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Abstract

Motivated by applications in physical and biological sciences, we developed a

Frequency Modulated Möbius (FMM) model to describe rhythmic patterns in

oscillatory systems. Unlike standard symmetric sinusoidal models, FMM is a flex-

ible parametric model that allows deformations to sinusoidal shape to accommodate

commonly seen asymmetries in applications. FMM model parameters are easy to

estimate and the model is easy to interpret complex rhythmic data. We illustrate

FMM model in three disparate applications, namely, circadian clock gene expres-

sion, corticoptropin levels in depressed patients and the temporal light intensity

patterns of distant stars. In each case, FMM model is demonstrated to be flexible,

scientifically plausible and easy to interpret. Analysis of synthetic data derived

from patterns of real data, suggest that FMM model fits the data very well both

visually as well as in terms of the goodness of fit measure total mean squared error.

An R language based software for implementing FMM model is available.

1 Introduction

Periodic data arise in a variety of contexts, such as the circadian clock, cell-cycle, hor-

mone levels, astrophysics, although the scientific question of interest varies according to
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the application. In the case of gene expression studies involving cell-cycle or circadian

clock (chronobiology), researchers are typically interested in identifying genes with rhyth-

mic patterns, as those shown in panels (a) and (b) of Figure 1, and various statistical

parameters associated with them, whereas astrophysicists are often interested in classi-

fication of stars using temporal patterns of light emitted from them (panels (c) and (d)

in Figure 1). Unlike the typical daily stock market or weather patterns data, these data

are generally less dense. Secondly, the parameters and questions of interest in time series

analysis are generally different from the parameters and questions asked in oscillatory

data considered in this paper, such as cell-cycle, circadian clock etc.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1: Top: Temporal gene expression patterns along two periods of the circadian genes

(a) Iqgap2 and (b) Lonrf3. Temporal patterns of light emitted from (c) Fundamental

Cepheides and (d) Mira variable stars. Bottom: FMM fittings for panel (a), (b), (c) and

(d).

There are two classes of methods in the literature. One class of methods describes

shapes using mathematical inequalities, called order restrictions [1]. A strength of these

methods is that they are very flexible because they do not rely on a mathematical function

to describe shape. [1] characterized the up-down-up (or down-up-down) patterns in terms

of order around a unit circle called the circular signals. They demonstrated that these

order restrictions-based methods describe rhythmic patterns better than the standard

methods used in the literature. However, a weakness of these order restrictions-based

methods is that they are not designed to estimates important parameters of rhythmic

patterns.

The second class of methods, the focus of this paper, are based on a mathematical

function such as variations of cosine function. A commonly used model is the Cosinor

model (COS) [2]. Whenever they fit the data well, these methods are useful for describing

various characteristics of rhythmic patterns.

The COS model is characterized by a phase and amplitude within a period and is
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member of a family of models called monocomponent models. Following [3], a rhyth-

mic signal can be described by a sum of monocomponent models, each defined by a

phase and an amplitude. A wide range of representations of rhythmic signals exist in

the literature. Representations vary in the number of monocomponents and whether the

amplitude and/or phase are considered to be fixed or variable. In particular, represen-

tations with constant amplitude and variable phase are known as Frequency Modulated

(FM) representations. For a review on this subject one may refer to [3–6].

One of the popular and widely used representations is the Fourier Decomposition

(FD) which is a multicomponent representation where each component has a fixed time

amplitude. The COS model is a special form of FD with only one component and it is

an appropriate model if the expected functional response is sinusoidal within a period.

If a gene displays two peaks (or troughs) within a single period, such as a Quasi-cyclical

pattern [7], then the two-component FD model, denoted by FD2, is potentially a useful

model. However, a problem with FD2 model is that it can potentially introduce two

peaks (or troughs) even though scientifically only one peak within a period is justified.

