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Abstract

We introduce a general theory for a consensus-based combination of estimations of probability
measures. Potential applications include parallelized or distributed sampling schemes as well as vari-
ations on aggregation from resampling techniques like boosting or bagging. Taking into account the
possibility of very discrepant estimations, instead of a full consensus we consider a “wide consensus”
procedure. The approach is based on the consideration of trimmed barycenters in the Wasserstein
space of probability measures. We provide general existence and consistency results as well as suit-
able properties of these robustified Fréchet means. In order to get quick applicability, we also include
characterizations of barycenters of probabilities that belong to (non necessarily elliptical) location
and scatter families. For these families we provide an iterative algorithm for the effective computa-
tion of trimmed barycenters, based on a consistent algorithm for computing barycenters, guarantying
applicability in a wide setting of statistical problems.
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1 Introduction.

Data that consists of samples composed by probability distributions are increasingly com-
mon. Examples include the distribution of a set of medical measurements in hospitals
in a multicenter clinical trial or that of several economic magnitudes (income and age
distribution, for instance) in different countries. Often these distributions are not directly
observed, but some estimation is available. This paper introduces a new approach for
the combination of several estimations of probabilities. Our goal is to provide a tool to
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combine available estimations to get a consensus-based global estimation. We recall that
this goal has been largely pursued under different frameworks. Merging information, pool-
ing estimation, aggregation estimation or meta-analysis, are expressions related with this
common goal. The potential applications that we have in mind also include parallelized or
distributed estimation schemes as well as those provided by resampling methods designed
to improve unstable procedures or to provide approximate solutions through algorithms
involving combinatorial complexity problems.

At present, statistical methodologies under a parallelized or distributed scheme are
receiving growing interest. In fact, they constitute a basic statistical challenge in a world
where we want to exploit massive data sets that could have been collected by different
units or that exceed the size that would make their analysis on a single machine feasible.
The need for aggregation methods becomes clear in the following two cases. One, when the
different sets of data would be obtained, stored and even processed by the different units,
perhaps using different experimental techniques. Another, associated to the “divide and
conquer” principle, would include the combination of results obtained from the partition
of the data set in smaller, tractable subsets. Note that the partition of the data, in this
second category, is often performed based on computational convenience criterions, say by
their storage location, or oldness in the data basis, hence essentially both categories share
the same handicap: the hypothesis of homogeneity of the distributions corresponding to
the different units seems to be excessively optimistic in practice.

Regarding the already mentioned resampling methods, since the introduction of bag-
ging by Breiman [10], subagging, and other aggregating procedures have been introduced
in the last years to improve the performance of estimators in different setups, including
regression or classification (see e.g. Bühlmann and Yu [14], Bühlmann [13] and Bühlmann
and Meinshausen [15]). The aggregation is usually achieved just by averaging, but there
are also other proposals like bragging (in [13])) or magging (in [15]), which aim at robust
aggregation. In a different problem, the available algorithms for the obtention of some
well known estimators (like the Minimum Volume Ellipsoid (MVE), Minimum Covariance
Determinant (MCD) and several others) involve the use of a iterative procedure starting
from many initial random choices, either for statistical or computational convenience, that
result in a set of different estimations that must be combined to produce a better (or just
computable) estimation (see e.g. Woodruff and Rocke [43], Croux and Haesbroeck [18],
or Rousseeuw and Driessen [38]). Depending on the intrinsic geometry of the estimated
objects, the aggregation procedure may have to be based on some sort of non standard
averaging technique.

Aggregation of a set of estimations of probabilities to provide a final estimation – the
consensus – is analyzed in this paper under a novel point of view. We can get motivation
for our goal from the following hypothetical situation. Consider a biomedical study to
be carried out and processed by a network of hospitals. Each hospital will provide an
estimation of the distribution of interest and the goal is to obtain a meta-estimation
summarizing the estimations. This combination of information is sensitive to two different
possible types of atypic or noisy data. First, the sample obtained in any hospital could
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have some contaminating data. Second, one or several hospitals could produce very
atypical results when compared to the others simply because the patients in the influence
zone of the hospital have very different (social, cultural, ethnic, nutritional) features. To
handle this general setting we will assume that there exist k units, say U1, . . . , Uk, and that
unit Ui will process a sample xi1, ..., x

i
ni

of Rd−valued data obtained from a distribution
Pi. As the results of processing their associated samples, the units produce a new sample
consisting in the estimations P̂1, . . . , P̂k, perhaps given through the estimations of suitable
parameters. Our goal will be to produce a consensus estimator from those obtained by
the different units. However, since some units could process very contaminated batches,
whose consideration would lead to large deviations from the mainstream model (if any),
we will include the possibility of obtaining a wide consensus instead of a full consensus.
In our scheme the meaning of wide consensus must be understood as the possibility of
avoiding the results of the most discrepant units, elaborating the consensus just from the
remaining units.

We emphasize that our approach assigns a different status to the samples processed
by the units (composed by points in Rd) and to the meta-sample, of size k (composed
by probability distributions on Rd), provided by the units. The primitive samples have
the usual meaning in Statistics and will be processed through more or less standard
procedures, a task that will not be considered here, our object of interest being the
sample of probability distributions. To work with this sample we will make a careful
use of the structure of these objects. To illustrate this point, let us consider a simple
example involving estimation in a normal model. Our proposal aims at producing a normal
distribution which is an optimal representation of k normal distributions, P̂1, . . . , P̂k in
some sense. Note that a (weighted) average of probabilities is a probability, but the
mixture of normal distributions that we could produce in this way is not normal and
could be very far, in terms of shape, from the k normal distributions that we are trying
to summarize, hence making a different aggregation procedure to be more convenient.

Our choice for the basic aggregation procedure is the Wasserstein barycenter, that we
briefly describe next. We will work in the space P2(Rd) of probability measures on Rd

with finite second order moment, endowed with the L2-Wasserstein distance,W2, defined
for P,Q ∈ P2(Rd) by

W2(P,Q) := inf
{(

E‖U − V ‖2
)1/2

: L(U) = P, L(V ) = Q
}
, (1)

where we use L(X) to denote the distribution law of a r.v. X. Given a finite set of

elements, P1, . . . , Pk ∈ P2(Rd) and positive weights λ1, . . . , λk, with
∑k

i=1 λi = 1, we
would like to obtain a representative element for the whole set. Like the mean of a set of
vectors, a barycenter or Fréchet mean in this space can be a good candidate and would
be any probability, P̄ ∈ P2(Rd) satisfying

k∑
i=1

λiW2
2 (P̄ , Pi) = inf

{
k∑
i=1

λiW2
2 (P, Pi) : P ∈ P2(Rd)

}
. (2)
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Such a probability, when it exists, is called a ({λi}ki=1−weighted) barycenter of {Pi}ki=1.
The consideration of barycenters in the Wasserstein setting has been initiated by Agueh
and Carlier in [1], with several extensions in Boissard et al [9], Pass [34], Bigot and Klein
[8] and in Le Gouic and Loubes [32], where the concept has been extended to arbitrary
(non-necessarily finite) families of probabilities (see Definition 2.2 below).

A full consensus representation of P1, . . . , Pk would be the barycenter associated to
equal weights λi = 1/k, i = 1, . . . , k. Different weights would be more appropriate if, for
example, some of the Pi’s have been obtained from (or represents) a considerably larger
population than some others. On the other hand, the possible existence in P1, . . . , Pk of
very discrepant representations, (possibly due to highly contaminated batches as before),
would justify a trimming or reweighting action. Rather than using the ({λi}ki=1−weighted)
barycenter of {Pi}ki=1, with the original weights, the wide consensus representation of
P1, . . . , Pk with weights {λi}ki=1 or α-trimmed barycenter, P̄α, is a solution, for suitable
weights (λ̄αi )ki=1, of the following double minimization problem

k∑
i=1

λ̄αiW2
2 (P̄α, Pi) = inf

{ k∑
i=1

λ∗iW2
2 (P, Pi) : P ∈ P2(Rd), λ∗i ≤ λi,

k∑
i=1

λ∗i = 1−α
}
. (3)

Trimming procedures are of frequent use in Robust Statistics to prevent the influence
of atypical data in statistical analyses. In fact, a trimmed version of the Wasserstein
distance for probabilities on the line was introduced, in the context of Goodness of Fit
tests, by Munk and Czado [33] to avoid the effects of data in the tails. This approach was

extended in some papers (see Álvarez-Esteban et al [3] and references therein) to cover
trimmings like that considered in (3) that are “impartial”. This means that there are not
a priori selected directions or zones for trimming, being the complete data set which will
provide that information. Although often trimming is used with the meaning of deleting
a part of the data, here we follow a more flexible approach as in Gordaliza [30], based on
probability trimmings (see Definition 3.1 below) which allows to decrease the weight of
some regions without completely removing them. We include in subsection 5.2 a succinct
account of basic results on probability trimmings and refer to Álvarez-Esteban et al [2]
for further details.

In this paper we introduce the concept of trimmed barycenter for probabilities µ on
the Wasserstein space of probabilities on Rd with finite second moment endowed with the
metric W2, extending that of trimmed mean introduced in Rousseeuw [37] and Gordaliza
[30]. Notice that no moment assumption is made on µ. Our setup covers the case of general
Borel probability measures on P2(Rd) (of which (3) corresponds to the particular case of
finitely supported measures, see Definitions 2.2 and 3.1 below). We provide existence and
consistency results for trimmed barycenters. In particular we prove a Strong Law of Large
Numbers (Theorem 3.6) for trimmed barycenters in this space, to be denoted throughout
by W2(P2(Rd)) (see (7) below).

As noted before, a desirable feature of any aggregation method is adaptation to the
shape of the objects to be aggregated. Remarkably, this is the case for barycenters and
trimmed barycenters in location and scatter families such as the Gaussian family. In par-

4



ticular, we show that the barycenter or trimmed barycenter of a probability on P2(Rd)
supported in a (non-necessarily finite) set of probabilities belonging to a location scatter
family also belongs to the family. We also provide a characterization of barycenters in lo-
cation and scatter families in terms of a fixed point equation as well as some equivariance
results for general barycenters and trimmed barycenters. Notice that suitability of the lo-
cation and scatter families in the Wasserstein space has been considered by Chernozhukov
et al. in [17] in relation with Monge-Kantorovich quantiles. Also, Rippl et al. [35] take
advantage of the explicit expression of the Wasserstein distance between Gaussian distri-
butions. In a similar spirit to that considered here, they substitute sampling distributions
obtained from Gaussian distributions by Gaussian distributions with estimated param-
eters, and address the problem of the asymptotic behavior of the Wasserstein distance
between empirical and theoretical distributions. Their analysis includes the two-sample
setting, for independent samples, through the distance between normal distributions when
the parameters are estimated from the respective samples.

