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FMM: An R Package for Modeling
Rhythmic Patterns in Oscillatory Systems
by Itziar Fernández, Alejandro Rodríguez-Collado, Yolanda Larriba, Adrián Lamela, Christian
Canedo and Cristina Rueda

Abstract This paper is dedicated to the R package FMM which implements a novel approach to
describe rhythmic patterns in oscillatory signals. The frequency modulated Möbius (FMM) model is
defined as a parametric signal plus a Gaussian noise, where the signal can be described as a single or a
sum of waves. The FMM approach is flexible enough to describe a great variety of rhythmic patterns.
The FMM package includes all required functions to fit and explore single and multi-wave FMM
models, as well as a restricted version that allows equality constraints between parameters representing
a priori knowledge about the shape to be included. Moreover, the FMM package can generate synthetic
data and visualize the results of the fitting process. The potential of this methodology is illustrated
with examples of such biological oscillations as the circadian rhythm in gene expression, the electrical
activity of the heartbeat and the neuronal activity.

1 Introduction

Oscillations naturally occur in a multitude of physical, chemical, biological, and even economic and
social processes. Periodic signals appear, for example, during the cell-cycle, in biological time-keeping
processes, in human heartbeats, in neuronal signals, in light emissions from certain types of stars, or
in business cycles in economics, among many others. Three features typically describe the periodic
nature of the oscillatory motion: period, amplitude and phase. The period is the time required for
one complete oscillation. Within a period, a sum of monocomponent models, characterized by the
phase and amplitude parameters, can be used to describe the rhythmic pattern of a signal (Boashash,
2016). By varying the number of monocomponents and considering phase and amplitude parameters
as fixed or variable, a large number of rhythmic signal representations can be found.

One of the most popular representations of oscillating signals is the Fourier decomposition (FD): a
multicomponent representation with a fixed amplitude parameter. Its monocomponent version, the
cosinor model (COS) (Cornelissen, 2014), is widely used, in particular in chronobiology, with acceptable
results when a sinusoidal shape response within a period is expected. Due to its widespread use, many
software utilities are available. Particularly in R, the estimation of a COS model can be performed
using cosinor (Sachs, 2014) and cosinor2 packages (Mutak, 2018). In addition, other packages from
widely differing areas of knowledge have specific functions for fitting COS models. Such is the case of,
for example, the function CATCosinor in the CATkit package (Gierke et al., 2018), which implements
tools for periodicity analysis; the function cosinor in the psych package (Revelle, 2021), dedicated to
personality and psychological research; or the function cosinor contained in a recent package, card
(Shah, 2020), which is dedicated to the assessment of the regulation of cardiovascular physiology.
Recently, it has also been implemented in other languages such as CosinorPy, a cosinor python package
(Moskon, 2020). The COS model is easy to use and interpret with symmetrical patterns. However,
asymmetric shapes are not captured properly by COS. When the waveform is nonsinusoidal, the use
of multiple components analysis to fit a model consisting of a sum of several periodical functions is
recommended. However, the multicomponent FD models, developed to provide flexibility from COS,
often require the use of a large number of components resulting in serious overfitting issues.

