

ALMOST SECTORIAL OPERATORS IN FRACTIONAL SUPERDIFFUSION EQUATIONS

EDUARDO CUESTA AND RODRIGO PONCE

ABSTRACT. In this paper the resolvent family $\{S_{\alpha,\beta}(t)\}_{t \geq 0} \subset \mathcal{L}(X, Y)$ generated by an almost sectorial operator A , where $\alpha, \beta > 0$, X, Y are complex Banach spaces and its Laplace transform satisfies $\hat{S}_{\alpha,\beta}(z) = z^{\alpha-\beta}(z^\alpha - A)^{-1}$ is studied. This family of operators allows to write the solution to the fractional initial value problem

$$(*) \quad \partial_t^\alpha u(t) = Au(t) + f(t), \quad t > 0.$$

where u satisfies the initial conditions $u(0) = x$, $u'(0) = y$, ∂_t^α denotes the Caputo fractional derivative, $1 < \alpha < 2$, and f is a suitable function, as a variation of constants formula. Estimates of the norm $\|S_{\alpha,\beta}(t)\|$, as well as the continuity and compactness of $S_{\alpha,\beta}(t)$, for $t > 0$, are shown. Moreover, the Hölder regularity of the solutions to the problem (*) are also studied.

1. INTRODUCTION

5 Sectorial operators have been studied widely during the last four decades because in many differential
 6 equations in applied mathematics the differential operators in the linear part are one of those operators.
 7 The resolvent of a sectorial operator A satisfies the estimate $\|(z - A)^{-1}\| \leq M|z|^{-1}$ for $z \in \mathbb{C} \setminus \Sigma_\omega$ (see
 8 below for the definition of Σ_ω). Many elliptic differential operators with homogeneous boundary conditions
 9 are sectorial when they are considered in the L^p -spaces or in spaces of continuous functions. For example,
 10 if Ω is a bounded subset in \mathbb{R}^d , $X := C(\overline{\Omega})$ denotes the space of all continuous functions defined in $\overline{\Omega}$ and
 11 the operator A , defined by $Au := \Delta u$, is the realization of the second order operator in X with domain
 12 $D(A) = \{u \in X : \Delta u \in X, \partial u / \partial \nu = 0\}$, where $\partial u / \partial \nu$ denotes the normal derivative at the boundary of
 13 Ω , then A is a sectorial operator in X , [23, Chapter 1]. However, this elliptic operator in a more regular
 14 functions space, such as the spaces of Hölder continuous functions, may be not sectorial. In fact, if we
 15 consider A defined by $Au := \Delta u$, with domain $D(A) = \{u \in C^{2+\beta}([0, \pi]) : u(0) = u(\pi) = 0\}$, where
 16 $0 < \beta \leq 1$ and $C^{2+\beta}([0, \pi])$ denotes the Hölder space of all twice continuously differentiable functions u such
 17 that Δu belongs to the Hölder space $C^\beta([0, \pi])$, then A is not sectorial [23, Example 3.1.33]. However, in this
 18 last case, the operator A satisfies the estimate $\|(z - A)^{-1}\| \leq M|z|^\gamma$, for all $z \in \mathbb{C} \setminus \Sigma_\omega$ and some $-1 < \gamma < 0$
 19 (instead of $\gamma = -1$ as in the case of sectorial operators). Operators A satisfying this last inequality are
 20 known as *almost sectorial operators*.

21 On the other hand, the theory of fractional differential equations of sub and super diffusion type has
22 been a topic of great interest in the last two decades, and the problem of the existence of solutions (and its
23 regularity) to the problem

$$(1) \quad \partial_t^\alpha u(t) = Au(t) + f(t), \quad t \geq 0, \quad u(0) = x,$$

where A is a closed linear operator defined in a Banach space X , $x \in X$, f is a suitable vector-valued function (linear or non-linear), $0 < \alpha < 1$, and $\partial_t^\alpha u$ denotes the Caputo time-fractional derivative of u , has been widely studied over the last years. See for instance [1, 5, 6, 11, 12, 15, 16, 17, 18, 20, 24, 26, 27, 30]. If A is a generator of an $(\alpha, 1)$ -resolvent family (see below for its definition), then the solution to (1) is given in

2020 *Mathematics Subject Classification.* 34K30, 34A08, 35K15, 47D06, 26A33, 47B12.

Key words and phrases. Almost sectorial operators; fractional differential equations; resolvent families, Hölder regularity.

1 terms of a variation of constants formula as

$$(2) \quad u(t) = S_{\alpha,1}(t)x + \int_0^t S_{\alpha,\alpha}(t-s)f(s) \, ds, \quad t > 0,$$

2 where, for $\alpha, \beta > 0$, $S_{\alpha,\beta}(t)$ is defined by

$$(3) \quad S_{\alpha,\beta}(t) := \frac{1}{2\pi i} \int_{\Gamma} e^{zt} z^{\alpha-\beta} (z^\alpha - A)^{-1} \, dz, \quad t \geq 0,$$

3 and Γ is a suitable complex path defined within the domain of the resolvent operator $(z^\alpha - A)^{-1}$. See for
4 instance [21].

Recently, the tools on functional calculus for almost sectorial operators has been used in [27] to study (1). More concretely, if $0 < \alpha < 1$ and A is an almost sectorial operators, then the resolvent families $\{S_{\alpha,1}(t)\}_{t>0}$, $\{S_{\alpha,2}(t)\}_{t>0}$, and $\{S_{\alpha,\alpha}(t)\}_{t>0}$ are continuous and compact in $\mathcal{L}(X)$. Moreover, there exist C_s and C_p positive constants depending on α and γ such that the following estimates hold

$$\|S_{\alpha,1}(t)\| \leq C_s t^{-\alpha(1+\gamma)} \quad \text{and} \quad \|S_{\alpha,\alpha}(t)\| \leq C_p t^{-\alpha(1+\gamma)}, \quad t > 0.$$

5 As a consequence of these results, the authors study properties of the solutions to some linear abstract
6 fractional differential equations in Banach spaces. However, we notice that these results can not be used or
7 extended directly to study the same problem in case of $1 < \alpha < 2$. Therefore, the problem of the existence
8 of solutions to the fractional initial value problem

$$(4) \quad \begin{cases} \partial_t^\alpha u(t) &= Au(t) + f(t), \quad t \in [0, T], \\ u(0) &= x, \\ u'(0) &= y, \end{cases}$$

9 where $x, y \in X$, $1 < \alpha < 2$, and A is an almost sectorial operator becomes a natural one.

10 We notice that fractional differential equations in the form of (1) and (4) for $0 < \alpha < 2$, with A being a
11 sectorial operator have been widely studied in the last decades, see for instance [3, 7, 9, 8, 10, 18, 31] and
12 the references therein. However, the case in which $1 < \alpha < 2$ and A is an almost sectorial operator remains
13 as an open problem.

14 From the uniqueness of the Laplace transform, it is easy to see that the solution to the Problem (4) is
15 given by

$$(5) \quad u(t) = S_{\alpha,1}(t)x + S_{\alpha,2}(t)y + \int_0^t S_{\alpha,\alpha}(t-s)f(s) \, ds, \quad t \in [0, T],$$

16 and therefore, the representation (3) of $S_{\alpha,\beta}(t)$ provides an important tool to study its properties in the case
17 where A is an almost sectorial operator.

18 In this paper, we consider, to the best of our knowledge, by the first time the properties of the resolvent
19 families $\{S_{\alpha,1}(t)\}_{t>0}$, $\{S_{\alpha,2}(t)\}_{t>0}$, and $\{S_{\alpha,\alpha}(t)\}_{t>0}$, for $1 < \alpha < 2$, where A is an almost sectorial operator
20 in a complex Banach space X . In fact, we study:

- 21 (1) Some estimates of the norms $\|S_{\alpha,\beta}(t)\|$, $\|AS_{\alpha,\beta}(t)\|$ for different values of $1 \leq \beta \leq 2$. We notice that
22 all the estimates provided in this paper are given in terms of computable constants, which are a
23 key tool to find, for example, a posteriori error estimates for the time discretizations of linear and
24 non-linear fractional differential equations, see for instance [7, 9, 8, 10].
- 25 (2) The continuity and compactness of the linear mapping $t \mapsto S_{\alpha,\beta}(t)$, for $t > 0$. Here, we prove that
26 this map is norm continuous and we give a characterization (in terms of the resolvent operator
27 $(z^\alpha - A)^{-1}$) that ensures that the function $t \mapsto S_{\alpha,\beta}(t)$ is compact for $t > 0$. We notice that this
28 criteria has great importance to study of existence of mild solutions for (1) and (4), because some
29 fixed points arguments can be applied to solve it, see for instance [13, 19, 22].
- 30 (3) The Hölder regularity of the solutions to (4) for a given Hölder continuous function $f \in C_{\alpha_2}^{\alpha_1}((0, T]; X)$,
31 for $0 < \alpha_1 \leq \alpha_2 < 1$. We notice here that the Hölder regularity can be used to study, for example,

1 the existence and uniqueness of non-linear version of problem (4) or a posteriori error estimations
 2 for its time discretization, see for instance [10].

3 The paper is organized as follows. Section 2 provides the Preliminaries. Section 3 is devoted to the study
 4 properties of the resolvent family $\{S_{\alpha,\beta}(t)\}_{t \geq 0}$. Here we find estimates for the norm of $S_{\alpha,\beta}(t)$ and we prove
 5 its continuity, for $t > 0$. In Section 4 we study the Hölder regularity of the solution to the fractional Cauchy
 6 problem (4), and finally we study the compactness of the resolvent family in Section 5.

7 2. PRELIMINARIES AND NOTATION

8 In this section, we give the preliminaries and the notation. First of all let $X \equiv (X, \|\cdot\|_X)$ be a Banach
 9 space, which for the sake of the simplicity, and if not confusing, we denote now and hereafter merely by X ,
 10 and the associated norm simply by $\|\cdot\|$. Therefore given two complex Banach spaces X and Y , $\mathcal{L}(X, Y)$
 11 denotes the Banach space of all linear and bounded operators from X into Y . If $X = Y$, then we write
 12 $\mathcal{L}(X, X) = \mathcal{L}(X)$.

13 **Definition 1.** Let $-1 < \gamma < 0$ and $0 < \omega < \frac{\pi}{2}$. By $\Theta_{\omega}^{\gamma}(X)$ we denote the family of all linear closed operators
 14 $A : D(A) \subset X \rightarrow X$ which satisfy

15 (1) $\sigma(A) \subset \Sigma_{\omega} := \{z \in \mathbb{C} \setminus \{0\} : |\arg(z)| \leq \omega\} \cup \{0\}$, and
 16 (2) for every $\omega < \mu < \pi$, there exists a constant C_{μ} such that

$$(6) \quad \|(z - A)^{-1}\| \leq C_{\mu}|z|^{\gamma}, \quad z \in \mathbb{C} \setminus \Sigma_{\mu}.$$

17 A linear operator A will be called almost sectorial on X if $A \in \Theta_{\omega}^{\gamma}(X)$.

18 We remark that if A is almost sectorial, then it is not possible to conclude that A is the generator of a
 19 C_0 -semigroup. Moreover, it is well known that $0 \in \rho(A)$ and therefore, A is an injective operator. Examples
 20 of sectorial, almost sectorial, and almost sectorial operators which are not sectorial, and their applications
 21 can be found in [23, Chapter 2], [25] and [29, Chapter 2].

22 Recall that a family of operators $\{S(t)\}_{t \geq 0} \subset \mathcal{L}(X)$ is exponentially bounded if there exist real numbers
 23 $M > 0$ and $\omega_0 \in \mathbb{R}$ such that

$$(7) \quad \|S(t)\| \leq M e^{\omega_0 t}, \quad t \geq 0.$$

Definition 2. [2] Let $1 \leq \alpha, \beta \leq 2$, X a complex Banach space, and A be a closed linear operator with
 domain $D(A) \subset X$. The operator A is called the generator of an (α, β) -resolvent family if there exist $\omega_0 \geq 0$
 and a strongly continuous function $S_{\alpha,\beta} : \mathbb{R}_+ \rightarrow \mathcal{L}(X)$ such that $\{z^{\alpha} : z \in \mathbb{C}, \operatorname{Re} z > \omega_0\} \subset \rho(A)$, and

$$z^{\alpha-\beta}(z^{\alpha} - A)^{-1}x = \int_0^{+\infty} e^{-zt} S_{\alpha,\beta}(t)x dt,$$

24 for $\operatorname{Re} z > \omega_0$, and $x \in X$. The family $\{S_{\alpha,\beta}(t)\}_{t \geq 0}$ is also called the (α, β) -resolvent family generated by A .

25 Now, for $\beta > 0$, g_{β} defines the function $g_{\beta}(t) := \frac{t^{\beta-1}}{\Gamma(\beta)}$, for $t > 0$, where $\Gamma(\cdot)$ stands here for the Gamma
 26 function. It is easy to see that, for $\alpha, \beta > 0$, we have $(g_{\alpha} * g_{\beta})(t) = g_{\alpha+\beta}(t)$, where $*$ denotes the usual finite
 27 convolution, that is, $(f * g)(t) := \int_0^t f(t-s)g(s) ds$. Moreover, if an operator A with domain $D(A)$ is the
 28 infinitesimal generator of a resolvent family $S_{\alpha,\beta}(t)$, then, for $x \in D(A)$, we have

$$Ax = \lim_{t \rightarrow 0^+} \frac{S_{\alpha,\beta}(t)x - g_{\beta}(t)x}{g_{\alpha+\beta}(t)}.$$

29 For example, if $\alpha = \beta = 1$, then $S_{1,1}(t)$ corresponds to a C_0 -semigroup, if $\alpha = 2, \beta = 1$, then $S_{2,1}(t)$ is a
 30 cosine family, and if $\alpha = \beta = 2$, then $S_{2,2}(t)$ is a sine family. See [4] for further details.

