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ALMOST SECTORIAL OPERATORS IN FRACTIONAL SUPERDIFFUSION
EQUATIONS

EDUARDO CUESTA AND RODRIGO PONCE

ABSTRACT. In this paper the resolvent family {S4 g(t)}+>0 C L£(X,Y) generated by an almost sectorial
operator A, where o, 8 > 0, X,Y are complex Banach spaces and its Laplace transform satisfies Saﬁ(z) =
22782 — A)~1! is studied. This family of operators allows to write the solution to the fractional initial
value problem
() Ofu(t) = Au®) + f(¥), t>0,

where u satisfies the initial conditions u(0) = z, v/(0) = y, 97 denotes the Caputo fractional derivative,
1 < o < 2,and f is a suitable function, as a variation of constants formula. Estimates of the norm ||.S,, g(t)l,
as well as the continuity and compactness of S, g(t), for t > 0, are shown. Moreover, the Holder regularity
of the solutions to the problem (*) are also studied.

1. INTRODUCTION

Sectorial operators have been studied widely during the last four decades because in many differential
equations in applied mathematics the differential operators in the linear part are one of those operators.
The resolvent of a sectorial operator A satisfies the estimate [|(z — A)71|| < M|z|7! for 2 € C\ X, (see
below for the definition of ¥,,). Many elliptic differential operators with homogeneous boundary conditions
are sectorial when they are considered in the LP-spaces or in spaces of continuous functions. For example,
if 2 is a bounded subset in R?, X := C(Q) denotes the space of all continuous functions defined in Q and
the operator A, defined by Au := Au, is the realization of the second order operator in X with domain
D(A) = {u € X : Au € X,0u/0v = 0}, where du/dv denotes the normal derivative at the boundary of
Q, then A is a sectorial operator in X, [23, Chapter 1]. However, this elliptic operator in a more regular
functions space, such as the spaces of Holder continuous functions, may be not sectorial. In fact, if we
consider A defined by Au := Au, with domain D(A4) = {u € C**A([0,7]) : u(0) = u(x) = 0}, where
0 < B <1 and C?*8([0,7]) denotes the Holder space of all twice continuously differentiable functions u such
that Au belongs to the Holder space C#([0, 7]), then A is not sectorial [23, Example 3.1.33]. However, in this
last case, the operator A satisfies the estimate ||(z — A) 7| < M|z|7, for all z € C\ ¥, and some —1 < v < 0
(instead of ¥ = —1 as in the case of sectorial operators). Operators A satisfying this last inequality are
known as almost sectorial operators.

On the other hand, the theory of fractional differential equations of sub and super diffusion type has
been a topic of great interest in the last two decades, and the problem of the existence of solutions (and its
regularity) to the problem

(1) O u(t) = Au(t) + f(t), t=20, u(0)=uz,

where A is a closed linear operator defined in a Banach space X, z € X, f is a suitable vector-valued function
(linear or non-linear), 0 < a < 1, and d¢u denotes the Caputo time—fractional derivative of u, has been
widely studied over the last years. See for instance [1, 5, 6, 11, 12, 15, 16, 17, 18, 20, 24, 26, 27, 30]. If A
is a generator of an («, 1)-resolvent family (see below for its definition), then the solution to (1) is given in
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2 EDUARDO CUESTA AND RODRIGO PONCE
terms of a variation of constants formula as

(2) u(t) = Sa1(t)x + /Ot Sa,a(t —s)f(s)ds, t>0,
where, for a, 5 > 0, S, 5(t) is defined by

(3) Sap(t) = i e*207 B (22 — A)7 1 de, t>0,

’ 2mi Jr
and T is a suitable complex path defined within the domain of the resolvent operator (2® — A)~!. See for
instance [21].

Recently, the tools on functional calculus for almost sectorial operators has been used in [27] to study
(1). More concretely, if 0 < o < 1 and A is an almost sectorial operators, then the resolvent families
{Sa,1(t)} 05 {Sa2(t) }is0, and {Sa o (t) }+>0 are continuous and compact in £(X). Moreover, there exist Cy
and C), positive constants depending on a and <y such that the following estimates hold

[Sa1(®)]| < Cot=*FM and  ||Sa.a(t)] < Cpt=¢0HY > 0.

As a consequence of these results, the authors study properties of the solutions to some linear abstract
fractional differential equations in Banach spaces. However, we notice that these results can not be used or
extended directly to study the same problem in case of 1 < a < 2. Therefore, the problem of the existence
of solutions to the fractional initial value problem

otu(t) = Au(t)+ f(t), te][0,T],
(4) u(0) = x,
u(0) =,

where z,y € X, 1 < a < 2, and A is an almost sectorial operator becomes a natural one.

We notice that fractional differential equations in the form of (1) and (4) for 0 < a < 2, with A being a
sectorial operator have been widely studied in the last decades, see for instance [3, 7, 9, 8, 10, 18, 31] and
the references therein. However, the case in which 1 < a < 2 and A is an almost sectorial operator remains
as an open problem.

From the uniqueness of the Laplace transform, it is easy to see that the solution to the Problem (4) is
given by

t
(5) u(t) = Sa1(t)x 4+ Sa2@)y+ | Saa(t—s)f(s)ds, tel0,T],
0
and therefore, the representation (3) of S, g(¢) provides an important tool to study its properties in the case
where A is an almost sectorial operator.

In this paper, we consider, to the best of our knowledge, by the first time the properties of the resolvent
families {Sq,1(¢) } >0, {Sa,2(t) }e>0, and {Sq o (t) b0, for 1 < o < 2, where A is an almost sectorial operator
in a complex Banach space X. In fact, we study:

(1) Some estimates of the norms ||Sa,g(t)|, ||[ASq,5(t)| for different values of 1 < 8 < 2. We notice that
all the estimates provided in this paper are given in terms of computable constants, which are a
key tool to find, for example, a posteriori error estimates for the time discretizations of linear and
non-linear fractional differential equations, see for instance [7, 9, 8, 10].

(2) The continuity and compactness of the linear mapping ¢t — S, g(t), for ¢ > 0. Here, we prove that
this map is norm continuous and we give a characterization (in terms of the resolvent operator
(2 — A)™1) that ensures that the function ¢ — S, s(t) is compact for ¢t > 0. We notice that this
criteria has great importance to study of existence of mild solutions for (1) and (4), because some
fixed points arguments can be applied to solve it, see for instance [13, 19, 22].