In recent years, alternative methods, mostly nonparametric statistical methods, have been devel-
oped and used for analyzing rhythmicity, especially in biological data sets. Some very popular ones,
such as the JTK_CYCLE (Hughes et al., 2010), wrongly assume that any underlying rhythms have
symmetric waveforms. Others, such as RAIN (Thaben and Westermark, 2014), designed to detect more
diverse wave shapes including asymmetric patterns, are not focused on modeling but on detecting
rhythmic behavior in sets of data. Thus, they are not useful to describe the underlying oscillatory
phenomena. The proliferation of methodology in this field has been accompanied by software devel-
opments. This is the case, for example, of the DiscoRhythm R package (Carlucci et al., 2020), very
recently available on Bioconductor with a web interface based on the R Shiny platform (Chang et al.,
2021). This tool allows four popular approaches to be used, including the COS model and JTK_CYCLE,
to discover biological rhythmicity. Another recent example is the circacompare (Parsons et al., 2020),
an R package implemented for modeling cosinusoidal curves by nonlinear regression. Hosted on
GitHub, we can also find the LimoRhyde R package (https://github.com/hugheylab/limorhyde) for
the differential analysis of rhythmic transcriptome data, based on fitting linear models (Singer and
Hughey, 2019).
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Motivated by the need for a flexible, interpretable and parametric methodology to fit rhythmic
patterns, our research group recently proposed the frequency modulated Möbius (FMM) model (Rueda
et al., 2019). The FMM is an additive nonlinear parametric regression model capable of adapting to
nonsinusoidal shapes and whose parameters are easily interpretable. The single component model has
been shown to successfully fit data as diverse as circadian clock signals, hormonal levels data or light
data from distant stars. In addition, for more complex oscillatory signals, a multicomponent model
of order m, denoted as FMMm, which includes m single FMM components, can be used. This is, for
example, the case for describing electrocardiography (ECG) signals. The FMMecg signal, presented in
Rueda et al. (2021b), is defined as the combination of five single FMM components. Another interesting
area where the FMM approach has already shown its usefulness is in electrophysiological neuroscience.
Specifically, we have proposed FMM methodology for modeling neuronal action potential (AP) curves,
oscillating signals that measure the difference between the electrical potential inside and outside the
cell (see Rueda et al., 2021c; Rodríguez-Collado and Rueda, 2021a). An FMM2 model provides an
accurate fitting for a single AP curve; whereas series of AP curves with similar repetitive spikes can be
efficiently fitted by the FMMST model, a restricted version of the multicomponent FMM model.

In this work we introduce the FMM package (Fernández et al., 2021), programmed in R and avail-
able from the Comprehensive R Archive Network (CRAN) at http://CRAN.R-project.org/package=
FMM. The package implements all required functions to fit and explore single and multicomponent
FMM models, as well as a restricted multicomponent version. In addition, the FMM package provides
functions to generate synthetic data and visualize the results of the fitted model. Furthermore, its use
is illustrated in the aforementioned applications. The remainder of this paper is organized as follows:
the next section provides a brief overview of both mono and multicomponent FMM models, as well as
the FMMm model with equality constraints. The section follows is dedicated to the implementation
details of the FMM package. After that, through a simulated example, the basic usage of the package
is introduced, including the data generation and the fitting, as well as the visualization of the results.
Then, the FMM package performance is shown through three application areas governed by oscillatory
systems: chronobiology, ECG and neuroscience. Finally, a summary is provided.

2 Frequency modulated Möbius (FMM) model

FMM is a new approach to describe a great variety of rhythmic patterns in oscillatory signals as the
composition of several additive components. In this section an overview of the FMM approach is
provided. All the methodological details that justify the mathematical formulation of the FMM models
are given in Rueda et al. (2019).

At the time point t, a single FMM wave is defined as W (t; υ) = A cos (ϕ (t; α, β, ω)) where
υ = (A, α, β, ω)′, A ∈ ℜ+ represents the wave amplitude and,

ϕ (t; α, β, ω) = β + 2 arctan
(

ω tan
(

t − α

2

))
(1)

the wave phase. The phase angle ϕ of an FMM wave is defined using the Möbius link (see Downs and
Mardia, 2002; Kato et al., 2008) rather than the linear link function as in the COS model. The Möbius
link provides much more flexibility to describe nonsinusoidal patterns. Without loss of generality,
we assume that the time point t ∈ [0, 2π]. Otherwise it can be transformed into t′ ∈ [t0, T + t0] by
t = (t′−t0)2π

T .

Each of the four parameters of an FMM wave characterizes some aspect of a rhythmic pattern.
A describes the amplitude of the signal, while α, β and ω describe the wave phase. α ∈ [0, 2π] is
a translation parameter and a wave location parameter in the real space, whereas β ∈ [0, 2π] and
ω ∈ [0, 1] describe the wave shape. To be precise, assuming α = 0, the unimodal symmetric waves are
characterized by values of β close to 0, π or 2π. When β = π

2 or β = 3π
2 , extreme asymmetric patterns

are described. Moreover, a value of ω close to zero describes an extreme spiked wave and, as ω value
increases, the pattern is increasingly smoother. When ω = 1, a sinusoidal wave is described and the
FMM model matches the COS model where φ = β − α is the acrophase parameter.