Astrophysicists conduct temporal studies to investigate the properties of light patterns

emitted by distant stars [8] and classify them into groups. In some cases, temporal

patterns of the observed light intensities from these stars display asymmetrical shapes

(panels (c) and (d) in Figure 1) that cannot be captured by COS or even two component

models such as FD2. Since the family of FD models is rigid, researchers use a large

number of components, as many as 10 or even 15 in some cases, to capture the shape

of light patterns. Despite using that many components, the asymmetries in the data

cannot always be captured by FD models. Furthermore, with increase in the number

of components one may lower the bias but increase variability, resulting in over-fitting

issues. On the other hand, fewer components may result in over smoothed curves with

large bias but low variability. Observed light patterns from each star suggest one or

at most two oscillations within a period. Thus, higher order FD models may not be

ideal to describe these temporal data. Moreover, other widely used methods to analyse

oscillatory signals such as JTK Cycle [9] and RAIN [10] are nonparametric and do not

help to describe the underlying physical phenomenon properly.

Motivated by these limitations of the existing methodologies and urgent need for

flexible, scientifically interpretable, parametric models for rhythmic data, in this article

we introduce a novel model called Frequency Modulated Möbius (FMM) model.

Suppose X(ti), t1 < t2 < . . . < tn, are real valued time course observations. We model

it using a Möbius phase, as follows.

Definition 1. FMM model .

X(ti) = µ(ti) + e(ti) = M + Acos(φ(ti)) + e(ti), i = 1, ..., n;

1. M ∈ <, A ∈ <+,
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2. φ(t) = β + 2 arctan(ω tan( t−α
2

));α, β,∈ [0, 2π], ω ∈ [0, 1]

3. (e(t1), . . . , e(tn))′ ∼ Nn(0, σ2I).

Methodological details that justify the mathematical formulation of this model are

included in Subsection 1.1 of the Supplementary Material. Note that rather than using the

linear link function for the phase angle φ, as done in COS model, we use the Möbius link

proposed in [11, 12] which allows for asymmetric shapes as seen in the examples provided

in this paper. In particular, Proposition 1 in Subsection 3.1 demonstrates that, with the

above choice of the link function, FMM is suitable for describing rhythmic up-down-

up (or down-up-down) patterns. The five parameters of the FMM model characterize

various aspects of a rhythmic pattern. M and A are intercept and scale parameters

measuring the baseline level and the amplitude of the signal, respectively. α is a phase

translation parameter while β and ω are parameters describing the shape. Specifically, an

extreme spiked signal corresponds to the case ω = 0 and a sinusoidal curve to ω = 1, thus

to the COS model, and in that case ϕ = β − α is the well known acrophase. Subsection

1.2 in the Supplementary Material includes figures illustrating the deformations from

sinusoidal to spiked shapes in terms of the parameters and a detailed discussion about

the parameters, respectively.

Other important parameters that are of practical use are peak and trough times,

denoted by tU and tL, respectively. They are derived from FMM as follows:

tU = α + 2 arctan(
1

ω
tan(
−β
2

))

tL = α + 2 arctan(
1

ω
tan(

π − β
2

)),

and the values of the signal at these points are derived as:

ZU = M + A

ZL = M − A

It is important to note that FMM is a nonlinear parametric regression model. Asymp-

totic properties of estimators of parameters of nonlinear models, such as asymptotic un-

biasedness and consistency are well-known in the literature [13]. Thus, asymptotic like-

lihood ratio tests and confidence intervals (CI) for individual parameters can be derived

using standard asymptotic statistical methods [13].

2 Results

We illustrate and discuss the performance of FMM model using real and synthetic tem-

poral data. For real data, we used publicly available data on (i) circadian clock gene

expression, (ii) corticoptropin hormonal measurements in clinically depressed patients,
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and (iii) light intensities from variable stars. Specifically, gene expression data were orig-

inally recorded along two periods and then they were averaged. Hormonal and star data

were directly given along a unique period but corresponding to averaged values too. In

each case, we compared FMM with FD based methodologies. In particular, we focus

on COS and FD2.