Turning back to the statistical motivation of this work, we note that the applicability
of barycenters or trimmed barycenters for data analysis will strongly depend on the avail-
ability of efficient algorithms for their computation. In this sense, we stress the fact that,
in the multivariate setting, even the computation of the barycenter of a finite collection of
normal distributions can be a hard task since no closed form expression for the barycenter
is available. On the other hand, convexity of the map η 7→ W2

2 (η, ν) implies that Wasser-
stein barycenters are minimizers of a convex functional. This fact is at the basis of a fast
algorithm just introduced in [4] for the approximate computation of barycenters, includ-
ing the case of location and scatter families. Here we show how this can be used for the
efficient computation of trimmed barycenters in these location and scatter families. Also
we must stress that our approach constitutes a technical keystone for the introduction of
robust clustering in the Wasserstein space, opening new applications in that wide setting
(see del Barrio et al. [5]).

The remaining sections of this paper are organized as follows. In Section 2 we give a
quick account of notable results on Wasserstein distance and Wasserstein spaces including
the main known results on barycenters. Section 3 introduces trimmed barycenters and
provides the main results announced before. They include existence, consistency, equiv-
ariance, and characterizations in location-scatter families as well as relevant properties
involving shapes and sizes. Section 4 discusses computational issues for barycenters and
trimmed barycenters and presents an algorithm for the computation of trimmed barycen-
ters in location and scatter families. It also includes some toy examples and an application
to aggregation of MCD’s solutions obtained by subsampling on a real data set. The anal-
ysis of this example includes hints on the possible selection of the trimming as well as
information on the running times of the algorithms. Most of the technical details and
proofs are deferred to Section 5.

We conclude this Introduction with some explanations on notation. Unless explicitly
noted, probability measures are defined on the Borel σ-algebra of the (metric) space. The
indicator function of a set, A, will be represented by IA, while δ{x} will denote Dirac’s
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measure on x. We write `d for Lebesgue measure on Rd and µ � ν to mean that µ
is absolutely continuous with respect to ν. Weak convergence of probability measures
will be denoted by →w. We assume that weights, λ1, . . . , λk, are positive numbers, λi >
0, i = 1, . . . , k such that

∑k
i=1 λi = 1. We will denote by P2,ac(Rd) the subset of absolutely

continuous probabilities (with respect to `d) in P2(Rd). Given P ∈ P2(Rd) and r > 0,
BW(P, r) (resp. BW(P, r)) will be the open (resp. closed) ball with center at P and radius
r for the distance W2, while B(x, r), where x ∈ Rd, will refer to the open ball with center
at x and radius r for the Euclidean distance on Rd. Finally, we will say that the map T
transports (pushes forward) the probability P to Q if Q is the image measure of P by T ,
namely, if Q = P ◦ T−1.

2 Barycenters in Wasserstein space

As noted in the Introduction, our proposal for wide consensus aggregation is based on
Wasserstein metrics and barycenters in Wasserstein space. We refer to the books of Villani
[41], [42] for a complete and well documented view of the general theory on Wasserstein
spaces and optimal transport and to the papers by Agueh and Carlier [1] and Le Gouic and
Loubes [32] for barycenters. Here we include a brief introduction, continued in Subsection
5.1, with some relevant facts and necessary results for our presentation.

It is well known that the infimum in (1) is attained, i.e., there exists a pair (X, Y ),
defined on some probability space, with L(X) = P and L(Y ) = Q such that E‖X−Y ‖2 =
W2

2 (P,Q). Such a pair (X, Y ) is called a W2-optimal transportation plan (W2-o.t.p.) for
(P,Q), although the alternative terminology L2-optimal coupling for (P,Q) is often used.

For probabilities on the real line, it is well known that the quantile functions associated
to P and Q, denote them by F−1

P and F−1
Q , are a W2-o.t.p.,

W2(P,Q) =
(∫ 1

0

(
F−1
P (t)− F−1

Q (t)
)2
dt
)1/2

, (4)

but for multivariate distributions there is no equivalent explicit expression to compute
W2(P,Q). A useful fact, that allows to focus on the case of centered probabilities is
that if mP ,mQ are the means of P and Q, and P ∗, Q∗ are the corresponding centered
probabilities, then

W2
2 (P,Q) = ‖mP −mQ‖2 +W2

2 (P ∗, Q∗).

In the late 1980s and early 1990s, a series of papers by Brenier [11, 12], Cuesta-Albertos
and Matrán [20] and Rüschendorf and Rachev [39] put the basis for the analysis of optimal
transporting: under continuity assumptions on the probability P , the L2-o.t.p. (X, Y ) for
(P,Q) can be represented as (X,T (X)) for some suitable map T . Moreover, this optimal
transport map for (P,Q) coincides with the (essentially unique) cyclically monotone map
transporting P to Q.

A very interesting consequence of the characterization of optimal transportation maps
is that, independently of the initial distribution, some maps have the optimal transport
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property between any initial probability P and its transported probability. In particular,
if A is a positive definite matrix (here and through the paper we assume that positive
definiteness includes symmetry), then (X,AX) is a W2-o.t.p. independently of the law
L(X). This fact allows to characterize the optimal transport maps between nonsingular
normal distributions and yields some additional facts that we quote in the next result,
a version of Theorem 2.1 in Cuesta-Albertos et al. [23], which, in turn, improves the
original statement by Gelbrich [29].

Theorem 2.1. Let P and Q be probabilities in P2(Rd) with means mP ,mQ and covariance
matrices ΣP ,ΣQ. If ΣP is assumed nonsingular, then

W2
2 (P,Q) ≥ ‖mP −mQ‖2 + trace

(
ΣP + ΣQ − 2

(
Σ

1/2
P ΣQΣ

1/2
P

)1/2
)

= W2
2 (N(mP ,ΣP ), N(mQ,ΣQ)). (5)

Moreover the equality holds if and only if the map T (x) = (mQ −mP ) +Ax transports P
to Q (in particular if P and Q are gaussian), where A, semidefinite positive, is defined by

A := Σ
−1/2
P

(
Σ

1/2
P ΣQΣ

1/2
P

)1/2

Σ
−1/2
P , (6)

The set P2(Rd) equipped with the W2-distance is a Polish space (separable and com-
plete metric space) that is often called a Wasserstein space and denoted as W2(Rd). We
can also consider (through a definition of the distance similar to that in (1)) a Wasserstein-
type space over other spaces, notably over P2(Rd) leading to W2(P2(Rd)). This space con-
sists of the probability measures, µ, on P2(Rd) (equipped with the Borel σ-field associated
to the distance W2) such that∫

P2(Rd)
W2

2 (P,Q)µ(dP ) <∞, for some (hence, for every) Q ∈ P2(Rd). (7)

Wasserstein distance in this space will be denoted byWP2 . It is worthwhile to stress that
the Wasserstein metric on W2(P2(Rd)) inherits the good properties that it exhibits on
P2(Rd) (see subsection 5.1). The space W2(P2(Rd)) is in the basis of the (more abstract)
framework considered in [32] to generalize (2) to this definition of barycenters.

Definition 2.2. If µ ∈ W2(P2(Rd)), then a barycenter of µ is any probability µ̄ ∈ P2(Rd)
such that W2

P2
(µ, δ{µ̄}) = inf{W2

P2
(µ, δ{Q}), Q ∈ P2(Rd)}, that is:∫

P2(Rd)
W2

2 (P, µ̄)µ(dP ) = Var(µ) := inf

{∫
P2(Rd)

W2
2 (P,Q)µ(dP ) : Q ∈ P2(Rd)

}
(8)

We use the notation Var(µ) to stress the role of variance of µ played by this quantity.
Note that (8) is the natural extension of the already considered barycenters of a finite set
of probabilities P1, . . . , Pk ∈ P2(Rd) with weights λ1, . . . , λk.
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It will be convenient to consider a generic probability space (Ω, σ,P) where a mea-
surable random element with values in P2(Rd) (and distribution law µ) is defined. The
image of a generic ω ∈ Ω will be denoted as µω. Then equation (8) becomes∫

Ω

W2
2 (µω, µ̄)P(dω) = inf

{∫
Ω

W2
2 (µω, Q)P(dω) : Q ∈ P2(Rd)

}
. (9)

Existence of barycenters in this setting has been proved in [32], as well as uniqueness
under absolute continuity assumptions (in fact this follows easily from Theorem 2.9 in
[2]). Barycenters in Wasserstein space enjoy some continuity properties. We refer to
Proposition 5.3 and Theorems 5.4 and 5.5 (which are essentially contained in Theorems
2 and 3 in [32])

We show next that barycenters in Wasserstein space satisfy an equivariance property
with respect to similarity transformations, namely, linear transformations that preserve
shape. We recall that these transformations include rotations, reflections, translations
and scaling. A proof can be found in subsection 5.3.

Proposition 2.3. Let µ̄ ∈ P2(Rd) be a barycenter of µ ∈ W2(P2(Rd)), and let T be a
similarity transformation on Rd. If µ∗ is defined as the probability in W2(P2(Rd)) given,
through the notation above, by µ∗ω = µω ◦ T−1, then µ̄ ◦ T−1 is a barycenter of µ∗.

We close this section with some remarks on the computability of Wasserstein barycen-
ters. In general, it shares the serious computational difficulties inherent to optimal trans-
portation. Explicit expressions are available just for distributions on the real line, a fact
that is quoted in the next result.

Proposition 2.4. If F−1
1 , . . . , F−1

k are the quantile functions associated to probabilities

P1, . . . , Pk on the real line, and λ1, . . . , λk are positive weights with
∑k

i=1 λi = 1, then the

barycenter of {Pi}ki=1 is the probability with quantile function
∑k

i=1 λiF
−1
i .

