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Abstract: (1) Background: The aim was to validate an AI-based system compared to the classic method
of reading ultrasound images of the rectus femur (RF) muscle in a real cohort of patients with disease-
related malnutrition. (2) Methods: One hundred adult patients with DRM aged 18 to 85 years were
enrolled. The risk of DRM was assessed by the Global Leadership Initiative on Malnutrition (GLIM).
The variation, reproducibility, and reliability of measurements for the RF subcutaneous fat thickness
(SFT), muscle thickness (MT), and cross-sectional area (CSA), were measured conventionally with
the incorporated tools of a portable ultrasound imaging device (method A) and compared with the
automated quantification of the ultrasound imaging system (method B). (3) Results: Measurements
obtained using method A (i.e., conventionally) and method B (i.e., raw images analyzed by AI),
showed similar values with no significant differences in absolute values and coefficients of variation,
58.39–57.68% for SFT, 30.50–28.36% for MT, and 36.50–36.91% for CSA, respectively. The Intraclass
Correlation Coefficient (ICC) for reliability and consistency analysis between methods A and B showed
correlations of 0.912 and 95% CI [0.872–0.940] for SFT, 0.960 and 95% CI [0.941–0.973] for MT, and 0.995
and 95% CI [0.993–0.997] for CSA; the Bland–Altman Analysis shows that the spread of points is quite
uniform around the bias lines with no evidence of strong bias for any variable. (4) Conclusions: The
study demonstrated the consistency and reliability of this new automatic system based on machine
learning and AI for the quantification of ultrasound imaging of the muscle architecture parameters of
the rectus femoris muscle compared with the conventional method of measurement.

Keywords: artificial intelligence; disease-related malnutrition; muscle architecture parameters;
reproducibility; reliability; ultrasound imaging

1. Introduction

Disease-related malnutrition (DRM) [1] is a prevalent health issue that poses a signifi-
cant challenge in our healthcare system, affecting 20% to 50% of hospitalized patients [2,3].
Its presence can lead to increased complications and mortality risk. The Effect of Early Nu-
tritional Support on Frailty, Functional Outcomes, and Recovery of Malnourished Medical
Inpatients Trial EFFORT study demonstrated that patients diagnosed with malnutrition
according to Global Leadership Initiative on Malnutrition (GLIM) criteria were at higher
risk for adverse clinical outcomes [4]. This condition also raises hospitalization costs [5].
Malnutrition may be linked with other conditions such as sarcopenia, characterized by
muscle mass and function loss, which was traditionally associated with aging and frailty,
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but in 2019, the European Working Group on Sarcopenia in Older People (EWGSOP2)
raised secondary sarcopenia associated with several diseases [6]. Sarcopenia might affect
up to 15% of malnourished patients and 32% of cachexic older adults, increasing the risk
of complications in different patient groups [7,8]. Scientific nutritional societies advise
early medical nutrition treatment for at-risk medical and surgical patients to provide ap-
propriate Medical Nutrition Therapy and prevent potential complications. In this context,
measuring muscle mass is crucial for diagnosing DRM and loss of muscle mass. Muscle
ultrasound, which evaluates fat-free mass and fat mass, is an emerging technique that
quantifies muscle in malnutrition [8]. It has advantages over computed tomography (CT),
magnetic resonance imaging (MRI), or dual photon X-ray absorptiometry (DXA) techniques
due to being cheap, portable, and non-invasive [9]. Additionally, bioelectrical impedance
analysis (BIA) of muscle mass may be preferable to DXA; however, specific populations
require validated prediction equations [6]. Furthermore, while DXA and BIA have cut-off
values for assessing muscle quantity but not quality indexes; CT and MRI can measure
both quantity and quality, although clear cut-off points are still undefined [10]. Ultrasound
assessment of muscle volume, area, fascicle length, and muscle pennation angle in both
transverse and longitudinal positions is a valuable clinical technique [10].