(3) The Holder regularity of the solutions to (4) for a given Hélder continuous function f € C§1((0,T; X),
for 0 < a3 < as < 1. We notice here that the Holder regularity can be used to study, for example,
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FRACTIONAL DIFFERENTIAL EQUATIONS WITH ALMOST SECTORIAL OPERATORS 3

the existence and uniqueness of non-linear version of problem (4) or a posteriori error estimations
for its time discretization, see for instance [10].

The paper is organized as follows. Section 2 provides the Preliminaries. Section 3 is devoted to the study
properties of the resolvent family {S, g(t)}+>0. Here we find estimates for the norm of S, g(¢) and we prove
its continuity, for ¢ > 0. In Section 4 we study the Holder regularity of the solution to the fractional Cauchy
problem (4), and finally we study the compactness of the resolvent family in Section 5.

2. PRELIMINARIES AND NOTATION

In this section, we give the preliminaries and the notation. First of all let X = (X, ]| - ||x) be a Banach
space, which for the sake of the simplicity, and if not confusing, we denote now and hereafter merely by X,
and the associated norm simply by || - ||. Therefore given two complex Banach spaces X and Y, £(X,Y)
denotes the Banach space of all linear and bounded operators from X into Y. If X = Y, then we write
L(X,X)=L(X).

Definition 1. Let =1 <7 <0 and 0 < w < §. By ©7,(X) we denote the family of all linear closed operators
A:D(A) C X — X which satisfy
(1) 0(A) C X, :={z € C\ {0} : |arg(z)| < w} U {0}, and
(2) for every w < p < m, there exists a constant C,, such that
(6) ”(Z_A)_lH < Cul|™, z€C\Z,.
A linear operator A will be called almost sectorial on X if A € ©7(X).

We remark that if A is almost sectorial, then it is not possible to conclude that A is the generator of a
Co-semigroup. Moreover, it is well known that 0 € p(A) and therefore, A is an injective operator. Examples
of sectorial, almost sectorial, and almost sectorial operators which are not sectorial, and their applications
can be found in [23, Chapter 2], [25] and [29, Chapter 2].

Recall that a family of operators {S(t)}:>0 C L£(X) is exponentially bounded if there exist real numbers
M > 0 and wg € R such that

(7) IS@)] < Me=*, t=>0.

Definition 2. [2] Let 1 < o, < 2, X a complex Banach space, and A be a closed linear operator with
domain D(A) C X. The operator A is called the generator of an («, §)-resolvent family if there exist wy > 0
and a strongly continuous function So g : Ry — L(X) such that {z*:z € C,Rez > wo} C p(4), and

+oo
227 P — Al = / e *'S, 5(t)x dt,
0
for Rez > wy, and x € X. The family {Sqa,5(t)}>0 is also called the (o, B)-resolvent family generated by A.

Now, for 5 > 0, gg defines the function gg(t) := %, for ¢t > 0, where T'(-) stands here for the Gamma
function. It is easy to see that, for o, 8 > 0, we have (9o * g38)(t) = ga+s(t), where * denotes the usual finite

convolution, that is, (f x g)(t) := fot f(t — s)g(s)ds. Moreover, if an operator A with domain D(A) is the
infinitesimal generator of a resolvent family S, g(t), then, for z € D(A), we have

a.glt)r — t
o Sas(le— g5
t—0+ Jats (t)
For example, if a = 8 = 1, then Sy 1(t) corresponds to a Co—semigroup, if @ = 2,3 =1, then S5 1(¢) is a
cosine family, and if & = 8 = 2, then S;5(t) is a sine family. See [4] for further details.

For a@ > 0, let m = [a] be the smallest integer m greater than or equal to «. The Caputo fractional
derivative of order o of a m—times differentiable function f: Ry — X is defined by

02 f(t) = / Gt — )£ (s) ds.
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For a given Banach space Y, and 0 < a1 < 1, the space C**([0,T];Y) denotes the set of all bounded
a1—Holder continuous functions g : [0,7] — Y, endowed with the norm

lgllce qo.rivy = sup_llg@lly + [lglleer (o,71:v)
0<t<T
where [[g]]ce (o,77,y) denotes the semi-norm

lg(®) — g(s)lly
- v) = su _
[lglleer o,y iy R T

Moreover, if 0 < a; < ap < 1, then we define the space C§!((0,77;Y") as the set of all bounded functions
g:(0,T] = Y such that t — t*2~*1g(¢) is a;-Holder continuous in (0,7] endowed with the norm

||9||C§21((0,T];Y) = OE?ET lg@lly + Hgﬂcgg((o,T];Y)v

where Hg]]c;‘zl((o’T];Y) denotes the semi-norm

sg(t) —g(s)||y
lallesy o =, sup “HAD =S,

For a given 0 < ¢ < 1, and an almost sectorial operator A, we denote by XV the domain of the fractional
power ¥ > 0 of A, that is XV := D(A”) endowed with the norm |z||y = ||A”z||. In particular X' = D(A)
and X% = X. The following result gives a moment inequality for almost sectorial operators.

Throughout the paper we will make use over and over of a type of complex path which has always
the same structure. Let us fix its notation once for all as follows: Let r be positive, 0 < 6 < m, and
T0= Fi,e U Ff)e U Ff,e where

Tly: yhelp) = pe?, p>r,
(8) I2,:0 424(p) = re®, —0< o<,
2,0 22e(p) = pe® p>r

Proposition 3 (Moment inequality). Let A € O%(X) and 0 < € < 1 such that v+ < 0. Then, there exists
a constant k > 0, depending on C,,,~ and €, such that

9) 1A%|| < K[| Az(|" || =0F), 2 € D(A).
Proof. For x € D(A) C X¢ we have (see [25], Th 2.5)
(10) Afx = ! 25(z — A) "l de,

27 Jr,,

where T, g is defined according to (8), with w < 6 < p and r > 0 is small enough. Alternatively there
satisfies
1
(11) Atz = AN (Az) = — / 27Nz — A)T Az de.
2mi Tvo
Now consider R > r > 0, and the complex paths
I :={2€C:2€T,4,|2l/ <RIU{z€C:2=Re" —0 < ¢ <0},

and

Iy:={2€C:2€T,4,]2/>R}U{z€C:2=Re" —0 < $ <80}
both of them clock—wise oriented. Straightforwardly it follows that
(12) Afx =11 + I,

where,
1 _ _ .
I; == . 7z — A) "t Axdz, ji=12.
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On the one hand, re—writing I, and applying the Cauchy’s Theorem,

1
I, =

1
E(s -1 _ _e—1 _ E(. -1
=2 ) (2°(z — 4) ZF HNadz 25(z — A) " xde,

27Ti Iy
Since r > 0 may be taken as small as one needs, if in I; we take the limit 7 — 07 and apply the boundness
of the resolvent of A, then there exists C' > 0 such that
1
1] < */ 2177 dz| ||lz]| < CR=F7 |z
2T I
On the other hand, the parametrization of I's and the boundness of the resolvent of A, lead us to the
bound )
2] < */ 2777 de| || Az || < CRF7|| Az,
2 s
where C' > 0 is a computable constant. Therefore
[A%z]| < ORI |zf| + BT Ax]).
The choice R = ||Az||/||x| gives rise to the statement of the Proposition and the proof concludes. O
The proof of the next Lemma follows as in [10, Lemma 2].