Two important features of a wave are the peak and trough, defined as the highest and lowest points
above and below the rest position, respectively. In many applications, the peak and trough times could
be very useful tools to extract practical information of a wave, since they capture important aspects of
the dynamics. These two interesting parameters can be directly derived from the main parameters of
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an FMM wave as,

tU = α + 2 arctan
(

1
ω

tan
(
− β

2

))
(2)

tL = α + 2 arctan
(

1
ω

tan
(

π − β

2

))
where tU and tL denote the peak and trough times, respectively.

Monocomponent FMM model

Let X (ti), t1 < t2 < · · · < tn be the vector of observations. The monocomponent FMM model is
defined as follows:

X (ti) = M + W (ti; υ) + e (ti) , i = 1, . . . , n (3)

where M ∈ ℜ is an intercept parameter describing the baseline level of the signal, W (ti; υ) is an FMM
wave, and it is assumed that the errors e (ti) are independent and normally distributed with zero mean
and a common variance σ2.

Estimation algorithm

A two-step algorithm to estimate monocomponent FMM model parameters is proposed. We now
describe the substantial details of each stage of the algorithm.

Step 1: Initial parameter estimation. A two-way grid search over the choice of (α, ω) parameters
is performed. For each pair of (α, ω) fixed values, the estimates for M, A and β are obtained by solving
a least square problem as detailed below.

The model for a single FMM component can be written as:

X (ti) = M + A cos (t∗i + φ) + e (ti) (4)

where t∗i = α + 2 arctan
(

ω tan
(

ti−α
2

))
, φ = β − α, and e (ti) ∼ N

(
0, σ2) for i = 1, . . . , n.

Using trigonometric angle sum identity, the model can be rewritten as:

X (ti) = M + δzi + γwi + e (ti) (5)

where δ = A cos (φ), γ = −A sin (φ), zi = cos
(
t∗i
)

and wi = sin
(
t∗i
)
.

Since α and ω are fixed, the estimates for M, δ and γ are obtained by minimizing the residual sum
of the squares (RSS),

RSS =
n

∑
i=1

(
X (ti)−

(
M̂ + δ̂zi + γ̂wi

))2 (6)

And the estimates for M, A and β are straightforward to derive as follows,

M̂ = X̄ − δ̂
n

∑
i=1

zi − γ̂
n

∑
i=1

wi (7)

Â =
√

δ̂2 + γ̂2 (8)

β̂ = α + φ (9)

The best combination of (α, ω) values, with the lowest RSS, is retained and the corresponding
estimates are the initial parameter estimation values.

Step 2: Optimization. In the second step, the Nelder-Mead optimization method (Nelder and
Mead, 1965) is used to obtain the final FMM parameter estimates that minimize the RSS.

Multicomponent FMM model

A multicomponent FMM model of order m, denoted by FMMm, is defined as

X (ti) = M +
m

∑
J=1

W
(
ti; υJ

)
+ e (ti) (10)

t1 < t2 < · · · < tn; i = 1, . . . , n
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where W
(
ti; υJ

)
, hereinafter denoted by WJ (ti), is the Jth FMM wave and,

• M ∈ ℜ
• υJ =

(
AJ , αJ , β J , ωJ

)′ ∈ ℜ+ × [0, 2π]× [0, 2π]× [0, 1]; J = 1, . . . , m

• α1 ≤ α2 ≤ · · · ≤ αm ≤ α1

• (e (t1) , . . . , e (tn))
′ ∼ Nn

(
0, σ2 In

)
Model adequacy

The goodness of fit of an FMM model is measured with the R2 statistic that represents the proportion
of the variance explained by the model out of the total variance, that is:

R2 = 1 − ∑n
i=1
(
X (ti)− X̂ (ti)

)2

∑n
i=1 (X (ti)− X̄)

2 (11)

where X̂ (ti) represents the fitted value at ti, i = 1, . . . , n.

Estimation algorithm

An iterative backfitting algorithm is proposed to derive estimates for the FMM parameters. Let

Ŵ(k)
J (ti) denote the fitted values from the Jth FMM wave at ti, i = 1, ..., n in the kth iteration. The

algorithm is structured as follows:

1. Initialize. Set Ŵ(0)
1 (ti) = · · · = Ŵ(0)

m (ti) = 0.