For $\alpha > 0$, let $m = \lceil \alpha \rceil$ be the smallest integer m greater than or equal to α . The *Caputo fractional*
 derivative of order α of a m -times differentiable function $f : \mathbb{R}_+ \rightarrow X$ is defined by

$$\partial_t^{\alpha} f(t) := \int_0^t g_{m-\alpha}(t-s) f^{(m)}(s) ds.$$

For a given Banach space Y , and $0 < \alpha_1 < 1$, the space $C^{\alpha_1}([0, T]; Y)$ denotes the set of all bounded α_1 -Hölder continuous functions $g : [0, T] \rightarrow Y$, endowed with the norm

$$\|g\|_{C^{\alpha_1}([0, T]; Y)} := \sup_{0 \leq t \leq T} \|g(t)\|_Y + [[g]]_{C^{\alpha_1}([0, T]; Y)},$$

where $[[g]]_{C^{\alpha_1}([0, T]; Y)}$ denotes the semi-norm

$$[[g]]_{C^{\alpha_1}([0, T]; Y)} := \sup_{0 \leq s < t \leq T} \frac{\|g(t) - g(s)\|_Y}{(t - s)^{\alpha_1}}.$$

Moreover, if $0 < \alpha_1 \leq \alpha_2 < 1$, then we define the space $C_{\alpha_2}^{\alpha_1}((0, T]; Y)$ as the set of all bounded functions $g : (0, T] \rightarrow Y$ such that $t \mapsto t^{\alpha_2 - \alpha_1} g(t)$ is α_1 -Hölder continuous in $(0, T]$ endowed with the norm

$$\|g\|_{C_{\alpha_2}^{\alpha_1}((0, T]; Y)} := \sup_{0 < t \leq T} \|g(t)\|_Y + [[g]]_{C_{\alpha_2}^{\alpha_1}((0, T]; Y)},$$

where $[[g]]_{C_{\alpha_2}^{\alpha_1}((0, T]; Y)}$ denotes the semi-norm

$$[[g]]_{C_{\alpha_2}^{\alpha_1}((0, T]; Y)} := \sup_{0 \leq s < t \leq T} \frac{s^{\alpha_2} \|g(t) - g(s)\|_Y}{(t - s)^{\alpha_1}}.$$

For a given $0 \leq \vartheta \leq 1$, and an almost sectorial operator A , we denote by X^ϑ the domain of the fractional power $\vartheta > 0$ of A , that is $X^\vartheta := D(A^\vartheta)$ endowed with the norm $\|x\|_\vartheta = \|A^\vartheta x\|$. In particular $X^1 = D(A)$ and $X^0 = X$. The following result gives a moment inequality for almost sectorial operators.

Throughout the paper we will make use over and over of a type of complex path which has always the same structure. Let us fix its notation once for all as follows: Let r be positive, $0 < \theta < \pi$, and $\Gamma_{r,\theta} = \Gamma_{r,\theta}^1 \cup \Gamma_{r,\theta}^2 \cup \Gamma_{r,\theta}^3$ where

$$(8) \quad \begin{cases} \Gamma_{r,\theta}^1 : \gamma_{r,\theta}^1(\rho) = \rho e^{i\theta}, & \rho \geq r, \\ \Gamma_{r,\theta}^2 : \gamma_{r,\theta}^2(\varphi) = r e^{i\varphi}, & -\theta \leq \varphi \leq \theta, \\ \Gamma_{r,\theta}^3 : \gamma_{r,\theta}^3(\rho) = \rho e^{-i\theta}, & \rho \geq r. \end{cases}$$

Proposition 3 (Moment inequality). *Let $A \in \Theta_\omega^\gamma(X)$ and $0 < \varepsilon < 1$ such that $\gamma + \varepsilon < 0$. Then, there exists a constant $k > 0$, depending on C_μ , γ and ε , such that*

$$(9) \quad \|A^\varepsilon x\| \leq k \|Ax\|^{1+\gamma+\varepsilon} \|x\|^{-(\gamma+\varepsilon)}, \quad x \in D(A).$$

Proof. For $x \in D(A) \subset X^\varepsilon$ we have (see [25], Th 2.5)

$$(10) \quad A^\varepsilon x = \frac{1}{2\pi i} \int_{\Gamma_{r,\theta}} z^\varepsilon (z - A)^{-1} x \, dz,$$

where $\Gamma_{r,\theta}$ is defined according to (8), with $\omega < \theta < \mu$ and $r > 0$ is small enough. Alternatively there satisfies

$$(11) \quad A^\varepsilon x = A^{\varepsilon-1}(Ax) = \frac{1}{2\pi i} \int_{\Gamma_{r,\theta}} z^{\varepsilon-1} (z - A)^{-1} Ax \, dz.$$

Now consider $R \geq r > 0$, and the complex paths

$$\Gamma_1 := \{z \in \mathbb{C} : z \in \Gamma_{r,\theta}, |z| \leq R\} \cup \{z \in \mathbb{C} : z = Re^{i\phi}, -\theta < \phi \leq \theta\},$$

and

$$\Gamma_2 := \{z \in \mathbb{C} : z \in \Gamma_{r,\theta}, |z| \geq R\} \cup \{z \in \mathbb{C} : z = Re^{i\phi}, -\theta < \phi \leq \theta\}.$$

both of them clock-wise oriented. Straightforwardly it follows that

$$(12) \quad A^\varepsilon x = I_1 + I_2,$$

where,

$$I_j := \frac{1}{2\pi i} \int_{\Gamma_j} z^{\varepsilon-1} (z - A)^{-1} Ax \, dz, \quad j = 1, 2.$$

On the one hand, re-writing I_1 , and applying the Cauchy's Theorem,

$$I_1 = \frac{1}{2\pi i} \int_{\Gamma_1} (z^\varepsilon (z - A)^{-1} - z^{\varepsilon-1}) x \, dz = \frac{1}{2\pi i} \int_{\Gamma_1} z^\varepsilon (z - A)^{-1} x \, dz,$$

Since $r > 0$ may be taken as small as one needs, if in I_1 we take the limit $r \rightarrow 0^+$ and apply the boundness of the resolvent of A , then there exists $C > 0$ such that

$$\|I_1\| \leq \frac{1}{2\pi} \int_{\Gamma_1} |z|^{\varepsilon+\gamma} |dz| \|x\| \leq CR^{\varepsilon+\gamma+1} \|x\|.$$

On the other hand, the parametrization of Γ_2 and the boundness of the resolvent of A , lead us to the bound

$$\|I_2\| \leq \frac{1}{2\pi} \int_{\Gamma_2} |z|^{\varepsilon+\gamma-1} |dz| \|Ax\| \leq CR^{\varepsilon+\gamma} \|Ax\|,$$

where $C > 0$ is a computable constant. Therefore

$$\|A^\varepsilon x\| \leq C(R^{\varepsilon+\gamma+1} \|x\| + R^{\varepsilon+\gamma} \|Ax\|).$$

1 The choice $R = \|Ax\|/\|x\|$ gives rise to the statement of the Proposition and the proof concludes. \square
2 The proof of the next Lemma follows as in [10, Lemma 2].

Lemma 4. *Let $\delta \geq 0$, $\alpha\pi/2 < \phi < \pi$, and $1 < \alpha < 2$. Therefore*

$$\int_{\Gamma_{1/t,\phi}} \left| \frac{e^{zt}}{z^\delta} \right| |dz| \leq C_0 t^{\delta-1}, \quad t > 0,$$

where

$$C_0 := \left(C_\alpha + \frac{2e^{\cos(\phi/\alpha)}}{-\cos(\phi/\alpha)} \right) \quad \text{and} \quad C_\alpha := \frac{1}{\alpha} \int_{-\phi}^\phi e^{\cos(\psi/\alpha)} \, d\psi.$$

3. ESTIMATES AND CONTINUITY OF THE RESOLVENT FAMILY

4 In this Section we provide estimates of the norm of the resolvent families $S_{\alpha,\beta}(t)$ and $AS_{\alpha,\beta}(t)$, for
5 $1 < \alpha < 2$, and different values of $\beta \geq 0$. Moreover, we study the continuity of $S_{\alpha,\beta}(t)$. Throughout this
6 section A will be an operator in $\Theta_\omega^\gamma(X)$ with $-1 < \gamma < 0$ and $0 < \omega < \pi/2$.

7 Moreover, from now on, the complex path $\Gamma_{1/t,\phi}$, $t > 0$, defined in the previous section will be taken with
8 $\pi/2 < \phi^\alpha < \pi$.

9 **Theorem 5.** *Let $0 < \vartheta < 1$ and $A \in \Theta_\omega^\gamma(X)$. Suppose that $1 \leq \beta \leq 2$, $1+\gamma-\vartheta < 0$, and $\beta-\alpha(2+2\gamma-\vartheta) > 0$.
10 If $x \in X^\vartheta$, then*

$$(13) \quad \|S_{\alpha,\beta}(t)x\| \leq \frac{C_0}{2\pi} t^{\beta-1} \|x\| + C_1 (t^{\alpha\gamma(\gamma+1-\vartheta)+\beta-1} + t^{-\alpha(2+2\gamma-\vartheta)+\beta-1}) \|A^\vartheta x\|, \quad t \geq 0,$$

11 where $C_1 := kC_0(C_\mu + 1)^{2+\gamma-\vartheta} C_\mu^{-(\gamma+1-\vartheta)}/2\pi > 0$.

12 *Proof.* Let $x \in X^\vartheta$. Therefore as $z^\alpha (z^\alpha - A)^{-1} = I + A(z^\alpha - A)^{-1}$ we have $z^{\alpha-\beta} (z^\alpha - A)^{-1} = \frac{1}{z^\beta} (I + A(z^\alpha - A)^{-1})$. Hence, for $x \in X$, and $\Gamma_{1/t,\phi} = \Gamma_1 \cup \Gamma_2$ defined according to Proposition 3 (where $R > 1/t$), we have

$$\begin{aligned} S_{\alpha,\beta}(t)x &= \frac{1}{2\pi i} \int_{\Gamma_{1/t,\phi}} \frac{e^{zt}}{z^\beta} x \, dz + \frac{1}{2\pi i} \int_{\Gamma_{1/t,\phi}} \frac{e^{zt}}{z^\beta} A(z^\alpha - A)^{-1} x \, dz \\ &= \frac{1}{2\pi i} \int_{\Gamma_{1/t,\phi}} \frac{e^{zt}}{z^\beta} x \, dz + \frac{1}{2\pi i} \int_{\Gamma_{1/t,\phi}} \frac{e^{zt}}{z^\beta} A^{1-\vartheta} (z^\alpha - A)^{-1} A^\vartheta x \, dz. \end{aligned}$$

On the one hand, by Lemma 4, the first integral can be estimated as

$$\left\| \frac{1}{2\pi i} \int_{\Gamma_{1/t,\phi}} \frac{e^{zt}}{z^\beta} x \, dz \right\| \leq \frac{1}{2\pi} \int_{\Gamma_{1/t,\phi}} \frac{|e^{zt}|}{|z|^\beta} \|x\| \, dz \leq \frac{C_0}{2\pi} t^{\beta-1} \|x\|.$$

1 On the other hand, the second integral makes use of the facts that $(z^\alpha - A)^{-1}x$ belongs to $D(A)$ and
2 $A(z^\alpha - A)^{-1} = z^\alpha(z^\alpha - A)^{-1} - I$, whether $z \in \Gamma_{1/t, \phi}$. Therefore we have (by the moment inequality (9) with
3 $\varepsilon = 1 - \vartheta$) that, for $y \in X$,

$$(14) \quad \begin{aligned} \|A^{1-\vartheta}(z^\alpha - A)^{-1}y\| &\leq k\|A(z^\alpha - A)^{-1}y\|^{1+\gamma+(1-\vartheta)}\|(z^\alpha - A)^{-1}y\|^{-(\gamma+(1-\vartheta))} \\ &\leq k\left((|z|^{\alpha(\gamma+1)}C_\mu + 1)\|y\|\right)^{2+\gamma-\vartheta}\left(C_\mu|z|^{\alpha\gamma}\|y\|\right)^{-(\gamma+1-\vartheta)} \\ &= k\left(|z|^{\alpha(\gamma+1)}C_\mu + 1\right)^{2+\gamma-\vartheta}C_\mu^{-(\gamma+1-\vartheta)}|z|^{-\alpha\gamma(\gamma+1-\vartheta)}\|y\|. \end{aligned}$$

4 Therefore,

$$(15) \quad \frac{1}{2\pi i} \int_{\Gamma_{1/t, \phi}} \frac{e^{zt}}{z^\beta} A^{1-\vartheta}(z^\alpha - A)^{-1}A^\vartheta x dz = \sum_{j=1,2} \frac{1}{2\pi i} \int_{\Gamma_j} \frac{e^{zt}}{z^\beta} A^{1-\vartheta}(z^\alpha - A)^{-1}A^\vartheta x dz.$$