To further validate our findings, we generated synthetic data using parameters derived

from the above real data. Due to space limitations, results of simulation study are

relegated to Subsection 3.3 in the Supplementary Material. Results therein reinforce our

findings of this section that FMM is indeed more flexible and a better fitting model than

the existing models.

2.1 Circadian Gene expression patterns

Several researchers have studied the two-period circadian clock gene expression data ob-

tained from in-vivo experiments on mouse liver and pituitary gland, and in-vitro experi-

ment data on NIH3T3 and the U2OS human cell lines. All four data are available from the

NCBI GEO website (http://www.ncbi.nlm.nih.gov/geo/). These are very comprehensive

data which are useful for evaluating the performance of a model fitting strategy.

Here, Mmse denotes the averaged mean squared error (mse) of each data set, details

for model performance measures are given in Subsection 3.3. Since FMM is by design

a single peak (trough) model with a more flexible shape than COS, we expect FMM

to perform the best followed by COS model. As seen in Table 1, in all four data sets,

FMM has the smallest Mmse compared to COS and FD2 models. In some cases the

reduction in Mmse of FMM relative to COS was dramatic. We notice a 33% reduction

in the case of U2OS cell-line data and a 41% reduction in the case of mouse liver data.

The above dramatic performance of FMM relative to COS function is graphically

illustrated in Figure 2 for a sample of rhythmic circadian genes. In each case, not only

FMM fits the data better than COS, but more importantly, the times to peak gene

expression estimated by the two methods are dramatically different, the difference rang-

ing from 4 to 7 hours approximately, see for instance panels (a) and (c) in Figure 2. In

their seminal work [14] noted that phases of circadian clock genes play a key role in drug

delivery to patients, and that it is critical to estimate the phases of circadian clock genes

as accurately as possible. In view of [14], an error in the range of 4 to 7 hours could po-

tentially have important clinical and pharmacological effects. From the figures displayed,

it is clear that FMM provides a better description of these genes. The performance of

FMM was equally surprising in the case of quasi-cyclical shaped pattern (patterns with

more than one local maximum or minimum within each period), by design, FD2 is ex-

pected to have the smallest Mmse. However, surprisingly, FMM was very competitive

with FD2 in terms of Mmse. Apart from the mouse liver data, in all other cases FMM

had smaller Mmse than FD2. Again, we provided plots of a subset of genes in Figure 3.
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(a) (b)

(c) (d)

Figure 2: Gene expression (dots) and FMM (red) and COS (light blue) model fittings

for the genes from mouse liver: (a) Eif4b, (b) Smarca5, (c) Chd4 and (d) Iqgap2 along

two periods of 24 hours. In each panel, mse and circadian time (CT) peak estimates for

FMM (red) and COS (light blue) are given as well as the absolute difference between

these CT (black).

As we see, FD2 imposes two peaks by virtue of its functional form when clearly the data

does not display two peaks. Secondly, these peaks are not biologically interpretable. On

the other hand FMM seems to fit the data better with a single peak.

Thus, these examples exemplify the performance of FMM to describe temporal pat-

terns of circadian clock genes. Subsection 3.1 of the Supplementary Material includes

more details about the distribution of the estimated values of α, β and ω.

2.2 Temporal patterns of corticoptropin levels in clinically de-

pressed patients

In this section we illustrate the performance of FMM for modeling hourly corticoptropin

levels during a day in patients suffering from major clinical depression. We used data

from [15] which consisted of 3 groups of subjects where 11 were patients with psychotic

major depression (Pmd), 38 were patients with nonpsychotic major depression (Npmd),

and 33 were healthy controls. From the fitted curves in Figure 4 it is apparent that COS
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(a) (b)

Figure 3: Gene expression (dots) and FMM (red) and FD2 (green) model fittings for

the genes from mouse liver: (a) Iqgap2 and (b) Rps6kb1 along two periods of 24 hours.