Lemma 4. Let § >0, an/2 < ¢ <m, and 1 < a < 2. Therefore

/ ezt
Ti/t,9

—|Idz| < Cot*™", t>0,

where
9ecos(¢/ )

1 r¢
Co = (C’a + ) and Cy := —/ ecos(¥/a) dp.
) aJ_g

—cos(¢p/a
3. ESTIMATES AND CONTINUITY OF THE RESOLVENT FAMILY

In this Section we provide estimates of the norm of the resolvent families S, g(t) and AS, g(t), for
1 < a < 2, and different values of 8 > 0. Moreover, we study the continuity of S, g(t). Throughout this
section A will be an operator in O (X) with -1 <y <0 and 0 < w < /2.

Moreover, from now on, the complex path I'y /; 4, ¢ > 0, defined in the previous section will be taken with
T2 < ¢* < .

Theorem 5. Let 0 < ¥ < 1 and A € ©)(X). Suppose that1 < <2, 1+v—9 <0, and f—a(24+2y—1) > 0.
Ifx € XV, then

C,
(13) 1Sa,8(t)z]l < Totﬁ_lllx\\ + O (O g maCER RS | A% |t >0,
™

where Cy := kCy(C), + 1)2+7=0c, = o S 0.

Proof. Let x € X”. Therefore as z2%(2* — A) ™! = I+ A(2* — A)~" we have 227 P (2* = A)~! = L (I+A(z* -
A)~1). Hence, for z € X, and 'y 4 = 'y UT; defined according to Proposition 3 (where R > 1/t), we have

1 ezt 1 ezt

So.a(t = — —uxd — —— Az — A lzd
a.8(t)z o Jr, Frda+ o o, (2 )tz de
1 zt 1 zt
= — 6—36 dz + — e—Al_ﬂ(za — A)_lAﬂm dz.
27i Tyes 2P 27i Ty s 2P

On the one hand, by Lemma 4, the first integral can be estimated as

1 zt 1 zt C
o [ Geas| <o [ Ehaliasl < 22 ol
2mi Ty e 2 2 Ty es |z] 2m
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On the other hand, the second integral makes use of the facts that (2 — A)~!x belongs to D(A) and
A(z* — A)7! = 2%(2* — A)7! — I, wether z € T'y ;; 4. Therefore we have (by the moment inequality (9) with

e =1—19) that, for y € X,

(14) A7 (22— Ay < KA = A) Ly D (a0 )y |G
24779 —(y+1-9)
< k(U0 DIl (Gl )
— k(\ZP“*”C’M N 1)2+7—190;(w+1ﬂ9)|Z‘fom(v+1ﬂ9)”yH.
Therefore,
(15) i/ itAlfﬁ(Za —A)*lAﬁxdz — Z L/ itAlfﬁ(za —A)flAﬁxdz
2mi Tyeo 2B j:122ﬂ-i r, B :

Firstly, if z € I’y and y € X, then according to (14),
1A (2% = A) 7yl < Clz|m Oy,

where C' = k(C, + 1)2+7_190,:(W+1719) > 0. Therefore, by Lemma 4, we have

1 e 1-9/ —1 49 1 |€Zt| 1-9/ —1 49
o 7A (29— A)" A%xdz|| < Py 7 [[A*7 (2% — A)™" A¥z||| dz|
r, # ™ Jr,y |2|
C |ezt|
< | dz|||A”z]|

21 Jp, |2 (H1=9)+8

cC
< 27r0 oY F1I=0) 81y 49

Now, if z € 'y and y € X, and again according to (14)

JAY2 (= ) yll < R(Cu + DPITrOFDER I GO e Gy

Oz * 2= ly.

where C' > 0 stands for the positive constant defined above. Thus, by Lemma 4, we have

1 - 1 zt
—/ . AV — AT A2 dz|] < — b||Alﬂ9(za*A)AAI99€|HOL’3|
2mi Jp, 2P 2m Jr, |21
C '] 9
< " 1 dzlllA
S on Jo, ppecrmon |4l
< %tﬂ—a@*‘h_ﬁ)_lHAﬂmH.

27
This finishes the proof.

Remark 6. From the Proof of Theorem 5, if x € XV, then
(1) If z € Ty, then A7 (2% — A) 71 A%z|| < G|z 0= | Afg|.
(2) If z € Ty, then ||[AT =Y (2* — A)~1A%z| < g—;|z|a(2+27”9)||A19:c||.

From now on, if we split the path I into I'; UT'5 then, we will assume that R > 1/t.

Remark 7. If x € XV, in particular since D(A) C X? if v € D(A), then we have by the closed graph Theorem
applied to the identity operator I : XV + X that ||z|| < ||A%z|. Therefore, by Theorem 5 it satisfies that,
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for0<t<T,

[1Sa,6)llcix? x)
sup{[|Sa.s(t)z|| : w € X7, ||z|ly < 1}

C
< sup {27215’8_1||A19x|| + C1(to‘"’("’Jrl_ﬂ)J“B_1 +t_o‘(2+2v_19)+5_1)\|1419x|| crxe XY, |z]lo < 1}

< Co ps- 1L Oy (T =481 | pra(2429-0)+p-1)

2
< max{go’cl}Tﬂ—1(1+TaW(7+1—19)+T—a(2+27—19)).
Y8

Theorem 8. Let 0 < ¥ < 1, and A € ©),(X). Suppose that ay(y+1—9)—1 > 0, and —a(2+2y—9)—1 > 0,
and denote Cy := C4y/27. Therefore

(1) If v € X7, then
|ASast)z] < Cp (#F-otentHImd Ly yioamaliz=d=t) | 40g) ¢ >0,

for1 < p<2.
(2) If in addition x € X"+ then

AS, 1 (x| < Go 4y + Co (7O F1=0) 4 y=a@42y=0))) g9+ 0 ¢ 5,
’ 2
7r
Proof. Firstly, for € XV, we can write