Firstly, if $z \in \Gamma_1$ and $y \in X$, then according to (14),

$$\|A^{1-\vartheta}(z^\alpha - A)^{-1}y\| \leq C|z|^{-\alpha\gamma(\gamma+1-\vartheta)}\|y\|,$$

5 where $C = k(C_\mu + 1)^{2+\gamma-\vartheta}C_\mu^{-(\gamma+1-\vartheta)} > 0$. Therefore, by Lemma 4, we have

$$\begin{aligned} \left\| \frac{1}{2\pi i} \int_{\Gamma_1} \frac{e^{zt}}{z^\beta} A^{1-\vartheta}(z^\alpha - A)^{-1}A^\vartheta x dz \right\| &\leq \frac{1}{2\pi} \int_{\Gamma_1} \frac{|e^{zt}|}{|z|^\beta} \|A^{1-\vartheta}(z^\alpha - A)^{-1}A^\vartheta x\| |dz| \\ &\leq \frac{C}{2\pi} \int_{\Gamma_1} \frac{|e^{zt}|}{|z|^{\alpha\gamma(\gamma+1-\vartheta)+\beta}} |dz| \|A^\vartheta x\| \\ &\leq \frac{CC_0}{2\pi} t^{\alpha\gamma(\gamma+1-\vartheta)+\beta-1} \|A^\vartheta x\|. \end{aligned}$$

6 Now, if $z \in \Gamma_2$ and $y \in X$, and again according to (14)

$$\begin{aligned} \|A^{1-\vartheta}(z^\alpha - A)^{-1}y\| &\leq k(C_\mu + 1)^{2+\gamma-\vartheta}|z|^{\alpha(\gamma+1)(2+\gamma-\vartheta)}C_\mu^{-(\gamma+1-\vartheta)}|z|^{-\alpha\gamma(\gamma+1-\vartheta)}\|y\| \\ &= C|z|^{\alpha(2+2\gamma-\vartheta)}\|y\|. \end{aligned}$$

7 where $C > 0$ stands for the positive constant defined above. Thus, by Lemma 4, we have

$$\begin{aligned} \left\| \frac{1}{2\pi i} \int_{\Gamma_2} \frac{e^{zt}}{z^\beta} A^{1-\vartheta}(z^\alpha - A)^{-1}A^\vartheta x dz \right\| &\leq \frac{1}{2\pi} \int_{\Gamma_2} \frac{|e^{zt}|}{|z|^\beta} \|A^{1-\vartheta}(z^\alpha - A)^{-1}A^\vartheta x\| |dz| \\ &\leq \frac{C}{2\pi} \int_{\Gamma_2} \frac{|e^{zt}|}{|z|^{\beta-\alpha(2+2\gamma-\vartheta)}} |dz| \|A^\vartheta x\| \\ &\leq \frac{CC_0}{2\pi} t^{\beta-\alpha(2+2\gamma-\vartheta)-1} \|A^\vartheta x\|. \end{aligned}$$

8 This finishes the proof. \square

9 *Remark 6. From the Proof of Theorem 5, if $x \in X^\vartheta$, then*

10 (1) *If $z \in \Gamma_1$, then $\|A^{1-\vartheta}(z^\alpha - A)^{-1}A^\vartheta x\| \leq \frac{C_1}{C_0}|z|^{-\alpha\gamma(\gamma+1-\vartheta)}\|A^\vartheta x\|$.*
11 (2) *If $z \in \Gamma_2$, then $\|A^{1-\vartheta}(z^\alpha - A)^{-1}A^\vartheta x\| \leq \frac{C_1}{C_0}|z|^{\alpha(2+2\gamma-\vartheta)}\|A^\vartheta x\|$.*

12 From now on, if we split the path Γ into $\Gamma_1 \cup \Gamma_2$ then, we will assume that $R > 1/t$.

13 *Remark 7. If $x \in X^\vartheta$, in particular since $D(A) \subset X^\theta$ if $x \in D(A)$, then we have by the closed graph Theorem
14 applied to the identity operator $I : X^\vartheta \mapsto X$ that $\|x\| \leq \|A^\vartheta x\|$. Therefore, by Theorem 5 it satisfies that,*

1 for $0 \leq t \leq T$,

$$\begin{aligned}
& \|S_{\alpha,\beta}(t)\|_{\mathcal{L}(X^\vartheta, X)} \\
&= \sup\{\|S_{\alpha,\beta}(t)x\| : x \in X^\vartheta, \|x\|_\vartheta \leq 1\} \\
&\leq \sup\left\{\frac{C_0}{2\pi}t^{\beta-1}\|A^\vartheta x\| + C_1(t^{\alpha\gamma(\gamma+1-\vartheta)+\beta-1} + t^{-\alpha(2+2\gamma-\vartheta)+\beta-1})\|A^\vartheta x\| : x \in X^\vartheta, \|x\|_\vartheta \leq 1\right\} \\
&\leq \frac{C_0}{2\pi}T^{\beta-1} + C_1(T^{\alpha\gamma(\gamma+1-\vartheta)+\beta-1} + T^{-\alpha(2+2\gamma-\vartheta)+\beta-1}) \\
&\leq \max\left\{\frac{C_0}{2\pi}, C_1\right\} T^{\beta-1}(1 + T^{\alpha\gamma(\gamma+1-\vartheta)} + T^{-\alpha(2+2\gamma-\vartheta)}).
\end{aligned}$$

2 **Theorem 8.** Let $0 < \vartheta < 1$, and $A \in \Theta_\omega^\gamma(X)$. Suppose that $\alpha\gamma(\gamma+1-\vartheta)-1 > 0$, and $-\alpha(2+2\gamma-\vartheta)-1 > 0$,
3 and denote $C_2 := C_1/2\pi$. Therefore

4 (1) If $x \in X^\vartheta$, then

$$\|AS_{\alpha,\beta}(t)x\| \leq C_2 \left(t^{\beta-\alpha+\alpha\gamma(\gamma+1-\vartheta)-1} + t^{\beta-\alpha-\alpha(2+2\gamma-\vartheta)-1} \right) \|A^\vartheta x\|, \quad t > 0.$$

5 for $1 \leq \beta \leq 2$.

6 (2) If in addition $x \in X^{\vartheta+1}$, then

$$\|AS_{\alpha,1}(t)x\| \leq \frac{C_0}{2\pi} \|Ax\| + C_2(t^{\alpha\gamma(\gamma+1-\vartheta)} + t^{-\alpha(2+2\gamma-\vartheta)}) \|A^{\vartheta+1}x\|, \quad t > 0.$$

Proof. Firstly, for $x \in X^\vartheta$, we can write

$$AS_{\alpha,\beta}(t)x = \sum_{j=1,2} \frac{1}{2\pi i} \int_{\Gamma_j} e^{zt} z^{\alpha-\beta} A^{1-\vartheta} (z^\alpha - A)^{-1} A^\vartheta x \, dz,$$

6 where the complex path $\Gamma_{1/t,\phi} = \Gamma_1 \cup \Gamma_2$ is defined throughout this proof as in the proof of Theorem 5,
7 where $R > 1/t$.

8 By Remark 6,

$$\|AS_{\alpha,\beta}(t)x\| \leq \frac{C_1}{2\pi C_0} \int_{\Gamma_1} |e^{zt}| |z|^{\alpha-\beta-\alpha\gamma(\gamma+1-\vartheta)} |dz| \|A^\vartheta x\| + \frac{C_1}{2\pi C_0} \int_{\Gamma_2} |e^{zt}| |z|^{\alpha-\beta+\alpha(2+2\gamma-\vartheta)} |dz| \|A^\vartheta x\|.$$

9 Since $2+2\gamma-\vartheta < 0$, we have $(\gamma+1-\vartheta) + (\gamma+1) < 0$ and therefore $(\gamma+1)-\vartheta < -(\gamma+1) < 0$, that is,
10 $(\gamma+1) < \vartheta$. As $-1 < \gamma < 0$, and $1 < \alpha < 2$, it satisfies $\alpha-\beta-\alpha\gamma(\gamma+1-\vartheta) < 0$, and $\alpha-\beta+\alpha(2+2\gamma-\vartheta) < 0$,
11 for $1 \leq \beta \leq 2$. Consequently, by Theorem 5

$$\|AS_{\alpha,\beta}(t)x\| \leq \frac{C_1}{2\pi} \left(t^{\beta-\alpha+\alpha\gamma(\gamma+1-\vartheta)-1} + t^{\beta-\alpha-\alpha(2+2\gamma-\vartheta)-1} \right) \|A^\vartheta x\|, \quad t > 0,$$

12 which stands for the first statement of the theorem.

Secondly we consider $x \in X^{\vartheta+1}$. Since $z^{\alpha-1}(z^\alpha - A)^{-1} = z^{-1}A(z^\alpha - A)^{-1} - z^{-1}I$ we have that

$$AS_{\alpha,1}(t)x = \sum_{j=1,2} \frac{1}{2\pi i} \int_{\Gamma_j} \frac{e^{zt}}{z} A^{1-\vartheta} (z^\alpha - A)^{-1} A^{\vartheta+1} x \, dz - \frac{1}{2\pi i} \int_{\Gamma_{1/t,\phi}} \frac{e^{zt}}{z} Ax \, dz.$$

13 Therefore by Remark 6 we have

$$\begin{aligned}
\|AS_{\alpha,1}(t)x\| &\leq \frac{C_1}{2\pi C_0} \int_{\Gamma_1} |e^{zt}| |z|^{-1-\alpha\gamma(\gamma+1-\vartheta)} |dz| \|A^{\vartheta+1}x\| + \frac{C_1}{2\pi C_0} \int_{\Gamma_2} |e^{zt}| |z|^{-1+\alpha(2+2\gamma-\vartheta)} |dz| \|A^{\vartheta+1}x\| \\
&\quad + \frac{1}{2\pi} \int_{\Gamma_{1/t,\phi}} \frac{|e^{zt}|}{|z|} \|Ax\| \, dz.
\end{aligned}$$

14 Since $-\alpha\gamma(\gamma+1-\vartheta)-1 < -2$, and $\alpha(2+2\gamma-\vartheta) < 0$, we have by Lemma 4 that

$$\|AS_{\alpha,1}(t)x\| \leq \frac{C_1}{2\pi} t^{\alpha\gamma(\gamma+1-\vartheta)} \|A^{\vartheta+1}x\| + \frac{C_1}{2\pi} t^{-\alpha(2+2\gamma-\vartheta)} \|A^{\vartheta+1}x\| + \frac{C_0}{2\pi} \|Ax\|,$$

1 and the proof concludes. \square

2 *Remark 9.* Let us highlight a fact which is particularly interesting since this appears more than once in the
3 sections below. If $\beta = \alpha$, and $x \in X^\vartheta$, then by the first statement of Theorem 8

$$\begin{aligned} \|AS_{\alpha,\alpha}(t)\|_{\mathcal{L}(X^\vartheta, X)} &= \sup\{\|AS_{\alpha,\alpha}(t)x\| : x \in X^\vartheta, \|x\|_\vartheta \leq 1\} \\ &\leq \sup\left\{C_2(t^{\alpha\gamma(\gamma+1-\vartheta)-1} + t^{-\alpha(2+2\gamma-\vartheta)-1})\|A^\vartheta x\| : x \in X^\vartheta, \|x\|_\vartheta \leq 1\right\} \\ &\leq C_2(T^{\alpha\gamma(\gamma+1-\vartheta)-1} + T^{-\alpha(2+2\gamma-\vartheta)-1}). \end{aligned}$$

4 Next we show the continuity of the resolvent family.

5 **Theorem 10.** Let $0 < \vartheta < 1$ and $A \in \Theta_\omega^\gamma(X)$. Suppose that $2 + 2\gamma - \vartheta < 0$. If $1 \leq \beta \leq 2$, then the function
6 $t \mapsto S_{\alpha,\beta}(t)$ is continuous in $\mathcal{L}(X^\vartheta, X)$, for $t > 0$.

7 *Proof.* Let $x \in X^\vartheta$, $0 < s < t$, and $1 \leq \beta \leq 2$. We may write

$$\begin{aligned} (S_{\alpha,\beta}(t) - S_{\alpha,\beta}(s))x &= \frac{1}{2\pi i} \int_{\Gamma_{1/t,\phi}} (e^{zt} - e^{zs}) z^{\alpha-\beta} (z^\alpha - A)^{-1} x \, dz \\ &= \frac{1}{2\pi i} \int_{\Gamma_{1/t,\phi}} e^{zs} \frac{e^{z(t-s)} - 1}{z} z^{\alpha-\beta+1} (z^\alpha - A)^{-1} x \, dz \\ &= \frac{1}{2\pi i} \int_{\Gamma_{1/t,\phi}} e^{zs} \frac{e^{z(t-s)} - 1}{z} z^{-\beta+1} \left(I + A(z^\alpha - A)^{-1} \right) x \, dz \\ &= I_1 + I_2, \end{aligned}$$

where

$$I_1 := \frac{1}{2\pi i} \int_{\Gamma_{1/t,\phi}} e^{zs} \frac{e^{z(t-s)} - 1}{z} \frac{1}{z^{\beta-1}} x \, dz, \quad I_2 := \frac{1}{2\pi i} \int_{\Gamma_{1/t,\phi}} e^{zs} \frac{e^{z(t-s)} - 1}{z} \frac{1}{z^{\beta-1}} A^{1-\vartheta} (z^\alpha - A)^{-1} A^\vartheta x \, dz.$$

On the one hand there exists $C > 0$ (in particular $C = \max_{z \in \Gamma_{1/t,\phi}} \left\{ \frac{|e^{z(t-s)} - 1|}{|(t-s)|z|} \right\}$) such that

$$\frac{|e^{z(t-s)} - 1|}{|z|} \leq C(t-s), \quad z \in \Gamma_{1/t,\phi},$$

therefore by Lemma 4, straightforwardly follows that

$$\|I_1\| \leq \frac{CC_0(t-s)s^{\beta-2}\|x\|}{2\pi}, \quad 0 < s < t,$$

8 and that $I_1 \rightarrow 0$, as s tends to t .