However, there remains a need for the standardization of methods and measures.
The SARCopenia through Ultrasound (SARCUS) Working Group proposed anatomical
landmarks for ultrasonographic muscle assessment in 2018 with guidelines on patient
positioning, system settings, and components to be measured [10]. Recently updated by
the SARCUS group, ultrasound’s application to measuring sarcopenia includes detailed
descriptions of measurement points and muscle parameters for various muscles and muscle
groups [11]. Previously, we described the standardization of ultrasound measurement of
rectus femoris specifically tailored for clinical practice [9]. The main problem of muscle
ultrasound is the great interobserver variability that exists. Therefore, automatic analyzing
systems based on AI and machine learning algorithms can help homogenize the results
obtained with muscle ultrasound. In this context, the objective of this study was to validate
the use of a novel software tool for medical conventional ultrasound B-mode Ultrasound
Imaging System. This automatic system is a cloud-based web application software (i.e.,
software as a medical device) for the visualization, quantification, and analysis of medical
ultrasound images with the capability to be used with any computer and compatibility
with the DICOM®-Digital Imaging and Communications in Medicine, the international
standard for medical images and related information [12]. AI is developing fast. It is right
now changing our lives by improving healthcare (e.g., making diagnosis more precise,
enabling better prevention of diseases). AI is a collection of technologies that combine data,
algorithms, and computing power. Advances in computing and the increasing availability
of data are therefore key drivers of the current upsurge of AI [13].

As ultrasound instruments have become smaller, less expensive, and easier to use,
diagnostic ultrasound has become increasingly popular among a wide variety of physicians.
The ultrasound imaging technique has replaced or complemented many radiographic
and nuclear medicine procedures and has opened new areas of diagnostic investigation,
especially in the evaluation of patients with DRM through the study of the quality and
quantity of muscle.

Considering the importance that muscle ultrasound, and especially RF, has in nutri-
tional assessment and the possible interobserver variability in this technique, it is important
to develop automatic assessment systems that allow obtaining reliable parameters from
the ultrasound images captured in real-world practice. Without a doubt, these AI analysis
systems are still unknown outside of research areas, however, they will be implemented in
many areas of clinical image analysis. Clinical studies are scarce, so our work attempts to
validate the new system in real clinical practice.

The aim was to validate an AI-based system compared to the classic method of reading
ultrasound images of the rectus femur (RF) muscle in a real cohort of patients with disease-
related malnutrition.
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2. Materials and Methods
2.1. Subjects

A total of one hundred consecutive adult patients with disease-related malnutrition
(DRM) aged 18 to 85 years were considered eligible if they had been diagnosed (with DRM)
during the visit to our Nutritional Unit and provided informed consent.

Malnutrition was assessed by the Global Leadership Initiative on Malnutrition (GLIM)
criteria [14].

The constructed dataset consisted of two sets of measurements, one corresponding to
the measurements realized by a conventional method for rater 1 (i.e., method A) and the
other one is the set of measurements performed by PIIXMEDTM, rater 2 (i.e., method B).
The raters were kept blinded to the initial findings, (i.e., measurements for each muscle, for
each MAP parameter, and the same variable for each rater).

2.2. Inclusion/Exclusion Criteria

Exclusion criteria included liver dysfunction (aminotransferase levels > 3 times the up-
per reference limit); chronic renal failure (glomerular filtration rate < 45 mL/min/1.73 m2);
previous Intensive Care Unit (ICU) stay during the last hospital admission; cancer pa-
tients with an Eastern Cooperative Oncology Group performance status ≥ 3 points; eating
disorders; any musculoskeletal disease preventing unassisted walking ability; dementia,
cognitive impairment, or any neurological/psychiatric condition that may interfere with
study procedures; life expectancy of less than six months; and refusal to sign the informed
consent form.

2.3. Ethics Committee

The study protocol received approval from the Ethics Committee for Clinical Research
of the Health Council of HCUVA (protocol code PIP23341, approval date November 2023),
as well as from the individual Institutional Review Boards of the participating hospitals.
Written informed consent was acquired from all patients involved in the study.