1
AS, =3 = e PATI (R - AT A
Sap(t)z 2 5l /Fj e’z (z ) xdz,

where the complex path I';/; 4 = I'y U’y is defined throughout this proof as in the proof of Theorem 5,
where R > 1/t.
By Remark 6,

C
[ ASa,5(t)x]| /|€ZtIIZI"‘_B_O‘”(”H_‘”|dZIIIA%IIJri1 / |7 |[2]* =P EE2 =) 4z AP .
T 2’/TC() s

< 1
- 2wCy
Since 2 4 2y — ¥ < 0, we have (y +1—19) + (v + 1) < 0 and therefore (y+ 1) =9 < —(y+ 1) < 0, that is,
(v+1) <¥. As—1 <y<0,and 1 < o < 2, it satisfies a—f—ay(y+1—-19) < 0, and a—+a(2+27—-19) < 0,
for 1 < g < 2. Consequently, by Theorem 5

C
|‘A50475(t)x‘| < 2 1 (t’B atay(y+1-9)— + t,@—a—a(2+2’y—19)—1) HAﬂ.’E”, £>0
T
which stands for the first statement of the theorem.
Secondly we consider x € X?*+1. Since z“‘l(za — A)7t =271 A(2* — A)= — 27T we have that
zt

1 e
= A1 TPz — A)TLAYH! - —/ —— Axdz.
Saa(lr= ) 27r1/ ) vde=on ; Avdz

i=1,2 Tijee

)

Therefore by Remark 6 we have

IaSatel < gt [ et s e 4 g et s 42
1 ezt|
—I-? | |Az||| dz|.
T JT1 )8 | |
Since —ay(y+1—9) —1 < —2, and a(2+ 2y — ) < 0, we have by Lemma 4 that

C
HASa,l(t)l'” < 21ta’Y y+1— 19)||A19+1 ” +

D1y Cer=0)) 49 4 20 gg
7T
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and the proof concludes. O

Remark 9. Let us highlight a fact which is particularly interesting since this appears more than once in the
sections below. If B = a, and x € X7, then by the first statement of Theorem 8

IASa.a®llcxox) = sup{l|ASaa(t)el -z € X7, |lzlls <1}
< Sup{Cg(ta’Y(’Y+1719)7l +t7a(2+27719)71)||A191,” sy e Xﬂ, ”le9 < 1}
< CQ(Ta'y('y+l—19)—1 _~_T—a(2+2'y—19)—1).
Next we show the continuity of the resolvent family.

Theorem 10. Let 0 <9 < 1 and A € OY(X). Suppose that 2+ 2y — 9 < 0. If 1 < B < 2, then the function
t > Sa.p(t) is continuous in L(XY, X), fort > 0.

Proof. Let t € XV, 0 < s <t,and 1 < 8 < 2. We may write

1

(Sap(t) = Sap(s))z = 5= (€ — )22 P (2 — A) e dz
27i Fl/t,¢
1 z(t—s) _ 1
= — ezseiza_ﬁﬂ(zo‘ —A)tadz
27i Tyes z
1 z(t—s) _ 1
= — exsl T Bt (I—i—A(za —A)_l)xdz
2mi (N z
= Il + 123
where
1 z(t—s) _ 1 1 1 z(t—s) _ 1 1
I = — ezsei—lxdz, Iy = — RN 1A1_19(z°‘ —A) 1A% dz.
2 Jr, ., z 2P- 2 Jr, ., z 2P-

2(t—s)
e 1 }) such that

On the one hand there exists C > 0 (in particular C' = max:er, , , {W

z(t—s) _ 1
e
||Z|| S C(t — S), A Fl/t,d)v

therefore by Lemma 4, straightforwardly follows that

CCy(t — 5)s2||z||

L <
I < L

0<s<t,

and that I; — 0, as s tends to t.
On the other hand by the bound above and Remark 6 we have

CCy(t—s) s 1 1 9
[[12]] < 27TC()~/F1/t¢ o™ | 2|1+ (y+1-0) + |z|B—1—a(27+2-06) | dzf]| A%,

and since S — 1+ ay(y+1—-0) >0,and 8 —1— a(2y+2—0) > 0, by Lemma 4 again, there satisfies

L2 < %(Sﬁ—ﬂav(vﬂ—m +8ﬂ—2—a(2v+2—9))”A19x”, 0<s<t
™

In view of the above, if s tends to ¢, then I, — 0, and the proof concludes. d
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4. HOLDER REGULARITY

In this Section we study the regularity in the sense of Holder continuity of the Problem (4) where A €
©7(X). First of all, recall that the solution to Problem (4) can be written as

u(t) = Sa,l(t)x—l-Sa,g(t)y—&—/o Sa,a(t —s)f(s)ds.

In fact in this section we estimate [|ullge1((0,79;p(a)) Which consists of estimating the terms involved in the

3

that norm, that is,

lullegr o.mipay = OiltlET lu(®)llpeay + ([l egr o0,m1:pa))

where
sup |lu(t)l[pay = sup [lu(®)||+ sup [|Au(?)],
0<t<T 0<t<T 0<t<T
wd [[u(t) — u(s)]] [Au(?) (sl
s?|lu(t) — u(s s@?||Au(t) — Au(s
ul] e ) = su — " 4+ su .
[ul]ezs o,y I iy T S =)™

The propositions below are devoted to show estimates for each of these terms. Although most the results
below can be stated in a more general framework of values of 3, we here focus our attention in those required
by (16).

Notice that within this section we assume that f € Cg;((O,T],Xﬂ), for 0 < a1 < as < 1, Hence all
constants involved in the bounds below will also implicitly depend on a3 and ae, even though they will not
explicitly appear in the notation. However, all the constants are in fact, computable.

Moreover, we state once for all the following assumptions which will be required from now on in all results
below, although they are not explicitly mentioned in the statement of results. In fact, assume that

ay(y+1—-9)—-1>0, and —al2+2y—9)—-1>0.

Before starting with the results and proofs of this section, and since this will appear repeatedly we asume
now and hereafter that the complex path I'y /; 4 = I'y U2 is defined as in the proof of Theorem 5.

Proposition 11. Let 0 < ¥ < 1 and A € ©)(X). If z,y € X?, then there exist constants K;, Ko, K3z > 0
depending on a, 7,9 and T such that

(16) Sup lu)|l < Kallzllo + Kallyllo + Ksll flleg (0,7, x0)-

Proof. Asx € X, ay(y+1—19) >0, and —a(2 + 2y — ) > 1 > 0, by Theorem 5 with 8 = 1, we have

[Sax(B)z] < %H@"H + O (T pmelH2 ) | A7,
Once again since XV C X, we have ||z|| < ||A%z|, for x € X7, and we get
[Sa(t)z]| < Ki[|A%2|, 0<t<T,
where
K= max{gi, Cy (T(”('Y'H_ﬂ) + T_o‘(2+27_79))} .