On the other hand by the bound above and Remark 6 we have

$$\|I_2\| \leq \frac{CC_1(t-s)}{2\pi C_0} \int_{\Gamma_{1/t,\phi}} |e^{zs}| \left\{ \frac{1}{|z|^{\beta-1+\alpha\gamma(\gamma+1-\theta)}} + \frac{1}{|z|^{\beta-1-\alpha(2\gamma+2-\theta)}} \right\} |dz| \|A^\vartheta x\|,$$

and since $\beta - 1 + \alpha\gamma(\gamma + 1 - \theta) > 0$, and $\beta - 1 - \alpha(2\gamma + 2 - \theta) > 0$, by Lemma 4 again, there satisfies

$$\|I_2\| \leq \frac{CC_1(t-s)}{2\pi} (s^{\beta-2+\alpha\gamma(\gamma+1-\theta)} + s^{\beta-2-\alpha(2\gamma+2-\theta)}) \|A^\vartheta x\|, \quad 0 < s < t.$$

9 In view of the above, if s tends to t , then $I_2 \rightarrow 0$, and the proof concludes. \square

4. HÖLDER REGULARITY

In this Section we study the regularity in the sense of Hölder continuity of the Problem (4) where $A \in \Theta_\omega^\gamma(X)$. First of all, recall that the solution to Problem (4) can be written as

$$u(t) = S_{\alpha,1}(t)x + S_{\alpha,2}(t)y + \int_0^t S_{\alpha,\alpha}(t-s)f(s)ds.$$

In fact in this section we estimate $\|u\|_{C_{\alpha_2}^{\alpha_1}((0,T];D(A))}$ which consists of estimating the terms involved in the that norm, that is,

$$\|u\|_{C_{\alpha_2}^{\alpha_1}((0,T];D(A))} = \sup_{0 < t \leq T} \|u(t)\|_{D(A)} + [[u]]_{C_{\alpha_2}^{\alpha_1}((0,T];D(A))},$$

where

$$\sup_{0 < t \leq T} \|u(t)\|_{D(A)} = \sup_{0 < t \leq T} \|u(t)\| + \sup_{0 < t \leq T} \|Au(t)\|,$$

and

$$[[u]]_{C_{\alpha_2}^{\alpha_1}((0,T];D(A))} = \sup_{0 \leq s < t \leq T} \frac{s^{\alpha_2} \|u(t) - u(s)\|}{(t-s)^{\alpha_1}} + \sup_{0 \leq s < t \leq T} \frac{s^{\alpha_2} \|Au(t) - Au(s)\|}{(t-s)^{\alpha_1}}.$$

The propositions below are devoted to show estimates for each of these terms. Although most the results below can be stated in a more general framework of values of β , we here focus our attention in those required by (16).

Notice that within this section we assume that $f \in C_{\alpha_2}^{\alpha_1}((0,T],X^\vartheta)$, for $0 < \alpha_1 \leq \alpha_2 < 1$, Hence all constants involved in the bounds below will also implicitly depend on α_1 and α_2 , even though they will not explicitly appear in the notation. However, all the constants are in fact, computable.

Moreover, we state once for all the following assumptions which will be required from now on in all results below, although they are not explicitly mentioned in the statement of results. In fact, assume that

$$\alpha\gamma(\gamma+1-\vartheta) - 1 > 0, \quad \text{and} \quad -\alpha(2+2\gamma-\vartheta) - 1 > 0.$$

Before starting with the results and proofs of this section, and since this will appear repeatedly we assume now and hereafter that the complex path $\Gamma_{1/t,\phi} = \Gamma_1 \cup \Gamma_2$ is defined as in the proof of Theorem 5.

Proposition 11. *Let $0 < \vartheta < 1$ and $A \in \Theta_\omega^\gamma(X)$. If $x, y \in X^\vartheta$, then there exist constants $K_1, K_2, K_3 > 0$ depending on $\alpha, \gamma, \vartheta$ and T such that*

$$(16) \quad \sup_{0 < t \leq T} \|u(t)\| \leq K_1 \|x\|_\vartheta + K_2 \|y\|_\vartheta + K_3 \|f\|_{C_{\alpha_2}^{\alpha_1}((0,T],X^\vartheta)}.$$

Proof. As $x \in X^\vartheta$, $\alpha\gamma(\gamma+1-\vartheta) > 0$, and $-\alpha(2+2\gamma-\vartheta) > 1 > 0$, by Theorem 5 with $\beta = 1$, we have

$$\|S_{\alpha,1}(t)x\| \leq \frac{C_0}{2\pi} \|x\| + C_1(T^{\alpha\gamma(\gamma+1-\vartheta)} + T^{-\alpha(2+2\gamma-\vartheta)}) \|A^\vartheta x\|.$$

Once again since $X^\vartheta \subset X$, we have $\|x\| \leq \|A^\vartheta x\|$, for $x \in X^\vartheta$, and we get

$$\|S_{\alpha,1}(t)x\| \leq K_1 \|A^\vartheta x\|, \quad 0 \leq t \leq T,$$

where

$$K_1 := \max \left\{ \frac{C_0}{2\pi}, C_1(T^{\alpha\gamma(\gamma+1-\vartheta)} + T^{-\alpha(2+2\gamma-\vartheta)}) \right\}.$$

Similarly, as $y \in X^\vartheta$, by Theorem 5 with $\beta = 2$, we have

$$\|S_{\alpha,2}(t)y\| \leq \frac{C_0}{2\pi} T \|y\| + C_1(T^{1+\alpha\gamma(\gamma+1-\vartheta)} + T^{1-\alpha(2+2\gamma-\vartheta)}) \|A^\vartheta y\| \leq K_2 \|A^\vartheta y\|, \quad 0 \leq t \leq T,$$

where

$$K_2 := \max \left\{ \frac{C_0}{2\pi} T, C_1(T^{1+\alpha\gamma(\gamma+1-\vartheta)} + T^{1-\alpha(2+2\gamma-\vartheta)}) \right\}.$$

¹ On the one hand, by Remark 7, we have (with $\beta = \alpha$)

$$\begin{aligned} \left\| \int_0^t S_{\alpha,\alpha}(t-s)(f(s) - f(t)) \, ds \right\| &\leq \int_0^t \|S_{\alpha,\alpha}(t-s)\|_{\mathcal{L}(X^\vartheta, X)} \|f(s) - f(t)\|_\vartheta \, ds \\ &\leq \max \left\{ \frac{C_0}{2\pi}, C_1 \right\} T^{\alpha-1} (1 + T^{\alpha\gamma(\gamma+1-\vartheta)} + T^{-\alpha(2+2\gamma-\vartheta)}) \int_0^t \frac{s^{\alpha_2} \|f(s) - f(t)\|_\vartheta}{(t-s)^{\alpha_1}} \frac{(t-s)^{\alpha_1}}{s^{\alpha_2}} \, ds \\ &\leq \max \left\{ \frac{C_0}{2\pi}, C_1 \right\} T^{\alpha+\alpha_1-\alpha_2} (1 + T^{\alpha\gamma(\gamma+1-\vartheta)} + T^{-\alpha(2+2\gamma-\vartheta)}) \|f\|_{C_{\alpha_2}^{\alpha_1}((0,T]; X^\vartheta)} B(\alpha_1 + 1, 1 - \alpha_2), \end{aligned}$$

² where $B(\cdot, \cdot)$ stands for the Beta function. Similarly,

$$\begin{aligned} \left\| \int_0^t S_{\alpha,\alpha}(s)f(t) \, ds \right\| &\leq \int_0^t \|S_{\alpha,\alpha}(s)\|_{\mathcal{L}(X^\vartheta, X)} \|f(t)\|_\vartheta \, ds \\ &\leq \max \left\{ \frac{C_0}{2\pi}, C_1 \right\} T^{\alpha-1} (1 + T^{\alpha\gamma(\gamma+1-\vartheta)} + T^{-\alpha(2+2\gamma-\vartheta)}) \int_0^t \sup_{0 < t \leq T} \|f(t)\|_\vartheta \, ds \\ &\leq \max \left\{ \frac{C_0}{2\pi}, C_1 \right\} T^\alpha (1 + T^{\alpha\gamma(\gamma+1-\vartheta)} + T^{-\alpha(2+2\gamma-\vartheta)}) \|f\|_{C_{\alpha_2}^{\alpha_1}((0,T]; X^\vartheta)}. \end{aligned}$$

³ We conclude that

$$\sup_{0 < t \leq T} \|u(t)\| \leq K_1 \|x\|_{X^\vartheta} + K_2 \|y\|_{X^\vartheta} + K_3 \|f\|_{C_{\alpha_2}^{\alpha_1}((0,T]; X^\vartheta)},$$

⁴ where $K_3 := \max \left\{ \frac{C_0}{2\pi}, C_1 \right\} (T^{\alpha+\alpha_1-\alpha_2} B(\alpha_1 + 1, 1 - \alpha_2) + T^\alpha) (1 + T^{\alpha\gamma(\gamma+1-\vartheta)} + T^{-\alpha(2+2\gamma-\vartheta)})$. \square

⁵ **Proposition 12.** *Let $0 < \vartheta < 1$ and $A \in \Theta_\omega^\gamma(X)$. If $x \in X^{\vartheta+1}$, $y \in X^\vartheta$, then there exist constants ⁶ $K_4, K_5, K_6 > 0$ depending on $\alpha, \gamma, \vartheta$ and T such that*

$$(17) \quad \sup_{0 < t \leq T} \|Au(t)\| \leq K_4 \|x\|_{X^{\vartheta+1}} + K_5 \|y\|_{X^\vartheta} + K_6 \|f\|_{C_{\alpha_2}^{\alpha_1}((0,T]; X^\vartheta)}.$$

Proof. As $x \in X^{\vartheta+1} \subset D(A)$ and $\alpha\gamma(\gamma+1-\vartheta) > 0$ and $-\alpha(2+2\gamma-\vartheta) > 0$, by the second statement of Theorem 8 we have

$$\|AS_{\alpha,1}(t)x\| \leq \frac{C_0}{2\pi} \|Ax\| + C_2 (T^{\alpha\gamma(\gamma+1-\vartheta)} + T^{-\alpha(2+2\gamma-\vartheta)}) \|A^{\vartheta+1}x\|.$$

From hypotheses of the theorem it follows that $2 - \alpha + \alpha\gamma(\gamma+1-\vartheta) - 1 > 0$, and $2 - \alpha - \alpha(2+2\gamma-\vartheta) - 1 > 0$, and along with the first statement of Theorem 8, now with $\beta = 2$, we have

$$\|AS_{\alpha,2}(t)y\| \leq C_2 (T^{2-\alpha+\alpha\gamma(\gamma+1-\vartheta)-1} + T^{2-\alpha-\alpha(2+2\gamma-\vartheta)-1}) \|A^\vartheta y\|.$$

⁷ Again by Theorem 8, now with $\beta = \alpha$, we get

$$\begin{aligned} \left\| \int_0^t AS_{\alpha,\alpha}(t-s)(f(s) - f(t)) \, ds \right\| &\leq \int_0^t \|AS_{\alpha,\alpha}(t-s)\|_{\mathcal{L}(X^\vartheta, X)} \|f(s) - f(t)\|_\vartheta \, ds \\ &\leq C_2 \int_0^t \left((t-s)^{\alpha\gamma(\gamma+1-\vartheta)+\alpha_1-1} + (t-s)^{-\alpha(2+2\gamma-\vartheta)+\alpha_1-1} \right) s^{(1-\alpha_2)-1} \\ &\quad \cdot \frac{s^{\alpha_2} \|f(t) - f(s)\|_\vartheta}{(t-s)^{\alpha_1}} \, ds. \end{aligned}$$

⁸ Notice that

$$\begin{aligned} &\int_0^t \left((t-s)^{\alpha\gamma(\gamma+1-\vartheta)+\alpha_1-1} + (t-s)^{-\alpha(2+2\gamma-\vartheta)+\alpha_1-1} \right) s^{(1-\alpha_2)-1} \, ds \\ &= t^{\alpha\gamma(\gamma+1-\vartheta)+\alpha_1-\alpha_2} B(\alpha\gamma(\gamma+1-\vartheta) + \alpha_1, 1 - \alpha_2) \\ &\quad + t^{-\alpha(2+2\gamma-\vartheta)+\alpha_1-\alpha_2} B(-\alpha(2+2\gamma-\vartheta) + \alpha_1, 1 - \alpha_2), \end{aligned}$$

where $B(\cdot, \cdot)$ stands once again for the Beta function. If we denote

$$C_3 := C_2 \left(T^{\alpha\gamma(\gamma+1-\vartheta)+\alpha_1-\alpha_2} B(\alpha\gamma(\gamma+1-\vartheta)+\alpha_1, 1-\alpha_2) + T^{-\alpha(2+2\gamma-\vartheta)+\alpha_1-\alpha_2} B(-\alpha(2+2\gamma-\vartheta)+\alpha_1, 1-\alpha_2) \right),$$

we obtain

$$\left\| \int_0^t AS_{\alpha,\alpha}(t-s)[f(s) - f(t)] \, ds \right\| \leq C_3 \|f\|_{C_{\alpha_2}^{\alpha_1}((0,T];X^\vartheta)}.$$

Since $f \in C_{\alpha_2}^{\alpha_1}((0,T];X^\vartheta)$ we have that $f(t) \in X^\vartheta$, for $t \in (0,T]$, and as $\alpha\gamma(\gamma+1-\vartheta) > 0$, $-\alpha(2+2\gamma-\vartheta) > 0$ by Theorem 8 we get

$$\begin{aligned} \left\| \int_0^t AS_{\alpha,\alpha}(s)f(t) \, ds \right\| &\leq \int_0^t \|AS_{\alpha,\alpha}(s)\|_{\mathcal{L}(X^\vartheta, X)} \|f(t)\|_\vartheta \, ds \\ &\leq C_2 \int_0^t (s^{\alpha\gamma(\gamma+1-\vartheta)-1} + s^{-\alpha(2+2\gamma-\vartheta)-1}) \, ds \|A^\vartheta f(t)\| \\ &\leq C_4 (T^{\alpha\gamma(\gamma+1-\vartheta)} + T^{-\alpha(2+2\gamma-\vartheta)}) \|f\|_{C_{\alpha_2}^{\alpha_1}((0,T];X^\vartheta)}, \end{aligned}$$

where $C_4 := C_2 \max \left\{ \frac{1}{\alpha\gamma(\gamma+1-\vartheta)}, \frac{1}{-\alpha(2+2\gamma-\vartheta)} \right\}$.