From Proposition 2.4 we see that for k normal distributions, N(mi, σ
2
i ), i = 1, . . . , k,,

on R, the barycenter would be the normal law N(
∑k

i=1 λimi, (
∑k

i=1 λiσi)
2). More gen-

erally, for multivariate normal distributions there is an interesting characterization for
the barycenter that comes from Knott and Smith [31] (but see also Rüschendorf and
Uckelmann [40] and [1]).

Theorem 2.5. Let Pi = N(mi,Σi), i = 1, . . . , k be normal probabilities on Rd with positive

definite covariances, and λ1, . . . , λk positive weights with
∑k

i=1 λi = 1. Then the unique

barycenter of P1, . . . , Pk is the normal law N(µ̄, Σ̄), where m̄ =
∑k

i=1 λimi and Σ̄ is the
only positive definite root of the equation

k∑
i=1

λi
(
Σ1/2ΣiΣ

1/2
)1/2

= Σ. (10)

Later, in Theorem 3.10 we will generalize this result to probabilities in W2(P2(Rd))
supported in an arbitrary location-scatter family. We note that our proof is elementary
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and self-contained (in particular, it does not use Theorem 2.5 but only general principles
of optimal transportation).

3 Trimmed Barycenters

We introduce in this section our approach for a wide consensus representative of a sample
P1, . . . , Pk of probabilities, with given weights λ1, . . . , λk. It is based on considering a
suitably trimmed subsample. The trimming procedure allows partial discarding of some
probabilities, through a suitable reweigthing as in the following definition.

Definition 3.1. Given 0 ≤ α ≤ 1 and P a probability on a measurable space (Ω, σ),
we say that the probability P ∗, also defined on σ, is an α-trimming of P if there ex-
ists a measurable function τ : Ω → R such that 0 ≤ τ(ω) ≤ 1 for every ω ∈ Ω and
P ∗(A) = 1

1−α

∫
A
τ(ω)P (dω) for every A ∈ σ. Such a function is often called an α-

trimming function. The set of all α-trimmings of P will be denoted by Tα(P )

Remark 3.2. A typical trimming function would be the indicator function of a set A
with probability P (A) = 1 − α. The trimmed probability being then the conditional
probability given A. However, our definition even includes the consideration of P , itself,
as a trimmed version of P , with associated trimming function τ = (1− α)IΩ.

Since trimmed probabilities and trimming functions are associated in an essentially
one to one way, the notation Tα(P ) will be indistinctly used for the set of all α-trimmings
of P and for the set of the corresponding trimming functions.

Given α ∈ (0, 1), and a probability µ on P2(Rd), we look for a µ̄α ∈ P2(Rd) and a
probability µα ∈ Tα(µ), with associated trimming function ταµ , which satisfy∫

W2
2 (P, µ̄α)µα(dP ) = Varα(µ) := inf

µ∗∈Tα(µ),ν∈P2(Rd)

∫
W2

2 (P, ν)µ∗(dP ) (11)

or, equivalently, in terms of trimming functions,∫
W2

2 (P, µ̄α)ταµ (P )µ(dP ) = (1− α)Varα(µ) = inf
τ∈Tα(µ),ν∈P2(Rd)

∫
W2

2 (P, ν)τ(P )µ(dP ).

Such a µ̄α will be called (α-)trimmed barycenter of µ and ταµ an (α-)optimal trimming
function. Similarly to Var(µ), the value Varα(µ) will be called the (α-)trimmed variance
of µ. As usually, the previous definitions apply to any P2(Rd)-valued random variable, by
identifying these concepts for a random variable with those of its probability distribution.
The following theorem (proved in subsection 5.4) guarantees the existence of trimmed
barycenters.

Theorem 3.3. Let α ∈ (0, 1) and let µ be a probability defined on P2(Rd). Then, there
exists an α-trimmed barycenter of µ, which we will denote as µ̄α.
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By considering as trimming function (with the corresponding normalizing factor), the
indicator set of a large enough ball centered at δ{0}, it becomes obvious that the minimum
value Varα(µ) must be finite and (recall the definition of W2(P2(Rd)) in (7)) that the set
Tα(µ) can be substituted by the subset Tα(µ) ∩W2(P2(Rd)). Since every probability on
W2(P2(Rd)) has a barycenter, obviously µ̄α must be a barycenter of µα, which justifies
the notation we are using. Furthermore, and similar to the impartially trimmed means,
trimmed barycenters must simultaneously be the barycenter of the trimmed distribution
and the center of its support. To formalize this fact we define

rα(P ) := inf{r > 0 : µ[BW(P, r)] ≥ 1− α}. (12)

It trivially follows that if r < rα(P ), then µ[BW(P, r)] < 1− α and

µ[BW(P, rα(P ))] ≤ 1− α ≤ µ[BW(P, rα(P ))].

This is the key to the following result.

Proposition 3.4. Let α ∈ (0, 1), ν ∈ P2(Rd) and τ ∗ ∈ Tα(µ) be such that

IBW (ν,rα(ν)) ≤ τ ∗ ≤ IBW (ν,rα(ν)), (13)

then, for every τ ∈ Tα(µ), we have∫
W2

2 (P, ν)τ ∗(P )µ(dP ) ≤
∫
W2

2 (P, ν)τ(P )µ(dP ). (14)

Proof: Let τ ∈ Tα(µ) and consider the real r.v. X(P ) := W2
2 (P, ν). It is clear that

the distribution of X, when we consider in P2(Rd) the probability µ trimmed through
the trimming function τ ∗, is stochastically smaller than that associated to any other τ .
Therefore (14) holds. •

Note that equality in (14) is only possible if (13) happens for τ . Thus, the optimal
trimming functions must satisfy (13) where ν must be a barycenter of the trimmed prob-
ability associated to τ ∗. In other words, the optimal trimming functions are essentially
defined by the indicator of a ball centered at a trimmed barycenter.

We turn now to consistency of trimmed barycenters. Theorem 3.5 (see subsection
5.4 for a proof) guarantees it under weak consistency of the probability distributions.
Note that, unlike in the case of (non trimmed) barycenters, it is not necessary that
W2(µn, µ)→ 0, but it suffices to assume that µn →w µ.

Theorem 3.5. Let (µn)n, µ be probabilities on P2(Rd) such that µn →w µ. For a fixed
α ∈ (0, 1), let µ̄αn be any trimmed barycenter of µn. Then the trimmed variances converge,
namely, Varα(µn) → Varα(µ), the sequence (µ̄αn)n is precompact for the W2 topology and
any limit is a trimmed barycenter of µ. If µ has only one trimmed barycenter, µ̄α, then
W2(µ̄αn, µ̄

α)→ 0.

Repeating the argument that we use for law of large numbers for barycenters (Theorem
5.5), we obtain from Theorem 3.5 the corresponding one for trimmed barycenters. We
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state the result under the additional hypothesis of uniqueness of the trimmed barycenter
of the probability law. This kind of assumption is quite common when showing consis-
tency of centralization measures to avoid complicated or too simplistic statements with
complicated proofs even on Rk. If the µ-probability of the set of absolutely continuous
probabilities in P2(Rd) is greater than 1−α, the support of every α-trimmed version of µ
would contain absolutely continuous probabilities, thus it would have only one barycenter.
Therefore, lack of uniqueness of the trimmed barycenter should be provoked by particular
configurations of µ. For example, for the uniform distribution on [0, 1], every point in
the set [(1− α)/2, (1 + α)/2] is an α-trimmed mean. Section 5 in Garćıa-Escudero et al.
[28] treats this problem, although in practice it is quite rare to find distributions where
uniqueness fails and, even then, the lack of uniqueness could be only due to an improper
choice of α.

Theorem 3.6. Assume that µ is a probability on the space P2(Rd) with a unique trimmed
barycenter. If µn is the sample probability giving mass 1/n to the probabilities P1, . . . , Pn
obtained as independent realizations of µ, then the trimmed barycenters and variances are
strongly consistent: µ̄αn →a.s. µ̄

α, and Varα(µn)→a.s. Varα(µ).

3.1 Location-scatter families

Computation of Wasserstein distances and of barycenters for probabilities on the real
line can be done through the explicit characterizations given in (4) and Proposition 2.4.
In the multivariate setting, Proposition 2.4 can be extended to probabilities that can
be parameterized in terms of a location and a scatter matrix, generalizing the normal
multivariate model.

Definition 3.7. Let M+
d×d be the set of d × d positive definite matrices and let X0 be a

random vector with probability law P0 ∈ P2,ac(Rd). The set

F(P0) := {L(AX0 +m) : A ∈M+
d×d,m ∈ Rd}

of probability laws induced by positive definite affine transformations from P0 will be called
a location-scatter family.

As an easy consequence of Theorem 2.1, any probability P ∈ F(P0) can be optimally
transported to any other Q ∈ F(P0) through an affine transformation with positive def-
inite matrix. Thus w.l.o.g. we can assume that the mean of P0 is the vector 0̄ and
its covariance matrix is Id, the identity matrix. Also note that to make reference to a
probability in F(P0) we could use its mean m, and the transformation A or alternatively
Σ = A2, the corresponding covariance matrix. We will use the second option to share the
usual notation in the normal model. Therefore, Pm,Σ will denote the probability in F(P0)
with mean m and covariance matrix Σ.

In the statistical literature, a location and scatter family usually refers to an elliptical
model. However, the families considered in this work under this denomination include
the elliptical families, but also families induced by different shapes. For instance, if we
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take in R2 the probability P0 whose marginals are independent standard normal and
exponential, respectively, then the family F(P0) is not elliptical. We also note that to
address a confidence set problem, P0 and the choice of any measurable setMγ in Rd , such
that P0(Mγ) = γ, will play the role of shape of the reference set. A typical asymptotic

pivotal function for a parameter θ ∈ Rd has the structure n1/2V̂
−1/2
n (θ̂n − θ), thus, if we

approximately know its law, P0, then the set {θ̂n − n−1/2V̂
1/2
n x : x ∈ Mγ} would be an

approximate confidence set of level γ. Therefore the estimation of the location and scatter
in the family F(P0) produces a confidence set of the desired level, and a consensus based
estimation would automatically produce a consensus confidence set for the parameter.

