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A B S T R A C T

Water utilities face the challenge of transitioning to a low-carbon urban water cycle while reducing operational
costs. This study evaluates the static and dynamic carbon efficiency of a sample of water companies from 2013 to
2018 operating in England and Wales. Each company was evaluated relative to itself and its peers using cross-
efficiency Data Envelopment Analysis techniques. The results showed that the carbon performance of the water
industry improved by 2.1% per year, mainly due to efficiency change. In contrast, the contribution of factors
driving technical and scale change was almost negligible.

1. Introduction

Climate change presents several challenges to water utilities,
including increased frequency and duration of droughts, floods,
degraded water quality and changes in the demand for services (EPA,
2013; Wang et al., 2024). Water utilities not only need to adopt mea-
sures for adapting to climate change, but they also can implement
mitigation strategies that contribute to global decarbonization. (IWA,
2022). As such, water regulators in some countries are already pro-
moting the transition to a low-carbon urban water cycle
(Molinos-Senante and Maziotis, 2021). For example, in 2019, water
companies in England pledged to reach net zero on operational carbon
emissions by 2030. Since then, the water industry in Scotland and Wales
has committed to achieving greenhouse gas (GHG) neutrality across all
emissions by 2040 (Water UK, 2022).

Researchers and policymakers regard the water-energy-GHG nexus
as being at the forefront of achieving a sustainable and carbon-free
water industry. Consequently, this topic has generated growing inter-
est in the published literature, providing interesting guidelines for pol-
icymaking. Thus, Wakeel et al. (2018) highlighted that energy-intensive
activities in the urban water cycle could cause GHG emissions to rise due
to climate change adaptation strategies. In comparison, Chen et al.
(2018) and Liao et al. (2020) stated that the positive relationship be-
tween energy use and GHG in the water cycle would be driven by future
population growth and climate change. Moreover, it is widely

recognised that low-carbon and low-energy solutions in the water sector
should be economically viable (Ortiz et al., 2021). For instance, Lam and
van der Hoek (2020) assessed the cost-effectiveness of several oppor-
tunities (e.g., renewable energy generation, household water-related
management) in reducing GHG across the water and wastewater sup-
ply chain using city-level data (i.e., Amsterdam). Other studies in the
USA and Australia demonstrated the long-term benefits of reducing GHG
from energy efficiency savings by reducing residential water heating
(Chini et al., 2016; Fane et al., 2020). As a result, governments have
urged all sectors (including water) to substantially reduce carbon
emissions by 2050 (Parliament of the UK, 2008; Ananda, 2018; Ballard
et al., 2018; Lam and van der Hoek, 2020). Therefore, by quantifying
energy costs and GHG performance, water utilities could establish how
to provide water to their customers in an economical and environmen-
tally sustainable way (Ananda, 2019).

Efficiency frameworks are required to assess water utilities’ eco-
nomic and environmental performance (eco-performance) (D’Inverno
et al., 2021). Such frameworks measure the ability of given water util-
ities to minimise the use of inputs (costs) and undesirable outputs (such
as GHG) for a given level of output (volume of drinking water supplied).
Previously, Goh and See (2021) identified two main techniques that can
be used to assess the performance of a water utility relative to its best
industry frontier. These techniques were (1) parametric (econometric, e.
g. Stochastic Frontier Analysis [SFA]) and (2) non-parametric (linear
programming, e.g. Data Envelopment Analysis [DEA]). While both
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approaches have advantages and disadvantages, DEA stands out in the
framework of water utilities because it does not require a functional
form a priori to estimate the unknown production technology
(Suárez-Varela et al., 2017). Thus, our study focused on using DEA
(non-parametric) techniques to measure the eco-performance of water
utilities.

Ananda and Hampf (2015) and Ananda (2018, 2019) measured the
performance of several water utilities in Australia using GHG as an
undesirable output. In comparison, Molinos-Senante and Maziotis
(2021) focused on analysing the impact of GHG emissions on produc-
tivity changes for English and Welsh water companies. The authors
concluded that including GHG emissions in productivity analysis
impacted the results. However, the main limitation of these studies is
that they estimated the carbon performance of water utilities using
traditional DEA techniques. Consequently, the evaluation was based on
a self-evaluation framework that potentially overestimated efficiency
scores (Ding et al., 2019). To overcome this limitation, Doyle and Green
(1994, 1995) introduced cross-efficiency DEA techniques, whereby each
DecisionMaking Unit (DMU) (i.e. water companies) is evaluated relative
to itself and its peers. Moreover, to ensure that the weightings of this
technique are optimal, Sexton et al. (1986) and Doyle and Green (1994,
1995) introduced several secondary optimisation methods. Examples
include aggressive and benevolent cross-efficiency DEA, in which units
are considered competitors and collaborators, respectively (Liu et al.,
2017; Lee et al., 2021; Jomthanachai et al., 2021). Wang and Chin
(2010) and Ding et al. (2019) developed a neutral cross-efficiency DEA
model, assuming that the efficiency of each unit is determined using
weightings from its perspective only, without considering any effects on
other DMUs.

