2443) 0.0018 (0.0007) − 0.0248 (0.0762) − 0.2249 0.0153
Thin branches 0.6925 (1.2692) 0.0011 (0.0007) 0.0456 (0.0757) − 0.6563 0.0229
Foliage − 0.6412 (1.2625) 0.0012 (0.0007) 0.0928 (0.0741) − 1.1669 0.0299

Pure sessile oak Stem − 0.7114 (1.4473) -* 0.2945 (0.0899) 0.0004 0.0067
Thick branches − 0.6007 (0.1535) -* 1.1489 (0.0720) − 5.5239 0.1390
Thin branches − 1.8812 (1.2779) -* 0.1900 (0.0803) − 45.3049 0.3241

Mixed sessile oak Stem − 0.1714 (1.5568) -* 0.2388 (0.0939) − 0.0045 0.0068
Thick branches 0.7843 (1.4812) -* 0.0952 (0.0894) − 0.1921 0.0312
Thin branches − 1.8675 (1.9046) -* 0.1974 (0.1139) − 6.1474 0.1053

* Denotes dbh2 was not included in the best models for pure and mixed sessile oak. Bias is expressed as a percentage (%) and RMSE values are in kilograms (kg). The 5 % 
level of significance (p < 0.05) was reached by all regression coefficients.
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such as light, water, and nutrients (Tilman et al., 2014), although these 
species exhibit a complementary niche – for example, rooting space, 
water use, and light requirements – to a lesser extent (Pretzsch et al., 
2020). In forestry practices, these findings suggest the need for nuanced 
and species-specific management strategies that allow for more 
informed decision making about tree selection, thinning, and stand 
management.

The species-specific biomass equations developed in this paper were 
compared to established models in the literature (Balboa-Murias et al., 
2006; Menéndez-Miguélez et al., 2021; Ruiz-Peinado et al., 2011). As 
expected, our equations demonstrated minimal prediction bias and good 
predictive accuracy (Forrester et al., 2017). The fitted models for Scots 
pine were consistent with the estimations put forth by Ruiz-Peinado 
et al. (2011) whose sampled data covered a wide range of areas and tree 

sizes – dbh and ht. variations – contributing to the robustness of our 
results. According to Balboa-Murias et al. (2006), the oak species model 
performed well, particularly in distinguishing between mixed-species 
stands and monocultures. However, the models introduced by Menén
dez-Miguélez et al. (2021) produced fewer consistent results, especially 
when accounting for the proportion of crown biomass. This variance in 
model performance may be attributed to the dataset used in our study, 
which was not as large and was centered on a reduced dbh and ht range 
of medium-aged forest stands. Thus, the model effectiveness might differ 
depending on the dataset. Past research has suggested that accuracy is 
particularly evident when site-specific factors such as geographical 
location and environmental conditions are considered (Rademacher 
et al., 2009). Considering our findings, mixed oak forests require specific 
biomass equations, which have significant implications for the 

Fig. 3. The trend in predicted biomass component proportions for Scots pine ((a) and (b)), pure sessile oak ((c) and (d)), and mixed sessile oak ((e) and (f)) as 
functions of diameter at breast height (dbh) and tree height (ht). Dots, triangles, and squares are observed values for stem, thick branches, and thin branches biomass 
proportions, respectively, while diamond shapes indicate foliage biomass (but only for Scots pine).
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assessment of carbon sequestration (Ruiz-Peinado et al., 2017), refor
estation strategies, and policy decisions (Luyssaert et al., 2018). 
Addressing biases through refined modeling techniques and incorpo
rating competition conditions, such as species composition can enhance 
the reliability of biomass predictions, providing informed and effective 
forest management strategies.

4.4. Study limitations

Despite the limitations of this study, several factors may affect its 
generalizability and interpretability. First, the number of triplets was 
reduced because it was quite difficult to find sites where both species 
were growing in monoculture and mixed, with the same age and man
agement conditions. Despite this challenge, the triplet approach pro
vides greater validity to our findings since the differences observed 
could be largely due to species mixing. Second, the number of trees 
sampled was relatively small due to logistical and resource constraints 
associated with detailed, destructive sampling for precise biomass esti
mation. The results of our study are likely to be more robust and more 
applicable if more trees representative of a wider range of stand ages, 
densities, and site qualities, are used. For a better understanding of 
biomass dynamics in temperate forests, future research should integrate 
a wider range of forest environments. Finally, we excluded oak foliage 
biomass from our analysis due to practical limitations and to the timing 
of our fieldwork, which coincided with the leaf shedding season. Fo
liage, however, plays a crucial role in the carbon cycling and biomass of 
forest ecosystems. The inclusion of foliage biomass in future analyses is 
crucial for better estimates of biomass allocation and carbon stocks, 
especially in mixed and monospecific stands. Additionally, further 
research and model refinement are necessary to address the observed 
discrepancies and improve the precision of biomass estimation for 
different tree species and compositions.

5. Conclusion

In our research, we developed new models to accurately estimate the 
aboveground and component biomasses in mixed and monoculture 
stands of Scots pine and sessile oak in temperate forests. We discovered 
that the AGB and stem biomass of sessile oak vary significantly across 
stand types, necessitating separate models for mixed and pure stands, 
while Scots pine does not exhibit such variability, so a universal model 
should be used for both. Modeling biomass proportions through 
Dirichlet regression has emerged as a suitable approach to observe the 

additivity property and to obtain reliable estimates of component 
biomass proportions. Therefore, compared with the existing models, the 
fitted biomass models performed well in terms of AGB and component 
biomass estimation. The use of these biomass equations may be pivotal 
for obtaining accurate biomass estimates and enhancing our under
standing of tree species mixing in biomass estimation. Additionally, they 
also offer a more precise tool for forest managers and provide valuable 
insights for the future management of forests in the context of climate 
change.
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Kangur, A., Löf, M., Merganičová, K., Pach, M., Pretzsch, H., Stojanović, D., 
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