2. Backfitting step. For J = 1, . . . , m, calculate

r(k)J (ti) = X (ti)− ∑
I<J

Ŵ(k)
I (ti)− ∑

I>J
Ŵ(k−1)

I (ti) ; I = 1, . . . , m (12)

and fit a monocomponent FMM model to r(k)J (ti) obtaining α̂
(k)
J , β̂

(k)
J , ω̂

(k)
J and Ŵ(k)

J (ti).

3. Repeat the backfitting step until the stopping criterion is reached. The stopping criterion
is defined as the difference between the explained variability in two consecutive iterations:
R2

k − R2
k−1 ≤ C, where R2

k (defined in Equation 11) is the proportion of variance explained by
the model in the kth iteration and C a constant.

4. M̂ and ÂJ are derived by solving

min
M∈ℜ;AJ∈ℜ+

n

∑
i=1

(
X (ti)− M −

m

∑
J=1

AJ cos
(
ϕ̂J (ti)

))2

(13)

where ϕ̂J (ti) = ϕ
(
ti; α̂J , β̂ J , ω̂J

)
defined in Equation 1.

Restricted multicomponent FMM model

Modeling signals with repetitive shape-similar waves can be very useful in some applications (see
Rodríguez-Collado and Rueda, 2021a). In order to obtain more efficient estimators, equality constraints
are imposed on the β and ω parameters of an FMMm model. In particular, we add d blocks of
restrictions:

β1 = · · · = βm1 ω1 = · · · = ωm1 (14)

βm1+1 = · · · = βm2 ωm1+1 = · · · = ωm2

. . .

βmd−1+1 = · · · = βmd ωmd−1+1 = · · · = ωmd

The parameter estimation problem is solved by an adaptation of the standard procedure.

FMMm estimation algorithm with restrictions on the β parameters

Given the unrestricted estimates obtained in step 3, the estimates for β1, βm1+1, . . . , βmd−1+1 under
equality restrictions (Equation 14) are computed as follows:
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β̂∗J = angularMean
(

β̂1, . . . , β̂m1

)
J = 1, . . . , m1

β̂∗J = angularMean
(

β̂m1+1, . . . , β̂m2

)
J = m1 + 1, . . . , m2

. . .

β̂∗J = angularMean
(

β̂md−1+1, . . . , β̂md

)
J = md−1 + 1, . . . , md

Then, the algorithm continues to the next step.

FMMm estimation algorithm with restrictions on the ω parameters

When constraints for the ω parameters are incorporated, the grid search for the different ω values
is outside the backfitting loops. When the number of blocks is large, the estimation procedure can
be computationally unaffordable. In order to reduce the execution time, a two-nested backfitting
algorithm is proposed. In the outer backfitting loop, a block is fitted. In the inner loop, the FMM
waves belonging to the same block are estimated. This procedure generates a close to optimal solution
and is a less computationally expensive alternative.

3 FMM package: Implementation details

The FMM code makes use of the doParallel package (Corporation and Weston, 2020) to embed paral-
lelization for the fitting process. Several utilities from the ggplot2 (Wickham, 2016) and RColorBrewer
(Neuwirth, 2014) packages are occasionally necessary for the visualization of the fitted models.

The implementation of FMM is divided into four main functionalities described in the next four
sections: the fitting of the FMM models, the new S4 object of class "FMM", the graphical visualization of
the fittings and the simulation of synthetic data.

Some general details about the functions contained in the FMM package are shown in Table 1.

Function Description

Fitting function
fitFMM(vData,timePoints,nback,...) Estimates an FMMnback model to vData ob-

served at timePoints.

Utility functions
plotFMM(objFMM,...) Graphically displays an object of class

"FMM".
generateFMM(M,A,alpha,beta,omega,...) Simulates values from an FMM model with

parameters (M = M, A = A, α = alpha, β =
beta, ω = omega).

getFMMPeaks(objFMM,...) Estimates peak and trough times, together
with signal values at those times, for each
FMM wave.

extractWaves(objFMM) Extracts individual contribution to the fit-
ted values of each FMM wave.