Because of the positive features of cross-efficiency DEA techniques,
these techniques have been widely used to assess the efficiency of
several sectors globally (Aldamak and Zolfaghari, 2017; Aparicio et al.,
2020), including energy (Ding et al., 2019), airlines (Cui and Li, 2020),
agriculture (Bevilacqua et al., 2015). However, to our knowledge, this
methodological approach has not been used to evaluate dynamic1 car-
bon efficiency (DCE) in the water industry.

Thus, this study aimed to evaluate the static and dynamic carbon
efficiency of a sample of English and Welsh water companies from 2013
to 2018, avoiding the overestimation of efficiency scores and allocating
optimal weights to each variable. The first objective was to estimate
static carbon efficiency (SCE) scores for a sample of water utilities. The
second objective was to extend the static carbon efficiency assessment to
an inter-temporal setting, whereby we evaluated the DCE of water
utilities, breaking down this composite index into carbon-related effi-
ciency change (CEC), carbon-related technical change (CTC) and
carbon-related scale efficiency change (CSEC). The third objective was
to identify the impacts of environmental variables on companies’ DCE.
The empirical component of our study focused on the water services
provided by several water companies in England and Wales from 2013
to 2018. Our results are expected to provide baseline information to
improve policy decisions in this sector to achieve the targets defined in
several Sustainable Goals such as SDG6 (clean water and sanitation),
SDG7 (affordable and clean energy) and SDG13 (climate action) (UN,
2015).

Our study has the following contributions to existing knowledge.
This study pioneers the cross-efficiency DEA techniques to estimate
carbon efficiency and its changes over time. This methodological
approach ensures that the weights assigned to each variable in the

assessment are optimized, providing more accurate and reliable results.
This study is the first to decompose DCE into three components: CEC,
CTC, and CSEC. This decomposition allows for a deeper understanding
of the key drivers influencing changes in carbon efficiency. Insights from
this analysis can inform the development and implementation of mea-
sures to enhance water companies’ carbon emissions performance,
thereby supporting broader environmental sustainability goals.

2. Methodology

2.1. Estimation of static carbon efficiency scores

The methodology used to estimate the SCE and DCE scores of several
water companies in England and Wales is based on cross-efficiency DEA
techniques. Let us assume that we have m Decision Making Units
(DMUsj) (i.e. water companies) that produce a set of desirable outputs,
ykj where k = 1,‥, l, and a set of undesirable outputs, brj, where r = 1,‥
, s using a set of inputs, xij, where i = 1, ‥, n. The SCE of each water
company relative to itself, θdd, is derived by solving the following linear
programming:

Max θdd =
∑l

k=1

ukdykd +
∑s

r=1
wrdbrd (1)

∑n

i=1
vidxid =1

∑n

i=1
vidxij −

∑l

k=1
ukdykj −

∑s

r=1
wrdbrj ≥0 j = 1,…,m

vid ≥0, ukd ≥ 0,wrd ≥ 0

where ukd,wrd, and vid are the weights for each desirable output, unde-
sirable output, and input, respectively. Model (1) is the traditional DEA
model, in which the efficiency of each water company is derived using
its most favourable weightings (self-evaluation) (Aparicio and Zofío,
2020). Thus, inputs and outputs that are favourable to a particular water
company have a higher weighting, whereas those that are not favourable
to a particular water company have a lower weighting or are even dis-
regarded (Wang and Chin, 2010). The weights allocated to the variables
used to estimate performance scores might be unrealistic, and efficiency
scores might be overestimated.