2.4. Screening Process

In all patients, a conventional ultrasound determination of the rectus femoris (RF) was
performed by the same investigator, capturing the ultrasound images and subsequently
analyzing them with the automatic system PIIXMEDTM, (Dawako Medtech S.L., Valencia,
Spain). This cloud-based web system is a convolutional neural network (CNN), with a
U-net architecture, see Figure 1.
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Figure 1. The U-net is a convolutional network architecture for fast and precise segmentation of
images. Up to now, it has outperformed the prior best method (a sliding-window convolutional
network). (a) Generic U-Net architecture; (b) specifically developed U-Net architecture for auto-
matic musculoskeletal system segmentation depicting the constitutive layers in the contraction and
expansion phases.
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Ultrasound assessments of the unilateral (right) RF were conducted in all patients at
risk of malnutrition by a skilled medical sonographer who was unaware of the clinical data
and the other results of the nutritional assessment. A portable ultrasound system with a
4–10 cm linear probe (UProbe L6C Ultrasound Scanner, Guangzhou Sonostar Technologies
Co., Ltd., Guangzhou, China) was utilized for anterior thigh muscle measurements while
the patient lay supine with extended and relaxed knees.

The acquisition site was located two-thirds along the length of the femur, between
the anterior superior iliac spine and the upper edge of the patella. The transducer was
positioned perpendicularly to minimize pressure on the muscle during measurement using
excessive contact gel.

All parameters were measured manually using the incorporated tools of the ultrasound
device averaged over three consecutive measurements in the dominant leg, including
the cross-sectional area (CSA) in cm2, the Y-axis (Transverse muscle thickness (MT)) in
millimeters (mm) of the quadriceps rectus femoris muscles, and subcutaneous fat thickness
(SFT) in mm. The Image JR program version 1.54 f (National Institutes of Health NIH,
Bethesda, MD, USA) was used to determine echogenicity; this program is a method to treat
radiological images developed by the National Health Institute (NIH). After the acquisition
of the ultrasound images and the subsequent processing of these images by the PIXMEDTM

system, the following analysis methodology was conducted.

1. Compare the measurements of the unilateral (right) RF of the patients performed
by the expert evaluator (rater 1) using the standard tools included in the ultrasound
image device (i.e., method A), see Figure 2, with those obtained by applying the
PIIXMEDTM Ultrasound Imaging System (Dawako Medtech S.L., Valencia, Spain)
(rater 2) (i.e., method B) [15–19] on the same acquired raw images, see Figures 3 and 4.

2. Calculate and evaluate the inter-rater reliability of quantitative muscle architecture
parameters (MAP) of the unilateral (right) RF measurements performed by the expert
evaluator (rater 1) (i.e., method A) against the measurements using the automated
PIIXMEDTM Ultrasound Imaging System (rater 2) (Dawako Medtech S.L., Valencia,
Spain) (i.e., method B) on the same acquired raw images.

The MAP variables measured and analyzed by PIIXMEDTM in this study were the
RF thickness and cross-sectional area in the transverse plane (MT, and CSA) and the
subcutaneous fat thickness (SFT) in its longitudinal plane.
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Figure 2. (a) Acquired raw ultrasound image of the unilateral (right) quadriceps rectus femoris
muscle in the transverse plane measure by rater 1 (i.e., method A); (b) Measurement of the variables
by the conventional method using the ultrasound imaging device tools, by rater 1 (i.e., method A),
for the parameters of the cross-sectional area, the Y-axis, i.e., transverse muscle thickness (MT), and
the subcutaneous fat thickness (SFT).
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thickness and cross-sectional area in the transverse plane (MT, and CSA) and the subcu-
taneous fat thickness (SFT) in its longitudinal plane.  

2.5. Statistical Analysis 
Previous statistical analysis and power and sample size determination were per-

formed to ensure the study was adequately powered to detect meaningful effects and 
achieve specific statistical goals. The level of statistical power was set to 80% and a curve 
of sensitivity was obtained with a result of 84 subjects as the sample size. The factors for 
calculating the sample size were the level of 95% confidence interval, a significance level 
(α) of 5%, and the variability (standard deviation) of the data.  

