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Abstract. In this paper the resolvent family {Sα,β(t)}t≥0 ⊂ L(X,Y ) generated by an almost sectorial

operator A, where α, β > 0, X, Y are complex Banach spaces and its Laplace transform satisfies Ŝα,β(z) =

zα−β(zα − A)−1 is studied. This family of operators allows to write the solution to the fractional initial

value problem

(∗) ∂αt u(t) = Au(t) + f(t), t > 0,

where u satisfies the initial conditions u(0) = x, u′(0) = y, ∂αt denotes the Caputo fractional derivative,

1 < α < 2, and f is a suitable function, as a variation of constants formula. Estimates of the norm ‖Sα,β(t)‖,
as well as the continuity and compactness of Sα,β(t), for t > 0, are shown. Moreover, the Hölder regularity

of the solutions to the problem (*) are also studied.

1. Introduction4

Sectorial operators have been studied widely during the last four decades because in many differential5

equations in applied mathematics the differential operators in the linear part are one of those operators.6

The resolvent of a sectorial operator A satisfies the estimate ‖(z − A)−1‖ ≤ M |z|−1 for z ∈ C \ Σω (see7

below for the definition of Σω). Many elliptic differential operators with homogeneous boundary conditions8

are sectorial when they are considered in the Lp-spaces or in spaces of continuous functions. For example,9

if Ω is a bounded subset in Rd, X := C(Ω) denotes the space of all continuous functions defined in Ω and10

the operator A, defined by Au := ∆u, is the realization of the second order operator in X with domain11

D(A) = {u ∈ X : ∆u ∈ X, ∂u/∂ν = 0}, where ∂u/∂ν denotes the normal derivative at the boundary of12

Ω, then A is a sectorial operator in X, [23, Chapter 1]. However, this elliptic operator in a more regular13

functions space, such as the spaces of Hölder continuous functions, may be not sectorial. In fact, if we14

consider A defined by Au := ∆u, with domain D(A) = {u ∈ C2+β([0, π]) : u(0) = u(π) = 0}, where15

0 < β ≤ 1 and C2+β([0, π]) denotes the Hölder space of all twice continuously differentiable functions u such16

that ∆u belongs to the Hölder space Cβ([0, π]), then A is not sectorial [23, Example 3.1.33]. However, in this17

last case, the operator A satisfies the estimate ‖(z−A)−1‖ ≤M |z|γ , for all z ∈ C\Σω and some −1 < γ < 018

(instead of γ = −1 as in the case of sectorial operators). Operators A satisfying this last inequality are19

known as almost sectorial operators.20

On the other hand, the theory of fractional differential equations of sub and super diffusion type has21

been a topic of great interest in the last two decades, and the problem of the existence of solutions (and its22

regularity) to the problem23

∂αt u(t) = Au(t) + f(t), t ≥ 0, u(0) = x,(1)

where A is a closed linear operator defined in a Banach space X, x ∈ X, f is a suitable vector-valued function24

(linear or non-linear), 0 < α < 1, and ∂αt u denotes the Caputo time–fractional derivative of u, has been25

widely studied over the last years. See for instance [1, 5, 6, 11, 12, 15, 16, 17, 18, 20, 24, 26, 27, 30]. If A26

is a generator of an (α, 1)–resolvent family (see below for its definition), then the solution to (1) is given in27
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terms of a variation of constants formula as1

u(t) = Sα,1(t)x+

∫ t

0

Sα,α(t− s)f(s) ds, t > 0,(2)

where, for α, β > 0, Sα,β(t) is defined by2

(3) Sα,β(t) :=
1

2πi

∫
Γ

eztzα−β(zα −A)−1 dz, t ≥ 0,

and Γ is a suitable complex path defined within the domain of the resolvent operator (zα − A)−1. See for3

instance [21].4

Recently, the tools on functional calculus for almost sectorial operators has been used in [27] to study
(1). More concretely, if 0 < α < 1 and A is an almost sectorial operators, then the resolvent families
{Sα,1(t)}t>0, {Sα,2(t)}t>0, and {Sα,α(t)}t>0 are continuous and compact in L(X). Moreover, there exist Cs
and Cp positive constants depending on α and γ such that the following estimates hold

‖Sα,1(t)‖ ≤ Cst−α(1+γ) and ‖Sα,α(t)‖ ≤ Cpt−α(1+γ), t > 0.

As a consequence of these results, the authors study properties of the solutions to some linear abstract5

fractional differential equations in Banach spaces. However, we notice that these results can not be used or6

extended directly to study the same problem in case of 1 < α < 2. Therefore, the problem of the existence7

of solutions to the fractional initial value problem8

(4)

 ∂αt u(t) = Au(t) + f(t), t ∈ [0, T ],
u(0) = x,
u′(0) = y,

where x, y ∈ X, 1 < α < 2, and A is an almost sectorial operator becomes a natural one.9

We notice that fractional differential equations in the form of (1) and (4) for 0 < α < 2, with A being a10

sectorial operator have been widely studied in the last decades, see for instance [3, 7, 9, 8, 10, 18, 31] and11

the references therein. However, the case in which 1 < α < 2 and A is an almost sectorial operator remains12

as an open problem.13

From the uniqueness of the Laplace transform, it is easy to see that the solution to the Problem (4) is14

given by15

u(t) = Sα,1(t)x+ Sα,2(t)y +

∫ t

0

Sα,α(t− s)f(s) ds, t ∈ [0, T ],(5)

and therefore, the representation (3) of Sα,β(t) provides an important tool to study its properties in the case16

where A is an almost sectorial operator.17

In this paper, we consider, to the best of our knowledge, by the first time the properties of the resolvent18

families {Sα,1(t)}t>0, {Sα,2(t)}t>0, and {Sα,α(t)}t>0, for 1 < α < 2, where A is an almost sectorial operator19

in a complex Banach space X. In fact, we study:20

(1) Some estimates of the norms ‖Sα,β(t)‖, ‖ASα,β(t)‖ for different values of 1 ≤ β ≤ 2. We notice that21

all the estimates provided in this paper are given in terms of computable constants, which are a22

key tool to find, for example, a posteriori error estimates for the time discretizations of linear and23

non-linear fractional differential equations, see for instance [7, 9, 8, 10].24

(2) The continuity and compactness of the linear mapping t 7→ Sα,β(t), for t > 0. Here, we prove that25

this map is norm continuous and we give a characterization (in terms of the resolvent operator26

(zα − A)−1) that ensures that the function t 7→ Sα,β(t) is compact for t > 0. We notice that this27

criteria has great importance to study of existence of mild solutions for (1) and (4), because some28

fixed points arguments can be applied to solve it, see for instance [13, 19, 22].29

(3) The Hölder regularity of the solutions to (4) for a given Hölder continuous function f ∈ Cα1
α2

((0, T ];X),30

for 0 < α1 ≤ α2 < 1. We notice here that the Hölder regularity can be used to study, for example,31
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the existence and uniqueness of non-linear version of problem (4) or a posteriori error estimations1

for its time discretization, see for instance [10].2

The paper is organized as follows. Section 2 provides the Preliminaries. Section 3 is devoted to the study3

properties of the resolvent family {Sα,β(t)}t≥0. Here we find estimates for the norm of Sα,β(t) and we prove4

its continuity, for t > 0. In Section 4 we study the Hölder regularity of the solution to the fractional Cauchy5

problem (4), and finally we study the compactness of the resolvent family in Section 5.6

2. Preliminaries and notation7

In this section, we give the preliminaries and the notation. First of all let X ≡ (X, ‖ · ‖X) be a Banach8

space, which for the sake of the simplicity, and if not confusing, we denote now and hereafter merely by X,9

and the associated norm simply by ‖ · ‖. Therefore given two complex Banach spaces X and Y , L(X,Y )10

denotes the Banach space of all linear and bounded operators from X into Y. If X = Y , then we write11

L(X,X) = L(X).12

Definition 1. Let −1 < γ < 0 and 0 < ω < π
2 . By Θγ

ω(X) we denote the family of all linear closed operators13

A : D(A) ⊂ X → X which satisfy14

(1) σ(A) ⊂ Σω := {z ∈ C \ {0} : |arg(z)| ≤ ω} ∪ {0}, and15

(2) for every ω < µ < π, there exists a constant Cµ such that16

(6) ‖(z −A)−1‖ ≤ Cµ|z|γ , z ∈ C \ Σµ.

A linear operator A will be called almost sectorial on X if A ∈ Θγ
ω(X).17

We remark that if A is almost sectorial, then it is not possible to conclude that A is the generator of a18

C0-semigroup. Moreover, it is well known that 0 ∈ ρ(A) and therefore, A is an injective operator. Examples19

of sectorial, almost sectorial, and almost sectorial operators which are not sectorial, and their applications20

can be found in [23, Chapter 2], [25] and [29, Chapter 2].21

Recall that a family of operators {S(t)}t≥0 ⊂ L(X) is exponentially bounded if there exist real numbers22

M > 0 and ω0 ∈ R such that23

(7) ‖S(t)‖ ≤Meω0t, t ≥ 0.