Similarly, as ¥ € X7, by Theorem 5 with 5 = 2, we have

C _ _ -
ISyl < 2Tyl + Co(THHr O Te@E0) | A% < Fo|A%y)|, 0<t<T,

where

Ky := max {(;OT Cy(TirortH1=9) o T10‘<2+27“9>)} )
Y5
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On the one hand, by Remark 7, we have (with 5 = «)

a,a(t—S)(f(S)—f /HSM = $)leexox) £ (s) = f(B)ll ds

t .« aq
< max @,Cl Ta—l(l_i_Ta’y(’y-&-l—ﬂ) +T—o¢(2+2’y—q9))/ S 2||f(3)_f(t)||19 (t—S) ds
27 0 (t—s)™ 592
C
< max{20 o) }T‘Wl (14 T L TmeCED) £ con (o ysx0y Blon +1,1 = as),
™
where B(-,-) stands for the Beta function. Similarly,
| [ Saats < [ MSaaecre 50l as
Co -1 1—9 — (24279 '
< max{ 0,0 PTA @ TR0 el ) [ (o) ds
2 0 0<t<T
<

C _ —a -
max{%?7cl}Ta(1+TOé’Y(’)’+l 19)_|_T (2+2v 19))||fHCZ‘21((O,T];X’9)'

We conclude that

sup [lu()l| < Killzllxo + Kallyllxo + Ksll fllegs o,rx0)
0<t<T

where Ky 1= max {§2,C1} (T2 02 B(ag + 1,1 — ag) + %) (14 T010H10) 4 poeiz-0)), O
Proposition 12. Let 0 < ¥ < 1 and A € ©)(X). If z € X1y € XV, then there exist constants
Ky, K5, Kg > 0 depending on «,y,9 and T such that
(17) sup [|Au(t)[| < Kyllz|[xoer + Ksllyllxo + Kell fllcoz (0,17:x7)-
0<t<T
Proof. As z € X1 € D(A) and ay(y+1—9) > 0 and —(2 + 2y — 9) > 0, by the second statement of
Theorem 8 we have
C _ —a _
[ASa ()| < 27?”1433” + Oy (T O a0 | A0 H g |

From hypotheses of the theorem it follows that 2—a+ay(y+1—-9)—1 >0, and 2—a—a(2+2y—9)—1 > 0,
and along with the first statement of Theorem 8, now with § = 2, we have

||A5a,2(t)yH < C2(T2fa+a7(7+1719)71 +T27afa(2+27719)71)”Aﬂy”.
Again by Theorem 8, now with 5 = a, we get

\ / ASaalt — 5)(f(s) — F(£))ds / 1ASma(t — $)ll2ixo x| F(5) — FD)llo ds

IN

IN

t
02/ ((t o S)a'y(y+1719)+a171 + (t o 5)*04(2+27*19)+a1*1)5(1*042)*1
0

sl = £6)lo
o ds.

Notice that
i
/ ((t . S)av(’y—i—l—ﬂ)-’—al—l + (t _ S)—a(2+2’y—19)+a1—1>S(l—az)—l ds
0

= OFI=DTam R Bay(y +1—9) + a1, 1 — as)
TGO B_q(24 2y — 9) + ar, 1 — ),
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where B(:,-) stands once again for the Beta function. If we denote
O = Cy (T‘”(”“_ﬁ)“”_azB(a’y(v—H—19)+a1, 1 =)+ T~ =0+ —02 B(_ (2499 —0) +ay, 1—042))7
we obtain

< sl Flleea o.ry:x oy

/0 ASualt — $)[f(s) — F(£)]ds

1 Since f € C1((0,T]; X?) we have that f(t) € X7, for t € (0,7], and as ay(y+1-9) > 0, —a(2+2y—9) >
2 0 by Theorem 8 we get

t t
\ / ASao(s)f(t)ds| < / 1ASa.a () cixo 17 (0)1o ds
0 0
t
= 02/ (s27CH==E g gm0 =) 4| A7 (1)
0
< Cy(TertITY) ey “)Hchal((OT] X))

— 1 1
3 where Cy := Cy max { AOHT0) Salia =) } .
As ||Az|| < |AYPz||, for # € X+ straightforwardly follows that

ES

sup [[Au(t)]| < KallA™all + K5 Ayl + Kol fllos o.ryx0):

0<t<T
5 Wwhere
Co +1-9) (242v—)

Ky = 2—+O(T"M + 7))y,

Ky = Cy(T* atay(y+1-9) 4 Tl—a—a(2+2’y—19))’

KG ‘= max {037 04(T04’Y(’Y+1*79) + T*Dt(?‘l’?’)/*ﬁ))} )
° 0
7 Next, we notice that if w is the solution to Problem (4), then

u(t) —u(s) = (Sa1(t) = Sa1(s)x + (Sa2(t) = Sa,2(5))y + /0 Sa,a(t =) f(r)dr — /0 Sa,alt =) f(r)dr

= (Sa1(t) = Saa(s))z + (Sa, ()*Sa,z(S))er/ Saa(r)(ft —7) = f(s—r))dr+

0
/S’aa ft—=r)dr.

8 In the following propositions, we estimate the terms involved in [[u]]ge1 (0,71;p(4)) according to the ex-
o pression of u(t) — u(s) above.

10 Proposition 13. Let 0 <9 < 1 and A € ©)(X). If x € XV, then there exists a constant Ky > 0 depending
1 ona,y,9 and T, such that

(18) 592||(Sa,1(t) — Saa(s))z||

sup
0<s<t<T (t—s)™

< Kr||z|

XY



12 EDUARDO CUESTA AND RODRIGO PONCE

1 Proof. Let x € XV, and 0 < s < t < T. Therefore

1 1
(Sa1(t) = Sai(s))r = — etho‘*l(za - A)*lm dz — — ezszafl(z”‘ — A)*lx dz
2mi Ty 27 Ty
1
= — (ezt ezs)za—l(z(x _ A) 1l‘d2
2mi Ty is
1
= — e® (279 1)1 (2% — A) "'z d2.
2mi

Tije,
On the one hand

227N — A) e = %(I + A(z% — A)_l):v = %(I + ALY — A)_lAﬂ)x.

On the other hand, by holomorphy matters

1 1
zs( z(t—s) _ - —
o e (e 1) . dz =0.