We show in Theorems 3.8 and 3.10 below that Wasserstein barycenters and trimmed
barycenters of probabilities supported on a location-scatter family belong to the location-
scatter family, or, in other words, that location-scatter families are closed for barycenters.
Of course, the general equivariance result for similarity transformations (recall Proposition
2.3) remains true in the location-scatter setup. We also include a Gelbrich’s type result
showing that the dispersion in the W2-sense is minimized just when the probabilities
belong to a common location-scatter family, in particular when all the probabilities are
normal. The proof can be found in subsection 5.5.

Theorem 3.8. Let {Pi}ki=1 be probabilities in P2,ac(Rd) with means mi, i = 1, . . . , k, and
nonsingular covariance matrices Σi, i = 1, . . . , k. Let Ni = N(mi,Σi), i = 1, . . . , k, be
normal probability distributions on Rd. Also let P0 ∈ P2,ac(Rd) and let us denote by Pm,Σ
the probability in F(P0) with mean m and covariance matrix Σ.

Let us consider λ1, . . . , λk positive weights with
∑k

i=1 λi = 1, and respectively denote by
P̄ , N̄ and P̄ the (unique) barycenters of {Pi}ki=1, {Ni}ki=1 and {Pmi,Σi}ki=1. Then we have:

k∑
i=1

λiW2
2 (Pi, P̄ ) ≥

k∑
i=1

λiW2
2 (Pmi,Σi , P̄) =

k∑
i=1

λiW2
2 (Ni, N̄). (15)

Moreover the inequality in (17) can be an equality only if the mean and covariance
matrix of P̄ coincide with those of N̄ and the relation {Pi}ki=1 ⊂ F(P̄ ) holds.

Remark 3.9. We stress the fact that Theorem 3.8 generalizes (with the same proof
but adding some notational complexity) to any µ ∈ W2(P2(Rd)) if, using the notation
employed in (9), we assume that for every ω ∈ Ω, µω ∈ P2,ac(Rd) with mean mω and
covariance matrix Σω ∈M+

d×d.

Theorem 3.10. Let P0 ∈ P2,ac(Rd), and µ ∈ W2(P2(Rd)). With the notation in Remark
3.9, assume that for every ω ∈ Ω, the probability µω ∈ F(P0). Then the unique barycenter,
µ̄, of µ also belongs to F(P0). The mean of µ̄ is m̄ :=

∫
mωP(dω), and the covariance

matrix, Σ̄, is the only positive definite matrix satisfying

Σ̄ =

∫ (
Σ̄1/2ΣωΣ̄1/2

)1/2
P(dω)
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Once we know that a family is closed for barycenters, the property will be shared by the
trimmed barycenters. This is motivated by the fact that trimmed versions of a probability
µ have their supports contained in that of µ, and a trimmed barycenter is characterized
as a barycenter of an optimal trimmed version of µ. Once a trimming function has been
fixed, the uniqueness of the barycenter of absolutely continuous distributions, obtained in
[16], leads also to the uniqueness of the trimmed barycenter associated to that trimmed
version of µ. However, we cannot deduce uniqueness of the trimmed barycenters in an
easy way. In fact this is a hard problem even for trimmed means in euclidean spaces.

Corollary 3.11. Assume that P0 ∈ P2,ac and µ a probability on P2(Rd) that is supported
in F(P0). Then, for every α ∈ (0, 1), any trimmed barycenter of µ also belongs to F(P0).
Moreover any optimal trimming function for µ uniquely determines a trimmed barycenter.

Remark 3.12. We emphasize the importance of Corollary 3.11 that allows to search for
trimmed barycenters of, say a random normal distribution, looking just to the means and
covariance functions. Moreover, by Theorem 2.1, the distance between probabilities in
F(P0) is given by

W2
2 (Pm1,Σ1 ,Pm2,Σ2) = ‖m1 −m2‖2 + trace

(
Σ1 + Σ2 − 2

(
Σ

1/2
1 Σ2Σ

1/2
1

)1/2)
, (16)

which allows computation of Wasserstein distances. With applications in view, these
facts will be complemented with the proposal of a feasible algorithm for addressing the
computation of the trimmed barycenter of a finite set of probabilities that belong to a
location-scatter family and a given set of weights.

Once this theory has been developed it can be argued that (16) is just a combination
of metrics: the Euclidean metric for the means plus another one between covariance ma-
trices. Since the final product only involves distributions in F(P0), even some comparison
with combinations of other metrics should be in order. Focusing on the metric on the
covariance matrices, Fréchet means related to several metrics on this space of symmetric
positive definite matrices have been proposed in the literature. Among these metrics par-
ticular attention is deserved by the affine-invariant metrics and Log-Euclidean metrics,
introduced by considerations that mainly arise from the image analysis framework (see
Arsigny et al. [6]). In both cases, the associated Fréchet means can be considered as gen-
eralizations of the geometric mean, although the Log-Euclidean mean could be preferred
by its easier computation. We should note that our choice of (16) is not guided by the
search for a metric on this set of matrices, but it is rather the restriction of a metric on
the set of all probabilities with finite second moment –a kind of L2 space– with suitable
properties already pointed out in the literature in different scenarios. We note also that
the computation of Wasserstein barycenters can be efficiently done through the algorithm
introduced in [4] and discussed in Section 4. Taking this into account, the comparison
must rely on purely statistical arguments, like those involving the comparison between
the mean and the geometric mean for real numbers. Any of them can be preferred for
different tasks but, arguably, the usual mean is the preferred choice in most of the appli-
cations. To provide some illustrative idea of their relative behavior, in Figure 1 we resort
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to the comparison of the interpolation of two pairs of covariance matrices represented by
the black and cyan ellipses in each picture. Notice that the average (the weighted mean of
covariances) is included for reference. The upper, middle and lower rows are respectively
associated to Log-Euclidean, average and barycenter approaches. The red, green and blue
ellipses respectively represent the solutions associated to .75, .5 and .25 weights on the
black covariance matrix (and .25, .5 and .75 on the cyan one). Additionally, we include
in Figure 2 the density functions of three centered normal distributions accompanied by
those associated to these approaches. For very similar standard deviations {σi}ki=1 and
any associated weights {λj}kj=1, the three aggregation procedures would produce nearly
the same result but, if this is not the case, the estimates can be very different.

An explanation for these different behaviors comes from Jensen’s inequality. In the
simplest one-dimensional case, these three averaging procedures result in standard de-
viations given by the left (Log-Euclidean), middle (Wasserstein barycenter) and right
(weighted average of variances) terms in the following inequalities

exp

(
k∑
j=1

λj log σj

)
≤

k∑
j=1

λjσj ≤

√√√√ k∑
j=1

λjσ2
j . (17)

This shows that the standard deviation of the geometric mean is smaller than the average
of the standard deviations which in turn is smaller than the standard deviation arising
from the weighted mean of the variances. This gives some explanation to the swelling
effect associated to the weighted mean. We also note that if we are willing to admit that
the standard deviation (

∫
|x|2P (dx))1/2 is a good measurement of the size of a centered

distribution, P , then the Log-Euclidean mean results in summaries which are smaller
than the average size of the objects to be summarized. In this sense, the Wasserstein
barycenter provides the better choice between these alternatives.

For diagonal (in some basis) covariance matrices, this explains the intermediate size
of the barycenter, avoiding the swelling effect of the mean of variances, but also the
somewhat excessive decrease associated to the Log-Euclidean approach. In a location
scatter model, for a finite collection {P0,Σj}kj=1 and weights {λj}kj=1, and the princi-
pal directions of the Σj matrices are the same, then for some orthonormal matrix H,

Σj = HDjH
t, j = 1, . . . , k with Dj = diag(σ2

j1, . . . , σ
2
jd). If we denote by Σ∗, Σ̄, Σ̂

the covariance matrices associated to the Log-Euclidean, Wasserstein barycenter and

weighted average approaches, then also Σ∗ = HD∗H t, Σ̄ = HD̄H t, Σ̂ = HD̂H t, with

D∗ = diag(σ∗1
2, . . . , σ∗d

2), D̄ = diag(σ̄2
1, . . . , σ̄

2
d), D̂ = diag(σ̂2

1, . . . , σ̂
2
d), which are related by

σ∗j ≤ σ̂j ≤ σ̂j, j = 1, . . . , d, from (17) because σ∗j = exp
(∑k

i=1 λi log σji

)
, σ̂j =

∑k
i=1 λiσji

and σ̂j
2 =

∑k
i=1 λiσji

2. Also note that in this case we obtain again that the “standard
deviation” of the Barycenter is the weighted mean of the standard deviations.

Although the fact just noticed will be not true in full generality, we will show below that
such weighted mean of standard deviations is an upper bound for the standard deviation
of the barycenter. We would like to stress that this result will be proved for probabilities
that do not necessarily belong to a location-scatter family. Even more, by Remark 3.4 in
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Figure 1: Each picture shows the effects of linear interpolation of two matrices corresponding to the
weighted mean (middle row), barycenter (lower row) and Log-Euclidean mean (upper row), of the matrices
represented by the black and cyan ellipses. From left to right we handle the weights 0, .75, .50, .25, 1 on
the black one. Note the characteristic swelling effect associated to the weighted mean.

[4], the property is true even without the absolutely continuous assumption that we will
impose here for a simpler argument.

Proposition 3.13. Let P1, . . . , Pk ∈ P2,ac(Rd) centered in mean, and λ1, . . . , λk be positive
weights adding one. If P̄ is the associated barycenter, then(∫

‖x‖2P̄ (dx)

)1/2

≤
k∑
j=1

λj

(∫
‖x‖2Pj(dx)

)1/2

.

4 Computation of Barycenters and Trimmed Barycenters

The characterization of trimmed barycenters given in Proposition 3.4 leads to consider the
effective computation of barycenters as a first step in the obtention of trimmed barycen-
ters. We recall for probabilities on R the characterization given in Proposition 2.4 in terms
of quantiles. If µ is the probability on P2(R) giving weights λ1, . . . , λk to the probabilities

P1, . . . , Pk, then the barycenter µ̄ is the distribution of the random variable
∑k

j=1 λjF
−1
j

(defined on the unit interval), thus denoting by mj and σ2
j the mean and variance of Pj,

and m̄ and Var(µ̄) those of µ̄:

Var(µ) =
k∑
j=1

λj(mj − m̄)2 +
k∑
j=1

λjσ
2
j − Var(µ̄). (18)

When P1, . . . , Pk belong to a common location-scale family, F(P0), where P0 has quantile
function F−1

0 (with zero mean and variance 1), then F−1
j = mj + σjF

−1
0 , j = 1, . . . , k,
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Figure 2: Left: Density functions corresponding to N(0, σi) distributions for σ1 = .2, σ2 = 1, σ3 = 2.