To overcome this limitation, Sexton et al. (1986) developed the
cross-efficiency DEA technique, in which the efficiency of each water
company is evaluated relative to itself and its peers. However, the
weightings derived from the cross-efficiency DEA techniques might not
be unique (Moeini et al., 2015). To overcome this issue, Doyle and Green
(1994, 1995) proposed using secondary goals to optimize weightings, in
which water companies could be considered competitors or collabora-
tors and aggressive or benevolent, respectively. Subsequently, Wang and
Chin (2010) and Ding et al. (2019) adopted the neutral approach,
whereby the efficiency of each water company is determined using
weightings only from its perspective, without considering the effects on
other DMUs. The following linear programming model is solved To es-
timate SCE scores based on the neutral DEA approach:

Max β (2)

∑n

i=1
vidxid =1

∑n

i=1
vidxij −

∑l

k=1

ukdykj −
∑s

r=1
wrdbrj ≥0 j = 1,…,m, j ∕= d

1 Of note, efficiency is a static assessment that does not account for changes
to the performance of water companies over time. Yet, assessing changes to
performance involves extending the notion of efficiency to an inter-temporal
setting (Mahlberg et al., 2011). Moreover, dynamic efficiency allows the effi-
ciency over a given time period to be computed, and the performance among
water companies to be compared quantitatively (Gémar et al., 2018).
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∑l

k=1

ukdykd +
∑s

r=1
wrdbrd − θdd

∑n

i=1
vidxid = 0

ukdykd − β≥ 0 k = 1, 2,…. l

wrdbrj − β≥ 0 r = 1, 2,…. s

vid ≥0, ukd ≥ 0,wrd ≥ 0, β ≥ 0

In Model (2), the efficiency of each DMU is subject to both self and peer
evaluation. This model also reduces the likelihood of zero weightings for
desirable and undesirable outputs, excluding them from the assessment
exercise. After taking the optimal weightings, u*kd,w

*
rd, v

*
id from Model

(2), the static carbon efficiency of the water company d (SCEdj) is
calculated as follows:

SCEdj =

∑l

k
u*kdykj +

∑s

r=1
wrdbrd

∑n

i=1
vidxid

(3)

Consequently, the SCE of each water company j (SCEj) is calculated as
follows:

SCEj =
1
m
∑m

d=1

SCEdj (4)

2.2. Estimation of dynamic carbon efficiency scores

The SCE scores determined from Eq. (4) estimate DCE scores based
on the traditional Malmquist Productivity Index (MPI). Thus, the DCE
between period t and t + 1 is defined as follows (Ding et al., 2019):

DCEt,t+1=

(
CEt+1

(
xt+1, yt+1, bt+1

)

CEt+1
(
xt , yt , bt

) ×
CEt
(
xt+1, yt+1, bt+1

)

CEt
(
xt , yt , bt

)

)1
2

(5)

The DCE in Eq. (5) measures how productive water companies have
been over time in terms of carbon emissions. A DCEt,t+1 value greater
than 1 implies an improvement in carbon productivity, whereas a
DCEt,t+1 value below 1 implies a deterioration in carbon productivity.
Dynamic carbon efficiency can be further separated into CEC, CTC and
CSEC. The decomposition of dynamic carbon efficiency is as follows:

DCE=
CEt+1VRS

(
xt+1, yt+1, bt+1

)

CEtVRS
(
xt , yt , bt

) ×

CEt+1CRS(x
t+1 ,yt+1 ,bt+1)

CEt+1VRS(x
t+1 ,yt+1 ,bt+1)

CEtCRS(xt ,yt ,bt)
CEtVRS(xt ,yt ,bt)

×

(
CEtCRS

(
xt+1, yt+1, bt+1

)

CEt+1CRS
(
xt+1, yt+1, bt+1

)×
CEtCRS

(
xt , yt , bt

)

CEt+1CRS
(
xt , yt , bt

)

)1
2

=CEC

×CSEC× CTC

(6)

CEC indicates whether the daily operation of water companies has
improved or deteriorated and the extent to which carbon emissions and
inefficiency have changed between the two periods. A value greater than
one for CEC indicates improvements in carbon efficiency change,
whereas the opposite applies when CEC is below one. Technical change
captures the impact of technical progress or regression. If CTC > 1,
water companies have adopted new technologies to reduce carbon
emissions, increasing productivity. A CTC value below one indicates
technical regression. Increases in the scale of operations of water com-
panies, CSEC > 1, could lead to higher productivity, as larger water
companies might have found cheaper ways to treat and distribute water
(most productive scale size), reducing carbon emissions and
inefficiency.