As $\|Ax\| \leq \|A^{1+\vartheta}x\|$, for $x \in X^{\vartheta+1}$, straightforwardly follows that

$$\sup_{0 < t \leq T} \|Au(t)\| \leq K_4 \|A^{1+\vartheta}x\| + K_5 \|A^\vartheta y\| + K_6 \|f\|_{C_{\alpha_2}^{\alpha_1}((0,T];X^\vartheta)},$$

where

$$\begin{aligned} K_4 &:= \frac{C_0}{2\pi} + C_2 (T^{\alpha\gamma(\gamma+1-\vartheta)} + T^{-\alpha(2+2\gamma-\vartheta)}), \\ K_5 &:= C_2 (T^{1-\alpha+\alpha\gamma(\gamma+1-\vartheta)} + T^{1-\alpha-\alpha(2+2\gamma-\vartheta)}), \\ K_6 &:= \max \left\{ C_3, C_4 (T^{\alpha\gamma(\gamma+1-\vartheta)} + T^{-\alpha(2+2\gamma-\vartheta)}) \right\}. \end{aligned}$$

□

Next, we notice that if u is the solution to Problem (4), then

$$\begin{aligned} u(t) - u(s) &= (S_{\alpha,1}(t) - S_{\alpha,1}(s))x + (S_{\alpha,2}(t) - S_{\alpha,2}(s))y + \int_0^t S_{\alpha,\alpha}(t-r)f(r) \, dr - \int_0^s S_{\alpha,\alpha}(t-r)f(r) \, dr \\ &= (S_{\alpha,1}(t) - S_{\alpha,1}(s))x + (S_{\alpha,2}(t) - S_{\alpha,2}(s))y + \int_0^s S_{\alpha,\alpha}(r)(f(t-r) - f(s-r)) \, dr + \\ &\quad \int_s^t S_{\alpha,\alpha}(r)f(t-r) \, dr. \end{aligned}$$

In the following propositions, we estimate the terms involved in $[[u]]_{C_{\alpha_2}^{\alpha_1}((0,T];D(A))}$ according to the expression of $u(t) - u(s)$ above.

Proposition 13. *Let $0 < \vartheta < 1$ and $A \in \Theta_\omega^\gamma(X)$. If $x \in X^\vartheta$, then there exists a constant $K_7 > 0$ depending on $\alpha, \gamma, \vartheta$ and T , such that*

$$(18) \quad \sup_{0 \leq s < t \leq T} \frac{s^{\alpha_2} \|(S_{\alpha,1}(t) - S_{\alpha,1}(s))x\|}{(t-s)^{\alpha_1}} \leq K_7 \|x\|_{X^\vartheta}.$$

¹ *Proof.* Let $x \in X^\vartheta$, and $0 \leq s < t \leq T$. Therefore

$$\begin{aligned} (S_{\alpha,1}(t) - S_{\alpha,1}(s))x &= \frac{1}{2\pi i} \int_{\Gamma_{1/t,\phi}} e^{zt} z^{\alpha-1} (z^\alpha - A)^{-1} x \, dz - \frac{1}{2\pi i} \int_{\Gamma_{1/t,\phi}} e^{zs} z^{\alpha-1} (z^\alpha - A)^{-1} x \, dz \\ &= \frac{1}{2\pi i} \int_{\Gamma_{1/t,\phi}} (e^{zt} - e^{zs}) z^{\alpha-1} (z^\alpha - A)^{-1} x \, dz \\ &= \frac{1}{2\pi i} \int_{\Gamma_{1/t,\phi}} e^{zs} (e^{z(t-s)} - 1) z^{\alpha-1} (z^\alpha - A)^{-1} x \, dz. \end{aligned}$$

On the one hand

$$z^{\alpha-1} (z^\alpha - A)^{-1} x = \frac{1}{z} \left(I + A(z^\alpha - A)^{-1} \right) x = \frac{1}{z} \left(I + A^{1-\vartheta} (z^\alpha - A)^{-1} A^\vartheta \right) x.$$

On the other hand, by holomorphy matters

$$\frac{1}{2\pi i} \int_{\Gamma_{1/t,\phi}} e^{zs} (e^{z(t-s)} - 1) \frac{1}{z} \, dz = 0.$$

² Therefore since $|1 - e^{z(t-s)}| \leq C|z|(t-s)$, for $z \in \Gamma_{1/t,\phi}$, $C := \max_{z \in \Gamma_{1/t,\phi}} \left\{ \frac{|1 - e^{z(t-s)}|}{|z|(t-s)} \right\}$, by Remark 6 we
³ have

$$\begin{aligned} \|(S_{\alpha,1}(t) - S_{\alpha,1}(s))x\| &\leq \frac{C_1(t-s)}{2\pi C_0} \left(\int_{\Gamma_1} |e^{zs}| |z|^{-\alpha\gamma(\gamma+1-\vartheta)} \, dz + \int_{\Gamma_2} |e^{zs}| |z|^{\alpha(2\gamma+2-\vartheta)} \, dz \right) \|A^\vartheta x\| \\ &\leq \frac{CC_1(t-s)}{2\pi} \left(s^{\alpha\gamma(\gamma+1-\vartheta)-1} + s^{-\alpha(2\gamma+2-\vartheta)-1} \right) \|A^\vartheta x\|. \end{aligned}$$

⁴ In view of the above we straightforwardly have

$$\begin{aligned} \frac{s^{\alpha_2} \|(S_{\alpha,1}(t) - S_{\alpha,1}(s))x\|}{(t-s)^{\alpha_1}} &\leq \frac{CC_1}{2\pi} \frac{s^{\alpha_2}}{(t-s)^{\alpha_1-1}} \left(s^{\alpha\gamma(\gamma+1-\vartheta)-1} + s^{-\alpha(2\gamma+2-\vartheta)-1} \right) \|A^\vartheta x\| \\ &\leq \frac{CC_1}{2\pi} \left(T^{\alpha\gamma(\gamma+1-\vartheta)+\alpha_2-\alpha_1} + T^{-\alpha(2\gamma+2-\vartheta)+\alpha_2-\alpha_1} \right) \|A^\vartheta x\|, \\ &\leq K_7 \|x\|_\vartheta, \end{aligned}$$

where

$$K_7 := \frac{CC_1}{2\pi} \left(T^{\alpha\gamma(\gamma+1-\vartheta)+\alpha_2-\alpha_1} + T^{-\alpha(2\gamma+2-\vartheta)+\alpha_2-\alpha_1} \right),$$

⁵ which concludes the proof. \square

⁶ The following proposition straightforwardly follows merely assuming some additional regularity on the
⁷ data. The proof is therefore omitted.

⁸ **Proposition 14.** *Let $0 < \vartheta < 1$ and $A \in \Theta_\omega^\gamma(X)$. If $x \in X^{\vartheta+1}$, then there exists a constant $K_8 > 0$
⁹ depending on $\alpha, \gamma, \vartheta$ and T , such that*

$$(19) \quad \sup_{0 \leq s < t \leq T} \frac{s^{\alpha_2} \|(AS_{\alpha,1}(t) - AS_{\alpha,1}(s))x\|}{(t-s)^{\alpha_1}} \leq K_8 \|x\|_{X^{\vartheta+1}}.$$

¹⁰ **Proposition 15.** *Let $0 < \vartheta < 1$ and $A \in \Theta_\omega^\gamma(X)$. If $x \in X^\vartheta$, then there exists a constant $K_9 > 0$ depending
¹¹ on $\alpha, \gamma, \vartheta$ and T , such that*

$$(20) \quad \sup_{0 \leq s < t \leq T} \frac{s^{\alpha_2} \|(S_{\alpha,2}(t) - S_{\alpha,2}(s))x\|}{(t-s)^{\alpha_1}} \leq K_9 \|x\|_{X^\vartheta}.$$

¹ *Proof.* Let $x \in X^\vartheta$, and $0 < s < t$. Then we have

$$\begin{aligned} (S_{\alpha,2}(t) - S_{\alpha,2}(s))x &= \frac{1}{2\pi i} \int_{\Gamma_{1/t,\phi}} (e^{zt} - e^{zs}) z^{\alpha-2} (z^\alpha - A)^{-1} x dz \\ &= \frac{1}{2\pi i} \int_{\Gamma_{1/t,\phi}} e^{zs} \left(\frac{e^{z(t-s)} - 1}{z} \right) \frac{1}{z} (I + A(z^\alpha - A)^{-1}) x dz \\ &= I_1 + I_2, \end{aligned}$$

² where

$$\begin{aligned} I_1 &:= \frac{1}{2\pi i} \int_{\Gamma_{1/t,\phi}} e^{zs} \left(\frac{e^{z(t-s)} - 1}{z} \right) \frac{1}{z} x dz, \\ I_2 &:= \frac{1}{2\pi i} \int_{\Gamma_{1/t,\phi}} e^{zs} \left(\frac{e^{z(t-s)} - 1}{z} \right) \frac{1}{z} A^{1-\vartheta} (z^\alpha - A)^{-1} A^\vartheta x dz. \end{aligned}$$

³ On the one hand, if C is the bound of $\frac{|1-e^{z(t-s)}|}{|z|(t-s)}$ reached above, then

$$\|I_1\| \leq \frac{CC_0(t-s)}{2\pi} \|x\| \leq \frac{CC_0(t-s)}{2\pi} \|x\|_{X^\vartheta}.$$

⁴ Moreover, by Remark 6, and as $1 + \alpha\gamma(\gamma + 1 - \vartheta) > 0$ and $1 - \alpha(2\gamma + 1 - \vartheta) > 0$ by Lemma 4 we also have

$$\begin{aligned} \|I_2\| &\leq \frac{CC_1(t-s)}{2\pi C_0} \left\{ \int_{\Gamma_1} |e^{zs}| \frac{1}{|z|^{1+\alpha\gamma(\gamma+1-\vartheta)}} |dz| + \int_{\Gamma_2} |e^{zs}| \frac{1}{|z|^{1-\alpha(2\gamma+1-\vartheta)}} |dz| \right\} \|x\|_{X^\vartheta} \\ &\leq \frac{CC_1(t-s)}{2\pi} (s^{\alpha\gamma(\gamma+1-\vartheta)} + s^{1-\alpha(2\gamma+1-\vartheta)}) \|x\|_{X^\vartheta}. \end{aligned}$$

⁵ Therefore, with the same bound for $s^{\alpha_2}(t-s)^{1-\alpha_1}$ as in Proposition 13, there satisfies

$$\begin{aligned} \frac{s^{\alpha_2} \|(S_{\alpha,2}(t) - S_{\alpha,2}(s))x\|}{(t-s)^{\alpha_1}} &\leq \left\{ \frac{CC_0(t-s)}{2\pi} + \frac{CC_1(t-s)}{2\pi} (s^{\alpha\gamma(\gamma+1-\vartheta)} + s^{-\alpha(2\gamma+1-\vartheta)}) \right\} \frac{s^{\alpha_2}}{(t-s)^{\alpha_1}} \|x\|_{X^\vartheta} \\ &\leq K_8 \|x\|_{X^\vartheta}, \end{aligned}$$

where

$$K_9 := \frac{C}{2\pi} \left\{ C_0 T^{1+\alpha_2-\alpha_1} + C_1 (T^{\alpha\gamma(\gamma+1-\vartheta)+1+\alpha_2-\alpha_1} + T^{-\alpha(2\gamma+1-\vartheta)+1+\alpha_2-\alpha_1}) \right\}.$$

⁶

□

⁷ The proof of the next theorem does not differ so much from the previous one, so we present some guidelines
⁸ of it.