Right: Normal density functions for σ =
(

1/3
∑3

i=1 σ
2
i

)1/2
= 1.296 (green), σ =

(∏3
i=1 σi

)1/3
= .737

(red) and σ = 1/3
∑3

i=1 σi = 1.067 (black), respectively associated to the mean of variances and the
geometric mean (or Log-Euclidean) of the variances, and the barycenter of the distributions.

and with σ̄ :=
∑k

j=1 λjσj, (18) specializes to

Var(µ) =
k∑
j=1

λj(mj − m̄)2 +
k∑
j=1

λj(σj − σ̄)2 =
k∑
j=1

λj(m
2
j + σ2

j )− (m̄2 + σ̄2).

In contrast, as previously noted, in the multivariate case closed expressions are only
available just for situations essentially equivalent to several univariate cases. This is the
case if, e.g. the probabilities share a common structure of dependence in some particular
basis (see Section 2 in Cuesta-Albertos et al [24] or Section 4 in [9]), or if they are
radial transformations of a common probability law (see Section 3 in [24]). Turning to
approximate computations, in recent times some papers addressed the goal of numerical
computation of Wasserstein barycenters, see Cuturi and Doucet [25], Benamou et al.
[7] or Carlier et al. [16]. In these cases, the approaches address the case of sample
distributions or are based on the discretization of the problem through a fine grid and
the use of suitable optimization procedures. Although their results allow to get good
representations for the barycenter of distributions with very different shapes, the grid sizes
for suitably approximating the distributions must be large and would strongly depend
on the dimension making them highly time-consuming even in small dimensions and
with a small number of distributions. Of course these procedures allow computation
of barycenters, but regrettably, under trimming, the available methods to compute the
trimmed barycenters (even for real random variables), like our Algorithm for the trimmed
barycenter below, need several initializations and often require the iterative computation
of several thousands of barycenters. This makes those algorithms based on discretizations
to be, by now, inapplicable for our proposes. Fortunately, for one of the most important
cases in multivariate statistics, namely the location-scatter families, a fast consistent
procedure for approximating the numerical solution of equation (10) has recently been
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introduced in [4]. We give here a quick description of the procedure.
Assume that P1, . . . , Pk ∈ P2,ac and the weights λ1, . . . , λk are fixed. Given η ∈ P2(Rd),

we consider the functional

V (η) :=
k∑
i=1

λiW2
2 (η, Pj),

looking for P̄ ∈ P2(Rd) such that

V (P̄ ) = min
η∈P2(Rd)

V (η).

If η ∈ P2,ac, we know that there exist optimal transport maps Tj from η to Pj. Assume
that X is a random vector with law η, thus

L(Tj(X)) = Pj, and W2
2 (η, Pj) = E‖X − Tj(X)‖2, j = 1, . . . , k.

With this notation we define

G(η) := L
( k∑
j=1

λjTj(X)
)
,

to design a consistent, iterative procedure for the approximate computation of P̄ . Next,
we collect some basic properties of G that show a link between the G transform and the
barycenter problem.

Proposition 4.1. If η ∈ P2,ac then

V (η) ≥ V (G(η)) +W2
2 (η,G(η)).

In particular, if the barycenter, P̄ , is absolutely continuous then G(P̄ ) = P̄ .

We remark that the hypothesis of absolute continuity of P̄ is required just to guar-
antee that G(P̄ ) is defined. The theory developed for the location-scatter families, and
particularly for normal distributions, allows to guarantee this in such cases. On the other
hand, the conclusion of the proposition invites to consider an iterative process, starting
from any η0 ∈ P2,ac and considering the sequence

ηn+1 := G(ηn), n ≥ 0. (19)

We have proved the consistency of this iterative procedure in greater generality in [4], but
for our present purposes it suffices that given in the following statement.

Theorem 4.2. If P1, . . . , Pk are nonsingular Gaussian distributions on Rd and the initial
measure, η0, is also a nonsingular Gaussian distribution, then the iteration defined by
(19) is consistent, namely,

W2(ηn, P̄ )→ 0,

as n→∞, where P̄ is the (unique) barycenter of P1, . . . , Pk.
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It is time to recall Theorem 3.10 on barycenters of location-scatter families. We know
from it that, given positive definite matrices Σ1, . . . ,Σk there exists a unique positive
definite matrix Σ̄ solving (10).

Reading Theorem 4.2 just in terms of approximating the unique solution of (10), the
conclusion becomes that if, starting from any positive definite matrix S0, according to
Theorem 2.1, we define

Sn+1 = S−1/2
n

( k∑
j=1

λj(S
1/2
n ΣjS

1/2
n )1/2

)2

S−1/2
n , (20)

then
lim
n→∞

Sn = Σ̄.

Therefore the process leads to a consistent iterative method for approximating the
solution of (10). The method is easily implemented and, in practice, shows a very good
performance. We refer to [4] for further details.

The characterization of the distance between probabilities in the location-scatter family
(16) leads to identical distances to those between normal laws with same location and
covariance matrices. Therefore we can extend Theorems 2.5 and 4.2 in the following way.

Theorem 4.3. If µ is the probability on P2(Rd) giving weights λ1, . . . , λk to the prob-
abilities Pm1,Σ1 , . . . ,Pmk,Σk ∈ F(P0), a location-scatter family with P0 ∈ P2,ac(Rd), then

its barycenter is the probability Pm̄,Σ̄ ∈ F(P0), where m̄ =
∑k

i=1 λimi and Σ̄ is the only
definite positive matrix satisfying equation (10). Moreover, Σ̄ can be obtained as the limit
of the sequence defined in (20). The variance of µ takes the value

Var(µ) =
k∑
j=1

λj‖mj − m̄‖2 +
k∑
j=1

λjtrace(Σj − Σ̄)

=
k∑
j=1

λj(‖mj‖2 + trace(Σj))− (‖m̄‖2 + trace(Σ̄)).

Through Theorem 4.3 we can compute barycenters and variances for any finite set
of probabilities and weights, once we know the corresponding locations m1, . . . ,mk and
covariance matrices Σ1, . . . ,Σk. Moreover, the distances between probabilities are also
easily computed through (16), which is valid for every location-scatter family. Therefore,
Corollary 3.11 and the characterization of the best trimming functions given in Propo-
sition 3.4 allow to search for a trimmed barycenter as the barycenter based on subsets
of P1, . . . , Pk with an accumulate weight of at least 1 − α and minimum variance after
normalizing the weights.

Next, we include an algorithm to obtain the trimmed barycenter of the probabilities
Pm1,Σ1 , . . . ,Pmk,Σk ∈ F(P0) with weights λ1, . . . , λk. It combines estimation and concen-
tration steps, being an adaptation of usual algorithms for obtaining best (in some sense)
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trimmed regions, like the ones involved in the MCD or LTS robust estimators, with the
necessary updates of the distances and weights in each concentration step. Once an initial
solution is provided, this kind of algorithm guarantees convergence through the estimation
and concentration steps, but we must also consider the possibility of local optimizers, a
fact that leads to consider random choices of initial candidates to be compared at the
end. We simply emphasize the fact that this algorithm shares the good performance of
the versions currently used in similar problems on estimation in the multivariate setting.

The algorithm

0. Fix n = 0, and randomly choose initial candidates m̂n, Σ̂n for the mean and the
covariance matrix.

1. Compute the distances dni between Pm̂n,Σ̂n and Pmi,Σi , i = 1, . . . , k, through (16).

2. Consider the permutation ((1), . . . , (k)) such that dn(1) ≤ . . . ≤ dn(k).

3. Set jn = inf{j :
∑

i≤j λ(i) ≥ 1− α} and define the new weights:

λn(i) =


λ(i) if i < jn
1− α−

∑
i<jn

λn(i) if i = jn
0 if i > jn.

4. Since
∑k

i=1 λ
n
(i) = 1− α, define λn(i) = (1− α)−1λn(i), in order to have

∑k
i=1 λ

n
(i) = 1.

5. Using the updated weights, compute m̂n+1, the weighted mean of the means, and
Σ̂n+1 through the recursive algorithm (20).

6. Iterate steps 1 through 5 until convergence.

7. Compute the variance of the final trimmed sample of probabilities and weights.

8. Go to 0 and finalize after a moderate number of initial choices, reporting the barycen-
ter producing the minimum variance.

As a toy illustration of the results of the computation of the barycenters (trimmed
or not), we present now two examples, in which we handle 2-dimensional normal distri-
butions, allowing a suitable visualization of the results. In these examples, we represent
graphically a normal distribution with mean m and covariance matrix Σ by the set

{x ∈ R2 : (x−m)tΣ−1(x−m) = 1}.

Example 4.4. We have considered first the six normal distributions represented in the
graph in the left hand side in Figure 3. We have computed the barycenter, and the 1/6 and
2/6 trimmed barycenters of these normal distributions. The results appear in the right
hand side graphic. All three barycenters are normal distributions which are represented
by the black, blue and red ellipses in the right hand side graphic in Figure 3.
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Figure 3: Computation of trimmed barycenters (right figure) of the ellipses shown in the figure in the left

The black ellipse is the non-trimmed barycenter. Trimming α = 1/6 the barycenter
is the blue ellipse, and the procedure trims the blue ellipse in the left graphic. The red
ellipse shows the result of trimming α = 2/6. In this case, the procedure trims the red
and the blue ellipses in the left hand side graphic. Observe that the red ellipse lies in the
middle of the four black ellipses in the left graphic showing a very similar shape.