Figure 3. (a) Acquired raw ultrasound image of the unilateral (right) quadriceps rectus femoris
muscle in the transverse plane obtained by rater 1, scaled and automatically segmented (red color
line) by PIIXMEDTM (rater 2—method B); (b) PIIXMEDTM processing (i.e., rater 2—method B) of
the segmented transverse ultrasound image to obtain the results of CSA (green color), and MT (three
yellow lines and their mean value) parameters.
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Figure 4. (a) Acquired raw ultrasound image of the unilateral (right) quadriceps rectus femoris
muscle in the longitudinal plane obtained by rater 1 and scaled by PIIXMEDTM (rater 2—method B);
(b) PIIXMEDTM processing (i.e., rater 2—method B) of the automatically segmented longitudinal
ultrasound image, upper and deep aponeurosis (green color), to obtain the results of the SFT (three
red lines and their mean value) parameter and the longitudinal thickness (four yellow lines and their
mean value), MT, not used in this study.

2.5. Statistical Analysis

Previous statistical analysis and power and sample size determination were performed
to ensure the study was adequately powered to detect meaningful effects and achieve
specific statistical goals. The level of statistical power was set to 80% and a curve of
sensitivity was obtained with a result of 84 subjects as the sample size. The factors for
calculating the sample size were the level of 95% confidence interval, a significance level
(α) of 5%, and the variability (standard deviation) of the data.

It is important to assess the number of measurement errors by evaluating the repro-
ducibility and reliability of measurements [20]. In the context of a study, it is important to
consider other statistical measures in conjunction with assessing reproducibility (i.e., the
variation in the same measurement made on a subject under changing circumstances or by
different operators).
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To evaluate the magnitude of error between repeated measurements, the Coefficient of
Variation (CV) was used, which is a standardized measure of the dispersion of a probability
distribution [21]. The CV is a statistical measure used to assess the relative variability of
a set of data points, expressed as a percentage and calculated by dividing the standard
deviation by the mean and then multiplying by 100. The Coefficient of Variation is par-
ticularly useful when comparing the variability of datasets with different units or scales.
It provides a standardized measure, allowing for a more meaningful comparison of the
relative variability between datasets.

After the normality of the data was assessed using Kolmogorov–Smirnov test statistics
for normally distributed variables, such as MT, the correlation between method A and
method B was estimated using Pearson’s (i.e., r) linear relationship. For non-normally
distributed variables like SFT and CSA, the correlation between method A and method
B was estimated using Spearman’s rank correlation test for association between the two
variables, (i.e., ρ).

Also, Linear Regression analysis was applied to evaluate reproducibility by obtaining
the percentage of the explained variation (i.e., r2), which represents the proportion of the
variance in the dependent variable that can be explained by the independent variable in a
linear model, being a measure of the goodness of fit.

Then, the Intraclass Correlation Coefficient (ICC) was used to evaluate reliability to
assess the consistency or agreement under changing conditions or different raters. There
are three versions of the ICC introduced in the literature depending on the experimental
design and goals of the study [22–24]. The commonly used models of ICC are as follows:
one-way random effects, two-way random effects, and two-way mixed effects. The one-
way random effect was selected for the objective of this study, (i.e., assessing the reliability
and consistency of measurements made by different raters or instruments on the same
subjects). The classification of Intraclass Correlation Coefficient (ICC) scores varies from 0
to 1. Higher ICC values indicate greater agreement or consistency between measurements.
ICC values above 0.75 are considered excellent, between 0.60 and 0.74 good, between 0.40
and 0.59 fair to moderate, and below 0.40 poor.

Together with ICC, the Bland–Altman analysis method was used [25] to assess the
agreement between two measurement techniques or observers. It is a scatter plot of the
differences between the two methods against their average. The analysis provides insights
into the agreement, bias, and limits of agreement between the two methods. The Bland–
Altman plot is widely used to visualize the difference in two continuous measurements
from the same individual, graphed according to the average value of the two measures.
In terms of the musculoskeletal system, this is highly valuable to assess measurements
taken on the same patient by two different operators. This method can also be used for
assessing two measurements made by the same operator or two measurements using
different techniques or in different environments [20].