Definition 2. [2] Let 1 ≤ α, β ≤ 2, X a complex Banach space, and A be a closed linear operator with
domain D(A) ⊂ X. The operator A is called the generator of an (α, β)–resolvent family if there exist ω0 ≥ 0
and a strongly continuous function Sα,β : R+ → L(X) such that {zα : z ∈ C,Re z > ω0} ⊂ ρ(A), and

zα−β(zα −A)−1x =

∫ +∞

0

e−ztSα,β(t)xdt,

for Re z > ω0, and x ∈ X. The family {Sα,β(t)}t≥0 is also called the (α, β)–resolvent family generated by A.24

Now, for β > 0, gβ defines the function gβ(t) := tβ−1

Γ(β) , for t > 0, where Γ(·) stands here for the Gamma25

function. It is easy to see that, for α, β > 0, we have (gα ∗ gβ)(t) = gα+β(t), where ∗ denotes the usual finite26

convolution, that is, (f ∗ g)(t) :=
∫ t

0
f(t − s)g(s) ds. Moreover, if an operator A with domain D(A) is the27

infinitesimal generator of a resolvent family Sα,β(t), then, for x ∈ D(A), we have28

Ax = lim
t→0+

Sα,β(t)x− gβ(t)x

gα+β(t)
.

For example, if α = β = 1, then S1,1(t) corresponds to a C0–semigroup, if α = 2, β = 1, then S2,1(t) is a29

cosine family, and if α = β = 2, then S2,2(t) is a sine family. See [4] for further details.30

For α > 0, let m = dαe be the smallest integer m greater than or equal to α. The Caputo fractional
derivative of order α of a m–times differentiable function f : R+ → X is defined by

∂αt f(t) :=

∫ t

0

gm−α(t− s)f (m)(s) ds.
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For a given Banach space Y , and 0 < α1 < 1, the space Cα1([0, T ];Y ) denotes the set of all bounded
α1–Hölder continuous functions g : [0, T ]→ Y, endowed with the norm

‖g‖Cα1 ([0,T ];Y ) := sup
0≤t≤T

‖g(t)‖Y + [[g]]Cα1 ([0,T ];Y ),

where [[g]]Cα1 ([0,T ];Y ) denotes the semi–norm

[[g]]Cα1 ([0,T ];Y ) := sup
0≤s<t≤T

‖g(t)− g(s)‖Y
(t− s)α1

.

Moreover, if 0 < α1 ≤ α2 < 1, then we define the space Cα1
α2

((0, T ];Y ) as the set of all bounded functions
g : (0, T ]→ Y such that t 7→ tα2−α1g(t) is α1-Hölder continuous in (0, T ] endowed with the norm

‖g‖Cα1
α2

((0,T ];Y ) := sup
0<t≤T

‖g(t)‖Y + [[g]]Cα1
α2

((0,T ];Y ),

where [[g]]Cα1
α2

((0,T ];Y ) denotes the semi–norm

[[g]]Cα1
α2

((0,T ];Y ) := sup
0≤s<t≤T

sα2‖g(t)− g(s)‖Y
(t− s)α1

.

For a given 0 ≤ ϑ ≤ 1, and an almost sectorial operator A, we denote by Xϑ the domain of the fractional1

power ϑ > 0 of A, that is Xϑ := D(Aϑ) endowed with the norm ‖x‖ϑ = ‖Aϑx‖. In particular X1 = D(A)2

and X0 = X. The following result gives a moment inequality for almost sectorial operators.3

Throughout the paper we will make use over and over of a type of complex path which has always4

the same structure. Let us fix its notation once for all as follows: Let r be positive, 0 < θ < π, and5

Γr,θ = Γ1
r,θ ∪ Γ2

r,θ ∪ Γ3
r,θ where6

(8)


Γ1
r,θ : γ1

r,θ(ρ) = ρeiθ, ρ ≥ r,
Γ2
r,θ : γ2

r,θ(ϕ) = reiϕ, −θ ≤ ϕ ≤ θ,
Γ3
r,θ : γ3

r,θ(ρ) = ρe−iθ, ρ ≥ r.

Proposition 3 (Moment inequality). Let A ∈ Θγ
ω(X) and 0 < ε < 1 such that γ+ ε < 0. Then, there exists7

a constant k > 0, depending on Cµ, γ and ε, such that8

(9) ‖Aεx‖ ≤ k‖Ax‖1+γ+ε‖x‖−(γ+ε), x ∈ D(A).

Proof. For x ∈ D(A) ⊂ Xε we have (see [25], Th 2.5)9

(10) Aεx =
1

2πi

∫
Γr,θ

zε(z −A)−1x dz,

where Γr,θ is defined according to (8), with ω < θ < µ and r > 0 is small enough. Alternatively there10

satisfies11

(11) Aεx = Aε−1(Ax) =
1

2πi

∫
Γr,θ

zε−1(z −A)−1Ax dz.

Now consider R ≥ r > 0, and the complex paths

Γ1 := {z ∈ C : z ∈ Γr,θ, |z| ≤ R} ∪ {z ∈ C : z = Reiφ,−θ < φ ≤ θ},
and

Γ2 := {z ∈ C : z ∈ Γr,θ, |z| ≥ R} ∪ {z ∈ C : z = Reiφ,−θ < φ ≤ θ}.
both of them clock–wise oriented. Straightforwardly it follows that12

(12) Aεx = I1 + I2,

where,

Ij :=
1

2πi

∫
Γj

zε−1(z −A)−1Axdz, j = 1, 2.



FRACTIONAL DIFFERENTIAL EQUATIONS WITH ALMOST SECTORIAL OPERATORS 5

On the one hand, re–writing I1, and applying the Cauchy’s Theorem,

I1 =
1

2πi

∫
Γ1

(
zε(z −A)−1 − zε−1

)
xdz =

1

2πi

∫
Γ1

zε(z −A)−1xdz,

Since r > 0 may be taken as small as one needs, if in I1 we take the limit r → 0+ and apply the boundness
of the resolvent of A, then there exists C > 0 such that

‖I1‖ ≤
1

2π

∫
Γ1

|z|ε+γ |dz| ‖x‖ ≤ CRε+γ+1‖x‖.

On the other hand, the parametrization of Γ2 and the boundness of the resolvent of A, lead us to the
bound

‖I2‖ ≤
1

2π

∫
Γ2

|z|ε+γ−1|dz|‖Ax‖ ≤ CRε+γ‖Ax‖,

where C > 0 is a computable constant. Therefore

‖Aεx‖ ≤ C
(
Rε+γ+1‖x‖+Rε+γ‖Ax‖

)
.

The choice R = ‖Ax‖/‖x‖ gives rise to the statement of the Proposition and the proof concludes. �1

The proof of the next Lemma follows as in [10, Lemma 2].2

Lemma 4. Let δ ≥ 0, απ/2 < φ < π, and 1 < α < 2. Therefore∫
Γ1/t,φ

∣∣∣∣eztzδ
∣∣∣∣ |dz| ≤ C0t

δ−1, t > 0,

where

C0 :=

(
Cα +

2ecos(φ/α)

− cos(φ/α)

)
and Cα :=

1

α

∫ φ

−φ
ecos(ψ/α) dψ.

3. Estimates and continuity of the resolvent family3

In this Section we provide estimates of the norm of the resolvent families Sα,β(t) and ASα,β(t), for4

1 < α < 2, and different values of β ≥ 0. Moreover, we study the continuity of Sα,β(t). Throughout this5

section A will be an operator in Θγ
ω(X) with −1 < γ < 0 and 0 < ω < π/2.6

Moreover, from now on, the complex path Γ1/t,φ, t > 0, defined in the previous section will be taken with7

π/2 < φα < π.8

Theorem 5. Let 0 < ϑ < 1 and A ∈ Θγ
ω(X). Suppose that 1 ≤ β ≤ 2, 1+γ−ϑ < 0, and β−α(2+2γ−ϑ) > 0.9

If x ∈ Xϑ, then10

(13) ‖Sα,β(t)x‖ ≤ C0

2π
tβ−1‖x‖+ C1(tαγ(γ+1−ϑ)+β−1 + t−α(2+2γ−ϑ)+β−1)‖Aϑx‖, t ≥ 0,

where C1 := kC0(Cµ + 1)2+γ−ϑC
−(γ+1−ϑ)
µ /2π > 0.11

Proof. Let x ∈ Xϑ. Therefore as zα(zα−A)−1 = I+A(zα−A)−1 we have zα−β(zα−A)−1 = 1
zβ

(I+A(zα−12

A)−1). Hence, for x ∈ X, and Γ1/t,φ = Γ1 ∪Γ2 defined according to Proposition 3 (where R > 1/t), we have13

Sα,β(t)x =
1

2πi

∫
Γ1/t,φ

ezt

zβ
xdz +

1

2πi

∫
Γ1/t,φ

ezt

zβ
A(zα −A)−1xdz

=
1

2πi

∫
Γ1/t,φ

ezt

zβ
xdz +

1

2πi

∫
Γ1/t,φ

ezt

zβ
A1−ϑ(zα −A)−1Aϑxdz.