In each panel, mse and circadian time (CT) peak estimates for FMM (red) and FD2

(green) are given as well as the absolute difference between these CT (black).

Table 1: Mmse and SDmse for FMM , FD2 and COS obtained for genes in Mouse Liver,

Pituitary gland, NIH3T3 cell lines and U2OS human cells by type of pattern (cyclical

and quasi-cyclical) proposed in [7].

Cyclical Quasi Cyclical ALL

n Mmse SDmse n Mmse SDmse n Mmse SDmse

Liver

FMM 9167 0.0126 0.0172 92 0.0547 0.1056 9259 0.0131 0.0205

FD2 9167 0.0138 0.0189 92 0.0357 0.0616 9259 0.0140 0.0199

COS 9167 0.0204 0.0296 92 0.0868 0.1683 9259 0.0211 0.0345

Pituitary

FMM 3363 0.0142 0.0179 18 0.0193 0.0142 3381 0.0142 0.0179

FD2 3363 0.0168 0.0238 18 0.0248 0.0149 3381 0.0168 0.0237

COS 3363 0.0192 0.0279 18 0.0328 0.0237 3381 0.0193 0.0279

NIH3T3

FMM 1411 0.0164 0.0225 13 0.0257 0.0372 1424 0.0165 0.0227

FD2 1411 0.0211 0.0272 13 0.0282 0.0374 1424 0.0211 0.0274

COS 1411 0.0263 0.0379 13 0.0358 0.0551 1424 0.0264 0.0381

UOS2

FMM 906 0.0166 0.0242 8 0.0209 0.0121 914 0.0167 0.0241

FD2 906 0.0209 0.0325 8 0.0251 0.0153 914 0.0209 0.0324

COS 906 0.0245 0.0367 8 0.0273 0.0167 914 0.0245 0.0366
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model does not fit the data as well as FMM . It is also apparent that FD2 performs

nearly as well as FMM in the case of Pmd and control groups but does not fit as well as

FMM in the case of Npmd group. Furthermore, among the three models, FMM is the

best fitting model because it has the smallest mse in all three patient groups (Table 2).

We also estimated two important parameters relevant for this hormonal study, namely,

tU : the peak time and ZU : the mean hormone level corresponding to the peak time.

These estimates are provided in Table 2 and confidence intervals for pairwise differences

between groups are in Table 3.

Consistent with the plots in the Figure 4, we notice that tU values obtained from

FMM are smaller than those of the other two methods.

Besides, 90% CI for pairwise differences in Table 3 derived under FMM show sig-

nificantly different ZU values between the three groups, which is not detected with the

other approaches. This is a clinically relevant finding because it suggests that there are

differences in the mean peak hormone levels among the three groups with control group

having the smallest peak followed by nonpsychotic major depression group and psychotic

major depression groups. The psychotic major depression has the largest peak. Thus

FMM model allows us to discover a trend in the peak levels of corticotropin with the

disease severity.

Figure 4: Observed data (dots) and fitted FMM (red), FD2 (green) and COS (light

blue) models by patient group: (a) Control, (b) Npmd and (c) Pmd

Table 2: mse and estimates for σ2, tU and ZU obtained from FMM , FD2 and COS, for

each patient group

FMM FD2 COS

mse t̂U ẐU mse t̂U ẐU mse t̂U ẐU

Control 0.110 3.489 4.816 0.127 3.659 4.803 0.234 4.186 4.676

Npmd 0.159 3.346 5.431 0.235 3.643 5.096 0.347 4.119 4.932

Pmd 0.428 3.348 6.575 0.444 3.449 6.525 0.560 3.864 6.401
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Table 3: Bootstrap 90% CI for pairwise tU and ZU , differences obtained from FMM ,

FD2 and COS.

tU FMM FD2 COS

Control vs Npmd [-0.150,0.424] [-0.225,0.271] [-0.139,0.298]