The software package used for statistical analysis and calculations was RStudio
2023.06.0 Build 421—(Posit Software, PBC formerly RStudio, PBC. The open-source data
science company, 250 Northern Ave, Suite 420, Boston, MA, USA 02210 844-448-1212).
RStudio is a complete, integrated software package that provides all the data manipulation,
visualization, statistics, and automated reporting.

3. Results
3.1. Dataset

The database of samples in the study was made up of 100 patients (40% male and
60% female), see Table 1. All patients had nutritional DRM, with one phenotypic and one
etiological criteria [15].
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Table 1. Parameters of patients with DRM.

Parameters

Age (years) 56.9 ± 16

Weight (kg) 55.6 ± 14.7

BMI (kg/m2) 20.9 ± 4.3

Sex (male/female) 40/60

3.2. Summary and Descriptive Analysis

The calculation of the univariate summary statistics for all the variables in the dataset.
The number of observations, mean value, standard deviation, standard error, minimum
and maximum values, skewness, and kurtosis of the distributions for SFT and MT are
shown in Table 2.

Table 2. Summary and descriptive statistical analysis of the dataset.

Subcutaneous Fat
Thickness (SFT)

Muscle
Thickness (MT)

Cross-Sectional
Area (CSA)

Method A Method B Method A Method B Method A Method B

N 100 100 100 100 100 100
Mean 0.70 0.74 1.10 1.04 3.47 3.52

SD 0.41 0.42 0.34 0.29 1.27 1.30
Min 0.00 0.03 0.50 0.53 1.06 1.10
Max 2.30 2.20 2.25 2.04 9.30 9.46

Skewness 1.21 0.93 0.54 0.42 1.00 0.97
Kurtosis 1.94 0.78 0.27 0.11 3.08 2.96

SE 0.04 0.04 0.03 0.03 0.13 0.13

3.3. Coefficient of Variation (CV)

The CV measurements obtained using the two methods showed similar values with
no significant differences in absolute values and coefficients of variation: 58.39–57.68%
for SFT, 30.50–28.36% for MT, and 36.50–36.91% for CSA using method A and method B,
respectively. The results are shown in Table 3.

Table 3. The table shows the CV for the distributions of method A and method B for each of the
MAP variables.

Coefficient of Variation (%)
Method A and Method B

Method Subcutaneous Fat Thickness
(SFT)

Muscle Thickness
(MT)

Cross-Sectional Area
(CSA)

A 58.39 30.50 36.50
B 57.68 28.36 36.91

3.4. Pearson and Spearman Correlation Coefficients

Table 4 shows the results of correlations between methods A and B, showing sig-
nificantly higher values for very strong correlations, with 0.864 Spearman’s monotonic
positive correlation and p (value) = 5.2 × 10−32 for SFT (a); 0.969 for Pearson’s linear
relationship correlation and p (value) = 4.8 × 10−61 for MT (b); 0.991 Sperman’s correlation,
and p (value) = 1.9 × 10−86 for CSA (c).
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Table 4. Correlations between methods.

Correlation between Method A and Method B

Variables Correlation p_value

Subcutaneous Fat Thickness (SFT) 0.864 + 5.2 × 10−32

Muscle Thickness (MT) 0.969 * 4.82 × 10−61

Cross-Sectional Area (CSA) 0.991 + 1.92 × 10−86

* Pearson’s Correlation; + Spearman’s Correlation.