The previous result could have been anticipated because, according to (16), the deci-
sion of which distributions to trim depends on the shape and the location of the ellipses
under consideration and, in this example, the colored ellipses have different shapes and
separated locations than the others. Because of this, we also show a not too big modi-
fication of this example which is shown in Figure 4. Here five ellipses coincide with the
corresponding ones in Figure 3. However, the green ellipse in the left hand graph in this
figure is one of the “horizontal” ellipses whose center has been moved two units along
the ordinates axis. Now, it happens that the trimmed distribution when taking α = 1/6
continues being the blue one, but when taking α = 2/6 the procedure trims the blue and
the green ellipses leaving the red one untrimmed.

Example 4.5. Let us assume that we are carrying out an experiment in k = 100 hospitals
on a 2-dimensional r.v., that we are taking a sample with size n = 100 in each hospital,
and that each hospital is sending only its own estimation of the mean and the covariance
matrix based on the sample in its study.

Let us also assume that the population is divided in two subpopulations. The first
subpopulation is composed by 90% of individuals and the distribution of the variable of
interest in this subpopulation is standard normal, while the distribution in the second
subpopulation is also normal, with the identity as covariance matrix and the mean at
(4, 4). The real goal of the study is the estimation of the parameters of the majority, the
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Figure 4: Computation of trimmed barycenters (right figure) of the ellipses shown in the figure in the left

second subpopulation being considered as composed by outliers.
The statistician in charge of the experiment, being aware of these issues, decides that

each hospital uses the Minimum Covariance Determinant method (MCD, proposed in
Rousseeuw [36]), based on 80% of the points in its sample to estimate the mean and
covariance matrix of the people in its area (similar results could be obtained through the
procedure developed in Cuesta-Albertos et al [22]), the reason to choose these estimators
being that the probability of obtaining more than 20 outliers in a binomial sample with
parameters n = 100 and p = .1 being 0.00081 and, as long as we obtain less than 20
outliers in a sample with size 100, the MCD method will give a fair estimation of the
parameters in the main subpopulation.

However, it happens that, unknown to the statistician, the population is relatively
heterogeneous, and that, in fact, the proportion of people in a given area belonging to the
second subpopulation is chosen using a distribution Beta with parameters (4,36), which
gives a global proportion of 0.1, but irregularly scattered.

We have made a simulation of this process resulting that 5 hospitals have got more
than 20 outliers, leading to largely wrong estimations of the parameters. The results of
this experiment appear in the left hand side graph in Figure 5. There, most estimations
appear in grey, but a few of them have been drawn in black to give a general idea of the
objects we have obtained in the first part of the process.

The right hand side graph presents the area inside the square in the left hand side graph
with some summarizing possibilities for the estimations shown in the left graph. Here the
red ellipse represents the standard normal distribution (which can be considered as our
target since this distribution produced most of the data in the analyzed samples). The
green ellipse represents the normal distribution whose mean (resp. covariance matrix) is
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Figure 5: Computation of trimmed barycenters (right figure) of the ellipses shown in the figure in the left

the sample mean of the estimated means (resp. covariance matrices). This estimator is
not expected to be particularly good.

The magenta ellipse represents the (non-trimmed) barycenter. This estimation is af-
fected by the anomalous estimations (but less that the previous one). The blue ellipse
represents the 0.2-trimmed barycenter which, practically, matches the target.

Example 4.6. The Palomar Data is a data set considered in Rousseeuw and Driessen [38],
consisting in astronomic measurements recorded at the California Institute of Technology
within the Digitized Palomar Sky Survey. The set handled here, kindly shared by the
authors, is the same analyzed in that paper, containing 132,402 observations in 6 variables.
The analysis there showed the interest of considering robust estimations of the covariance
matrix and related metrics instead of the crude Mahalanobis distance, obtained through
the sample covariance matrix. In fact, through a plot of MCD-based robust Mahalanobis
distances, they found evidence on the existence of several groups in the data and, as a
key part of the fast MCD algorithm for large data sets, introduced a pooling strategy
on the initial subsets of the data leading to the better solutions. Our approach looks
for the comparison between the MCD solution achieved for the whole data set and those
provided from 100 randomly chosen subsamples of size 5,000. Figure 6 is a plot on the two
first variables (MAperF and csfF) of the data. It shows (gray) the 100 ellipses associated
to the MCD’s based on subsamples, that of the MCD based on the full sample (black
dashed). It also includes the ellipses that result from several aggregations of the MCD’s
produced by the subsamples. The green one is just that associated to the mean of the
100 covariance matrices and centered in the mean of the 100 means estimations. In
black, red, blue and magenta are represented the trimmed barycenters of the 100 MCD’s
respectively corresponding to the trimming levels α = .1, .2, .3, .4. Figure 7 is the plot of
trimmed variations vs trimming levels associated to the 100 MCD’s solutions.
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Through these pictures we have a nice summary. From both figures it becomes apparent
that nearly 35% of the solutions correspond to ellipses centered around (18500,1000)
with little variation within this group, while the remaining 65% are very similar to the
MCD obtained with the complete sample. This implies that the right solutions should
be selected when trimming, at least, that (35%) proportion. In agreement with the
conclusions of the analysis carried in [38], such behavior would suggest the existence of at
least two main bulks of data. Although most samples have a proportion of data coming
from these bulks that justify the MCD based on the complete sample, small variations
in these proportions would consistently produce a very different MCD. In this situation,
aggregation methods based on simple average would typically produce bad solutions,
while monitoring the trimmed barycenter solutions allows a well-founded, stable, “wide
consensus” proposal.

To give evidence of feasibility of the proposal, we give below some details on the execu-
tion times of the involved procedures. Computations have been carried on a MacBook Pro
with a 4 Ghz processor Intel Core i7 and 16 Gb of RAM. The MCD’s have been computed
with TCLUST (available at the CRAN, see Fritz et al [27]), an R application for model
based robust clustering. The parameters for the solution based on the full sample were
k=1, alpha = 0.5, nstart = 150, restr.fact = 1e10, iter.max = 200, equal.weights = F.
The only change in these parameters for the subsamples was iter.max that was set to 100.
The computations of trimmed barycenters have been also carried into the R framework,
with programs based on the algorithm presented in this section.

Runtimes in seconds: For the large MCD (sample of size 132,402) 120.497 sec; for 100
MCD’s (on samples of size 5000) 45.125 sec; for the .3-trimmed barycenter of the 100
MCD’s solutions 30.985 sec; for the (51) α-trimmed barycenters and trimmed variances
(to produce the plot on the right in Figure 6, α = k/100 for k = 0, . . . , 10) 1744.315 sec.
Handling the MCD based on the complete sample as reference, the squares of the Wasser-
stein distances to the average solution and to those given by the trimmed barycenters for
.1, .2, .3, .4 were respectively: 87260.07, 71459.66, 33953.8, 6426.18, 357.25.

Repeating the whole process under the same conditions, but with subsample sizes of
10000 instead of 5000, the only runtime that changed was the corresponding to the 100
MCD’s (on samples of size 10000) 110.007 sec. The squares of the distances were now:
73850.38, 54857.57, 21578.75, 1517.071, 175.90.

5 Technical details and proofs

5.1 Supplementary results on Wasserstein spaces

For ease of reference, we include in this section some relevant results on Wasserstein spaces
for reference through the work. From a technical point of view a great deal of interest on
the Wasserstein distanceW2 comes from the fact that it metrizes the weak convergence of
probabilities plus the convergence of their second order moments: Given (Pn)n ⊂ P2(Rd)
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Figure 6: Graph summarizing the MCD´s solutions obtained from 100 subsamples of size 5000 (gray)
and those provided by several aggregations of the solutions and that given by the full Palomar Data set
(black dashed). The green ellipse is associated to the mean of the solutions; those in black, red, blue and
magenta correspond to trimmed barycenters with respective trimming sizes .1, .2, .3 and .4.

and P ∈ P2(Rd),

W2(Pn, P )→ 0 if and only if Pn →w P and

∫
Rd
‖x‖2Pn(dx)→

∫
Rd
‖x‖2P (dx).

(21)
More generally, the following theorem gives a very useful characterization (see e.g. The-
orem 7.12 in [42]) of the convergence in the space W2(P2(Rd)).

Theorem 5.1. Let (µn)n and µ be in W2(P2(Rd)), and consider the probability degenerated
at zero, δ{0} (that can be substituted by any other fixed probability in P2(Rd)). Convergence
WP2(µn, µ)→ 0 holds if and only if:

µn →w µ and lim
R→∞

lim sup
n→∞

∫
W2(δ{0},P )>R

W2
2 (δ{0}, P )µn(dP ) = 0. (22)

Proposition 5.2. If the sequences (µn)n, (νn)n in W2(P2(Rd)), verify µn →w µ and νn →w

ν, then WP2(µ, ν) ≤ lim infWP2(µn, νn). Moreover, if the convergences are in the sense
showed in (22), then the convergence WP2(µn, νn)→WP2(µ, ν) holds.

Note that the uniform integrability condition in (22) is similar to the uniform integra-
bility condition of ‖x‖2 in (21).

Existence and continuity properties of barycenters in W2(P2(Rd)) are guaranteed by
Proposition 5.3 and Theorem 5.4 to be stated next. They follow from the results in [32].
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Figure 7: Plot showing the evolution of the trimmed variations vs trimming levels on the 100 MCD’s
solutions in the Palomar Data example.

Proposition 5.3. If µ ∈ W2(P2(Rd)) and every P in the support of µ is absolutely
continuous, then the barycenter of the random measure µ exists and it is unique.

Theorem 5.4. Let (µj)
∞
j=1 ⊂ W2(P2(Rd)) and set µ̄j a barycenter of µj, for all j = 1, . . .

Suppose that for some µ ∈ W2(P2(Rd)) we have that WP2(µ, µj)→ 0. Then, the sequence
(µ̄j)

∞
j=1 is precompact in P2(Rd) and any limit is a barycenter of µ.

In particular, when the limit distribution µ has only one barycenter, this theorem
ensures convergence in P2(Rd) of the barycenters to that of µ. In a sample setting,
when the probability measures µn are the sample ones giving weight 1/n to the first
n probabilities P1, . . . , Pn obtained as realizations of the random probability measure
µ ∈ W2(P2(Rd)), by Varadarajan theorem, µn →w µ almost surely. Now let us consider
the probability degenerated at zero, δ{0}. Since the classical Strong Law of Large Numbers
applied to the real i.i.d. random variables W2

2 (Pi, δ{0}) gives∫
P2(Rd)

W2
2 (P, δ{0})µn(dP ) =

1

n

n∑
i=1

W2
2 (Pi, δ{0})→a.s.