Control vs Pmd [-0.218,0.631] [-0.139,0.541] [0.080,0.559]

Pmd vs Npmd [-0.353,0.399] [-0.235,0.521] [-0.043,0.530]

ZU FMM FD2 COS

Control vs Npmd [0.153,1.213] [-0.101,0.777] [-0.214,0.634]

Control vs Pmd [1.164,2.451] [1.259,2.323] [1.154,2.241]

Pmd vs Npmd [0.422,1.865] [0.854,2.076] [0.861,1.952]

2.3 Temporal patterns of light emitted by stars

Light intensities of stars from six different star groups [8], namely, RR Lyraes (RRab and

RRc), Cepheids [Fundamental, (FU) and Overtone (FO)], Mira, and Eclipsing Binary

(EB), are investigated in this section. The data consisted of 17,606 variable stars with

100 time points on each. FMM is more flexible fitting a wide range of patterns seen in

the six groups of stars. On the other hand FD based methods, such as COS and FD2,

fit well only when the data are approximately symmetric sinusoidal in shape.

Temporal plots of a sample of typical curves from each of these groups are provided

in Figure 5. A representative from the RRc group is not shown because RRc patterns

are similar to those of FO group; two different representative patterns from EB are

provided instead. We overlaid on each figure the fitted curves obtained from COS, FD2

and FMM methodologies along with respective mse values. Except for one of the EB

subclasses (panel (f)) where FD2 performs best, in all other cases, FMM displays great

flexibility to fit the data. Moreover, as seen in panels (a), (b), (d) and (e) of Figure 5,

the COS and FD2 perform poorly to fit asymmetric patterns.

The estimated Mmse values for the three models are summarized in Table 4 for each

star group. In almost all cases, FMM has the smallest estimated Mmse, suggesting that

it fits the data best for almost all groups. The only slight exception is the star group

EB, but even there, the Mmse for FMM is very slightly larger than that of FD2, 0.021

versus 0.020, a difference of 0.001. In comparison to FD2 and COS, the performance of

FMM is best in the cases of RRab and FU.

Table 4: Mmse for FMM ,FD2 and COS by star group

Number of stars FMM FD2 COS

RRab 5835 0.004 0.009 0.019

RRc 1751 0.004 0.004 0.005

FU 1829 0.001 0.005 0.016

FO 1228 0.002 0.002 0.003

Mira 2878 0.005 0.006 0.015

EB 4085 0.021 0.020 0.042

In addition to fitting models, researchers are typically interested in classifying stars
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mse: 0.004
mse: 0.006
mse: 0.017

(a)

mse: 0.001
mse: 0.008
mse: 0.023

(b)

mse: 0.003
mse: 0.004
mse: 0.005

(c)

mse: 0.003
mse: 0.004
mse: 0.023

(d)

mse: 0.013
mse: 0.021
mse: 0.025

(e)

mse: 0.039
mse: 0.011
mse: 0.06

(f)

Data
FMM
 FD2 
COS

Figure 5: Selected temporal light patterns (dots) emited from: (a) RRab, (b) FU, (c)

FO, (d) Mira and (e,f) EB classes of variable star together with FMM (red), COS (light

blue) and FD2 (green) model fittings.

into various groups. PCA (Principal Component Analysis) and FD have been the two

most popular approaches until now [8, 16].

We compared the performance of FMM , FD2 and PCA in classifying samples using

standard canonical discriminant analysis with two variables from each model and clas-

sification errors estimated using leave one out cross-validation. The variables used for

discrimination were the first two principal components, PC1, PC2 from PCA; the two

parameters with the highest discriminative power, those associated with the first com-

ponent, denoted by A1 and B1, from FD; and ω and A from FMM . The scatterplots

for the three pairs of variables are shown in Figure 6 where it is shown that A1, B1 and

PC1, PC2 clearly separate EB from the rest, but they are not very successful in separat-

ing the remaining groups. On the other hand, from panel (b) in Figure 6, it is very clear

that the FMM model based parameters perform well in separating all groups of stars.