3.5. Linear Regression Analysis

In the context of Linear Regression analysis, the R-squared (r2) value represents the
proportion of the variance in the dependent variable (i.e., method B) that can be explained
by the independent variable (i.e., method A) in the model. It is a measure of the goodness
of fit of the regression model and describes how well one variable can be used to predict
the value of the other or the strength of their relationship. Figure 5 also shows (in set)
the results obtained for R-squared (r2) with values of 0.83 and p (value) = 4.8 × 10−40 for
SFT (a); 0.94 and p (value) = 4.8 × 10−61 for MT (b); and 0.99 and p (value) = 6.4 × 10−102

for CSA (c).
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3.6. Intraclass Correlation Coefficient (ICC)

The Intraclass Correlation Coefficient (ICC) results are detailed in Table 5. where the
ICC coefficients are shown for the three variables (i.e., SFT (a), MT (b), and CSA (c)) under
the three first columns of the table, with Excellent Reliability (ICC ≥ 0.9) indicating almost
perfect agreement for the Single Fixed Raters and Average Fixed Raters.

Table 5. Complete detail of the statistical results for the ICC and Bland–Altman analysis of the MAP
variables: (a) subcutaneous fat thickness (SFT); (b) muscle thickness (MT); (c) cross-sectional area (CSA).

Subcutaneous Fat Thickness (SFT)

ICC Bland Altman Test

Raters ICC
Coeff. CI 95% Mean

Diff. SE Diff. CI 95%
Diff.

SD
Diff.

Lim. 95%
Agreement

Single fixed raters 0.912 [0.872, 0.940] −0.04 0.017
[−0.07,
−0.005] 0.174 [−0.38, 0.30]Average fixed raters 0.954 [0.931, 0.969]

(a)

Muscle Thickness

ICC Bland Altman Test

Raters ICC
Coeff. CI 95% Mean

Diff. SE Diff. CI 95%
Diff.

SD
Diff.

Lim. 95%
Agreement

Single fixed raters 0.960 [0.941, 0.973]
0.065 0.009 [0.047, 0.082] 0.089 [−0.11, 0.24]Average fixed raters 0.980 [0.970, 0.986]

(b)

Cross-Sectional Area (CSA)

ICC Bland Altman Test

Raters ICC
Coeff. CI 95% Mean

Diff. SE Diff. CI 95%
Diff.

SD
Diff.

Lim. 95%
Agreement

Single fixed raters 0.995 [0.993, 0.997] −0.051 0.013
[−0.076,
−0.026] 0.127 [−0.3, 0.20]Average fixed raters 0.998 [0.996, 0.998]

(c)

3.7. Bland–Altman Analysis and Plots

It involves creating a scatter plot of the differences between the two methods against
their average. The analysis provides insights into the agreement, bias, and limits of agree-
ment between the two methods.
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As can be seen in the plots in Figure 6, there is a consistent spread of points for the three
variables (i.e., SFT (a), MT (b), and CSA (c)), with a few outliers falling outside of the LoA.
These limits of agreement indicate where the true mean (and future measurements) is likely
to lie. Also, the spread of points is quite uniform around the bias lines with no evidence of
strong bias in any variable. In the case of the SFT (a)—bias = −0.04, and LoA = [−0.38, 0.30];
for MT (b)—bias = 0.065, and LoA = [−0.11, 0.24]; and for CSA (c)—bias = −0.051, and
LoA = [−0.3, 0.20]. Table 5 describes all the quantitative results of the Bland–Altman analysis.
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4. Discussion

Our study shows how the automatic ultrasound image analyzing system based on
machine learning and AI can analyze ultrasound images of the rectus femoris (RF) with the
same consistency and reliability as a trained sonographer.

There is an increasing focus in the research on assessing muscle mass using ultrasound.
New studies indicate that measuring the area of the QRF muscle can be correlated with
other factors such as fat-free mass, handgrip strength, and exercise capacity [26,27]. The
clinical significance of ultrasound lies in its ability to assess muscle mass involvement in
diagnosing malnutrition [26,28].