Pi/t.e

[1—e*(t=9)]

2 Therefore since |1 — e**=9)| < Clz|(t — s), for z € 'y /34, C := max.er, , , {W

}7 by Remark 6 we

3 have
Ci(t—s —a - zs « -
(501t = Soa(eall = S ([ et ioast + [ joapene =0 a:) a4
1 2
CCl(t - 3) (Sa'y(’y-l—l—ﬂ)—l + s—a(2fy+2—19)—1) ||A19.’17||
- 27
4 In view of the above we straightforwardly have
SO‘Q(Sa,(lt(t) —)Sla,l(S))xH < 0201 i So;; — (sav(wl—ﬁ)—l + s—a(2w+2—19)—1) 14?2
— S (o3 e — s o] —
< COI (Toz'y('y+1719)+a27a1 +Tfo¢(2’y+2719)+a27a1> HAﬂxH
— 27_[_ 9
< Kol
where
K; = Ch (Tav(’v+1—19)+a2—a1 _|_T—Oé(2'v+2—19)+ozz—a1>
27 ’
5 which concludes the proof. O
6 The following proposition straightforwardly follows merely assuming some additional regularity on the

7 data. The proof is therefore omitted.

s Proposition 14. Let 0 < ¥ < 1 and A € ©)(X). If v € XU+, then there exists a constant Kg > 0
9 depending on a,y,9 and T, such that

5%2||(ASa.1(t) — ASq1(s))z|

0<s<t<T (t—s)or

(19) S K8H$||X19+1.

10 Proposition 15. Let 0 <9 < 1 and A € ©)(X). If x € XV, then there exists a constant Ko > 0 depending
u  ona,v,% and T, such that

592[|(Sa,2(t) — Sa2(s))z||
20 S 2 :
(20) 0<acver (t—s)™

< K|z xo-
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Proof. Let x € XV, and 0 < s < t. Then we have

1
(Sa2(t) = Saz(s))z = — (et — ezs)zo‘_z(za — A)_lw dz
27Tl Fl/t,d)
1 z(t—s) _ 1 1
= o ; e*s (ez> ;(I + A(z* — A)_l)xdz
1/t,6
= L1+ 1,
where
1 z(t—s) _ 1 1
L = — e*® <e> —xdz,
2mi Tyes z z
1 (t=s) _ 1\ 1
I = — e*? <e> fAl_ﬂ(za — A)_lAﬂxdz.
27i Tyes z z

o= (t=9))]

On the one hand, if C' is the bound of Mﬁ reached above, then

COQ (t - 8) CCO (t - S)
L) < ———lzll < ——lzllx».
27 2
Moreover, by Remark 6, and as 1+ ay(y+1—9) > 0and 1 — a(2y+1—¢) > 0 by Lemma 4 we also have
CCy(t — s) s 1 25 1
2]l < W - le |W|dz| +/Fz le ||Z|1_Q(Tl_ﬁ)|dz| 2]l xo
CCl(t— S)

S (s a0 g
m

Therefore, with the same bound for s%2(t — s)1=%1 as in Proposition 13, there satisfies
52[|(Sa2(t) = Saa(s))z]|  _ [ CColt —s) n CCi(t—s) (57 (H1=0) | —a2r+1-0)) s%2 2] 50
(t—s) - 27 27 (t—s)u

Kgll]xo,

A

where
Kg — % {COTl—i-aQ—al + Cl(Ta'y('y+l—19)+l+a2—a1 +T—o¢(2'y+1—19)+1+o¢2—a1)} )
O

The proof of the next theorem does not differ so much from the previous one, so we present some guidelines
of it.

Proposition 16. Let 0 < ¥ < 1 and A € ©)(X). If z € X'+ then there exists a constant K19 > 0
depending on «,~,9 and T, such that
572 |[(ASa.2(t) — ASa(s))z|

0<s<t<T (t—s)™

(21) < Kiollz|lx+v.

Proof. Similarly to the proof of Proposition 15 we have

(ASq2(t) — ASq2(s))x
= 1 (et — )22 2A(2% — A) 'z dz

2mi Ty/es

z(t—s) _
= i e** <el> 1 {Az + AV (2o — A)71A1+199:} dz.
2mi Ty/en z z
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1 Therefore, by Remark 6 again
[ASa2(t) — ASa2(s)z|
C(t—s) le**]
e ( [ el

o 121

C
+61 {/ |ezs|‘z|fcw(1+'yf¢9)fl dz + |ezs|z|a(2+2'ym9)1|dz|} HAlJrﬂxH)
0 I Iy

C(t—s) o —a(242y—
< o <00|Ax||+o{ A(1t7=0) 4 ga(2+2y ’”}HA”%H).

The proof concludes noticing that ||Az| < ||z||1+9, and that

5°2[|(ASa,2(t) = ASaa(s))z|
(t—s)m

< Kuallz||x+v,

where
C
Ko = % {COT1+az—a1 +C (T1+a2—a1+a7(1+7—19) + T1+042—(¥1—01(2+2’Y—79))} .
2 [l

3 Proposition 17. Let 0 <9 < 1 and A € ©Y(X). There exists a constant K11 > 0 depending on «,~y,9 and
4 T, such that

aa t—r)—f(s—r))d?"

22 sup
(22) 0<s<t<T (t—s)>

< Kullfllest (o:xv)-

Proof. First of all notice the following bounds which are useful in the present proof,

£ < 1A% F I < M flezsorxey, 0<s<T,

and,

176) ~ £ < 1470 — sl < =2

5 Secondly applying Remark 7 with § = « we have

Iflle

coror)x?y, 0<s<t<T.

ag

oa(r)(f(t =7) = f(s = 7)) dr

< sup {IlAﬁ(f(t—T)—f(s—?"))ll}/os [Sea(r)llecxo x) dr

0<r<s
<K ( )
117 o ”fHCal((O,T];Xﬁ)a
where
Cy T Totay(l+y—1>9) To—ay(24+2y—17)
Ky = — . C — .
" max{%r, 1}(@ +a+ory(1+’yfz9)+afafy(2+2’yfq9)
6 Last bound straightforwardly leads to the statement of the Proposition and the proof concludes. (I