The decomposition of DCE requires two single-period measurements
to be computed under constant returns to scale (CRS), variable returns to

scale (VRS), and two mixed-period technologies under CRS. Single-
period efficiency scores are solved using models (1) and (2). The
following additional constraint is imposed when the model is solved
under variable returns to scale:

∑n
i=1vid +

∑l
k=1ukd +

∑s
r=1wrd = 1. The

Appendix provides the linear programming models solved using mixed-
period technologies under CRS. Of note, mixed-period cross-efficiency
scores are also calculated using Eqs. (3) and (4).

2.3. Determinants of dynamic carbon efficiency

To improve our understanding of the determinants of DCE (i.e.
changes to the carbon performance of water companies over time), we
regressed the DCE scores against a set of environmental variables that
could impact the carbon efficiency of water companies (Ananda, 2019;
Sala-Garrido et al., 2021). These variables are related to population
density, sources of raw water and type of water treatment (see Section 3
for details). As such, the following econometric model is defined and
solved (Zeng et al., 2016):

DCEmt = ao + γi + δʹzmt + εmt (7)

where the dependent variable DCEmt captures the DCE for any water
company m over time, ao presents the constant term, γi captures firm-
specific time-invariant unobserved heterogeneity (e.g. managerial
inability), and εmt is the noise that is distributed normally. Individual
effects could be fixed or random and correlated or uncorrelated with the
explanatory variables, zmt (Greene, 2005). If the effects are assumed to
be fixed, Eq. (7) becomes the fixed effects (FE) model. If random, Eq. (7)
becomes the random effects (RE) model (Wooldridge, 2010). Unob-
served fixed effects are removed from the FE model by accounting for
variation within water companies over time (Cameron and Trivedi,
2015) or within variation (Kumbhakar et al., 2015). The RE model is
estimated using generalised least squares, which are widely used for
traditional RE panel-data models (Kumbhakar et al., 2015). We used the
Hausman test to determine which model to use for the analysis (Baltagi,
2005; Stock and Watson, 2020). The final model is estimated using
robust standard errors to control for heteroscedasticity (Kumbhakar
et al., 2015; Greene, 2018).

3. Data and sample selection

The empirical application conducted here focused on water services
provided by ten English and Welsh water and sewerage companies
(WaSCs) and six water-only companies (WoCs) during 2013–2018.
Thus, the total number of observations is 96 (6 years * 16 water com-
panies). The 16 water companies evaluated provide drinking water
services to more than 90% of customers in England and Wales. WaSCs
and WoCs are private and regulated from technical, economic and
environmental dimensions by four independent bodies: the Drinking
Water Inspectorate (DWI), the Environment Agency, Natural Resources
Wales and the Water Services Regulation Authority (Ofwat). The DWI is
the independent regulator of drinking water in England and Wales,
responsible for ensuring that companies provide safe drinking water that
is acceptable to consumers and meets the standards set in law. The
Environment Agency protects and improves the environment and pro-
motes sustainable development. In Wales, since April 2013, these
functions have been performed by Natural Resources Wales. Ofwat is the
economic regulator for the water and sewerage sectors in England and
Wales. It is responsible for regulating the water industry and ensuring
that water companies provide consumers with a good quality service
and value for money. Every five years, Ofwat approves the final allowed
revenue (price reviews) that companies can recover from customers by
challenging the business plans of companies (Defra, 2014).

Inputs, desirable and undesirable outputs were selected based on
previous literature reviews and data availability (see, for instance, See,
2015; Pinto et al., 2017; Goh and See, 2021). Two inputs are used to
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estimate static and dynamic carbon efficiency scores. The first input is
the annual energy expenditure of water services measured in millions of
pounds sterling (£) (Sala-Garrido et al., 2021; Walker et al., 2020). The
second input is defined as other expenditures related to water services.
This input is calculated as the difference between total operating and
energy expenditures. Other expenditures (costs) are measured in mil-
lions of £ per year (Mellah and Ben Amor, 2016; Molinos-Senante and
Maziotis, 2018).

We use two desirable outputs. The first desirable output is the vol-
ume of drinking water delivered per year. This output is measured in
thousands of cubic metres per year (Ananda and Hampf, 2015; Ananda,
2018; D’Inverno et al., 2021). The second desirable output is the number
of water-connected properties measured in thousands of customers. The
undesirable output is defined as greenhouse gas emissions from the
provision of water services. It is expressed as CO2eq, the annual equiv-
alent of tonnes of CO2 (Ofwat, 2010a, 2010b; Molinos-Senante and
Maziotis, 2022). The water companies monitor and estimate GHG
emissions according to the United Kingdom Government Environmental
Reporting Guidelines (HM Government, 2019). English andWelsh water
companies report direct and indirect GHG emissions associated with the
direct operation of the water companies, purchase and use of electricity
and other indirect activities (Ofwat, 2010a).