One of the significant challenges related to the effectiveness of ultrasound is in diag-
nosing malnutrition in various clinical scenarios. While specific cut-off points have not
been determined yet, there are already publications attempting to identify the RF area with
suitable sensitivity and specificity as a criterion for malnutrition. For instance, a multicenter
study has established that a muscle area at the midpoint of the femur below 6 cm2 for men
or 4.47 cm2 for females demonstrates adequate sensitivity and specificity in diagnosing
malnutrition associated with PEW (protein-energy wasting) hemodialysis syndrome, a
condition characterized by malnutrition, inflammation, and muscle wasting syndrome [27].

Despite the previously mentioned data, conventional analysis of ultrasound images of
the muscle by an observer can have great variability and is also time-consuming during
clinical consultation. If there is doubt, the arrival of automatic systems for analyzing
ultrasound images could improve these limitations.

Our automatic system based on machine learning for the visualization and automatic
analysis of medical ultrasound images is a cloud-based diagnostic aid tool referred to
herein as a biomarker identification system for the generation, processing, and reporting of
biosignal biomarkers and quantitative ultrasound image biomarkers. The cloud-based web
system is a convolutional neural network (CNN) with a U-net architecture designed for the
automatic segmentation of regions of interest (ROI). The U-Net receives images as input
and returns segmentation maps as output. This architecture has been developed by the
department of computer science at the University of Freiburg [29].

The network architecture for this study was designed to work with fewer training
images and produce more accurate segmentations than previous proposals. The processing
algorithms are based on the open-source Python package for the extraction of features
and image biomarkers from medical imaging (i.e., Radiomics) [30]. Radiomics is a rapidly
developing field of research focused on the extraction of quantitative features from medical
images, thus converting these digital images into minable, high-dimensional data, which
offer unique biological information that can enhance our understanding of disease processes
and provide clinical decision support [31,32].

Our automatic system supports feature extraction in 2D for conventional B-Mode
ultrasound imaging and can be used to calculate single values per feature for a region of
interest (i.e., segment-based). From the features identified in the images and the application
of the different algorithms, diverse biomarkers are extracted and processed to analyze,
among others, the anatomical measures, the mean echogenicity of the region of interest
(ROI), the muscle quality based on histogram analysis of echogenicity, the texture, and
other non-linear algorithms like fractality (i.e., fractal dimension).

These biomarkers are automatically integrated into a structured report together with
the results of the analysis to assist the physician in the diagnosis and assessment of a patient.
Other automatic analyzing systems in ultrasound, based on machine learning and AI, are
developed for pathologies such as breast cancer [33,34] or thyroid nodule characteriza-
tion [35], generating in these pathologies an improvement in the speed of diagnosis and
the accuracy of the prognoses compared with traditional methods. An example in nutrition
is the evaluation of sarcopenia in patients with hepatocellular carcinoma [36].

To date, there is no automatic machine learning system that has evaluated muscle mass
in patients with malnutrition related to disease, this being the first work to demonstrate
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its consistency and reliability in a pathology such as DRM with a high prevalence in our
area [37].

Our study has some limitations. Firstly, it has only been conducted in patients with
malnutrition related to disease, therefore it can only be generalized to patients with this
pathology. Secondly, it was conducted in a single center, and there may be some selection
bias. Thirdly, although the use of US is not a widespread technique in the determination of
muscle mass in patients with DRM, clinical guidelines recommend its use [14] and a recent
study has shown a good correlation with CT as a gold standard technique [38]. Fourthly,
only one muscle has been evaluated, the RF. Finally, this automated method should be
also replicated (and cross-validated) with another cohort and against MRI/CT [39,40]
However, it also has strengths: the determination of the RF ultrasound image was perfectly
standardized and only one researcher performed the ultrasounds on all patients.

5. Conclusions

Our study demonstrated the consistency and reliability of our new automatic system
based on machine learning and AI for visualization and an automatic analysis system for
the quantification of ultrasound imaging of the rectus femoris muscle compared with a
conventional analysis by ultrasound in patients with disease-related malnutrition. These
findings should be reproduced in future studies with a larger sample size and using other
muscle groups. Without a doubt, this automated ultrasound image analysis system based
on machine learning can help in the assessment of muscle mass in patients at risk of
malnutrition and in patients with other entities.
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