⁹ **Proposition 16.** *Let $0 < \vartheta < 1$ and $A \in \Theta_\omega^\gamma(X)$. If $x \in X^{1+\vartheta}$, then there exists a constant $K_{10} > 0$
¹⁰ depending on $\alpha, \gamma, \vartheta$ and T , such that*

$$(21) \quad \sup_{0 \leq s < t \leq T} \frac{s^{\alpha_2} \|(AS_{\alpha,2}(t) - AS_{\alpha,2}(s))x\|}{(t-s)^{\alpha_1}} \leq K_{10} \|x\|_{X^{1+\vartheta}}.$$

¹¹ *Proof.* Similarly to the proof of Proposition 15 we have

$$\begin{aligned} (AS_{\alpha,2}(t) - AS_{\alpha,2}(s))x &= \frac{1}{2\pi i} \int_{\Gamma_{1/t,\phi}} (e^{zt} - e^{zs}) z^{\alpha-2} A(z^\alpha - A)^{-1} x dz \\ &= \frac{1}{2\pi i} \int_{\Gamma_{1/t,\phi}} e^{zs} \left(\frac{e^{z(t-s)} - 1}{z} \right) \frac{1}{z} \{Ax + A^{1-\vartheta} (z^\alpha - A)^{-1} A^{1+\vartheta} x\} dz. \end{aligned}$$

¹ Therefore, by Remark 6 again

$$\begin{aligned}
& \|AS_{\alpha,2}(t) - AS_{\alpha,2}(s)x\| \\
& \leq \frac{C(t-s)}{2\pi} \left(\int_{\Gamma_{1/t,\phi}} \frac{|\mathrm{e}^{zs}|}{|z|} |dz| \|Ax\| \right. \\
& \quad \left. + \frac{C_1}{C_0} \left\{ \int_{\Gamma_1} |\mathrm{e}^{zs}| |z|^{-\alpha\gamma(1+\gamma-\vartheta)-1} dz + \int_{\Gamma_2} |\mathrm{e}^{zs}| |z|^{\alpha(2+2\gamma-\vartheta)-1} dz \right\} \|A^{1+\vartheta}x\| \right) \\
& \leq \frac{C(t-s)}{2\pi} \left(C_0 \|Ax\| + C_1 \left\{ s^{\alpha\gamma(1+\gamma-\vartheta)} + s^{-\alpha(2+2\gamma-\vartheta)} \right\} \|A^{1+\vartheta}x\| \right).
\end{aligned}$$

The proof concludes noticing that $\|Ax\| \leq \|x\|_{1+\vartheta}$, and that

$$\frac{s^{\alpha_2} \|(AS_{\alpha,2}(t) - AS_{\alpha,2}(s))x\|}{(t-s)^{\alpha_1}} \leq K_{12} \|x\|_{X^{1+\vartheta}},$$

where

$$K_{10} := \frac{C}{2\pi} \left\{ C_0 T^{1+\alpha_2-\alpha_1} + C_1 (T^{1+\alpha_2-\alpha_1+\alpha\gamma(1+\gamma-\vartheta)} + T^{1+\alpha_2-\alpha_1-\alpha(2+2\gamma-\vartheta)}) \right\}.$$

²

□

³ **Proposition 17.** *Let $0 < \vartheta < 1$ and $A \in \Theta_{\omega}^{\gamma}(X)$. There exists a constant $K_{11} > 0$ depending on $\alpha, \gamma, \vartheta$ and T , such that*

$$(22) \quad \sup_{0 \leq s < t \leq T} \frac{s^{\alpha_2} \left\| \int_0^s S_{\alpha,\alpha}(r)(f(t-r) - f(s-r)) dr \right\|}{(t-s)^{\alpha_1}} \leq K_{11} \|f\|_{C_{\alpha_2}^{\alpha_1}((0,T];X^{\vartheta})}.$$

Proof. First of all notice the following bounds which are useful in the present proof,

$$\|f(s)\| \leq \|A^{\vartheta}f(s)\| \leq \|f\|_{C_{\alpha_2}^{\alpha_1}((0,T];X^{\vartheta})}, \quad 0 < s \leq T,$$

and,

$$\|f(t) - f(r)\| \leq \|A^{\vartheta}(f(t) - f(s))\| \leq \frac{(t-s)^{\alpha_1}}{s^{\alpha_2}} \|f\|_{C_{\alpha_2}^{\alpha_1}((0,T];X^{\vartheta})}, \quad 0 \leq s < t \leq T.$$

⁵ Secondly applying Remark 7 with $\beta = \alpha$ we have

$$\begin{aligned}
\left\| \int_0^s S_{\alpha,\alpha}(r)(f(t-r) - f(s-r)) dr \right\| & \leq \sup_{0 \leq r \leq s} \{ \|A^{\vartheta}(f(t-r) - f(s-r))\| \} \int_0^s \|S_{\alpha,\alpha}(r)\|_{\mathcal{L}(X^{\vartheta},X)} dr \\
& \leq K_{11} \frac{(t-s)^{\alpha_1}}{s^{\alpha_2}} \|f\|_{C_{\alpha_2}^{\alpha_1}((0,T];X^{\vartheta})},
\end{aligned}$$

where

$$K_{11} := \max \left\{ \frac{C_0}{2\pi}, C_1 \right\} \left(\frac{T^{\alpha}}{\alpha} + \frac{T^{\alpha+\alpha\gamma(1+\gamma-\vartheta)}}{\alpha+\alpha\gamma(1+\gamma-\vartheta)} + \frac{T^{\alpha-\alpha\gamma(2+2\gamma-\vartheta)}}{\alpha-\alpha\gamma(2+2\gamma-\vartheta)} \right).$$

⁶ Last bound straightforwardly leads to the statement of the Proposition and the proof concludes. □

⁷ **Proposition 18.** *Let $0 < \vartheta < 1$ and $A \in \Theta_{\omega}^{\gamma}(X)$. There exists a constant $K_{12} > 0$ depending on $\alpha, \gamma, \vartheta$ and T , such that*

$$(23) \quad \sup_{0 \leq s < t \leq T} \frac{s^{\alpha_2} \left\| \int_s^t S_{\alpha,\alpha}(r)f(t-r) dr \right\|}{(t-s)^{\alpha_1}} \leq K_{12} \|f\|_{C_{\alpha_2}^{\alpha_1}((0,T];X^{\vartheta})}.$$

¹ *Proof.* On the one hand, by Theorem 5 with $\beta = \alpha$ we have, for $0 < s < t \leq T$,

$$\begin{aligned} & \left\| \int_s^t S_{\alpha,\alpha}(r) f(t-r) dr \right\| \\ & \leq (t-s) \sup_{s \leq r \leq t} \{ \|S_{\alpha,\alpha}(r) f(t-r)\| \} \\ & \leq \frac{C_0(t-s)}{2\pi} \sup_{s \leq r \leq t} \{ (t-r)^{\alpha-1} \|f(t-r)\| \} \\ & \quad + (t-s) C_1 \sup_{s \leq r \leq t} \left\{ \left((t-r)^{\alpha+\alpha\gamma(\gamma+1-\vartheta)-1} + (t-r)^{\alpha-\alpha(2+2\gamma-\vartheta)-1} \right) \|A^\vartheta f(t-r)\| \right\} \\ & \leq (t-s) K_{12}^{(1)} \|f\|_{C_{\alpha_2}^{\alpha_1}((0,T];X^\vartheta)}, \end{aligned}$$

where

$$K_{12}^{(1)} := \frac{C_0 T^{\alpha-1}}{2\pi} + C_1 \left(T^{\alpha+\alpha\gamma(\gamma+1-\vartheta)-1} + T^{\alpha-\alpha(2+2\gamma-\vartheta)} \right).$$

Therefore

$$\frac{s^{\alpha_2} \left\| \int_s^t S_{\alpha,\alpha}(r) f(t-r) dr \right\|}{(t-s)^{\alpha_1}} \leq s^{\alpha_2} (t-s)^{1-\alpha_1} K_{12}^{(1)} \|f\|_{C_{\alpha_2}^{\alpha_1}((0,T];X^\vartheta)} \leq K_{12} \|f\|_{C_{\alpha_2}^{\alpha_1}((0,T];X^\vartheta)},$$

where

$$K_{12} := T^{1+\alpha_2-\alpha_1} K_{12}^{(1)},$$

² which concludes the proof \square

³ **Proposition 19.** *Let $0 < \vartheta < 1$ and $A \in \Theta_\omega^\gamma(X)$. If $f \in C_{\alpha_2}^{\alpha_1}((0,T];X^\vartheta)$, then there exists a constant ⁴ $K_{13} > 0$ depending on γ, ϑ and T , such that*

$$(24) \quad \sup_{0 \leq s < t \leq T} \frac{s^{\alpha_2} \left\| \int_s^t AS_{\alpha,\alpha}(r)(f(t-r) - f(s-r)) dr \right\|}{(t-s)^{\alpha_1}} \leq K_{13} \|f\|_{C_{\alpha_2}^{\alpha_1}((0,T];X^\vartheta)}.$$

Proof. Using again the notation $\Gamma_{1/t,\phi} = \Gamma_1 \cup \Gamma_2$ as in Theorem 5 we can write

$$AS_{\alpha,\alpha}(r)(f(t-r) - f(s-r)) = \sum_{j=1,2} \frac{1}{2\pi i} \int_{\Gamma_j} e^{zr} A^{1-\vartheta} (z^\alpha - A)^{-1} A^\vartheta (f(t-r) - f(s-r)) dz.$$

⁵ By hypothesis, Remark 6 and Lemma 4 we get

$$\begin{aligned} \|AS_{\alpha,\alpha}(r)(f(t-r) - f(s-r))\| & \leq \frac{C_1}{2\pi C_0} \int_{\Gamma_1} |e^{zr}| |z|^{-\alpha\gamma(\gamma+1-\vartheta)} \|A^\vartheta(f(t-r) - f(s-r))\| |dz| + \\ & \quad \frac{C_1}{2\pi C_0} \int_{\Gamma_2} |e^{zr}| |z|^{\alpha(2+2\gamma-\vartheta)} \|A^\vartheta(f(t-r) - f(s-r))\| |dz| \\ & \leq \frac{C_1}{2\pi} (r^{\alpha\gamma(\gamma+1-\vartheta)-1} + r^{-\alpha(2+2\gamma-\vartheta)-1}) \|A^\vartheta(f(t-r) - f(s-r))\|. \end{aligned}$$

Now, as

$$\|A^\vartheta(f(t-r) - f(s-r))\| = \frac{\|A^\vartheta(f(t-r) - f(s-r))\| (s-r)^{\alpha_2}}{(t-s)^{\alpha_1}} \frac{(t-s)^{\alpha_1}}{(s-r)^{\alpha_2}} \leq \|f\|_{C_{\alpha_2}^{\alpha_1}((0,T];X^\vartheta)} \frac{(t-s)^{\alpha_1}}{(s-r)^{\alpha_2}},$$

⁶ we have

$$\begin{aligned} & \int_0^s \|AS_{\alpha,\alpha}(r)(f(t-r) - f(s-r))\| dr \\ & \leq \frac{C_1(t-s)^{\alpha_1}}{2\pi} \int_0^s (r^{\alpha\gamma(\gamma+1-\vartheta)-1} + r^{-\alpha(2+2\gamma-\vartheta)-1}) (s-r)^{-\alpha_2} dr \|f\|_{C_{\alpha_2}^{\alpha_1}((0,T];X^\vartheta)}. \end{aligned}$$

¹ Now, by the definition of the Beta function it follows

$$\begin{aligned} & \int_0^s (r^{\alpha\gamma(\gamma+1-\vartheta)-1} + r^{-\alpha(2+2\gamma-\vartheta)-1})(s-r)^{-\alpha_2} dr \\ &= s^{\alpha\gamma(\gamma+1-\vartheta)-1+1-\alpha_2} B(\alpha\gamma(\gamma+1-\vartheta), 1-\alpha_2) + s^{-\alpha(2+2\gamma-\vartheta)-1+1-\alpha_2} B(-\alpha(2+2\gamma-\vartheta), 1-\alpha_2). \end{aligned}$$

² Therefore,

$$\begin{aligned} & \left\| \frac{s^{\alpha_2}}{(t-s)^{\alpha_1}} \int_0^s AS_{\alpha,\alpha}(r)(f(t-r) - f(s-r)) dr \right\| \\ & \leq \frac{C_1}{2\pi} (s^{\alpha\gamma(\gamma+1-\vartheta)} + s^{-\alpha(2+2\gamma-\vartheta)}) \\ & \quad \cdot \max \{B(\alpha\gamma(\gamma+1-\vartheta), 1-\alpha_2), B(-\alpha(2+2\gamma-\vartheta), 1-\alpha_2)\} \|f\|_{C_{\alpha_2}^{\alpha_1}((0,T];X^\vartheta)} \\ & \leq K_{13} \|f\|_{C_{\alpha_2}^{\alpha_1}((0,T];X^\vartheta)}, \end{aligned}$$

where

$$K_{13} := \frac{C_1}{2\pi} (T^{\alpha\gamma(\gamma+1-\vartheta)} + T^{-\alpha(2+2\gamma-\vartheta)}) \max \{B(\alpha\gamma(\gamma+1-\vartheta), 1-\alpha_2), B(-\alpha(2+2\gamma-\vartheta), 1-\alpha_2)\}.$$

³

□

⁴ **Proposition 20.** *Let $0 < \vartheta < 1$ and $A \in \Theta_\omega^\gamma(X)$. If $f \in C_{\alpha_2}^{\alpha_1}((0,T];X^\vartheta)$, then there exists a constant ⁵ $K_{14} > 0$ depending on $\alpha, \gamma, \vartheta$ and T , such that*

$$(25) \quad \sup_{0 \leq s < t \leq T} \frac{s^{\alpha_2} \left\| \int_s^t AS_{\alpha,\alpha}(r)f(t-r) dr \right\|}{(t-s)^{\alpha_1}} \leq K_{14} \|f\|_{C_{\alpha_2}^{\alpha_1}((0,T];X^\vartheta)}.$$

Proof. As in the Proof of Proposition 19 we can write

$$AS_{\alpha,\alpha}(r)f(t-r) = \sum_{j=1,2} \frac{1}{2\pi i} \int_{\Gamma_j} e^{zr} A^{1-\vartheta} (z^\alpha - A)^{-1} A^\vartheta f(t-r) dz$$

⁶ where $\Gamma_{1/t,\phi}$ splits again as in Theorem 5.