Standard methods for objects of class "FMM"
summary(), show(), coef(), fitted()

Table 1: Summary of the fitting, utility functions and standard methods implemented in FMM
package.

Fitting an FMM model

An FMM model can be fitted using the main function fitFMM(). The description and default values of
its inputs arguments are shown in Table 2.

The fitting function fitFMM() requires the vData input argument, which contains the data to be
fitted. Two other arguments can be used to control a basic fitting: timePoints, which contains the
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specific time points of the single period; and nback, with the number of FMM components to be fitted.
For some applications, such as the study of circadian rhythms, data are collected over multiple periods.
This information is received by the fitFMM() function through the input argument nPeriods. When
nPeriods>1, the FMM fitting is carried out by averaging the data collected at each time point across all
considered periods.

Argument Default value Description

vData no default value A "numeric" vector containing the data to
be fitted by an FMM model.

nPeriods 1 A "numeric" value specifying the number
of periods at which vData is observed.

timePoints NULL A "numeric" vector containing the time
points per period at which data is observed.
When timePoints = NULL an equally spaced
sequence from 0 to 2π will be assigned.

nback 1 A "numeric" value specifying the number
of FMM components to be fitted.

betaOmegaRestrictions 1 : nback An "integer" vector of length nback indi-
cating which FMM waves are constrained
to have equal β and ω parameters.

maxiter nback A "numeric" value specifying the maximum
number of iterations for the backfitting algo-
rithm.

stopFunction alwaysFalse Function to check the stopping criterion for
the backfitting algorithm.

lengthAlphaGrid 48 A "numeric" value specifying the grid reso-
lution of the parameter α.

lengthOmegaGrid 24 A "numeric" value specifying the grid reso-
lution of the parameter ω.

numReps 3 A "numeric" value specifying the number
of times (α, ω) parameters are refined.

showProgress TRUE TRUE to display a progress indicator on the
console.

showTime FALSE TRUE to display execution time on the con-
sole.

parallelize FALSE TRUE to use parallelized procedure to fit a
FMM model.

restrExactSolution FALSE TRUE to obtain the optimal solution for the
restricted fitting.

Table 2: Description of the input arguments of the fitFMM() function and their default values.

There are three key issues in the fitting process: the grid search of the pair (α, ω) to solve the
estimation problem of a single FMM wave, the backfitting algorithm used for the estimation of the
multicomponent models, and the incorporation of restrictions on β and ω parameters. Each of these
issues is controlled by several arguments described below.

• Grid search of the pair (α, ω). The lengthAlphaGrid and lengthOmegaGrid arguments are used
to set the grid resolution by specifying the number of equally spaced α and ω values. Thus, the
objective function will be evaluated a total number of (lengthAlphaGrid)×(lengthOmegaGrid)
times, so when both arguments are large, the computational demand can be high. By reducing
the size of the sequences of the α and ω parameters, the algorithm will be computationally more
efficient. However, it may fail to obtain an accurate estimation if the grid resolution is too sparse.
An implemented option to fine-tune the estimation of the parameters is to repeat the fitting
process a numReps of times, in such a way that, at each repetition, a new two-dimensional grid of
(α, ω) points is created around the previous estimates. In addition, the parallelize argument
specifies whether a parallel processing implementation is used.

• Backfitting algorithm. The argument maxiter sets the maximum number of backfitting itera-
tions. Through the argument stopFunction, it is possible to set a stopping criterion. Two criteria
have been implemented as stop functions in this package. When stopFunction = alwaysFalse,
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maxiter iterations will be forced. If stopFunction = R2(), the algorithm will be stopped when
the difference between the explained variability in two consecutive iterations is less than a value
pre-specified in the difMax argument of R2() function.

• Restrictions. The argument betaOmegaRestrictions sets the equality constraints for the β and
ω parameters. For the unrestricted case, betaOmegaRestrictions = 1:nback. To add restrictions,
"integer" vectors of length m can be passed to this argument, so that positions with the same
numeric value correspond to FMM waves whose parameters, β and ω, are forced to be equal.
Since restricted fitting can be computationally intensive, a two-nested backfitting algorithm can
be used for the estimation of ω parameters when the argument restrExactSolution = FALSE.