In particular, the shape parameter ω plays a critical role in discriminating all groups of

stars. In fact, smaller misclassification rates are obtained when FMM variables are used,

as it is shown in Table S2 of the Supplementary Material.

Subsection 3.2 of the Supplementary Material provides graphical displays and com-

ments on the distribution of the estimated values of α and β for the star set by groups.

3 Methods

We begin with some definitions and notations. In the following we assume t ∈ [0, 2π]; if

observed times takes values on a real interval then t′ ∈ [t0, T + t0], t = (t′−t0)2π
T

, t ∈ [0, 2π].

10



(a) (b) (c)

Figure 6: Scatter plots for pairs of parameters from: (a) FD2, (b) FMM and (c) PCA .

The color identify the group: EB (pink), Mira (dark blue), FO (light blue), FU (green),

RRc (yellow) and RRab (red).

3.1 Circular signal and FMM

It is generally accepted that for a given oscillatory phenomenon, there exists an underlying

complex valued signal. Even more, [5], among others, argues that a physical phenomenon

is not entirely modelled unless the complex signal it is related to, has been defined. In

this paper we deal with periodic signals, which are described as complex functions of

time, which we denote as S(t), t ∈ [0, 2π].

Definition 2. A complex-valued signal S(t)

S(t) = µ(t) + iν(t) = ρ(t)eiφ(t), t ∈ [0, 2π]. (1)

From the complex formulation, a model for a real signal is derived as:

Re(S(t)) = µ(t) = ρ(t)cos(φ(t)), t ∈ [0, 2π].

The latter term in equation (1) is known as the quadrature form of the signal S(t),

where ρ(t) and φ(t) are the signal’s amplitude and phase respectively. The derivative of

φ(t) is known as Instantaneous Frequency (IF), a parameter that is expected to be non

negative in applications, as argue [5].

When ν(t) is unknown, there are infinite pairs ρ(t), φ(t) for which µ(t) may be equiv-

alently described. An important subclass, is that of analytic signals. In particular, one

of the elemental is the Fourier atom which is defined using the Möbius transform. Be-

sides, analytic signals having a non negative IF and constant amplitude are often used by

researchers in applications due to their interpretability and simplicity. Specifically, the

real signal corresponding to these latter signals is a monocomponent. Definitions of these

signals and additional theoretical details are given in Section 1 of the Supplementary
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Material.

We now introduce circular signals as follows:

Definition 3. Circular signal in the Euclidean space

µ(t) ∈ R, t ∈ [0, 2π] is circular iff ∃ tU , tL such that

if tU ≤ tL: µ(t) ≥ µ(t′), tU ≤ t ≤ t′ ≤ tL, and µ(t) ≤ µ(t′), 0 ≤ t ≤ t′ ≤ tU ;

tL ≤ t ≤ t′ ≤ 2π.

or equivalently

if tU ≥ tL: : µ(t) ≤ µ(t′), tL ≤ t ≤ t′ ≤ tU , and µ(t) ≥ µ(t′), 0 ≤ t ≤ t′ ≤ tL;

tU ≤ t ≤ t′ ≤ 2π.

Without loss of generality, we assume that tU ≤ tL. In the Euclidean space, such a

signal is also called an up-down-up signal (resp. down-up-down) [1], as it monotonically

increases (resp. decreases) to tU (resp. tL) and then decreases (resp. increases) to tL

(resp. tU) before decreasing (resp. increasing) again. As illustrated in Subsection 2.2, tU

is an important parameter in applications because it is the time to first peak.