Several environmental variables are selected to evaluate the factors
changing carbon efficiency over time. The relationship of these factors
with previously estimated DCE scores is analysed. These variables are
based on the source of water, population density and treatment
complexity of water services (Ofwat, 2019; Villegas et al., 2019; Walker
et al., 2019). The following variables are used in the regression analysis:
1) the percentage of water taken from boreholes, 2) the percentage of
water taken from reservoirs, and 3) the average pumping head. These
variables are used to capture the source of raw water. For instance,
higher energy requirements (average pumping head) to pump water to
the network might lead to higher carbon emissions and, thus, lower
inefficiency and productivity. We also include the following variables to
capture the input requirements when treating water: 1) the number of
treatment works from surface water resources (CEPA, 2018), 2) the
number of treatment works from groundwater resources, and 3) the
percentage of raw water for which treatment needs between 3 and 8
operational units to produce drinking water (Ofwat, 2018, 2019; Walker
et al., 2019). Population density is measured by the ratio of water
population to water area, measured as thousands per km2 (Walker et al.,
2020). Table 1 presents the descriptive statistics of the variables used to
estimate static and dynamic carbon efficiency scores.

4. Results

4.1. Static carbon efficiency scores

SEC scores for English and Welsh WaSCs and WoCs during

2013–2018 are shown in Fig. 1. The average SCE for all evaluated water
companies was 0.74 (assuming CRS and VRS technologies were used).
On average, English andWelsh water companies could save around 26%
of GHG emissions during these six years. Except for 2018, the SCE of
water companies generally improved over time. Thus, both water
companies and the regulator are highly relevant in reducing the carbon
footprint of the urban water cycle.

Regardless of the assumption made on technology used based on
company size (i.e. CRS or VRS), WoCs were slightly more carbon effi-
cient than WaSCs (Fig. 1). Under VRS, average WoCs reported a carbon
efficiency score of 0.752 and would need to cut carbon emissions by a
further 24.8% to become more environmentally efficient. In contrast,
average WaSCs must reduce carbon emissions by 26.1% to provide the
same service levels as WoCs. At the beginning of the period, WaCs re-
ported higher carbon efficiency levels than WoCs. However, over time,
WoCs managed to catch up with WaSCs to become more carbon-
efficient. Higher costs and higher carbon emissions levels drove the
decline in the average carbon efficiency of WaSCs between 2016 and
2018. Compared to 2013, the average WoC improved its carbon effi-
ciency by 18.14%.

In contrast, the SCE of the average WaSC slightly declined by 0.29%.
However, in 2018, SCE declined for both WaSCs andWoCs due to higher
energy and other costs. This decline offsets any gains from reducing GHG
emissions, leading to lower levels of carbon efficiency. Although WoCs
were more carbon efficient than WaSCs, the results demonstrated that
carbon inefficiency exists in the English and Welsh water industry and
can potentially reduce GHG emissions.

4.2. Dynamic carbon efficiency scores and its drivers

The average DCE for all companies was 1.021, with the performance
of English and Welsh water companies improving by 2.1% per year
(Fig. 2). This improvement was greater in WaSCs (2.4% improvement
annually) than in WoCs (0.5% improvement annually). The cumulative
value for DCE (total change in carbon performance) was better for
WaSCs than WoCs over the study period. During these six years, the
carbon performance of English and Welsh WaSCs and WoCs improved
by 12.0% and 2.4%, respectively. Overall, the water industry in England
and Wales experienced a 10.0% improvement in carbon performance.
Except for 2013, the DCE scores of WaSCs were higher than 1.0 for all
other years. In contrast, the DCE scores of WoCs declined in three out of
the six years analysed. Thus, WaSCs have put more effort into improving
GHG emission performance than WoCs.

On average, all components (i.e. CEC, CTC and CSEC) positively
contributed to changes in DCE scores (carbon productivity). The
improvement in DCE was attributed to an increase in efficiency by 2.1%
per year, a scale efficiency change of 0.13% per year, and a technical
change of 0.27% per year. Except for 2013–2014, in all other years,
water companies were productive in reducing carbon emissions (Fig. 3).

Table 1
Descriptive variables used to estimate static and dynamic carbon efficiency scores of English and Welsh water companies.