Object of class "FMM"

The fitFMM() function outputs an S4 object of class "FMM" which contains the slots presented in Table 3.

Slot Description

timePoints A "numeric" vector containing the time points for each data point if
one single period is observed.

data A "numeric" vector containing the data to be fitted to an FMM model.
Data could be collected over multiple periods.

summarizedData A "numeric" vector containing the summarized data at each time
point across all considered periods.

nPeriods A "numeric" value containing the number of periods in data.
fittedValues A "numeric" vector of the fitted values by the FMM model.
M A "numeric" value of the estimated intercept parameter M.
A An m-element "numeric" vector of the estimated FMM wave ampli-

tude parameter(s) A.
alpha An m-element "numeric" vector of the estimated FMM wave phase

translation parameter(s) α.
beta An m-element "numeric" vector of the estimated FMM wave skew-

ness parameter(s) β.
omega An m-element "numeric" vector of the estimated FMM wave kurtosis

parameter(s) ω.
SSE A "numeric" value of the residual sum of squares values.
R2 An m-element "numeric" vector specifying the explained variance

by each of the fitted FMM components.
nIter A "numeric" value containing the number of iterations of the backfit-

ting algorithm.

Table 3: Summary of the slots of the S4 object of class "FMM" resulting from fitting an FMM model
with m components.

The standard methods implemented for the class "FMM" include the functions summary(), show(),
coef() and fitted(). These methods display relevant information of the FMM fitting, and provide
the estimated parameters and fitted values. In addition, two more specific functions have been
implemented. Through the extractWaves() function, the individual contribution of each FMM wave
to the fitted values can be extracted. Finally, the location of the peak and trough of each FMM wave, as
well as the value of the signal at these time points, can be estimated using the getFMMPeaks() function.
The required argument of all these methods and functions is an object of the class "FMM". Particularly,
getFMMPeaks() has an optional argument: timePointsIn2pi, that forces the peak and trough locations
to be returned into the interval from 0 to 2π when it is TRUE.

Plotting FMM models

The FMM package includes the function plotFMM() to visualize the results of an FMM fit. The
arguments of this function are summarized in Table 4.

An object of class "FMM" can be plotted in two ways (see Figure 1). The default graphical repre-
sentation will be a plot on which original data (as points) and the fitted signal (as a line) are plotted
together (left panel in Figure 1). The other possible representation is a component plot for displaying
each centered FMM wave separately (right panel in Figure 1). Set the boolean argument components
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Argument Default value Description

objFMM no default value The object of class "FMM" to be plotted.
components FALSE TRUE to display a plot of components.
plotAlongPeriods FALSE TRUE to plot more than 1 period.
use_ggplot2 FALSE TRUE to plot with ggplot2 package.
legendInComponentsPlot TRUE TRUE to indicate if a legend should be plotted

in the component plot.
textExtra empty string Extra text to be added to the title of the plot.

Table 4: Description of the input arguments of the plotFMM() function and their default values.

= TRUE to show a component plot. When legendInComponentsPlot = TRUE, a legend appears at the
bottom of the component plot to indicate the represented waves. The argument textExtra allows an
extra text to be added to the title of both graphical representations.

As mentioned above, in some cases, data are collected from different periods. All periods can be
displayed simultaneously on the default plot using plotAlongPeriods = TRUE. For the component
plot, this argument is ignored.

The argument use_ggplot2 provides a choice between building the plot using base R graphics
or ggplot2 packages. By default, the graphics package is used. When use_ggplot2 = TRUE, a more
aesthetic and customizable plot is created using the ggplot2 package.

Simulating data from an FMM model

Data from an FMM model can be easily simulated using the function generateFMM() of the package
FMM. All input arguments of this function are shown in Table 5, along with a short description and
their default values.