7 Proposition 18. Let 0 < 9 < 1 and A € ©)(X). There exists a constant K12 > 0 depending on «,y,9 and
s T, such that

wa(r)ft—r)dr

(23) sup

0<s<t<T (t—s)™ < Km”f”ngl((O,T];X")'
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1 Proof. On the one hand, by Theorem 5 with 8 = « we have, for 0 < s <t < T,

wa(r)ft—r)dr

(t —s) sup {[|Saa(r)f{t—r)[}

s<r<t
Co(t —s) o
< —5— sup {(t-7) HIFe=nl}
7T s<r<t
=)0 sup { (6 =) T g pyeme @) A0 )|
SSTS
1
< (=K I fllog (o.rrxo),
where .
K(l) — C[)T + Cl (Ta+ay('y+1719)71 +Ta7a(2+2'yfl9)> )
12 o
Therefore
wa(r)ft—r)dr
« —Q 1
=5 < 5% (t—s)! 1K£2)||f||c(‘i‘2}((0,T];X19) < Kuollfllezr oxv)
where
K12 = T1+a27a1K§§),
2 which concludes the proof O

3 Proposition 19. Let 0 < ¥ < 1 and A € O)(X). If f € C((0,T]; X?), then there exists a constant
4 Ki3 >0 depending on ~v,9 and T, such that

/ ASp o (P)(F(E— 1) — f(s— 1) dr

24 su = <K ay
(24) 0<acieT (t—s)> sl flezsomixe)

s*2

Proof. Using again the notation I'; /; 4 = I'1 UT'2 as in Theorem 5 we can write

ASaa)(ft-1) = fs—1) = ¥ 27“/ AT (20 _ AV TTA(f(t— 1) — f(s — 1)) d.

j=1,2
5 By hypothesis, Remark 6 and Lemma 4 we get

Cy
480 ()t =) = Fs =) < s

Ie”IIZI_M““_”) 1A(F(t = 7) = f(s = )| de] +

/ Tl O A (- )~ (s = )l

27rC
S SOty ey A9 (4t — ) — (s~ )]
Now, as
_ A=) = s —r)ll(s =) (t— )™ (t—s)™
HAﬂ(f(t—T)_f(S_T))H - (t—s)n (s — 1)z < ||f|‘0321((0)T];X19)m7
6 we have

/O A (P (F(E — 1) — f(s — ) dr

Cl(t_s)al ° a —9)— —a —9)— —«
a T/o (ren =T 4 @R (s — )70 dr| fllogs o.yx0)-
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Now, by the definition of the Beta function it follows
S
/ (ra'y(w+1719)71 + rfa(2+27719)71)(8 o T)*OLQ dr
0

st Im0 Bl (y 41— 9),1 — ) 4 s~ *CF2 =) 714 —a2 B (2 4 2y — ), 1 — ay).

Therefore,
Ht / ASy o(r)(f(t—7)— f(s—7r))dr
S (11

(Sa'v(wl V) 4 g2y 19))

- 27
‘mas {B(oy(y + 1 - 9), 1~ az). B(~a(2+ 27— 9). 1~ a2)} [ 7l ez (orrex0)

Kl fllegromxoy

IN

where

C
Ky := 2—; (T‘”(”H_ﬂ) + T_“(2+27_19)) max {Blay(y+1—19),1 —as), B(—a(2+ 2y —9),1 —as)}.

O

Proposition 20. Let 0 < ¥ < 1 and A € O)(X). If f € C31((0,T); X”), then there exists a constant
Ki4 > 0 depending on «,~y,9 and T, such that

/ ASyo(r)f(t —r)dr
(25) sup

0<s<t<T (t—s)>

< Kl4||f||C§2}((O,T];X0)'
Proof. As in the Proof of Proposition 19 we can write

ASaa(Mf(t—1) = %/ T AT (20— AV LAY f(t— 1) de
j=1,2 mJr,

where I'y /; o splits again as inTheorem 5.
Since ||AYf(t —7)|| < Hf”cg%((O’T];Xﬂ), we obtain by Remark 6 and Lemma 4 that

Cy
AS(xa t— < zr —ay(y+1-19) d / zr a(2+2y—19) d o ‘
[ASa,a(r)f(t—7) < 57Ca (/Ft le*"| | |dz| + o e*"]| | |z | 1f less o,rpixoy
Ci( o —a
< o (PO e @RI Y ey
Ci (o a
S gy (TR L T e o e
Therefore,
t
/ASa,a(r)f(tfr)dr
(t—s)™
C15°2(t — s)t—> o o
< o (T Y(y+1-9)— 1+T (242vy—9)— >||f||C°‘1((0T x?)
< Kullfllegs o.rxoy
where
K14Z ClT1+a2 al(Ta'y(’y-&-l 9)— 1—|—T a(242y—9)— 1)
2
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The next theorem is the main results of this section and gives a Holder regularity result of the solution u
to Problem (4).

Theorem 21. Let 0 <9 < 1 and A € ©)(X). If v € XL y € XV, and f € Cg‘;((O,T];Xﬂ), then there
exist constants Dy, Do, D3 > 0 depending on «, 7,9, and T such that the solution u to Problem (4) verifies

lulloer o,mipay) < Dallzllxors + Dallyllxe + Dl fllcer o,07:x0)-
Proof. Recall that the solution to Problem (4) writes,

u(t) = Sa,1(t)x + Sa2(t)y + /t Sea(r)f(t —7r)dr, 0<t<T.
0

Now, by definition
U|| e . = su u(t + [[u]| e . ,
| ||Ca2}((0,T],D(A)) 0<t£ llu(t)l|pcay + [[ Hcazl((o,T],D(A))

where
sup [[u(t)llpay = sup |lu(t)|| + sup |[[Au(t)]],
0<t<T 0<t<T 0<t<T
and ) — u(s)] [ Au(t) - Aus)]
s?||u(t) — u(s s¥2||Au(t) — Aul(s
u e . = Ssu —+ Ssu .
[ullogs o,71:0(a)) oS T = e S =)

Let f € C21((0,T]; X¥). By Proposition 11 we have
sup |u(t)[| < Kilzllxo + Kallyl xo + Ksl[fllcor o0,.x7)
0<t<T

for 2,y € X7, and by Proposition 12
oSIP [Au(®)]| < Kallzllxi+o + Ksllyllxo + Kell fll ozt o.17:x9)
for z € X+ ye XV, As XU+ € XV and ||z]|x» < ||z| xo+1 We obtain
(26) S [u(®)lpeay < (Ky + Ka)llzl xoer + (K2 + Ks)llyl xo + (Ks + Ke)l[ ooz (0,11,x0)-