∫
P2(Rd)

W2
2 (P, δ{0})µ(dP ),

the characterization in Theorem 5.1 of convergence in the WP2 sense, through Theorem
5.4, proves the following Strong Law of Large Numbers for barycenters.

Theorem 5.5. Assume that µ ∈ W2(P2(Rd)) and that the barycenter of µ is unique. If
µn is the sample probability giving mass 1/n to the probabilities P1, . . . , Pn obtained as
independent realizations of µ, then the barycenters are consistent, i.e. W2(µ̄n, µ̄)→a.s. 0.

5.2 Overview on trimming

In this section we recall some important properties of probability trimmings and obtain
new results of interest in our current framework. In particular we emphasize those con-
nected with Wasserstein spaces and distances. We begin providing a list of statements
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arising from [2], that can be easily translated to the framework of Polish spaces (metri-
zable, separable and complete spaces).

Proposition 5.6. Let P be a probability in any mesurable space (Ω, σ) and α ∈ [0, 1).
The following statements are equivalent:

(a) The probability P ∗ is a trimmed version of P .

(b) P ∗ is absolutely continuous with respect to P , and dP ∗

dP
≤ 1

1−α

(c) (1− α)P ∗(A) ≤ P (A) for every set A ∈ σ.

Proposition 5.7. Let P be a probability in any abstract space and T a measurable map
taking values in a Polish space. If T transports P to Q, then for every α

Tα(Q) =
{
P ∗ ◦ T−1 : P ∗ ∈ Tα(P )

}
.

Proposition 5.8. Let (E, d) be a Polish space and α ∈ (0, 1).

(a) If P is any probability measure on (E, d), then Tα(P ) is compact for the topology of
weak convergence.

(b) If {Pn}n is a tight sequence of probabilities on (E, d) and P ∗n ∈ Tα(Pn) for every n,
then {P ∗n}n is tight. Moreover, if Pn →w P and P ∗n →w P

∗, then P ∗ ∈ Tα(P ).

Proposition 5.9. If 0 < α < 1 and P ∈ W2(P2(Rd)) or P ∈ P2(Rd), then Tα(P ) is
compact in the W2 topology.

Proof: The proof given in [2] for P ∈ P2(Rd) quickly extends to the case P ∈ W2(P2(Rd))
by handling the uniformly integrability condition in Theorem 5.1. •

Proposition 5.10. Let 0 < α < 1, {Pn}n and P be probabilities on a Polish space (E, d),
and assume that Pn →w P . Then, if P ∗ ∈ Tα(P ), there exists a sequence {P ∗n}n such that
P ∗n ∈ Tα(Pn), for all n, and P ∗n →w P

∗.

Proof: Use Skorohod’s Representation Theorem (see e.g. Theorem 11.7.2 in Dudley [26]),
to obtain E-valued measurable maps X,X1, . . . defined on a probability space (Ω, σ,P)
such that L(Xn) = Pn, L(X) = P , and Xn → X, P−a.s.

By Proposition 5.7, P ∗ ∈ Tα(P ) can be represented as P ∗ = P∗ ◦ X−1 for some
P∗ ∈ Tα(P). By considering P ∗n := P∗ ◦ X−1

n , we obtain probabilities in Tα(Pn), that
obviously converge weakly to P ∗ because Xn → X also P∗− a.s. •

Remark 5.11. Note that any kind of uniform integrability condition like the one in (22)
verified for some sequence {Pn}n is automatically shared for any sequence {P ∗n}n such
that P ∗n ∈ Tα(Pn) for every n. Therefore Proposition 5.10 and (22) imply that if Pn → P
in WP2 , then the sequence {P ∗n}n is precompact in WP2 and any limit belongs to Tα(P ).
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5.3 Proofs of Propositions 2.3 and 3.13

Proof of Proposition 2.3: A similarity transformation, T , can be expressed as a linear
transformation T = cA + b, where c is a constant, A an orthogonal transformation and
b ∈ Rd. If (X, Y ) is an W2-o.t.p. for the probabilities (P,Q), and (AX∗, AY ∗) is an
W2-o.t.p. for (P ◦ A−1, Q ◦ A−1) then we have

W2
2 (P,Q) = E‖X − Y ‖2 = E‖AX − AY ‖2 ≥ W2

2 (P ◦ A−1, Q ◦ A−1)

= E‖AX∗ − AY ∗‖2 = E‖X∗ − Y ∗‖2 ≥ W2
2 (P,Q),

henceW2
2 (P ◦A−1, Q◦A−1) =W2

2 (P,Q), and for T we easily obtainW2
2 (P ◦T−1, Q◦T−1) =

c2W2
2 (P,Q). Therefore, for every Q, we have∫

Ω

W2
2 (µω ◦ T−1, µ̄ ◦ T−1)P(dω) = c2

∫
Ω

W2
2 (µω, µ̄)P(dω)

≤ c2

∫
Ω

W2
2 (µω, Q)P(dω)

=

∫
Ω

W2
2 (µω ◦ T−1, Q ◦ T−1)P(dω).

Since T is invertible, denoting S = T−1, every Q can be written as Q = Q∗ ◦S−1 for some
Q∗, hence we deduce that∫

Ω

W2
2 (µω ◦ T−1, µ̄ ◦ T−1)P(dω) ≤

∫
Ω

W2
2 (µω ◦ T−1, Q∗)P(dω) for every Q∗ ∈ P2(Rd).

•

Proof of Proposition 3.13: Let X be a random vector with L(X) = P̄ , and Tj, j =
1, . . . , k be optimal transport maps for (P̄ , Pj). Denoting Xj = Tj(X), we know that

L(Xj) = Pj but also, by Proposition 4.1, P̄ = L(
∑k

j=1 λjXj). Therefore, by Minkowski
inequality, we have

(E‖X‖2)1/2 = (E‖
k∑
j=1

λjXj‖2)1/2 ≤
k∑
j=1

(E‖λjXj‖2)1/2 =
k∑
j=1

λj(E‖Xj‖2)1/2.

•

5.4 Existence and consistency of the trimmed barycenter

Let us begin noting that, under the additional assumption µ ∈ W2(P2(Rd)), the results
would easily follow from Theorem 5.4 and the compactness of the set Tα(µ) stated in
Proposition 5.9. However, as stated in Theorem 3.3, that assumption is not needed at all.

Proof of Theorem 3.3: Recall definition (11) and assume that µ∗n ∈ Tα(µ) and νn ∈
P2(Rd) verifying ∫

W2
2 (P, νn)µ∗n(dP )→ Varα(µ). (23)
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We already know that Varα(µ) is finite and that we can assume that every µ∗n in the
the minimizing sequence belongs to W2(P2(Rd)), hence the νn’s can be chosen as their
barycenters. Thus, we will take νn = µ̄∗n.

The next step is to show that the sequence {
∫
‖x‖2µ̄∗n(dx)}n as well as that of their

associated radii {rα(µ̄∗n)}n (defined in (12)) are bounded. For the sake of readability, we
state this result as a lemma.

Lemma 5.12. Let {Zn}n be a sequence of r.v.’s defined on some probability space (Ω, σ,P)
such that PZn = µ̄∗n for every n ∈ N. Then, it happens that M := supn E[‖Zn‖2] < ∞.
Moreover, the sequence {rα(µ̄∗n)}n is bounded.

Proof: Take r0 > 0 such that p := µ[BW(δ{0}, r0)] > α. Let us assume that there exists
a subsequence such that limn E(‖Zkn‖2) = ∞. For this subsequence, we have that if
P ∈ BW(δ{0}, r0), then, since W2 is a metric,

W2(P, µ̄∗kn) ≥ W2(δ{0}, µ̄
∗
kn)−W2(P, δ{0}) ≥ (E(‖Zkn‖2))1/2 − r0,

and, consequently, since p > α,∫
W2

2 (P, µ̄∗kn)µ∗kn(dP ) ≥
(
(E(‖Zkn‖2))1/2 − r0

)2
(p− α)→∞,

which contradicts the minimizing property (23) of the chosen sequence with Varα(µ) <∞.
Thus, the sequence {E[‖Zn‖2]}n is bounded. Now, if P ∈ BW(δ{0}, rα(δ{0})), then

W2(P, µ̄∗n) ≤ W2(P, δ{0}) +W2(δ{0}, µ̄
∗
n) ≤ rα(δ{0}) + (E(‖Zn‖2))1/2,

which implies that the set BW(δ{0}, rα(δ{0})) is a subset of the ball with center at µ̄∗n and

radius rα(δ{0})+(E(‖Zn‖2))1/2, and therefore, rα(µ̄∗n) ≤ rα(δ{0})+supm(E(‖Zm‖2))1/2 for
every n ∈ N. •

Returning to the proof of Theorem 3.3, note that, by the first result of the lemma, {µ̄∗n}n
is tight, so w.l.o.g. we can assume that it converges in distribution to some ν0 ∈ P2(Rd).
Moreover, by the lemma, the supports of the associated trimmed probabilities µ∗n are
contained in a common ball BW(δ{0},M + sup{rα(µ̄∗n), n ∈ N}) in P2(Rd), thus we can
also assume that it converges to some µ∗0 ∈ Tα(µ) weakly and (by uniform integrability)
in W2. This implies, by Theorem 5.4, that the limit ν0 of the barycenters must be a
barycenter of µ∗0 and that the convergence is also in W2.

By continuity of W2 we have WP2(µ
∗
n, δ{µ̄∗n})→WP2(µ

∗
0, δ{ν0}), leading also to

lim
n

∫
W2

2 (P, µ̄∗n)µ∗n(dP ) = lim
n
W2

2 (µ∗n, δ{µ̄∗n}) =W2
2 (µ∗0, δ{ν0}) =

∫
W2

2 (P, ν0)µ∗0(dP ),

that shows that ν0 is a trimmed barycenter of µ. •
An easy modification of this proof allows to guarantee a consistency result in the sense

of Theorem 5.4 also without the integrability assumption.