In addition, a circular signal on the unit circle is a signal that follows the circular

order (see [17] for a definition on circular order),

Definition 4. Circular signal on the unit circle

φ(t) ∈ [0, 2π], t ∈ [0, 2π] is circular iff φ(t) ≤ φ(t′), 0 ≤ t ≤ t′ ≤ 2π (resp. φ(t) ≥
φ(t′), 0 ≤ t ≤ t′ ≤ 2π)

The most popular circular signal, and also the simplest one, is the sinusoidal signal:

µ(t) = cos(t+ ϕ). Its corresponding circular signal is φ(t) = t+ ϕ.

It is straight forward to derive that, if eiφa(t) is a Fourier atom, Re(eiφa(t)) is a circular

signal.

Next, we provide a useful characterization of FMM to demonstrate the relationship

between FMM models and Fourier atoms. In particular, Proposition 1 demonstrates

that FMM is restricted to circular signals and that the IF is non negative. Thus, the

FMM model is appropriate for describing typical periodic up-down-up signals

The FMM phase can be equivalently derived from:

eiφ(t) = eiϕ
eit + a

aeit + 1
,

where, ϕ ∈ < and a = reiv ∈ C. Then, the relationship between this formulation and

FMM model (see Definition 1) is given by:

v = α, ϕ = β − α and r =
1− ω
1 + ω

.

The equivalence formulation above is also stated in the seminal papers of circular regres-

sion: [11, 12].
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Proposition 1. Let µ(t) = M + Acos(φ(t)), φ(t) = β + 2 arctan(ω tan( t−α
2

)) and t ∈
[0, 2π], then:

1. µ(t) is a circular signal in the Euclidean space.

2. φ(t) is a circular signal in the unit circle.

3. φ′(t) = ω
2(1+ω2sin2( t−α

2
))

The proofs follow immediately from the definitions.

3.2 Estimation algorithm

A two-step algorithm is developed to estimate FMM parameters. First, initial param-

eter estimation is given by solving a least square problem along the lines of proposed in

[2]. Second, we used Nelder-Mead optimization method [18] to obtain the final FMM

parameter estimates, see Section 2 in the Supplementary Material for details. The pro-

posed methodology is not limited by which optimization method is used. Based on our

experiences with complicated objective functions involving angular data [19, 20], as well

as the data analyzed in this paper, we find Nelder-Mead to provide estimates that fit data

well. It tends to successfully avoid local solutions. For example, see figures presented in

this paper.

3.3 Model performance measures

To assess the performance of various models, we use the total mean squared error (mse)

over all observed times as a criterion. This is a common measure of goodness of fit

used by statisticians when assessing the performance of an estimator or a model and

routinely discussed and used in textbooks [21]. Smaller the value suggests the better the

model fits the data. More precisely, in simulations, mse is a measure of distance from

the known signal µ as mse =
∑n

i=1(µ̂i − µi)
2/n. In practice, the mse is calculated as

mse =
∑n

i=1(µ̂i −Xi)
2/n.

In addition, mse estimates for a specific parameter θ are denoted as mse(θ) in simu-

lations. Finally, when mse values are averaged across different scenarios or individuals,

an M is added. Thus, Mmse is the average mse over all measurements available. The

standard deviation of mse is denoted by SDmse.

3.4 Time to first peak and trough in COS and FD

COS model has well defined maximum and minimum tU = −ϕ and tL = π − ϕ respec-

tively. However, the computation of extremes is not trivial for FD. In fact, FDN model

has multiplicity of N extrema (see [22] for details). There is no close form expressions for
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tU and tL and they are numerically derived as the values where µ(t) reaches its maximum

and minimum using an optimization algorithm for the analysis given in Section 2 of this

work.