⁷ Since $\|A^\vartheta f(t-r)\| \leq \|f\|_{C_{\alpha_2}^{\alpha_1}((0,T];X^\vartheta)}$, we obtain by Remark 6 and Lemma 4 that

$$\begin{aligned} \|AS_{\alpha,\alpha}(r)f(t-r)\| & \leq \frac{C_1}{2\pi C_0} \left(\int_{\Gamma_t^a} |e^{zr}| |z|^{-\alpha\gamma(\gamma+1-\vartheta)} |dz| + \int_{\Gamma_t^b} |e^{zr}| |z|^{\alpha(2+2\gamma-\vartheta)} |dz| \right) \|f\|_{C_{\alpha_2}^{\alpha_1}((0,T];X^\vartheta)} \\ & \leq \frac{C_1}{2\pi} (r^{\alpha\gamma(\gamma+1-\vartheta)-1} + r^{-\alpha(2+2\gamma-\vartheta)-1}) \|f\|_{C_{\alpha_2}^{\alpha_1}((0,T];X^\vartheta)} \\ & \leq \frac{C_1}{2\pi} (T^{\alpha\gamma(\gamma+1-\vartheta)-1} + T^{-\alpha(2+2\gamma-\vartheta)-1}) \|f\|_{C_{\alpha_2}^{\alpha_1}((0,T];X^\vartheta)}. \end{aligned}$$

⁸ Therefore,

$$\begin{aligned} & \frac{s^{\alpha_2} \left\| \int_s^t AS_{\alpha,\alpha}(r)f(t-r) dr \right\|}{(t-s)^{\alpha_1}} \\ & \leq \frac{C_1 s^{\alpha_2} (t-s)^{1-\alpha_1}}{2\pi} (T^{\alpha\gamma(\gamma+1-\vartheta)-1} + T^{-\alpha(2+2\gamma-\vartheta)-1}) \|f\|_{C_{\alpha_2}^{\alpha_1}((0,T];X^\vartheta)} \\ & \leq K_{14} \|f\|_{C_{\alpha_2}^{\alpha_1}((0,T];X^\vartheta)}, \end{aligned}$$

where

$$K_{14} := \frac{C_1}{2\pi} T^{1+\alpha_2-\alpha_1} (T^{\alpha\gamma(\gamma+1-\vartheta)-1} + T^{-\alpha(2+2\gamma-\vartheta)-1}).$$

⁹

□

¹ The next theorem is the main results of this section and gives a Hölder regularity result of the solution u to Problem (4).

Theorem 21. *Let $0 < \vartheta < 1$ and $A \in \Theta_\omega^\gamma(X)$. If $x \in X^{\vartheta+1}$, $y \in X^\vartheta$, and $f \in C_{\alpha_2}^{\alpha_1}((0, T]; X^\vartheta)$, then there exist constants $D_1, D_2, D_3 > 0$ depending on $\alpha, \gamma, \vartheta$, and T such that the solution u to Problem (4) verifies*

$$\|u\|_{C_{\alpha_2}^{\alpha_1}((0, T]; D(A))} \leq D_1 \|x\|_{X^{\vartheta+1}} + D_2 \|y\|_{X^\vartheta} + D_3 \|f\|_{C_{\alpha_2}^{\alpha_1}((0, T]; X^\vartheta)}.$$

Proof. Recall that the solution to Problem (4) writes,

$$u(t) = S_{\alpha,1}(t)x + S_{\alpha,2}(t)y + \int_0^t S_{\alpha,\alpha}(r)f(t-r) \, dr, \quad 0 \leq t \leq T.$$

Now, by definition

$$\|u\|_{C_{\alpha_2}^{\alpha_1}((0, T]; D(A))} = \sup_{0 < t \leq T} \|u(t)\|_{D(A)} + [[u]]_{C_{\alpha_2}^{\alpha_1}((0, T]; D(A))},$$

where

$$\sup_{0 < t \leq T} \|u(t)\|_{D(A)} = \sup_{0 < t \leq T} \|u(t)\| + \sup_{0 < t \leq T} \|Au(t)\|,$$

and

$$[[u]]_{C_{\alpha_2}^{\alpha_1}((0, T]; D(A))} = \sup_{0 \leq s < t \leq T} \frac{s^{\alpha_2} \|u(t) - u(s)\|}{(t-s)^{\alpha_1}} + \sup_{0 \leq s < t \leq T} \frac{s^{\alpha_2} \|Au(t) - Au(s)\|}{(t-s)^{\alpha_1}}.$$

Let $f \in C_{\alpha_2}^{\alpha_1}((0, T]; X^\vartheta)$. By Proposition 11 we have

$$\sup_{0 < t \leq T} \|u(t)\| \leq K_1 \|x\|_{X^{\vartheta+1}} + K_2 \|y\|_{X^\vartheta} + K_3 \|f\|_{C_{\alpha_2}^{\alpha_1}((0, T]; X^\vartheta)},$$

for $x, y \in X^\vartheta$, and by Proposition 12

$$\sup_{0 < t \leq T} \|Au(t)\| \leq K_4 \|x\|_{X^{1+\vartheta}} + K_5 \|y\|_{X^\vartheta} + K_6 \|f\|_{C_{\alpha_2}^{\alpha_1}((0, T]; X^\vartheta)},$$

³ for $x \in X^{\vartheta+1}$, $y \in X^\vartheta$. As $X^{\vartheta+1} \subset X^\vartheta$ and $\|x\|_{X^\vartheta} \leq \|x\|_{X^{\vartheta+1}}$ we obtain

$$(26) \quad \sup_{0 < t \leq T} \|u(t)\|_{D(A)} \leq (K_1 + K_4) \|x\|_{X^{\vartheta+1}} + (K_2 + K_5) \|y\|_{X^\vartheta} + (K_3 + K_6) \|f\|_{C_{\alpha_2}^{\alpha_1}((0, T]; X^\vartheta)}.$$

⁴ On the other hand, as

$$\begin{aligned} u(t) - u(s) &= (S_{\alpha,1}(t) - S_{\alpha,1}(s))x + (S_{\alpha,2}(t) - S_{\alpha,2}(s))y + \int_0^s S_{\alpha,\alpha}(r)(f(t-r) - f(s-r)) \, dr \\ &\quad + \int_s^t S_{\alpha,\alpha}(r)f(t-r) \, dr, \end{aligned}$$

we have, respectively, that

$$\begin{aligned} \sup_{0 \leq s < t \leq T} \frac{s^{\alpha_2} \|(S_{\alpha,1}(t) - S_{\alpha,1}(s))x\|}{(t-s)^{\alpha_1}} &\leq K_7 \|x\|_{X^{\vartheta+1}}, \quad \sup_{0 \leq s < t \leq T} \frac{s^{\alpha_2} \|(S_{\alpha,2}(t) - S_{\alpha,2}(s))y\|}{(t-s)^{\alpha_1}} \leq K_9 \|y\|_{X^\vartheta}, \\ \sup_{0 \leq s < t \leq T} \frac{s^{\alpha_2} \left\| \int_0^s S_{\alpha,\alpha}(r)(f(t-r) - f(s-r)) \, dr \right\|}{(t-s)^{\alpha_1}} &\leq K_{11} \|f\|_{C_{\alpha_2}^{\alpha_1}((0, T]; X^\vartheta)}, \end{aligned}$$

and

$$\sup_{0 \leq s < t \leq T} \frac{s^{\alpha_2} \left\| \int_s^t S_{\alpha,\alpha}(r)f(t-r) \, dr \right\|}{(t-s)^{\alpha_1}} \leq K_{12} \|f\|_{C_{\alpha_2}^{\alpha_1}((0, T]; X^\vartheta)}.$$

⁵ Therefore,

$$(27) \quad \sup_{0 \leq s < t \leq T} \frac{s^{\alpha_2} \|u(t) - u(s)\|}{(t-s)^{\alpha_1}} \leq K_7 \|x\|_{X^{\vartheta+1}} + K_9 \|y\|_{X^\vartheta} + (K_{11} + K_{12}) \|f\|_{C_{\alpha_2}^{\alpha_1}((0, T]; X^\vartheta)}.$$

¹ Since

$$\begin{aligned} A(u(t) - u(s)) &= A(S_{\alpha,1}(t) - S_{\alpha,1}(s))x + A(S_{\alpha,2}(t) - S_{\alpha,2}(s))y + \int_0^s AS_{\alpha,\alpha}(r)(f(t-r) - f(s-r)) \, dr \\ &\quad + \int_s^t AS_{\alpha,\alpha}(r)f(t-r) \, dr, \end{aligned}$$

we respectively have

$$\begin{aligned} \sup_{0 \leq s < t \leq T} \frac{s^{\alpha_2} \|(AS_{\alpha,1}(t) - AS_{\alpha,1}(s))x\|}{(t-s)^{\alpha_1}} &\leq K_8 \|x\|_{X^{\vartheta+1}}, \quad \sup_{0 \leq s < t \leq T} \frac{s^{\alpha_2} \|(AS_{\alpha,2}(t) - AS_{\alpha,2}(s))y\|}{(t-s)^{\alpha_1}} \leq K_{10} \|y\|_{X^\vartheta}, \\ \sup_{0 \leq s < t \leq T} \frac{s^{\alpha_2} \left\| \int_s^t AS_{\alpha,\alpha}(r)(f(t-r) - f(s-r)) \, dr \right\|}{(t-s)^{\alpha_1}} &\leq K_{13} \|f\|_{C_{\alpha_2}^{\alpha_1}((0,T];X^\vartheta)}, \end{aligned}$$

and

$$\sup_{0 \leq s < t \leq T} \frac{s^{\alpha_2} \left\| \int_s^t AS_{\alpha,\alpha}(r)f(t-r) \, dr \right\|}{(t-s)^{\alpha_1}} \leq K_{14} \|f\|_{C_{\alpha_2}^{\alpha_1}((0,T];X^\vartheta)}.$$

² This implies that

$$(28) \quad \sup_{0 \leq s < t \leq T} \frac{s^{\alpha_2} \|Au(t) - Au(s)\|}{(t-s)^{\alpha_1}} \leq K_8 \|x\|_{X^{\vartheta+1}} + K_{10} \|y\|_{X^\vartheta} + (K_{13} + K_{14}) \|f\|_{C_{\alpha_2}^{\alpha_1}((0,T];X^\vartheta)}.$$

³ From the estimates (26), (27) and (28) we conclude that

$$\begin{aligned} \|u\|_{C_{\alpha_2}^{\alpha_1}((0,T];D(A))} &\leq (K_1 + K_4 + K_7 + K_8) \|x\|_{X^{\vartheta+1}} + (K_2 + K_5 + K_9 + K_{10}) \|y\|_{X^\vartheta} \\ &\quad + (K_3 + K_6 + K_{11} + K_{12} + K_{13} + K_{14}) \|f\|_{C_{\alpha_2}^{\alpha_1}((0,T],X^\vartheta)}. \end{aligned}$$

⁴ If one takes $D_1 := (K_1 + K_4 + K_7 + K_8)$, $D_2 := (K_2 + K_5 + K_9 + K_{10})$, and $D_3 := (K_3 + K_6 + K_{11} + K_{12} + K_{13} + K_{14})$, then the proof finishes. \square

5. COMPACTNESS OF THE RESOLVENT FAMILY

⁷ In the present section we afford the compactness of the resolvent family $\{S_{\alpha,\beta}(t)\}_{t \geq 0}$, for $\alpha, \beta > 0$, defined in Section 1. For technical reasons we study separately both cases, $1 < \beta \leq 2$, and $\beta = 1$.

⁹ **Theorem 22.** *Let $0 < \vartheta < 1$, $A \in \Theta_\omega^\gamma(X)$, and γ, θ , so that $-1 < \gamma < 0$, $0 < \vartheta < 1$, and $2 + 2\gamma < \vartheta$. If $1 < \beta \leq 2$ then the following assertions are equivalent*

- ¹¹ i) $S_{\alpha,\beta}(t)$ is a compact operator in $\mathcal{L}(X^\vartheta, X)$, for $t > 0$.
- ¹² ii) $(z - A)^{-1}$ is a compact operator, for $z \in \mathbb{C}$, $\operatorname{Re} z > \omega^{1/\alpha}$.