Argument Default value Description

M no default value Value of the intercept parameter M.
A no default value Vector of the FMM wave amplitude pa-

rameter A.
alpha no default value Vector of the FMM wave phase transla-

tion parameter α.
beta no default value Vector of the FMM wave skewness pa-

rameter β.
omega no default value Vector of the FMM wave kurtosis pa-

rameter ω.
from 0 Initial time point of the simulated data.
to 2π Final time point of the simulated data.
length.out 100 Desired length of the simulation.
timePoints seq(from,to,length = length.out) Time points at which the data will be

simulated.
plot TRUE TRUE when the simulated data should

be drawn on a plot.
outvalues TRUE TRUE when the numerical simulation

should be returned.
sigmaNoise 0 Standard deviation of the Gaussian

noise to be added.

Table 5: Description of the input arguments of the generateFMM() function and their default values.

The main arguments of this function are M, A, alpha, beta and omega, whereby the values of the
FMM model parameters are passed to the function. All these arguments are "numeric" vectors of
length m, except M, which has length 1. Longer and smaller vectors will be truncated or replicated as
appropriate.

By default, the data will be simulated at a sequence of 100 equally spaced time points from 0 to 2π.
The arguments from, to and length.out control such sequences. The sequence can also be manually
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set using the argument timePoints, in which case from, to and length.out will be ignored.

The user can add a Gaussian noise by argument sigmaNoise. A positive "numeric" value sets
the corresponding standard deviation of the Gaussian noise to be added. To create the normally
distributed noise, the rnorm() function is used.

The arguments plot and outvalues, both boolean values, determine the output of the generateFMM()
function. When outvalues = TRUE, a "list" with input parameters, time points and simulated data
is returned. These elements are named input, t and y, respectively. In addition, a scatter plot of y
against t can be drawn by setting plot = TRUE.

4 Basic usage of the FMM package

The example below, based on FMM synthetic data, illustrates the basic uses and capabilities of the
functions implemented in the FMM package. A set of 100 observations is simulated from an FMM4
model with intercept parameter M = 3, amplitude parameters: A1 = 4, A2 = 3, A3 = 1.5 and A4 = 1,
and phase translation parameters: α1 = 3.8, α2 = 1.2, α3 = 4.5 and α4 = 2. With regard to the shape
parameters, pairs of waves are equal. Specifically, the shape parameters satisfy:

β1 = β2 = 3 ω1 = ω2 = 0.1

β3 = β4 = 1 ω3 = ω4 = 0.05

The standard deviation of the error term is set at σ = 0.3. We use the function generateFMM() to
simulate this data set. A set.seed() statement is used to guarantee the reproducibility of the results.

> library("FMM")
> set.seed(1115)
> rfmm.data <-generateFMM(M = 3, A = c(4,3,1.5,1), alpha = c(3.8,1.2,4.5,2),
+ beta = c(rep(3,2),rep(1,2)),
+ omega = c(rep(0.1,2),rep(0.05,2)),
+ plot = FALSE, outvalues = TRUE,
+ sigmaNoise = 0.3)

The estimation of an FMM4 can be performed by setting nback = 4 in the fitting function fitFMM().
The betaOmegaRestrictions parameter allows a wide variety of shape restrictions to be incorporated
into the fitting procedure. In this example, to impose the shape restrictiction on the fitting process, we
use betaOmegaRestrictions = c(1,1,2,2).

> fit.rfmm <- fitFMM(vData = rfmm.data$y, timePoints = rfmm.data$t, nback = 4,
+ betaOmegaRestrictions = c(1, 1, 2, 2))
|--------------------------------------------------|
|==================================================|
Stopped by reaching maximum iterations (4 iteration(s))

The results are displayed by the function summary():

> summary(fit.rfmm)

Title:
FMM model with 4 components

Coefficients:
M (Intercept): 3.1661

A alpha beta omega
FMM wave 1: 4.0447 3.8048 3.0238 0.0930
FMM wave 2: 3.1006 1.1956 3.0238 0.0930
FMM wave 3: 1.6069 4.5228 1.0145 0.0427
FMM wave 4: 1.1194 1.9788 1.0145 0.0427

Peak and trough times and signals:
t.Upper Z.Upper t.Lower Z.Lower

FMM wave 1: 0.6741 5.3198 4.9354 -2.7565
FMM wave 2: 4.3482 3.4702 2.3263 -2.1742
FMM wave 3: 1.5345 -1.2330 1.3338 -4.1527
FMM wave 4: 5.2737 -1.7005 5.0730 -3.7565
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Residuals:
Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.719769 -0.162649 0.007025 0.000000 0.160127 0.904218

R-squared:
Wave 1 Wave 2 Wave 3 Wave 4 Total
0.5049 0.3906 0.0531 0.0276 0.9761

The FMM wave parameter estimates, as well as the peak and trough times, together with the signal
values at those times, are presented in tabular form, where each row corresponds to a component
and each column to an FMM wave parameter. As part of the summary, a brief description of the
residuals, the proportion of variance explained by each FMM component and by the global model are
also shown. The summary() output can be assigned to an object to get a "list" of all the displayed
results.