4 Discussion

As seen in this paper, oscillatory systems arise naturally in a wide range of applications

including biology, medicine, pharmacology, astronomy and so on. An oscillatory system

consists of several components that display rhythmic temporal patterns. The temporal

patterns and the associated parameters, such as the amplitude and phase, have critical

scientific importance and implications. For example, as demonstrated in [14] the efficacy

of a drug in treating a patient may depend upon the time of the day the drug is delivered,

and this determination is made based on the phases of some circadian clock genes. Thus,

in all such applications it is not only important to determine all components (e.g. genes)

that display a temporal rhythmic pattern, but it is critically important to derive an

appropriate parametric model and estimate the associated parameters correctly. A poor

choice of the model may result in wrong estimates of phase and amplitude that may have

important downstream implications. For example, as we saw in the circadian clock genes

example discussed in this paper, a poor model may result in a 4 to 7 hours difference in

the phase estimate relative to what might be the true phase. In view of [14] findings this

might have major clinical and pharmacological impact on when patient receives a drug.

A common parametric model used in almost all applications to fit a temporal rhythmic

data is the cosinor model (COS). While it is easy to fit and interpret, it is a very rigid

model in the sense that the observed temporal signals are required to have a sinusoidal

shape, which is intrinsically symmetric. As we saw in the examples presented in this

paper, the temporal patterns of rhythmic signals do not always follow this rigid structure.

In fact, as observed in [11], it is common to have a nonlinear relationship or link between

an angular parameter and time. Although, Fourier decomposition (FD) was developed in

the literature to provide some flexibility from COS, intrinsically it too has a symmetric

shape. Secondly, because it is a linear combination of several sinusoidal functions, it may

induce multiple peaks (or troughs) within a period. In many applications, especially in

the circadian clock or cell-cycle, those multiple peaks are hard to interpret.

The primary contribution of this paper is to derive a flexible parametric model that

allows deformations to the sinusoidal shape and contains easy to interpret parameters. As

demonstrated in this paper, the model performs extremely well in a very disparate types

of applications. The model fits circadian clock data, hormonal data as well as light data

from distant stars. The rhythmic patterns are very varied and yet in each case the model

seems to outperform the existing models. Extensive simulations seem to confirm these

findings. It is important to reiterate that we fill an important gap in the literature to

derive a flexible parametric model for describing rhythmic patterns that are deformations
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to sinusoidal models.

Once an appropriate nonlinear model is derived, as noted in the paper, given decades

of literature, statistical inference regarding the parameters of the nonlinear model is rou-

tine problem. In this paper we used bootstrap based methodology.

As frequently quoted by modelers, a quote attributed to George Box, “No model is

perfect but some models are more useful”, the proposed basic FMM model has limita-

tions. Firstly, we have not discussed here the problem of detecting if a component of an

oscillatory system is rhythmic or not rhythmic and if it is rhythmic, then whether it is

also a sinusoidal. However, as described in Subsection 1.3 of the Supplementary Mate-

rial, parametric hypothesis testing problems to test the above hypotheses can be easily

addressed using FMM .

Secondly, in many studies researchers are interested in fitting nonlinear models after

adjusting for covariates. This is particularly true for modeling hormone data. For exam-

ple, gender and age would be two important factors to consider when modeling hormonal

data. The problem can be even more complex when potential interactions may be sus-

pected. Specifically, [15] used COS model but adjusted for important covariates, such as

age and gender as additive effects in a linear model. The endocrine system for males and

females is fundamentally different. This leads to differences in biological responses and

hence it is reasonable to expect males and females to have curves with different shapes.

A similar phenomena may occur with age. Compared to sinusoidal models such as COS,

an advantage of using FMM in the above formulations is that it allows for deformations

to sinusoidal shape. The current formulation of FMM requires further refinements and

modifications to model interactions and covariates.

Finally, other important limitation of FMM is that it does not parametrize the

period but takes it as a fixed known quantity. While in many examples the period of a

cycle is determined by the experimental design, such as in a circadian clock or cell-cycle

experiment, there are also examples, such as the EB star data where the period may be

poorly determined. However, the period can be formulated as an unknown parameter in

the model, then the methodology can be suitably modified by designing a computational

intensive algorithm that considers different period values and then chooses the period

that results in a smaller total mse.
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