On the one hand, by Lemma 4, the first integral can be estimated as∥∥∥∥∥ 1

2πi

∫
Γ1/t,φ

ezt

zβ
x dz

∥∥∥∥∥ ≤ 1

2π

∫
Γ1/t,φ

|ezt|
|z|β
‖x‖|dz| ≤ C0

2π
tβ−1‖x‖.
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On the other hand, the second integral makes use of the facts that (zα − A)−1x belongs to D(A) and1

A(zα−A)−1 = zα(zα−A)−1− I, wether z ∈ Γ1/t,φ. Therefore we have (by the moment inequality (9) with2

ε = 1− ϑ) that, for y ∈ X,3

‖A1−ϑ(zα −A)−1y‖ ≤ k‖A(zα −A)−1y‖1+γ+(1−ϑ)‖(zα −A)−1y‖−(γ+(1−ϑ))(14)

≤ k
(

(|z|α(γ+1)Cµ + 1)‖y‖
)2+γ−ϑ(

Cµ|z|αγ‖y‖
)−(γ+1−ϑ)

= k
(
|z|α(γ+1)Cµ + 1

)2+γ−ϑ
C−(γ+1−ϑ)
µ |z|−αγ(γ+1−ϑ)‖y‖.

Therefore,4

(15)
1

2πi

∫
Γ1/t,φ

ezt

zβ
A1−ϑ(zα −A)−1Aϑxdz =

∑
j=1,2

1

2πi

∫
Γj

ezt

zβ
A1−ϑ(zα −A)−1Aϑxdz.

Firstly, if z ∈ Γ1 and y ∈ X, then according to (14),

‖A1−ϑ(zα −A)−1y‖ ≤ C|z|−αγ(γ+1−ϑ)‖y‖,

where C = k(Cµ + 1)2+γ−ϑC
−(γ+1−ϑ)
µ > 0. Therefore, by Lemma 4, we have5 ∥∥∥∥ 1

2πi

∫
Γ1

ezt

zβ
A1−ϑ(zα −A)−1Aϑxdz

∥∥∥∥ ≤ 1

2π

∫
Γ1

|ezt|
|z|β
‖A1−ϑ(zα −A)−1Aϑx‖|dz|

≤ C

2π

∫
Γ1

|ezt|
|z|αγ(γ+1−ϑ)+β

|dz|‖Aϑx‖

≤ CC0

2π
tαγ(γ+1−ϑ)+β−1‖Aϑx‖.

Now, if z ∈ Γ2 and y ∈ X, and again according to (14)6

‖A1−ϑ(zα −A)−1y‖ ≤ k(Cµ + 1)2+γ−ϑ|z|α(γ+1)(2+γ−ϑ)C−(γ+1−ϑ)
µ |z|−αγ(γ+1−ϑ)‖y‖

= C|z|α(2+2γ−ϑ)‖y‖.

where C > 0 stands for the positive constant defined above. Thus, by Lemma 4, we have7 ∥∥∥∥ 1

2πi

∫
Γ2

ezt

zβ
A1−ϑ(zα −A)−1Aϑxdz

∥∥∥∥ ≤ 1

2π

∫
Γ2

|ezt|
|z|β
‖A1−ϑ(zα −A)−1Aϑx‖|dz|

≤ C

2π

∫
Γ2

|ezt|
|z|β−α(2+2γ−ϑ)

|dz|‖Aϑx‖

≤ CC0

2π
tβ−α(2+2γ−ϑ)−1‖Aϑx‖.

This finishes the proof. �8

Remark 6. From the Proof of Theorem 5, if x ∈ Xϑ, then9

(1) If z ∈ Γ1, then ‖A1−ϑ(zα −A)−1Aϑx‖ ≤ C1

C0
|z|−αγ(γ+1−ϑ)‖Aϑx‖.10

11

(2) If z ∈ Γ2, then ‖A1−ϑ(zα −A)−1Aϑx‖ ≤ C1

C0
|z|α(2+2γ−ϑ)‖Aϑx‖.12

From now on, if we split the path Γ into Γ1 ∪ Γ2 then, we will assume that R > 1/t.13

Remark 7. If x ∈ Xϑ, in particular since D(A) ⊂ Xθ if x ∈ D(A), then we have by the closed graph Theorem14

applied to the identity operator I : Xϑ 7→ X that ‖x‖ ≤ ‖Aϑx‖. Therefore, by Theorem 5 it satisfies that,15
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for 0 ≤ t ≤ T ,1

‖Sα,β(t)‖L(Xϑ,X)

= sup{‖Sα,β(t)x‖ : x ∈ Xϑ, ‖x‖ϑ ≤ 1}

≤ sup

{
C0

2π
tβ−1‖Aϑx‖+ C1(tαγ(γ+1−ϑ)+β−1 + t−α(2+2γ−ϑ)+β−1)‖Aϑx‖ : x ∈ Xϑ, ‖x‖ϑ ≤ 1

}
≤ C0

2π
T β−1 + C1(Tαγ(γ+1−ϑ)+β−1 + T−α(2+2γ−ϑ)+β−1)

≤ max

{
C0

2π
,C1

}
T β−1(1 + Tαγ(γ+1−ϑ) + T−α(2+2γ−ϑ)).

Theorem 8. Let 0 < ϑ < 1, and A ∈ Θγ
ω(X). Suppose that αγ(γ+1−ϑ)−1 > 0, and −α(2+2γ−ϑ)−1 > 0,2

and denote C2 := C1/2π. Therefore3

(1) If x ∈ Xϑ, then4

‖ASα,β(t)x‖ ≤ C2

(
tβ−α+αγ(γ+1−ϑ)−1 + tβ−α−α(2+2γ−ϑ)−1

)
‖Aϑx‖, t > 0.

for 1 ≤ β ≤ 2.5

(2) If in addition x ∈ Xϑ+1, then

‖ASα,1(t)x‖ ≤ C0

2π
‖Ax‖+ C2(tαγ(γ+1−ϑ) + t−α(2+2γ−ϑ))‖Aϑ+1x‖, t > 0.

Proof. Firstly, for x ∈ Xϑ, we can write

ASα,β(t)x =
∑
j=1,2

1

2πi

∫
Γj

eztzα−βA1−ϑ(zα −A)−1Aϑxdz,

where the complex path Γ1/t,φ = Γ1 ∪ Γ2 is defined throughout this proof as in the proof of Theorem 5,6

where R > 1/t.7

By Remark 6,8

‖ASα,β(t)x‖ ≤ C1

2πC0

∫
Γ1

|ezt||z|α−β−αγ(γ+1−ϑ)|dz|‖Aϑx‖+
C1

2πC0

∫
Γ2

|ezt||z|α−β+α(2+2γ−ϑ)|dz|‖Aϑx‖.

Since 2 + 2γ − ϑ < 0, we have (γ + 1− ϑ) + (γ + 1) < 0 and therefore (γ + 1)− ϑ < −(γ + 1) < 0, that is,9

(γ+1) < ϑ. As −1 < γ < 0, and 1 < α < 2, it satisfies α−β−αγ(γ+1−ϑ) < 0, and α−β+α(2+2γ−ϑ) < 0,10

for 1 ≤ β ≤ 2. Consequently, by Theorem 511

‖ASα,β(t)x‖ ≤ C1

2π

(
tβ−α+αγ(γ+1−ϑ)−1 + tβ−α−α(2+2γ−ϑ)−1

)
‖Aϑx‖, t > 0,

which stands for the first statement of the theorem.12

Secondly we consider x ∈ Xϑ+1. Since zα−1(zα −A)−1 = z−1A(zα −A)−1 − z−1I we have that

ASα,1(t)x =
∑
j=1,2

1

2πi

∫
Γj

ezt

z
A1−ϑ(zα −A)−1Aϑ+1xdz − 1

2πi

∫
Γ1/t,φ

ezt

z
Axdz.

Therefore by Remark 6 we have13

‖ASα,1(t)x‖ ≤ C1

2πC0

∫
Γ1

|ezt||z|−1−αγ(γ+1−ϑ)|dz|‖Aϑ+1x‖+
C1

2πC0

∫
Γ2

|ezt||z|−1+α(2+2γ−ϑ)|dz|‖Aϑ+1x‖

+
1

2π

∫
Γ1/t,φ

|ezt|
|z|
‖Ax‖|dz|.