On the other hand, as

ut) —u(s) = (Sa1(t) = Sa1(s)x + (Sa2(t) = Sa2(s))y + /03 Secal(r)(f(t =r) = f(s —r))dr

t
+ / Sea(r)f(t—r)dr,
we have, respectively, that

§%2[|(Sa,1 (1) = Sa,1(s))|| 52 |[(Sa2(t) = Sa2(5))yll

< K7||lz|| xo+1, su < K 0,
s (t — 3)041 > 7” ||X9+1 0§5<£)§T (t — 8)‘11 9||y||X 9
5 | [ Saan) (7l =) = s =) dr
0 < K a .
0<act<T (t—s)m < Eullfllegy ooy,
and .
52 / Se,a(r)ft—r)dr
S < K a . .
0<osieT (i —s)m < Kullfllezs o)
Therefore,

§%?||u(t) — u(s
en s OOl < el + Kalllo + (o + Kol ez oo
<s<t< -
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Alu() —u(s) = AlSar(t) = Sai(8) + AlSa2(t) = Saa(s))y + / ASa a0t — 1) — (s —r)dr

+ / Ao ()t — 1) dr,

we respectively have

5%2[[(ASa1(t) = ASa1(s))z|| §°2[[(ASa2(t) = ASaa(s))yl

su < K T 1, Ssu S K )
0§s<£)§T 5o < Ksllz|| xo+ 0§S<£>§T t— )™ 1ollyllxo
t
/ ASalr)(f(t =) = f(s — 7)) dr
s < K @ .
Ogiglt)ST (t—s)> < Kusllflezyomxey
and .
542 / ASoo(r)f(t —r)dr
S < K a 9
0<ostar (t—s)™ < Kullflezyomixo

This implies that
oy A0 - Au)]
0<s<t<T (t—s)n
From the estimates (26),(27) and (28) we conclude that
lulloer o.ripay < (K1 + Ky + K7 + Ks)l|lz] xoe 4 (K2 + K5 + Ko + Kio) ||yl x»
+(K3 + K¢ + K11 + K12 + Kiz + Kua)l[ fll o1 (0m.x0)-

If one takes Dl = (Kl +K4 +K7 +K8), D2 = (KQ +K5 +Kg +K10), and D3 = (Kg +K6 +K11 +K12 —+
K13+ K14), then the proof finishes. O

< Ksllzllxoer + Kuollyllxo + (K13 + K1)l fll o2z (0,17:x2)-

5. COMPACTNESS OF THE RESOLVENT FAMILY

In the present section we afford the compactness of the resolvent family {S, 5(t)}+>0, for «, 8 > 0, defined
in Section 1. For technical reasons we study separately both cases, 1 < f <2, and 8 = 1.

Theorem 22. Let 0 < ¥ < 1, A € ©)(X), and v,0, so that -1 <y <0,0< 9 <1, and 2+ 2y < . If
1 < B8 <2 then the following assertions are equivalent

i) Sa.p(t) is a compact operator in L(X?, X), fort > 0.

ii) (z— A)~' is a compact operator, for z € C, Rez > w'/®.

Proof. (i) = (ii) Suppose that t — S, (t) is compact in £(X?, X), for t > 0, and 1 < 8 < 2. For any
z € C, Rez > w'/, we have

+oo
2B — AT = / e *'Sa p(t) dt.
0

By Theorem 10, the integral in the right-hand side exists in the sense of Bochner because t — S, (%) is
continuous in £(X?, X). By [28, Corollary 2.3] we have that (2 — A)~! is a compact operator.
(#3) = (i) Let t > 0. For 1 < 8 < 2, recall we may write

Sa,5(t) = (951 % Sa1)(t), ¢>0,
in £(X", X). Therefore,

1
2i A Gtha_B(Za - A)_l dz = Soc,ﬁ(t)7 t>0,
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where T' = {w + is : s € R} is noting but a complex path with increasing imaginary part, and by [28,
Corollary 2.3] S, 5(t) is compact in £(X7, X).
Now, we take 8 = 2. In £(X”, X) we have again
Sa2(t) = (g1 % Sa,1)(t), >0,

and by [14, Proposition 2.1], we conclude that Sy 2(t), t > 0, is compact as well. a

Theorem 23. Let 0 < ¥ <1, A € ©)(X), and 7,9 so that -1 <y <0,0< 9 < 1,242y -9 <0, and
ay(y+1—=19)—1>0. Therefore the following assertions are equivalent

i) Sa.1(t) is a compact operator in L(X?, X), fort > 0.
ii) (2 —A)~! is a compact operator, for z € C, Rez > wl/®.

Proof. (i) = (i) Suppose that t — S, 1(t) is compact in £(X”, X), for t > 0. For Rez > w'/® we have
+oo
2150 ) :/ S, 1 (1) dt.
0

Since by Theorem 10, the map ¢ + S, 1(t) is continuous in £(X?, X), the integral in the right-hand side
is well defined in the sense of Bochner, and by [28, Corollary 2.3] we have that (z* — A)~! is a compact
operator.

(ii) = (i) Conversely, let 0 < s < t, and x € X". Therefore

1 ezt _ esz L
(Sa1(t) = Sanls))z = 5= ——2% (2" —A) xdz
27 Ty e z
1 z(t—s) _ 1
= = " T (T4 A — A) )z dz
2mi 0w z
1 2(t—s) _ 1 1 z(t—s) _ 1
= — eszeix dz + — eszeiAlfﬁ(za — A)fl)Aﬁa: dz.
2mi Tyes z 2mi Ties z

As the first integral in the last equality turns out to be zero since the singularity in there stands for a
removable singularity, we have that

1 ez(tfs) -1 9 9
(Sa,1(t) = Saa(s))r = 5— e A2 — A) Az dz.
' ' 211 Jr, ., z
On the other hand, as we have noticed before, there exists C' > 0 (precisely detailed above) such that
le*(t=5) — 1)|/|z|(t — s) < C, for z € Ty, 4. Therefore, by Lemma 4, and Remarks 6, according to the

notation I'y j; 4 = I't UT'2 in Theorem 5, we have

[1(Sa,1 () = Sa1(s)) |

t—

< [ e A - ) A% )
2 Tiee

< ST et opas) 4 [ el gzl 4%
2wCy T, 2

< 010(t — 3) {81+a7(1+7_19) + Sl—a(2+2'y—19)} HAﬁmH
- 2m
Clc(t — S) {T1+a'y(1+'y—19) + Tl—a(2+2'y—19)} ”Aﬂx”
2m
Thus, if ¢ tends to s, then the last inequality implies that ||(Sq,1(t) — Sa,1(s))z|| — 0. That is, Sq 1(t)
is continuous in £(X?, X), and by [28, Corollary 2.3] we conclude that S, 1(t) is compact in £(X?, X), for
t>0.

<

O
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