¹³ *Proof.* (i) \Rightarrow (ii) Suppose that $t \mapsto S_{\alpha,\beta}(t)$ is compact in $\mathcal{L}(X^\vartheta, X)$, for $t > 0$, and $1 < \beta \leq 2$. For any $z \in \mathbb{C}$, $\operatorname{Re} z > \omega^{1/\alpha}$, we have

$$z^{\alpha-\beta}(z^\alpha - A)^{-1} = \int_0^{+\infty} e^{-zt} S_{\alpha,\beta}(t) \, dt.$$

¹⁵ By Theorem 10, the integral in the right-hand side exists in the sense of Bochner because $t \mapsto S_{\alpha,\beta}(t)$ is continuous in $\mathcal{L}(X^\vartheta, X)$. By [28, Corollary 2.3] we have that $(z^\alpha - A)^{-1}$ is a compact operator.

¹⁶ (ii) \Rightarrow (i) Let $t > 0$. For $1 < \beta < 2$, recall we may write

$$S_{\alpha,\beta}(t) = (g_{\beta-1} * S_{\alpha,1})(t), \quad t > 0,$$

¹⁸ in $\mathcal{L}(X^\vartheta, X)$. Therefore,

$$\frac{1}{2\pi i} \int_{\Gamma} e^{zt} z^{\alpha-\beta} (z^\alpha - A)^{-1} \, dz = S_{\alpha,\beta}(t), \quad t > 0,$$

1 where $\Gamma = \{\omega + is : s \in \mathbb{R}\}$ is noting but a complex path with increasing imaginary part, and by [28, 2 Corollary 2.3] $S_{\alpha,\beta}(t)$ is compact in $\mathcal{L}(X^\vartheta, X)$.

3 Now, we take $\beta = 2$. In $\mathcal{L}(X^\vartheta, X)$ we have again

$$S_{\alpha,2}(t) = (g_1 * S_{\alpha,1})(t), \quad t > 0,$$

4 and by [14, Proposition 2.1], we conclude that $S_{\alpha,2}(t)$, $t > 0$, is compact as well. \square

5 **Theorem 23.** Let $0 < \vartheta < 1$, $A \in \Theta_\omega^\gamma(X)$, and γ, ϑ so that $-1 < \gamma < 0$, $0 < \vartheta < 1$, $2 + 2\gamma - \vartheta < 0$, and 6 $\alpha\gamma(\gamma + 1 - \vartheta) - 1 > 0$. Therefore the following assertions are equivalent

7 i) $S_{\alpha,1}(t)$ is a compact operator in $\mathcal{L}(X^\vartheta, X)$, for $t > 0$.
8 ii) $(z - A)^{-1}$ is a compact operator, for $z \in \mathbb{C}$, $\operatorname{Re} z > \omega^{1/\alpha}$.

9 *Proof.* (i) \Rightarrow (ii) Suppose that $t \mapsto S_{\alpha,1}(t)$ is compact in $\mathcal{L}(X^\vartheta, X)$, for $t > 0$. For $\operatorname{Re} z > \omega^{1/\alpha}$ we have

$$z^{\alpha-1}(z^\alpha - A)^{-1} = \int_0^{+\infty} e^{-zt} S_{\alpha,1}(t) dt.$$

10 Since by Theorem 10, the map $t \mapsto S_{\alpha,1}(t)$ is continuous in $\mathcal{L}(X^\vartheta, X)$, the integral in the right-hand side 11 is well defined in the sense of Bochner, and by [28, Corollary 2.3] we have that $(z^\alpha - A)^{-1}$ is a compact 12 operator.

13 (ii) \Rightarrow (i) Conversely, let $0 < s < t$, and $x \in X^\vartheta$. Therefore

$$\begin{aligned} (S_{\alpha,1}(t) - S_{\alpha,1}(s))x &= \frac{1}{2\pi i} \int_{\Gamma_{1/t,\phi}} \frac{e^{zt} - e^{sz}}{z} z^\alpha (z^\alpha - A)^{-1} x dz \\ &= \frac{1}{2\pi i} \int_{\Gamma_{1/t,\phi}} e^{sz} \frac{e^{z(t-s)} - 1}{z} (I + A(z^\alpha - A)^{-1}) x dz \\ &= \frac{1}{2\pi i} \int_{\Gamma_{1/t,\phi}} e^{sz} \frac{e^{z(t-s)} - 1}{z} x dz + \frac{1}{2\pi i} \int_{\Gamma_{1/t,\phi}} e^{sz} \frac{e^{z(t-s)} - 1}{z} A^{1-\vartheta} (z^\alpha - A)^{-1} A^\vartheta x dz. \end{aligned}$$

As the first integral in the last equality turns out to be zero since the singularity in there stands for a removable singularity, we have that

$$(S_{\alpha,1}(t) - S_{\alpha,1}(s))x = \frac{1}{2\pi i} \int_{\Gamma_{1/t,\phi}} e^{sz} \frac{e^{z(t-s)} - 1}{z} A^{1-\vartheta} (z^\alpha - A)^{-1} A^\vartheta x dz.$$

14 On the other hand, as we have noticed before, there exists $C > 0$ (precisely detailed above) such that 15 $|e^{z(t-s)} - 1|/|z|(t-s) \leq C$, for $z \in \Gamma_{1/t,\phi}$. Therefore, by Lemma 4, and Remarks 6, according to the 16 notation $\Gamma_{1/t,\phi} = \Gamma_1 \cup \Gamma_2$ in Theorem 5, we have

$$\begin{aligned} &\|(S_{\alpha,1}(t) - S_{\alpha,1}(s))x\| \\ &\leq \frac{C(t-s)}{2\pi} \int_{\Gamma_{1/t,\phi}} |e^{sz}| \|A^{1-\vartheta} (z^\alpha - A)^{-1} A^\vartheta x\| dz \\ &\leq \frac{C_1 C(t-s)}{2\pi C_0} \left\{ \int_{\Gamma_1} |e^{sz}| |z|^{-\alpha\gamma(1+\gamma-\vartheta)} dz + \int_{\Gamma_2} |e^{sz}| |z|^{\alpha(2+2\gamma-\vartheta)} dz \right\} \|A^\vartheta x\| \\ &\leq \frac{C_1 C(t-s)}{2\pi} \left\{ s^{1+\alpha\gamma(1+\gamma-\vartheta)} + s^{1-\alpha(2+2\gamma-\vartheta)} \right\} \|A^\vartheta x\| \\ &\leq \frac{C_1 C(t-s)}{2\pi} \left\{ T^{1+\alpha\gamma(1+\gamma-\vartheta)} + T^{1-\alpha(2+2\gamma-\vartheta)} \right\} \|A^\vartheta x\| \end{aligned}$$

17 Thus, if t tends to s , then the last inequality implies that $\|(S_{\alpha,1}(t) - S_{\alpha,1}(s))x\| \rightarrow 0$. That is, $S_{\alpha,1}(t)$ 18 is continuous in $\mathcal{L}(X^\vartheta, X)$, and by [28, Corollary 2.3] we conclude that $S_{\alpha,1}(t)$ is compact in $\mathcal{L}(X^\vartheta, X)$, for 19 $t > 0$. \square

2 Conflict of interest. This work does not have any conflicts of interest.

3 REFERENCES

[1] L. Abadías, C. Lizama, P. J. Miana, and M. P. Velasco, *On well-posedness of vector-valued fractional differential-difference equations*, Discrete Contin. Dyn. Syst. **39** (2019), no. 5, 2679–2708.

[2] L. Abadías and P. J. Miana, *A subordination principle on Wright functions and regularized resolvent families*, J. of Function Spaces (2015), Article ID 158145, 9 pages.

[3] D. Araya and C. Lizama, *Almost automorphic mild solutions to fractional differential equations*, Nonlinear Anal. **69** (2008), 3692–3705.

[4] W. Arendt, C. Batty, M. Hieber, and F. Neubrander, *Vector-Valued Laplace Transforms and Cauchy Problems*, Monogr. Math., Birkhäuser, Basel, 2011.

[5] E. Bazhlekova, *Fractional Evolution Equations in Banach Spaces. Ph.D. Thesis*, Eindhoven University of Technology, 2001.

[6] C. Chen and M. Li, *On fractional resolvent operator functions*, Semigroup Forum **80** (2010), 121–142.

[7] E. Cuesta, *Asymptotic behaviour of the solutions of fractional integro-differential equations and some time discretizations*, Discrete Contin. Dyn. Syst. **Supplement Volume** (2007), 277–285.

[8] E. Cuesta, Ch. Lubich, and C. Palencia, *Convolution quadrature time discretization of fractional diffusion equations*, Math. Comput. **75** (2006), no. 254, 673–696.

[9] E. Cuesta and C. Palencia, *A numerical method for an integro-differential equation with memory in Banach spaces: Qualitative properties*, SIAM J. Numer. Anal. **41** (2003), no. 4, 1232–1241.

[10] E. Cuesta and R. Ponce, *Hölder regularity for abstract semi-linear fractional differential equations in Banach spaces*, Comp. Math. Appl. **85** (2021), 57–68.

[11] P. de Carvalho-Neto and G. Planas, *Mild solutions to the time fractional Navier-Stokes equations in \mathbb{R}^n* , J. Diff. Equations **259** (2015), 2948–2980.

[12] S. Eidelman and A. Kochubei, *Cauchy problem for fractional diffusion equations*, J. Diff. Equations **199** (2004), 211–255.

[13] Z. Fan, *Characterization of compactness for resolvents and its applications*, Semigroup Forum (2014), no. 232, 60–67.

[14] M. Haase, *The complex inversion formula revisited*, J. Aust. Math. Soc. **84** (2008), 73–83.

[15] H. Henríquez, J. Mesquita, and J. C. Pozo, *Existence of solutions of the abstract Cauchy problem of fractional order*, J. Funct. Anal. **281** (2021), no. 4, Paper No. 109028, 39.

[16] H. Henríquez, V. Poblete, and J. C. Pozo, *Existence of solutions for the semilinear abstract Cauchy problem of fractional order*, Fract. Calc. Appl. Anal. **24** (2021), no. 5, 1409–1444.

[17] K. Li, J. Peng, and J. Jia, *Cauchy problems for fractional differential equations with Riemann-Liouville fractional derivatives*, J. Funct. Analysis **263** (2012), 476–510.

[18] M. Li, C. Chen, and F. Li, *On fractional powers of generators of fractional resolvent families*, J. Funct. Analysis **259** (2010), 2702–2726.

[19] Y. Li and Y. Wang, *The existence and asymptotic behavior of solutions to fractional stochastic evolution equations with infinite delay*, J. Diff. Equations **266** (2019), 3514–3558.

[20] Z. Liu and X. Li, *Approximate controllability of fractional evolution systems with Riemann-Liouville fractional derivatives*, SIAM J. Control Optim. **53** (2015), 1920–1933.

[21] C. Lizama, *Handbook of Fractional Calculus with Applications*, vol. 2: Fractional Differential Equations, ch. Abstract Linear Fractional Evolution Equations, pp. 465–498, Ed. by A. Kochubei and Y. Luchko, De Gruyter, Berlin, 2019.

[22] C. Lizama, A. Pereira, and R. Ponce, *On the compactness of fractional resolvent families*, Semigroup Forum (2016), no. 93, 363–374.

[23] A. Lunardi, *Analytic Semigroups and Optimal Regularity in Parabolic Problems*, Birkhäuser, Basel, 1995.

[24] A. Ouahab, *Fractional semilinear differential inclusions*, Comput. Math. Appl. **64** (2012), no. 10, 3235–3252.

[25] F. Periago and B. Straub, *A functional calculus for almost sectorial operators and applications to abstract evolution equations*, J. Evol. Equations **2** (2002), 41–68.

[26] R. Ponce, *Hölder continuous solutions for fractional differential equations and maximal regularity*, J. Diff. Equations **255** (2013), no. 10, 3284–3304.

[27] R. Wang, D. Chen, and T. Xiao, *Abstract fractional Cauchy problems with almost sectorial operators*, J. Diff. Equations **252** (2012), 202–235.

[28] L. Weis, *A generalization of the Vidav-Jörgens perturbation theorem for semigroups and its application to transport theory*, J. Math. Anal. Appl. **129** (1988), 6–23.

[29] A. Yagi, *Abstract Parabolic Evolution Equations and their Applications*, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2010.

[30] L. Zhang and Y. Zhou, *Fractional Cauchy problems with almost sectorial operators*, Appl. Math. Comput. **257** (2015), 145–157.

[31] J.Q. Zhao, Y.K. Chang, and G.M. N'Guérékata, *Asymptotic behavior of mild solutions to semilinear fractional differential equations*, J. Optim. Theory Appl. **56** (2013), 104–114.

2 UNIVERSITY OF VALLADOLID, E.T.S.I. OF TELECOMMUNICATION, CAMPUS MIGUEL DELIBES, DEPARTMENT OF APPLIED MATH-
3 EMATICS, VALLADOLID-SPAIN. TEL.: +34 983423000, FAX: +34 983423661

4 *Email address:* eduardo.cuesta@mat.uva.es

5 UNIVERSIDAD DE TALCA, INSTITUTO DE MATEMÁTICAS, CASILLA 747, TALCA-CHILE.

336 *Email address:* rponce@inst-mat.ugal.cl, rponce@ugal.cl