Since −αγ(γ + 1− ϑ)− 1 < −2, and α(2 + 2γ − ϑ) < 0, we have by Lemma 4 that14

‖ASα,1(t)x‖ ≤ C1

2π
tαγ(γ+1−ϑ)‖Aϑ+1x‖+

C1

2π
t−α(2+2γ−ϑ)‖Aϑ+1x‖+

C0

2π
‖Ax‖,
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and the proof concludes. �1

Remark 9. Let us highlight a fact which is particularly interesting since this appears more than once in the2

sections below. If β = α, and x ∈ Xϑ, then by the first statement of Theorem 83

‖ASα,α(t)‖L(Xϑ,X) = sup{‖ASα,α(t)x‖ : x ∈ Xϑ, ‖x‖ϑ ≤ 1}

≤ sup
{
C2(tαγ(γ+1−ϑ)−1 + t−α(2+2γ−ϑ)−1)‖Aϑx‖ : x ∈ Xϑ, ‖x‖ϑ ≤ 1

}
≤ C2(Tαγ(γ+1−ϑ)−1 + T−α(2+2γ−ϑ)−1).

Next we show the continuity of the resolvent family.4

Theorem 10. Let 0 < ϑ < 1 and A ∈ Θγ
ω(X). Suppose that 2 + 2γ − ϑ < 0. If 1 ≤ β ≤ 2, then the function5

t 7→ Sα,β(t) is continuous in L(Xϑ, X), for t > 0.6

Proof. Let x ∈ Xϑ, 0 < s < t, and 1 ≤ β ≤ 2. We may write7

(Sα,β(t)− Sα,β(s))x =
1

2πi

∫
Γ1/t,φ

(ezt − ezs)zα−β(zα −A)−1xdz

=
1

2πi

∫
Γ1/t,φ

ezs
ez(t−s) − 1

z
zα−β+1(zα −A)−1xdz

=
1

2πi

∫
Γ1/t,φ

ezs
ez(t−s) − 1

z
z−β+1

(
I +A(zα −A)−1

)
xdz

= I1 + I2,

where

I1 :=
1

2πi

∫
Γ1/t,φ

ezs
ez(t−s) − 1

z

1

zβ−1
x dz, I2 :=

1

2πi

∫
Γ1/t,φ

ezs
ez(t−s) − 1

z

1

zβ−1
A1−ϑ(zα −A)−1Aϑx dz.

On the one hand there exists C > 0 (in particular C = maxz∈Γ1/t,φ

{
|ez(t−s)−1|

(t−s)|z|

}
) such that

|ez(t−s) − 1|
|z|

≤ C(t− s), z ∈ Γ1/t,φ,

therefore by Lemma 4, straightforwardly follows that

‖I1‖ ≤
CC0(t− s)sβ−2‖x‖

2π
, 0 < s < t,

and that I1 → 0, as s tends to t.8

On the other hand by the bound above and Remark 6 we have

‖I2‖ ≤
CC1(t− s)

2πC0

∫
Γ1/t,φ

|ezs|
{

1

|z|β−1+αγ(γ+1−θ) +
1

|z|β−1−α(2γ+2−θ)

}
|dz|‖Aϑx‖,

and since β − 1 + αγ(γ + 1− θ) > 0, and β − 1− α(2γ + 2− θ) > 0, by Lemma 4 again, there satisfies

‖I2‖ ≤
CC1(t− s)

2π
(sβ−2+αγ(γ+1−θ) + sβ−2−α(2γ+2−θ))‖Aϑx‖, 0 < s < t.

In view of the above, if s tends to t, then I2 → 0, and the proof concludes. �9



FRACTIONAL DIFFERENTIAL EQUATIONS WITH ALMOST SECTORIAL OPERATORS 9

4. Hölder regularity1

In this Section we study the regularity in the sense of Hölder continuity of the Problem (4) where A ∈2

Θγ
ω(X). First of all, recall that the solution to Problem (4) can be written as3

u(t) = Sα,1(t)x+ Sα,2(t)y +

∫ t

0

Sα,α(t− s)f(s) ds.

In fact in this section we estimate ‖u‖Cα1
α2

((0,T ];D(A)) which consists of estimating the terms involved in the

that norm, that is,

‖u‖Cα1
α2

((0,T ];D(A)) = sup
0<t≤T

‖u(t)‖D(A) + [[u]]Cα1
α2

((0,T ];D(A)),

where

sup
0<t≤T

‖u(t)‖D(A) = sup
0<t≤T

‖u(t)‖+ sup
0<t≤T

‖Au(t)‖,

and

[[u]]Cα1
α2

((0,T ];D(A)) = sup
0≤s<t≤T

sα2‖u(t)− u(s)‖
(t− s)α1

+ sup
0≤s<t≤T

sα2‖Au(t)−Au(s)‖
(t− s)α1

.

The propositions below are devoted to show estimates for each of these terms. Although most the results4

below can be stated in a more general framework of values of β, we here focus our attention in those required5

by (16).6

Notice that within this section we assume that f ∈ Cα1
α2

((0, T ], Xϑ), for 0 < α1 ≤ α2 < 1, Hence all7

constants involved in the bounds below will also implicitly depend on α1 and α2, even though they will not8

explicitly appear in the notation. However, all the constants are in fact, computable.9

Moreover, we state once for all the following assumptions which will be required from now on in all results
below, although they are not explicitly mentioned in the statement of results. In fact, assume that

αγ(γ + 1− ϑ)− 1 > 0, and − α(2 + 2γ − ϑ)− 1 > 0.

Before starting with the results and proofs of this section, and since this will appear repeatedly we asume10

now and hereafter that the complex path Γ1/t,φ = Γ1 ∪ Γ2 is defined as in the proof of Theorem 5.11

Proposition 11. Let 0 < ϑ < 1 and A ∈ Θγ
ω(X). If x, y ∈ Xϑ, then there exist constants K1,K2,K3 > 012

depending on α, γ, ϑ and T such that13

(16) sup
0<t≤T

‖u(t)‖ ≤ K1‖x‖ϑ +K2‖y‖ϑ +K3‖f‖Cα1
α2

((0,T ],Xϑ).

Proof. As x ∈ Xϑ, αγ(γ + 1− ϑ) > 0, and −α(2 + 2γ − ϑ) > 1 > 0, by Theorem 5 with β = 1, we have14

‖Sα,1(t)x‖ ≤ C0

2π
‖x‖+ C1(Tαγ(γ+1−ϑ) + T−α(2+2γ−ϑ))‖Aϑx‖.

Once again since Xϑ ⊂ X, we have ‖x‖ ≤ ‖Aϑx‖, for x ∈ Xϑ, and we get

‖Sα,1(t)x‖ ≤ K1‖Aϑx‖, 0 ≤ t ≤ T,

where

K1 := max

{
C0

2π
,C1(Tαγ(γ+1−ϑ) + T−α(2+2γ−ϑ))

}
.

Similarly, as y ∈ Xϑ, by Theorem 5 with β = 2, we have15

‖Sα,2(t)y‖ ≤ C0

2π
T‖y‖+ C1(T 1+αγ(γ+1−ϑ) + T 1−α(2+2γ−ϑ))‖Aϑy‖ ≤ K2‖Aϑy‖, 0 ≤ t ≤ T,

where

K2 := max

{
C0

2π
T,C1(T 1+αγ(γ+1−ϑ) + T 1−α(2+2γ−ϑ))

}
.
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On the one hand, by Remark 7, we have (with β = α)1 ∥∥∥∥∫ t

0

Sα,α(t− s)(f(s)− f(t)) ds

∥∥∥∥ ≤
∫ t

0

‖Sα,α(t− s)‖L(Xϑ,X)‖f(s)− f(t)‖ϑ ds

≤ max

{
C0

2π
,C1

}
Tα−1(1 + Tαγ(γ+1−ϑ) + T−α(2+2γ−ϑ))

∫ t

0

sα2‖f(s)− f(t)‖ϑ
(t− s)α1

(t− s)α1

sα2
ds

≤ max

{
C0

2π
,C1

}
Tα+α1−α2(1 + Tαγ(γ+1−ϑ) + T−α(2+2γ−ϑ))‖f‖Cα1

α2
((0,T ];Xϑ)B(α1 + 1, 1− α2),

where B(·, ·) stands for the Beta function. Similarly,2 ∥∥∥∥∫ t

0

Sα,α(s)f(t) ds

∥∥∥∥ ≤
∫ t

0

‖Sα,α(s)‖L(Xϑ,X)‖f(t)‖ϑ ds

≤ max

{
C0

2π
,C1

}
Tα−1(1 + Tαγ(γ+1−ϑ) + T−α(2+2γ−ϑ))

∫ t

0

sup
0<t≤T

‖f(t)‖θ ds

≤ max

{
C0

2π
,C1

}
Tα(1 + Tαγ(γ+1−ϑ) + T−α(2+2γ−ϑ))‖f‖Cα1

α2
((0,T ];Xϑ).