Type of variable Variables Unit of measurement Mean Std. Dev. Minimum Maximum

Desirable outputs Volume of water delivered 000 s m3/year 260193 202476 20502 791616
Number of water-connected properties 000 s/year 1499 1125 124 3826

Undesirable output Greenhouse gas emissions tonCO2eq/year 82845 69062 4542 275900
Inputs Energy expenditure ₤m/year 20.4 15.0 1.7 60.0

Other expenditure ₤m/year 93.4 78.9 7.6 331.6
Environmental variables Water taken from reservoirs % 37.0 26.2 0.0 95.7

Water taken from boreholes % 40.1 31.2 3.0 92.4
Surface water treatment works nr 16.18 15.32 1.00 54.00
Groundwater treatment works nr 50.83 40.34 2.00 127.00
Water receiving high levels of treatment % 93.2 5.1 81.2 100.0
Average pumping head nr 147 44 65 256
Population density 000 s/km2 0.47 0.29 0.15 1.25

Observations: 96.
Energy and other expenditures are expressed in 2018 prices.
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Over the six years, the average DCE declined due to a reduction in
technical change and scale efficiency change. The limited adoption of
environmentally friendly technologies and increased size of companies
might have hindered productivity.

In contrast, improvements in daily operations appeared to cause
carbon emissions and inefficiency to decline, contributing positively to
productivity. The situation changed in the following years. Both tech-
nical progress and movement toward the optimal scale positively

Fig. 1. Average static carbon efficiency for all English and Welsh water companies, water and sewerage companies (WaSCs) and water-only companies (WoCs)
assuming constant returns to scale (CRS) and variable returns to scale (VRS).

Fig. 2. Average dynamic carbon efficiency for all English and Welsh water companies, water and sewerage companies (WaSCs) and water-only companies (WoCs).

Fig. 3. Average dynamic carbon efficiency and its drivers for English and Welsh water companies.
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impacted productivity, which increased by 1.9% and 1%, respectively.
However, efficiency change appeared to have a limited impact on car-
bon productivity. During 2015–2016, carbon productivity increased by
1.7%, primarily due to adopting best management practices, which
could have led to lower carbon emissions and higher productivity.
However, there was a clear downward trend from 2017 to 2018. This
trend was mainly attributed to considerable losses in carbon and scale
efficiency changes. Thus, increases in production costs likely have a
detrimental impact on the productivity of companies. The results sug-
gest that water companies could improve productivity by investing in
technologies that reduce production costs, such as using renewable en-
ergy in water treatment.

Improved DCE in WaSCs was mainly attributed to an increase in
technical change of 2.2% (Figs. 4 and 5). Although efficiency change and
scale efficiency change were positive, they had a limited impact on
productivity. In contrast, the slight improvement in DCE by WoCs was
mainly attributed to considerable gains in carbon efficiency (Figs. 4 and
5). This finding was expected because the efficiency of WoCs consider-
ably improved over time, reporting higher efficiency scores compared to
WaSCs (Fig. 1). Losses in scale efficiency change and the lack of new
technologies negatively impacted the DCE of WoCs.

4.3. Environmental variables influencing dynamic carbon performance

To establish the factors driving the DCE of water companies, we
examined the econometric results after obtaining FE model estimates
with robust standard errors (Table 2). The Appendix shows the pre-
liminary results of the FE and RE model estimates and the Hausman test,
which justifies using the FE model. The carbon performance of water
companies was significantly affected by water treatment when taken
from surface and groundwater resources, high levels of water treatment,
average pumping head and population density. Based on the magnitude
of the coefficients, high levels of water treatment and population density
had the greatest impact on the DCE of water companies. When keeping
other variables constant, a unit increase in treatment and population
density levels could reduce DCE by 0.166 and 0.435 units, respectively.

When the complexity of raw water treatment increases, energy costs
and the level of GHG emissions released into the atmosphere also tend to
rise. In parallel, with the increasing demand for water, more water must
be abstracted and treated. This issue could increase input requirements
and carbon emissions, leading to greater inefficiencies and lower DCE.
Average pumping head values corroborate this issue. High pumping
requirements to abstract and move water to treatment facilities are

energy-intensive and could harm productivity if pumps are not energy-
efficient.

Furthermore, more treatment works are necessary when water is
taken from groundwater resources. These energy-intensive activities
could release high carbon emissions and negatively influence in-
efficiency and productivity. In contrast, treatment works from surface
water resources might not be costly, so productivity might not be
negatively affected.