28



Proof of Theorem 3.5:
Since µn →w µ, we can choose a large enough M > 0 such that µn[BW(δ{0},M)] > 1− α
for every n ∈ N. This implies that there exist trimmed versions µ∗n ∈ Tα(µn) with support
contained in BW(δ{0},M). Therefore we have that Varα(µn) ≤ WP2(µ

∗
n, δ{δ{0}}) ≤M, and

lim supn Varα(µn) ≤M <∞.
From this point we can repeat the proof of Lemma 5.12 to guarantee that the sequence

of trimmed barycenters is contained in a large enough ball BW(δ{0},M) and that the
sequence of associated radii (rα(µ̄∗n))n is bounded. The argument at the end of the proof
of Theorem 3.3 applies also here to prove that weakly convergent subsequences of trimmed
barycenters must converge also in W2 and that the limits must be trimmed barycenters
of the limit law µ. •

5.5 Proofs of Theorems 3.8 and 3.10

Recall that F(P0) := {L(AX0 + m) : A ∈ M+
d×d,m ∈ Rd} is the location-scatter family

induced by positive definite affine transformations from the law P0 = L(X0). We assume
throughout that P0 is absolutely continuous as an easy way to guarantee uniqueness of
optimal transport maps and of barycenters, but much of the following analysis does not
depend of this assumption. As we already noted, we can assume w.l.o.g. that P0 has
zero mean and covariance matrix Id. The probabilities in F(P0) are represented as Pm,Σ,
where m is the mean, and Σ the covariance matrix of the probability under consideration.

Relation (16) allows to extend Theorem 2.5 to any family F(P0) in a simple way.
However we will give a direct proof. For this task let us include the following proposition
already obtained in Cuesta-Albertos et al [21]. It will allow us to guarantee that barycen-
ters of families of absolutely continuous probabilities in P2(Rd) cannot be degenerated on
subspaces of dimension lower than d.

Proposition 5.13. Let P,Q ∈ P2(Rd). Let us assume that P ∈ P2,ac and that Q is
supported on the subspace generated by the first q components of Rd, with q < d. Denote
by T 1,...,q the W2 optimal map transporting the marginal probability, P 1,...,q, of P on that
subspace to Q. Then the map T (x1, . . . , xd) := T 1,...,q(x1, . . . , xq) is a W2 optimal map
transporting P to Q.

Proposition 5.14. Let µ ∈ W2(P2(Rd)) and, using the notation employed in (9), assume
that for every ω ∈ Ω, the probability µω is absolutely continuous. Then, the barycenter of
µ cannot be supported on an affine subspace of dimension q < d.

Proof. Let µ ∈ W2(P2(Rd)), such that µω is absolutely continuous for every ω ∈ Ω
and let mω be the mean of µω. Under these conditions, existence and uniqueness of the
barycenter are guaranteed by Proposition 5.3. Since it is trivial to show that the mean of
the barycenter coincides with

∫
Ω
mωP(dω), we can simplify the problem by considering

centered in mean distributions (that is, mω = 0 for every ω) which remain absolutely
continuous. Let µ̄ be the barycenter (with zero mean) of µ, so suppose that it is supported
on a subspace (instead of a general affine subspace) of dimension q < d. We can assume,
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w.l.o.g., that µ̄ is supported on the subspace corresponding to the first q components. Let
µ1,...,q
ω denote the marginal of µω on this subspace. Since µ1,...,q

ω � `q, we know that there
exists an optimal map T 1,...,q

ω transporting µ1,...,q
ω to µ̄. From the previous proposition the

map Tω defined by Tω(x1, . . . , xd) := T 1,...,q
ω (x1, . . . , xq) is an optimal map transporting µω

to µ̄. Therefore we have

W2
2 (µω, µ̄) =W2

2 (µ1,...,q
ω , µ̄) +

d∑
j=q+1

W2
2 (µjω, δ{0}), (24)

where µjω is the j−th marginal of µω.
Let us consider the probability µ∗ := µ̄×µ̄q+1×· · ·×µ̄d and denote by µ̄j the barycenter

of the probability µj ∈ W2(P(R)), which is not degenerated because µjω � `1 for every j
(recall the comments preceding Theorem 2.5). Thus, from (24), we have∫

Ω

W2
2 (µω, µ̄)P(dω) =

∫
Ω

W2
2 (µ1,...,q

ω , µ̄)P(dω) +
d∑

j=q+1

∫
W2

2 (µjω, δ{0})P(dω)

>

∫
Ω

W2
2 (µ1,...,q

ω , µ̄)P(dω) +
d∑

j=q+1

∫
Ω

W2
2 (µjω, µ̄

j)P(dω)

=

∫
Ω

W2
2 (µω, µ

∗)P(dω),

contradicting the character of barycenter of µ̄. •
Proof of Theorem 3.8:
Let P ∈ P2(Rd) and let N be a normal law with the same mean and covariance matrix as
P . From Gelbrich’s bound (5), we have W2

2 (Pi, P ) ≥ W2
2 (Ni, N) for i = 1, . . . , k, hence

k∑
i=1

λiW2
2 (Pi, P ) ≥

k∑
i=1

λiW2
2 (Ni, N) ≥

k∑
i=1

λiW2
2 (Ni, N̄). (25)

Moreover, according to Theorem 2.1, equality in the first inequality is only possible if
Pi ∈ F(P ), i = 1, . . . , k. On the other hand, let P∗ be the probability law in F(P0) with
the same mean and covariance matrix as the barycenter N̄ of {Ni}ki=1. Then we have

k∑
i=1

λiW2
2 (Ni, N̄) =

k∑
i=1

λiW2
2 (Pmi,Σi ,P∗) ≥

k∑
i=1

λiW2
2 (Pmi,Σi , P̄).

Particularizing the first inequality in (25) for Pi = Pmi,Σi , i = 1, . . . , k and P = P̄, the
concatenation with the last chain of inequalities gives that a normal law with the same
mean and covariance matrix as P̄ would be a barycenter for {Ni}ki=1. The uniqueness of
this barycenter implies that P̄ and N̄ must have the same mean and covariance matrix.

The proof ends by considering P = P̄ in (25) because both equalities would imply that
the mean and the covariance matrix of P̄ must coincide with those of N̄ and also that P̄
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can be obtained from every Pi through a positive definite transformation. By Proposition
5.14 these covariance matrices must be nonsingular, thus the barycenters, in particular
P̄ , must be also absolutely continuous and every Pi can be obtained from P̄ through a
positive definite affine transformation, thus {Pi}ki=1 ⊂ F(P̄ ) holds. •

The following lemma can be proved through elementary arguments (see, e.g., equation
(18) in [4]) and will be used in the proof of uniqueness involved in Theorem 3.10.

Lemma 5.15. Let Σi, i = 0, 1, 2 be positive definite matrices and define

Σ0,2 := Σ
−1/2
0

(
Σ

1/2
0 Σ2Σ

1/2
0

)
Σ
−1/2
0 .

Let Xi, i = 1, 2 be random vectors on Rd with nonsingular respective laws P0,Σi ∈ F(P0),
i = 1, 2. Then the inequality

W2
2 (N(0,Σ1), N(0,Σ2)) ≥ trace ((Id − Σ0,2) Σ1) + E

(
‖X2‖2 −X t

2Σ−1
0,2X2

)
holds. If Σ0 = Σ1 and X2 = Σ0,2X1, then the inequality is an equality.

Proof of Theorem 3.10:
The statement about the mean of µ̄ is already known, thus let us simplify the problem
assuming that every µω is centered in mean. By Proposition 5.14, µ̄ must be absolutely
continuous, hence its covariance matrix Σ̄ must be nonsingular. To simplify the notation,
let us denote P̄ = P0,Σ̄ ∈ F(P0). From Gelbrich’s bound we have∫

W2
2 (µω, µ̄)P(dω) ≥

∫
W2

2 (µω, P̄ )P(dω),

hence, by the uniqueness of the barycenter, µ̄ = P̄ , and µ̄ ∈ F(P0). If we consider the
optimal maps T̄ω transporting µ̄ to µω, and define T̄ (x) :=

∫
T̄ω(x)P(dω), we have∫

W2
2 (µ̄, µω)P(dω) =

∫ (∫
‖x− T̄ω(x)‖2µ̄(dx)

)
P(dω)

=

∫ (∫ (
‖x− T̄ (x)‖2 + ‖T̄ (x)− T̄ω(x)‖2

)
P(dω)

)
µ̄(dx)

≥
∫ (∫

‖T̄ (x)− T̄ω(x)‖2µ̄(dx)

)
P(dω) ≥

∫
W2

2 (µ̄ ◦ T̄−1, µω)P(dω)

that (by the uniqueness) is possible only if µ̄ ◦ T̄−1 = µ̄, i.e., if T̄ (x) = x µ̄−a.s.
To finalize, observe that the optimal transport maps T̄ω from µ̄ to µω, being probabi-

lities in F(P0), take the form Σ̄−1/2
(
Σ̄1/2ΣωΣ̄1/2

)1/2
Σ̄−1/2 (see (6)), therefore (since Σ̄ is

positive definite) the relation T̄ (x) = x µ̄−a.s. is equivalent to

Σ̄ =

∫ (
Σ̄1/2ΣωΣ̄1/2

)1/2
P(dω)
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This proves that Σ̄ verifies the integral equation. To prove that the integral equation has
only a positive definite solution, let Σ̂ be any positive definite matrix and define

Σ0,ω := Σ̂−1/2
(

Σ̂1/2ΣωΣ̂1/2
)1/2

Σ̂−1/2 and Σ̂∗ :=

∫
Σ0,ωP(dω).

If we apply Lemma 5.15 first to Σ0 = Σ̂, Σ1 = Σ and Σ2 = Σω, later to Σ0 = Σ1 = Σ̂
and Σ2 = Σω, subtracting the results and integrating, we have that∫

W2
2 (P0,Σ,P0,Σω)P(dω)−

∫
W2

2 (P0,Σ̂,P0,Σω)P(dω) ≥ trace
((
Id − Σ̂∗

)(
Σ− Σ̂

))
.

Thus, if Σ̂ is a solution of the integral equation, we would have that P0,Σ̂ is the barycen-

ter of µ, and the uniqueness of the barycenter gives that Σ̄ = Σ̂. •
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