We conclude that3

sup
0<t≤T

‖u(t)‖ ≤ K1‖x‖Xϑ +K2‖y‖Xϑ +K3‖f‖Cα1
α2

((0,T ];Xϑ),

where K3 := max
{
C0

2π , C1

}(
Tα+α1−α2B(α1 + 1, 1− α2) + Tα

)(
1 + Tαγ(γ+1−ϑ) + T−α(2+2γ−ϑ)

)
. �4

Proposition 12. Let 0 < ϑ < 1 and A ∈ Θγ
ω(X). If x ∈ Xθ+1, y ∈ Xϑ, then there exist constants5

K4,K5,K6 > 0 depending on α, γ, ϑ and T such that6

(17) sup
0<t≤T

‖Au(t)‖ ≤ K4‖x‖Xϑ+1 +K5‖y‖Xϑ +K6‖f‖Cα1
α2

((0,T ];Xϑ).

Proof. As x ∈ Xϑ+1 ⊂ D(A) and αγ(γ + 1 − ϑ) > 0 and −α(2 + 2γ − ϑ) > 0, by the second statement of
Theorem 8 we have

‖ASα,1(t)x‖ ≤ C0

2π
‖Ax‖+ C2(Tαγ(γ+1−ϑ) + T−α(2+2γ−ϑ))‖Aϑ+1x‖.

From hypotheses of the theorem it follows that 2−α+αγ(γ+1−ϑ)−1 > 0, and 2−α−α(2+2γ−ϑ)−1 > 0,
and along with the first statement of Theorem 8, now with β = 2, we have

‖ASα,2(t)y‖ ≤ C2(T 2−α+αγ(γ+1−ϑ)−1 + T 2−α−α(2+2γ−ϑ)−1)‖Aϑy‖.
Again by Theorem 8, now with β = α, we get7 ∥∥∥∥∫ t

0

ASα,α(t− s)(f(s)− f(t)) ds

∥∥∥∥ ≤
∫ t

0

‖ASα,α(t− s)‖L(Xϑ,X)‖f(s)− f(t)‖ϑ ds

≤ C2

∫ t

0

(
(t− s)αγ(γ+1−ϑ)+α1−1 + (t− s)−α(2+2γ−ϑ)+α1−1

)
s(1−α2)−1

·s
α2‖f(t)− f(s)‖ϑ

(t− s)α1
ds.

Notice that8 ∫ t

0

(
(t− s)αγ(γ+1−ϑ)+α1−1 + (t− s)−α(2+2γ−ϑ)+α1−1

)
s(1−α2)−1 ds

= tαγ(γ+1−ϑ)+α1−α2B(αγ(γ + 1− ϑ) + α1, 1− α2)

+t−α(2+2γ−ϑ)+α1−α2B(−α(2 + 2γ − ϑ) + α1, 1− α2),



FRACTIONAL DIFFERENTIAL EQUATIONS WITH ALMOST SECTORIAL OPERATORS 11

where B(·, ·) stands once again for the Beta function. If we denote

C3 := C2

(
Tαγ(γ+1−ϑ)+α1−α2B(αγ(γ+1−ϑ)+α1, 1−α2)+T−α(2+2γ−ϑ)+α1−α2B(−α(2+2γ−ϑ)+α1, 1−α2)

)
,

we obtain ∥∥∥∥∫ t

0

ASα,α(t− s)[f(s)− f(t)] ds

∥∥∥∥ ≤ C3‖f‖Cα1
α2

((0,T ];Xϑ).

Since f ∈ Cα1
α2

((0, T ];Xϑ) we have that f(t) ∈ Xϑ, for t ∈ (0, T ], and as αγ(γ+1−ϑ) > 0,−α(2+2γ−ϑ) >1

0 by Theorem 8 we get2 ∥∥∥∥∫ t

0

ASα,α(s)f(t) ds

∥∥∥∥ ≤
∫ t

0

‖ASα,α(s)‖L(Xϑ,X)‖f(t)‖ϑ ds

≤ C2

∫ t

0

(sαγ(γ+1−ϑ)−1 + s−α(2+2γ−ϑ)−1) ds‖Aϑf(t)‖

≤ C4(Tαγ(γ+1−ϑ) + T−α(2+2γ−ϑ))‖f‖Cα1
α2

((0,T ];Xϑ),

where C4 := C2 max
{

1
αγ(γ+1−ϑ) ,

1
−α(2+2γ−ϑ)

}
.3

As ‖Ax‖ ≤ ‖A1+ϑx‖, for x ∈ Xϑ+1, straightforwardly follows that4

sup
0<t≤T

‖Au(t)‖ ≤ K4‖A1+ϑx‖+K5‖Aϑy‖+K6‖f‖Cα1
α2

((0,T ];Xϑ),

where5

K4 :=
C0

2π
+ C2(Tαγ(γ+1−ϑ) + T−α(2+2γ−ϑ)),

K5 := C2(T 1−α+αγ(γ+1−ϑ) + T 1−α−α(2+2γ−ϑ)),

K6 := max
{
C3, C4(Tαγ(γ+1−ϑ) + T−α(2+2γ−ϑ))

}
.

�6

Next, we notice that if u is the solution to Problem (4), then7

u(t)− u(s) = (Sα,1(t)− Sα,1(s))x+ (Sα,2(t)− Sα,2(s))y +

∫ t

0

Sα,α(t− r)f(r) dr −
∫ s

0

Sα,α(t− r)f(r) dr

= (Sα,1(t)− Sα,1(s))x+ (Sα,2(t)− Sα,2(s))y +

∫ s

0

Sα,α(r)(f(t− r)− f(s− r)) dr +∫ t

s

Sα,α(r)f(t− r) dr.

In the following propositions, we estimate the terms involved in [[u]]Cα1
α2

((0,T ];D(A)) according to the ex-8

pression of u(t)− u(s) above.9

Proposition 13. Let 0 < ϑ < 1 and A ∈ Θγ
ω(X). If x ∈ Xϑ, then there exists a constant K7 > 0 depending10

on α, γ, ϑ and T, such that11

(18) sup
0≤s<t≤T

sα2‖(Sα,1(t)− Sα,1(s))x‖
(t− s)α1

≤ K7‖x‖Xϑ .
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Proof. Let x ∈ Xϑ, and 0 ≤ s < t ≤ T. Therefore1

(Sα,1(t)− Sα,1(s))x =
1

2πi

∫
Γ1/t,φ

eztzα−1(zα −A)−1xdz − 1

2πi

∫
Γ1/t,φ

ezszα−1(zα −A)−1x dz

=
1

2πi

∫
Γ1/t,φ

(ezt − ezs)zα−1(zα −A)−1xdz

=
1

2πi

∫
Γ1/t,φ

ezs(ez(t−s) − 1)zα−1(zα −A)−1x dz.

On the one hand

zα−1(zα −A)−1x =
1

z

(
I +A(zα −A)−1

)
x =

1

z

(
I +A1−ϑ(zα −A)−1Aϑ

)
x.

On the other hand, by holomorphy matters

1

2πi

∫
Γ1/t,φ

ezs(ez(t−s) − 1)
1

z
dz = 0.

Therefore since |1 − ez(t−s)| ≤ C|z|(t − s), for z ∈ Γ1/t,φ, C := maxz∈Γ1/t,φ

{
|1−ez(t−s)|
|z|(t−s)

}
, by Remark 6 we2

have3

‖(Sα,1(t)− Sα,1(s))x‖ ≤ C1(t− s)
2πC0

(∫
Γ1

|ezs||z|−αγ(γ+1−ϑ)|dz|+
∫

Γ2

|ezs||z|α(2γ+2−ϑ) dz

)
‖Aϑx‖

≤ CC1(t− s)
2π

(
sαγ(γ+1−ϑ)−1 + s−α(2γ+2−ϑ)−1

)
‖Aϑx‖.

In view of the above we straightforwardly have4

sα2‖(Sα,1(t)− Sα,1(s))x‖
(t− s)α1

≤ CC1

2π

sα2

(t− s)α1−1

(
sαγ(γ+1−ϑ)−1 + s−α(2γ+2−ϑ)−1

)
‖Aϑx‖

≤ CC1

2π

(
Tαγ(γ+1−ϑ)+α2−α1 + T−α(2γ+2−ϑ)+α2−α1

)
‖Aϑx‖,

≤ K7‖x‖ϑ,

where

K7 :=
CC1

2π

(
Tαγ(γ+1−ϑ)+α2−α1 + T−α(2γ+2−ϑ)+α2−α1

)
,

which concludes the proof. �5

The following proposition straightforwardly follows merely assuming some additional regularity on the6

data. The proof is therefore omitted.7

Proposition 14. Let 0 < ϑ < 1 and A ∈ Θγ
ω(X). If x ∈ Xϑ+1, then there exists a constant K8 > 08

depending on α, γ, ϑ and T, such that9

(19) sup
0≤s<t≤T

sα2‖(ASα,1(t)−ASα,1(s))x‖
(t− s)α1

≤ K8‖x‖Xϑ+1 .