5. Discussion

To comprehensively analyse the linkage between DCE estimates and
the regulatory cycles of the English andWelsh water industry, the period
studied was divided into two distinct sub-periods corresponding to
consecutive regulatory review phases: 2013–2015 and 2016–2018.
During the 2013–2015 sub-period, aligned with the outcomes of the
2009 price review, regulatory frameworks introduced several financial
incentive schemes to encourage water companies to enhance their
financial and environmental performance simultaneously. A notable
example of these regulatory innovations was the Service Incentive
Mechanism (SIM). Under SIM, water companies were mandated to
report their performance against a suite of performance indicators,
including metrics such as water leakage rates and the frequency of un-
planned service interruptions (Villegas et al., 2019). This mechanism
was designed to improve service quality and increase transparency and
accountability in the water sector.

In the subsequent period, 2016–2018, regulators transitioned from
SIM to a more robust and comprehensive framework involving Common
Performance Indicators (CPIs) and Outcome Delivery Incentives (ODIs).
This change marked a significant shift in regulatory focus from moni-
toring and rewarding or penalizing water companies based on their
performance relative to pre-set environmental targets. These targets
encompassed a broader range of environmental and operational in-
dicators, including, but not limited to, water leakages, pollution in-
cidents, flooding incidents, and carbon emissions.

Notably, the regulatory framework evolved to include both financial
and reputational incentives. Financial rewards or penalties were directly
tied to achieving or failing to meet specific targets, linking financial
outcomes to environmental and operational performance. Specific tar-
gets, particularly those related to carbon emissions, were simultaneously
associated with reputational rewards or penalties, underscoring the
industry’s growing emphasis on sustainable practices. This dual
approach of using CPIs and ODIs refined the accountability mechanisms

Fig. 4. Average dynamic carbon efficiency and drivers for English and Welsh water and sewerage companies (WaSCs).
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in place and aligned the interests of water companies more closely with
the broader goals of sustainability and environmental stewardship. This
alignment was crucial in driving improvements across the industry, as
companies were compelled to innovate and optimize their operations to
meet increasingly stringent standards, thereby contributing to the
overall goal of sustainable urban water management.

From 2013 to 2015, DCE evaluations for WaSCs and WoCs revealed
modest improvements of 0.5% and 0.9%, respectively. These enhance-
ments were exclusively attributed to advances in carbon efficiency,
suggesting that less carbon-efficient water companies made significant
strides in refining their daily operations by reducing production costs
and GHG emissions, thereby approaching the performance levels of
more efficient peers. Specifically, gains in carbon efficiency were
recorded at 2.1% for the average WaSC and 2.7% for the average WoC.
Additionally, the scale efficiency change maintained a value close to
unity, indicating that these companies were operating at optimal scales.
Despite these advancements, it was noted that any gains in carbon ef-
ficiency were negated by technical regression, which overshadowed the
positive developments in carbon management.

In the subsequent period from 2016 to 2018, the average WaSC DCE
improved significantly by 3.6%, with this enhancement wholly ascribed
to technical progress. This period also saw minor positive shifts in scale
efficiency, suggesting that incremental increases in operational scale
might have contributed to reductions in overall production costs for
WaSCs. However, these gains were partially offset by losses in carbon
efficiency, which adversely affected the DCE of WaSCs. Conversely,

while the average DCE for WoCs remained positive, it exhibited a
declining trend. Setbacks in technical change and scale adjustments
counterbalanced notable gains in carbon efficiency. The improvements
in management practices led to substantial gains in carbon efficiency,
averaging 5.2%. Nevertheless, adjustments in company scale had a
detrimental impact on DCE, decreasing it by 1.3%. The absence of new
technological adoption possibly exacerbated production costs and car-
bon emissions.

The analysis indicates that while WaSCs can potentially enhance
their DCE by continuously improving efficiency over time, WoCs stand
to gain significantly in carbon productivity through adopting techno-
logical leadership. These findings highlight the critical need for both
types of companies to balance operational scale, carbon efficiency, and
technical advancements to optimize their overall performance and
contribute effectively to sustainable urban water management.

6. Conclusions

Understanding production costs and carbon emission performance is
essential for water companies to sustainably deliver services to their
customers. This objective can be achieved by estimating the static and
dynamic carbon efficiency scores of water companies. However, robust
and reliable methods are required to apply these results to establish
objective carbon reduction targets and regulatory policies. This study
used a cross-efficiency evaluation framework to evaluate the static and
dynamic carbon efficiency of several water companies in England and
Wales.