Proposition 15. Let 0 < ϑ < 1 and A ∈ Θγ
ω(X). If x ∈ Xϑ, then there exists a constant K9 > 0 depending10

on α, γ, ϑ and T, such that11

(20) sup
0≤s<t≤T

sα2‖(Sα,2(t)− Sα,2(s))x‖
(t− s)α1

≤ K9‖x‖Xϑ .
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Proof. Let x ∈ Xϑ, and 0 < s < t. Then we have1

(Sα,2(t)− Sα,2(s))x =
1

2πi

∫
Γ1/t,φ

(ezt − ezs)zα−2(zα −A)−1x dz

=
1

2πi

∫
Γ1/t,φ

ezs
(

ez(t−s) − 1

z

)
1

z

(
I +A(zα −A)−1

)
xdz

= I1 + I2,

where2

I1 :=
1

2πi

∫
Γ1/t,φ

ezs
(

ez(t−s) − 1

z

)
1

z
xdz,

I2 :=
1

2πi

∫
Γ1/t,φ

ezs
(

ez(t−s) − 1

z

)
1

z
A1−ϑ(zα −A)−1Aϑxdz.

On the one hand, if C is the bound of |1−ez(t−s)|
|z|(t−s) reached above, then3

‖I1‖ ≤
CC0(t− s)

2π
‖x‖ ≤ CC0(t− s)

2π
‖x‖Xϑ .

Moreover, by Remark 6, and as 1 + αγ(γ + 1− ϑ) > 0 and 1− α(2γ + 1− ϑ) > 0 by Lemma 4 we also have4

‖I2‖ ≤
CC1(t− s)

2πC0

{∫
Γ1

|ezs| 1

|z|1+αγ(γ+1−ϑ)
|dz|+

∫
Γ2

|ezs| 1

|z|1−α(2γ+1−ϑ)
|dz|

}
‖x‖Xϑ

≤ CC1(t− s)
2π

(sαγ(γ+1−ϑ) + s1−α(2γ+1−ϑ))‖x‖Xϑ .

Therefore, with the same bound for sα2(t− s)1−α1 as in Proposition 13, there satisfies5

sα2‖(Sα,2(t)− Sα,2(s))x‖
(t− s)α1

≤
{
CC0(t− s)

2π
+
CC1(t− s)

2π
(sαγ(γ+1−ϑ) + s−α(2γ+1−ϑ))

}
sα2

(t− s)α1
‖x‖Xϑ

≤ K8‖x‖Xϑ ,

where

K9 :=
C

2π

{
C0T

1+α2−α1 + C1(Tαγ(γ+1−ϑ)+1+α2−α1 + T−α(2γ+1−ϑ)+1+α2−α1)
}
.

�6

The proof of the next theorem does not differ so much from the previous one, so we present some guidelines7

of it.8

Proposition 16. Let 0 < ϑ < 1 and A ∈ Θγ
ω(X). If x ∈ X1+ϑ, then there exists a constant K10 > 09

depending on α, γ, ϑ and T, such that10

(21) sup
0≤s<t≤T

sα2‖(ASα,2(t)−ASα,2(s))x‖
(t− s)α1

≤ K10‖x‖X1+ϑ .

Proof. Similarly to the proof of Proposition 15 we have11

(ASα,2(t)−ASα,2(s))x

=
1

2πi

∫
Γ1/t,φ

(ezt − ezs)zα−2A(zα −A)−1xdz

=
1

2πi

∫
Γ1/t,φ

ezs
(

ez(t−s) − 1

z

)
1

z

{
Ax+A1−ϑ(zα −A)−1A1+ϑx

}
dz.
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Therefore, by Remark 6 again1

‖ASα,2(t)−ASα,2(s)x‖

≤ C(t− s)
2π

(∫
Γ1/t,φ

|ezs|
|z|
|dz|‖Ax‖

+
C1

C0

{∫
Γ1

|ezs||z|−αγ(1+γ−ϑ)−1 dz +

∫
Γ2

|ezs||z|α(2+2γ−ϑ)−1|dz|
}∥∥A1+ϑx

∥∥)

≤ C(t− s)
2π

(
C0‖Ax‖+ C1

{
sαγ(1+γ−ϑ) + s−α(2+2γ−ϑ)

}∥∥A1+ϑx
∥∥).

The proof concludes noticing that ‖Ax‖ ≤ ‖x‖1+ϑ, and that

sα2‖(ASα,2(t)−ASα,2(s))x‖
(t− s)α1

≤ K12‖x‖X1+ϑ ,

where

K10 :=
C

2π

{
C0T

1+α2−α1 + C1(T 1+α2−α1+αγ(1+γ−ϑ) + T 1+α2−α1−α(2+2γ−ϑ))
}
.

�2

Proposition 17. Let 0 < ϑ < 1 and A ∈ Θγ
ω(X). There exists a constant K11 > 0 depending on α, γ, ϑ and3

T, such that4

(22) sup
0≤s<t≤T

sα2

∥∥∥∥∫ s

0

Sα,α(r)(f(t− r)− f(s− r)) dr

∥∥∥∥
(t− s)α1

≤ K11‖f‖Cα1
α2

((0,T ];Xϑ).

Proof. First of all notice the following bounds which are useful in the present proof,

‖f(s)‖ ≤ ‖Aϑf(s)‖ ≤ ‖f‖Cα1
α2

((0,T ];Xϑ), 0 < s ≤ T,

and,

‖f(t)− f(r)‖ ≤ ‖Aϑ(f(t)− f(s))‖ ≤ (t− s)α1

sα2
‖f‖Cα1

α2
((0,T ];Xϑ), 0 ≤ s < t ≤ T.

Secondly applying Remark 7 with β = α we have5 ∥∥∥∥∫ s

0

Sα,α(r)(f(t− r)− f(s− r)) dr

∥∥∥∥ ≤ sup
0≤r≤s

{
‖Aϑ(f(t− r)− f(s− r))‖

}∫ s

0

‖Sα,α(r)‖L(Xϑ,X) dr

≤ K11
(t− s)α1

sα2
‖f‖Cα1

α2
((0,T ];Xϑ),

where

K11 := max

{
C0

2π
,C1

}(
Tα

α
+

Tα+αγ(1+γ−ϑ)

α+ αγ(1 + γ − ϑ)
+

Tα−αγ(2+2γ−ϑ)

α− αγ(2 + 2γ − ϑ)

)
.

Last bound straightforwardly leads to the statement of the Proposition and the proof concludes. �6

Proposition 18. Let 0 < ϑ < 1 and A ∈ Θγ
ω(X). There exists a constant K12 > 0 depending on α, γ, ϑ and7

T, such that8

(23) sup
0≤s<t≤T

sα2

∥∥∥∥∫ t

s

Sα,α(r)f(t− r) dr

∥∥∥∥
(t− s)α1

≤ K12‖f‖Cα1
α2

((0,T ];Xϑ).



FRACTIONAL DIFFERENTIAL EQUATIONS WITH ALMOST SECTORIAL OPERATORS 15

Proof. On the one hand, by Theorem 5 with β = α we have, for 0 < s < t ≤ T ,1 ∥∥∥∥∫ t

s

Sα,α(r)f(t− r) dr

∥∥∥∥
≤ (t− s) sup

s≤r≤t
{‖Sα,α(r)f(t− r)‖}

≤ C0(t− s)
2π

sup
s≤r≤t

{
(t− r)α−1‖f(t− r)‖

}
+(t− s)C1 sup

s≤r≤t

{(
(t− r)α+αγ(γ+1−ϑ)−1 + (t− r)α−α(2+2γ−ϑ)−1

)
‖Aϑf(t− r)‖

}
≤ (t− s)K(1)

12 ‖f‖Cα1
α2

((0,T ];Xϑ),

where

K
(1)
12 :=

C0T
α−1

2π
+ C1

(
Tα+αγ(γ+1−ϑ)−1 + Tα−α(2+2γ−ϑ)

)
.

Therefore

sα2

∥∥∥∥∫ t

s

Sα,α(r)f(t− r) dr

∥∥∥∥
(t− s)α1

≤ sα2(t− s)1−α1K
(1)
12 ‖f‖Cα1

α2
((0,T ];Xϑ) ≤ K12‖f‖Cα1

α2
((0,T ];Xϑ),

where
K12 := T 1+α2−α1K

(1)
12 ,

which concludes the proof �2

Proposition 19. Let 0 < ϑ < 1 and A ∈ Θγ
ω(X). If f ∈ Cα1

α2
((0, T ];Xϑ), then there exists a constant3

K13 > 0 depending on γ, ϑ and T, such that4

(24) sup
0≤s<t≤T

sα2

∥∥∥∥∫ t

s

ASα,α(r)(f(t− r)− f(s− r)) dr

∥∥∥∥
(t− s)α1

≤ K13‖f‖Cα1
α2

((0,T ];Xϑ).

Proof. Using again the notation Γ1/t,φ = Γ1 ∪ Γ2 as in Theorem 5 we can write

ASα,α(r)(f(t− r)− f(s− r)) =
∑
j=1,2

1

2πi

∫
Γj

ezrA1−ϑ(zα −A)−1Aϑ(f(t− r)− f(s− r)) dz.

By hypothesis, Remark 6 and Lemma 4 we get5

‖ASα,α(r)(f(t− r)− f(s− r))‖ ≤ C1

2πC0

∫
Γ1

|ezr||z|−αγ(γ+1−ϑ)‖Aϑ(f(t− r)− f(s− r))‖|dz|+

C1

2πC0

∫
Γ2

|ezr||z|α(2+2γ−ϑ)‖Aϑ(f(t− r)− f(s− r))‖| dz|

≤ C1

2π
(rαγ(γ+1−ϑ)−1 + r−α(2+2γ−ϑ)−1)‖Aϑ(f(t− r)− f(s− r))‖.

Now, as

‖Aϑ(f(t− r)− f(s− r))‖ =
‖Aϑ(f(t− r)− f(s− r))‖(s− r)α2

(t− s)α1

(t− s)α1

(s− r)α2
≤ ‖f‖Cα1

α2
((0,T ];Xϑ)

(t− s)α1

(s− r)α2
,

we have6 ∫ s

0

‖ASα,α(r)(f(t− r)− f(s− r))‖ dr

≤ C1(t− s)α1

2π

∫ s

0

(rαγ(γ+1−ϑ)−1 + r−α(2+2γ−ϑ)−1)(s− r)−α2 dr‖f‖Cα1
α2

((0,T ];Xϑ).
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Now, by the definition of the Beta function it follows1 ∫ s

0

(rαγ(γ+1−ϑ)−1 + r−α(2+2γ−ϑ)−1)(s− r)−α2 dr

= sαγ(γ+1−ϑ)−1+1−α2B(αγ(γ + 1− ϑ), 1− α2) + s−α(2+2γ−ϑ)−1+1−α2B(−α(2 + 2γ − ϑ), 1− α2).

Therefore,2 ∥∥∥∥ sα2

(t− s)α1

∫ s

0

ASα,α(r)(f(t− r)− f(s− r)) dr

∥∥∥∥
≤ C1

2π
(sαγ(γ+1−ϑ) + s−α(2+2γ−ϑ))

·max {B(αγ(γ + 1− ϑ), 1− α2), B(−α(2 + 2γ − ϑ), 1− α2)} ‖f‖Cα1
α2

((0,T ];Xϑ)

≤ K13‖f‖Cα1
α2

((0,T ];Xϑ),

where

K13 :=
C1

2π

(
Tαγ(γ+1−ϑ) + T−α(2+2γ−ϑ)

)
max {B(αγ(γ + 1− ϑ), 1− α2), B(−α(2 + 2γ − ϑ), 1− α2)} .

�3

Proposition 20. Let 0 < ϑ < 1 and A ∈ Θγ
ω(X). If f ∈ Cα1

α2
((0, T ];Xϑ), then there exists a constant4

K14 > 0 depending on α, γ, ϑ and T, such that5

(25) sup
0≤s<t≤T

sα2

∥∥∥∥∫ t

s

ASα,α(r)f(t− r) dr

∥∥∥∥
(t− s)α1

≤ K14‖f‖Cα1
α2

((0,T ];Xϑ).

Proof. As in the Proof of Proposition 19 we can write

ASα,α(r)f(t− r) =
∑
j=1,2

1

2πi

∫
Γj

ezrA1−ϑ(zα −A)−1Aϑf(t− r) dz

where Γ1/t,φ splits again as inTheorem 5.6

Since ‖Aϑf(t− r)‖ ≤ ‖f‖Cα1
α2

((0,T ];Xϑ), we obtain by Remark 6 and Lemma 4 that7

‖ASα,α(r)f(t− r)‖ ≤ C1

2πC0

(∫
Γat

|ezr||z|−αγ(γ+1−ϑ)|dz|+
∫

Γbt

|ezr||z|α(2+2γ−ϑ)|dz|

)
‖f‖Cα1

α2
((0,T ];Xϑ)

≤ C1

2π

(
rαγ(γ+1−ϑ)−1 + r−α(2+2γ−ϑ)−1

)
‖f‖Cα1

α2
((0,T ];Xϑ)

≤ C1

2π

(
Tαγ(γ+1−ϑ)−1 + T−α(2+2γ−ϑ)−1

)
‖f‖Cα1

α2
((0,T ];Xϑ).

Therefore,8

sα2

∥∥∥∥∫ t

s

ASα,α(r)f(t− r) dr

∥∥∥∥
(t− s)α1

≤ C1s
α2(t− s)1−α1

2π

(
Tαγ(γ+1−ϑ)−1 + T−α(2+2γ−ϑ)−1

)
‖f‖Cα1

α2
((0,T ];Xϑ)

≤ K14‖f‖Cα1
α2

((0,T ];Xϑ),

where

K14 :=
C1

2π
T 1+α2−α1(Tαγ(γ+1−ϑ)−1 + T−α(2+2γ−ϑ)−1).

�9
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The next theorem is the main results of this section and gives a Hölder regularity result of the solution u1

to Problem (4).2

Theorem 21. Let 0 < ϑ < 1 and A ∈ Θγ
ω(X). If x ∈ Xθ+1, y ∈ Xϑ, and f ∈ Cα1

α2
((0, T ];Xϑ), then there

exist constants D1, D2, D3 > 0 depending on α, γ, ϑ, and T such that the solution u to Problem (4) verifies

‖u‖Cα1
α2

((0,T ];D(A)) ≤ D1‖x‖Xϑ+1 +D2‖y‖Xϑ +D3‖f‖Cα1
α2

((0,T ];Xϑ).

Proof. Recall that the solution to Problem (4) writes,

u(t) = Sα,1(t)x+ Sα,2(t)y +

∫ t

0

Sα,α(r)f(t− r) dr, 0 ≤ t ≤ T.

Now, by definition
‖u‖Cα1

α2
((0,T ];D(A)) = sup

0<t≤T
‖u(t)‖D(A) + [[u]]Cα1

α2
((0,T ];D(A)),

where
sup

0<t≤T
‖u(t)‖D(A) = sup

0<t≤T
‖u(t)‖+ sup

0<t≤T
‖Au(t)‖,

and

[[u]]Cα1
α2

((0,T ];D(A)) = sup
0≤s<t≤T

sα2‖u(t)− u(s)‖
(t− s)α1

+ sup
0≤s<t≤T

sα2‖Au(t)−Au(s)‖
(t− s)α1

.

Let f ∈ Cα1
α2

((0, T ];Xϑ). By Proposition 11 we have

sup
0<t≤T

‖u(t)‖ ≤ K1‖x‖Xϑ +K2‖y‖Xϑ +K3‖f‖Cα1
α2

((0,T ],Xϑ),

for x, y ∈ Xϑ, and by Proposition 12

sup
0<t≤T

‖Au(t)‖ ≤ K4‖x‖X1+ϑ +K5‖y‖Xϑ +K6‖f‖Cα1
α2

((0,T ];Xϑ),

for x ∈ Xϑ+1, y ∈ Xϑ. As Xϑ+1 ⊂ Xϑ and ‖x‖Xϑ ≤ ‖x‖Xϑ+1 we obtain3

(26) sup
0<t≤T

‖u(t)‖D(A) ≤ (K1 +K4)‖x‖Xϑ+1 + (K2 +K5)‖y‖Xϑ + (K3 +K6)‖f‖Cα1
α2

((0,T ],Xϑ).

On the other hand, as4

u(t)− u(s) = (Sα,1(t)− Sα,1(s))x+ (Sα,2(t)− Sα,2(s))y +

∫ s

0

Sα,α(r)(f(t− r)− f(s− r)) dr

+

∫ t

s

Sα,α(r)f(t− r) dr,

we have, respectively, that

sup
0≤s<t≤T

sα2‖(Sα,1(t)− Sα,1(s))x‖
(t− s)α1

≤ K7‖x‖Xϑ+1 , sup
0≤s<t≤T

sα2‖(Sα,2(t)− Sα,2(s))y‖
(t− s)α1

≤ K9‖y‖Xϑ ,

sup
0≤s<t≤T

sα2

∥∥∥∥∫ s

0

Sα,α(r)(f(t− r)− f(s− r)) dr

∥∥∥∥
(t− s)α1

≤ K11‖f‖Cα1
α2

((0,T ];Xϑ),

and

sup
0≤s<t≤T

sα2

∥∥∥∥∫ t

s

Sα,α(r)f(t− r) dr

∥∥∥∥
(t− s)α1

≤ K12‖f‖Cα1
α2

((0,T ];Xϑ).