Our study showed that static carbon inefficiency exists in the water
industry. WaSCs and WoCs need to further reduce costs and carbon
emissions by up to 26% to maintain the same output level. WoCs tended
to be slightly more carbon efficient compared to WaSCs. At the start of
the six years, WaSCs performed better than WoCs. However, this situa-
tion changed from 2016 to 2018. WoCs became more efficient at
reducing costs and carbon emissions, achieving considerable gains in
efficiency over time. Over time, the DCE of the water industry improved
by 21.0% on average, with all components contributing positively.
Average CEC increased by 10.5%, whereas CSEC and CTC improved by
0.6% and 1.4%, respectively.

Based on DCE estimates, WaSCs were more productive than WoCs.
The DCE of average WaSCs improved by 2.4% per year, entirely
attributed to technical progress. Thus, adopting management practices
could lower production costs and carbon emissions. In contrast, the DCE
of average WoCs rose by 0.5% per year, mainly attributed to efficiency

Fig. 5. Average dynamic carbon efficiency and drivers for English and Welsh water-only companies (WoCs).

Table 2
Influence of exogenous variables on dynamic carbon efficiency scores based on
fixed effects model with robust standard errors.

Coefficient Robust Std.
Err.

T-stat p-
value

Constant 1.131 0.156 7.250 0.000
Water taken from boreholes − 0.063 0.132 − 0.480 0.641
SW treatment works 0.008 0.001 6.230 0.000
GW treatment works − 0.004 0.001 ¡5.820 0.000
High levels of water
treatment

− 0.166 0.093 − 1.780 0.094

Average pumping head 0.000 0.000 ¡2.140 0.048
Population density − 0.327 0.035 ¡9.440 0.000
Water taken from reservoirs 0.435 0.282 1.540 0.143
F(7.16) 29.740
p-value 0.000

Number of observations: 96.
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gains. Better management of daily operations and networks might have
reduced overall costs and inefficiencies. Both WaSCs and WoCs
appeared to operate toward their most productive scale size (scale ef-
ficiency change was close to unity). However, improvements in mana-
gerial practices and technologies are required. Overall, evaluation of the
relationship between environmental variables and the DCE of com-
panies showed that higher complexity of water treatment and energy
costs could reduce DCE. This finding was verified by other energy-
intensive activities, such as average pumping head and treatment
works when water is taken from groundwater resources.

Overall, our study results have several relevant policy implications.
Carbon efficiency estimations enable the English and Welsh water
regulator to set progressive carbon reduction targets aligned to achieve
carbon neutrality. These targets can be specifically tailored to different
types of water companies, WaSCs versus WoCs, recognizing that WoCs
have demonstrated notable improvements and face distinct operational
challenges and efficiencies. To further incentivize performance, regu-
lation could include economic incentives for water companies that
exceed mandated carbon performance standards. Given the observed
differences in carbon performance between WaSCs and WoCs, encour-
aging the exchange of best practices could enhance sector-wide effi-
ciency. Promoting management strategies that have led to cost
reductions and lower carbon emissions, particularly those employed by
WoCs, could benefit the entire sector. Technical progress and opera-
tional efficiencies have driven improvements, suggesting that policies
should support investments in new technologies and better operational
management. These policies could involve subsidies or tax incentives for
adopting energy-efficient technologies or for research into innovative
methods that simultaneously reduce carbon emissions and operational
costs. Furthermore, the study indicates that environmental factors like
water treatment complexity and energy costs significantly impact car-
bon efficiency. Policies could, therefore, be designed to address these
specific challenges, perhaps through differentiated standards or support
mechanisms that consider the unique local conditions and resource
bases of different water companies.

While this study makes significant contributions to understanding
the carbon performance in the provision of drinking water, it is not
without limitations. Firstly, although the study examines carbon per-
formance from the static and dynamic perspectives, it does not offer a
holistic assessment of water companies’ overall performance. Specif-
ically, it does not account for changes in other crucial variables such as
energy costs, other costs, water delivered, and the number of water
connections. Future research could address this gap by employing non-
radial DEA methods, which allow for the estimation of individual per-
formance indicators for each variable, providing a more comprehensive
view of performance. Secondly, the range of environmental variables
included in the analysis was constrained by data availability. Expanding
the scope to incorporate additional environmental variables could
enrich the analysis, offering deeper insights into their effects on the
carbon performance of water companies. Such an extension would
enhance the robustness of the findings and potentially reveal new areas
for policy intervention and performance improvement.
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