Therefore,5

(27) sup
0≤s<t≤T

sα2‖u(t)− u(s)‖
(t− s)α1

≤ K7‖x‖Xϑ+1 +K9‖y‖Xϑ + (K11 +K12)‖f‖Cα1
α2

((0,T ];Xϑ).
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Since1

A(u(t)− u(s)) = A(Sα,1(t)− Sα,1(s))x+A(Sα,2(t)− Sα,2(s))y +

∫ s

0

ASα,α(r)(f(t− r)− f(s− r) dr

+

∫ t

s

ASα,α(r)f(t− r) dr,

we respectively have

sup
0≤s<t≤T

sα2‖(ASα,1(t)−ASα,1(s))x‖
(t− s)α1

≤ K8‖x‖Xϑ+1 , sup
0≤s<t≤T

sα2‖(ASα,2(t)−ASα,2(s))y‖
(t− s)α1

≤ K10‖y‖Xϑ ,

sup
0≤s<t≤T

sα2

∥∥∥∥∫ t

s

ASα,α(r)(f(t− r)− f(s− r)) dr

∥∥∥∥
(t− s)α1

≤ K13‖f‖Cα1
α2

((0,T ];Xϑ),

and

sup
0≤s<t≤T

sα2

∥∥∥∥∫ t

s

ASα,α(r)f(t− r) dr

∥∥∥∥
(t− s)α1

≤ K14‖f‖Cα1
α2

((0,T ];Xϑ).

This implies that2

(28) sup
0≤s<t≤T

sα2‖Au(t)−Au(s)‖
(t− s)α1

≤ K8‖x‖Xϑ+1 +K10‖y‖Xϑ + (K13 +K14)‖f‖Cα1
α2

((0,T ];Xϑ).

From the estimates (26),(27) and (28) we conclude that3

‖u‖Cα1
α2

((0,T ];D(A)) ≤ (K1 +K4 +K7 +K8)‖x‖Xϑ+1 + (K2 +K5 +K9 +K10)‖y‖Xϑ
+(K3 +K6 +K11 +K12 +K13 +K14)‖f‖Cα1

α2
((0,T ],Xϑ).

If one takes D1 := (K1 +K4 +K7 +K8), D2 := (K2 +K5 +K9 +K10), and D3 := (K3 +K6 +K11 +K12 +4

K13 +K14), then the proof finishes. �5

5. Compactness of the resolvent family6

In the present section we afford the compactness of the resolvent family {Sα,β(t)}t≥0, for α, β > 0, defined7

in Section 1. For technical reasons we study separately both cases, 1 < β ≤ 2, and β = 1.8

Theorem 22. Let 0 < ϑ < 1, A ∈ Θγ
ω(X), and γ, θ, so that −1 < γ < 0, 0 < ϑ < 1, and 2 + 2γ < ϑ. If9

1 < β ≤ 2 then the following assertions are equivalent10

i) Sα,β(t) is a compact operator in L(Xϑ, X), for t > 0.11

ii) (z −A)−1 is a compact operator, for z ∈ C, Re z > ω1/α.12

Proof. (i) ⇒ (ii) Suppose that t 7→ Sα,β(t) is compact in L(Xϑ, X), for t > 0, and 1 < β ≤ 2. For any13

z ∈ C, Re z > ω1/α, we have14

zα−β(zα −A)−1 =

∫ +∞

0

e−ztSα,β(t) dt.

By Theorem 10, the integral in the right–hand side exists in the sense of Bochner because t 7→ Sα,β(t) is15

continuous in L(Xϑ, X). By [28, Corollary 2.3] we have that (zα −A)−1 is a compact operator.16

(ii)⇒ (i) Let t > 0. For 1 < β < 2, recall we may write17

Sα,β(t) = (gβ−1 ∗ Sα,1)(t), t > 0,

in L(Xϑ, X). Therefore,18

1

2πi

∫
Γ

eztzα−β(zα −A)−1 dz = Sα,β(t), t > 0,
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where Γ = {ω + is : s ∈ R} is noting but a complex path with increasing imaginary part, and by [28,1

Corollary 2.3] Sα,β(t) is compact in L(Xϑ, X).2

Now, we take β = 2. In L(Xϑ, X) we have again3

Sα,2(t) = (g1 ∗ Sα,1)(t), t > 0,

and by [14, Proposition 2.1], we conclude that Sα,2(t), t > 0, is compact as well. �4

Theorem 23. Let 0 < ϑ < 1, A ∈ Θγ
ω(X), and γ, ϑ so that −1 < γ < 0, 0 < ϑ < 1, 2 + 2γ − ϑ < 0, and5

αγ(γ + 1− ϑ)− 1 > 0. Therefore the following assertions are equivalent6

i) Sα,1(t) is a compact operator in L(Xϑ, X), for t > 0.7

ii) (z −A)−1 is a compact operator, for z ∈ C, Re z > ω1/α.8

Proof. (i)⇒ (ii) Suppose that t 7→ Sα,1(t) is compact in L(Xϑ, X), for t > 0. For Re z > ω1/α we have9

zα−1(zα −A)−1 =

∫ +∞

0

e−ztSα,1(t) dt.

Since by Theorem 10, the map t 7→ Sα,1(t) is continuous in L(Xϑ, X), the integral in the right–hand side10

is well defined in the sense of Bochner, and by [28, Corollary 2.3] we have that (zα − A)−1 is a compact11

operator.12

(ii)⇒ (i) Conversely, let 0 < s < t, and x ∈ Xϑ. Therefore13

(Sα,1(t)− Sα,1(s))x =
1

2πi

∫
Γ1/t,φ

ezt − esz

z
zα(zα −A)−1xdz

=
1

2πi

∫
Γ1/t,φ

esz
ez(t−s) − 1

z
(I +A(zα −A)−1)xdz

=
1

2πi

∫
Γ1/t,φ

esz
ez(t−s) − 1

z
xdz +

1

2πi

∫
Γ1/t,φ

esz
ez(t−s) − 1

z
A1−ϑ(zα −A)−1)Aϑx dz.

As the first integral in the last equality turns out to be zero since the singularity in there stands for a
removable singularity, we have that

(Sα,1(t)− Sα,1(s))x =
1

2πi

∫
Γ1/t,φ

esz
ez(t−s) − 1

z
A1−ϑ(zα −A)−1)Aϑx dz.

On the other hand, as we have noticed before, there exists C > 0 (precisely detailed above) such that14

|ez(t−s) − 1)|/|z|(t − s) ≤ C, for z ∈ Γ1/t,φ. Therefore, by Lemma 4, and Remarks 6, according to the15

notation Γ1/t,φ = Γ1 ∪ Γ2 in Theorem 5, we have16

‖(Sα,1(t)− Sα,1(s))x‖

≤ C(t− s)
2π

∫
Γ1/t,φ

|esz|‖A1−ϑ(zα −A)−1)Aϑx‖|dz|

≤ C1C(t− s)
2πC0

{∫
Γ1

|esz||z|−αγ(1+γ−ϑ)|dz|+
∫

Γ2

|esz||z|α(2+2γ−ϑ)|dz|
}
‖Aϑx‖

≤ C1C(t− s)
2π

{
s1+αγ(1+γ−ϑ) + s1−α(2+2γ−ϑ)

}
‖Aϑx‖

≤ C1C(t− s)
2π

{
T 1+αγ(1+γ−ϑ) + T 1−α(2+2γ−ϑ)

}
‖Aϑx‖

Thus, if t tends to s, then the last inequality implies that ‖(Sα,1(t) − Sα,1(s))x‖ → 0. That is, Sα,1(t)17

is continuous in L(Xϑ, X), and by [28, Corollary 2.3] we conclude that Sα,1(t) is compact in L(Xϑ, X), for18

t > 0.19

�1
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Math., Birkhäuser, Basel, 2011.11

[5] E. Bazhlekova, Fractional Evolution Equations in Banach Spaces. Ph.D. Thesis, Eindhoven University of Technology,12

2001.13

[6] C. Chen and M. Li, On fractional resolvent operator functions, Semigroup Forum 80 (2010), 121–142.14

[7] E. Cuesta, Asymptotic behaviour of the solutions of fractional integro–differential equations and some time discretizations,15

Discrete Contin. Dyn. Syst. Supplement Volume (2007), 277–285.16

[8] E. Cuesta, Ch. Lubich, and C. Palencia, Convolution quadrature time discretization of fractional diffusion equations, Math.17

Comput. 75 (2006), no. 254, 673–696.18

[9] E. Cuesta and C. Palencia, A numerical method for an integro–differential equation with memory in Banach spaces:19

Qualitative properties, SIAM J. Numer. Anal.. 41 (2003), no. 4, 1232–1241.20

[10] E. Cuesta and R. Ponce, Hölder regularity for abstract semi-linear fractional differential equations in Banach spaces,21

Comp. Math. Appl. 85 (2021), 57–68.22

[11] P. de Carvalho-Neto and G. Planas, Mild solutions to the time fractional Navier-Stokes equations in Rn, J. Diff. Equations23

259 (2015), 2948–2980.24

[12] S. Eidelman and A. Kochubei, Cauchy problem for fractional diffusion equations, J. Diff. Equations 199 (2004), 211–255.25

[13] Z. Fan, Characterization of compactness for resolvents and its applications, Semigroup Forum (2014), no. 232, 60–67.26

[14] M. Haase, The complex inversion formula revisited, J. Aust. Math. Soc. 84 (2008), 73–83.27
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