Other options to return the results are the functions coef(), getFMMPeaks() and resid(). The first
two return a "list" similar to those obtained with summary(). The resid() method can be used to
obtain the complete residuals vector. In addition, the fitted values can be extracted by the function
fitted(), which returns a "data.frame" with two columns: time points and fitted values.

The FMM plots can be generated in the R graphics or ggplot2 packages. In the code example given
below, we use use_ggplot2 = TRUE to build Figure 1 based on ggplot2. The use of ggplot2 makes
it easier to customize our plots and modify features, such as scales, margins, axes, etc. In Figure 1,
the two possible FMM plots are arranged via the grid.arrange() function of the gridExtra package
(Auguie, 2017).

> library("RColorBrewer")
> library("ggplot2")
> library("gridExtra")
> # Plot the fitted FMM model
> titleText <- "Simulation of four restricted FMM waves"
> defaultrFMM2 <- plotFMM(fit.rfmm, use_ggplot2 = TRUE, textExtra = titleText) +
+ theme(plot.margin=unit(c(1,0.25,1.3,1), "cm")) +
+ ylim(-5, 6)
> comprFMM2 <- plotFMM(fit.rfmm, components=TRUE, use_ggplot2 = TRUE,
+ textExtra = titleText) +
+ theme(plot.margin=unit(c(1,0.25,0,1), "cm")) +
+ ylim(-5, 6) +
+ scale_color_manual(values = brewer.pal("Set1",n = 8)[3:6])
> grid.arrange(defaultrFMM2, comprFMM2, nrow = 1)
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Figure 1: Graphical representation of the estimated restricted FMM4 signal with β1 = β2, ω1 = ω2
and β3 = β4, ω3 = ω4 constraints. A scatter plot of the simulated data along with the fitted signal is
displayed on the left (default plot). The component plot is shown on the right.

5 Real data analysis using the FMM package

This section illustrates the use of the FMM package on the analysis of real signals from chronobiology,
electrocardiography and neuroscience. To do this, the package includes four real-world data sets in
RData format which are described in the following sections.
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Example 1: Chronobiology

Chronobiology studies ubiquitous daily variations found in nature and in many aspects of the phys-
iology of human beings, such as blood pressure or hormone levels (Mermet et al., 2017). These
phenomena commonly display signals with oscillatory patterns that repeat every 24 hours, usually
known as circadian rhythms. In particular, circadian gene expression data have been deeply analyzed
in the literature as they regulate the vast majority of molecular rhythms involved in diverse biochemi-
cal and cellular functions, see among others Zhang et al. (2014), Cornelissen (2014) and Larriba et al.
(2020).

The FMM package includes a data set called mouseGeneExp that contains expression data of the
Iqgap2 gene from mouse liver. The liver circadian database is widely extended in chronobiology since
the liver is a highly rhythmic organ with moderate levels of noise (Anafi et al., 2017; Larriba et al., 2018,
2020). The complete database is freely available at NCBI GEO (http://www.ncbi.nlm.nih.gov/geo/),
with GEO accession number GSE11923. Gene expression values are given along 48 hours with a
sampling frequency of 1 hour/2 days. Hence, data are collected along two periods, and an FMM1
model is fitted to the Iqgap2 average expressed values as follows:

> data("mouseGeneExp", package = "FMM")
> fitGene <- fitFMM(vData = mouseGeneExp, nPeriods = 2, nback = 1, showProgress = FALSE)
> summary(fitGene)

Title:
FMM model with 1 components

Coefficients:
M (Intercept): 10.1508

A alpha beta omega
FMM wave 1: 0.4683 3.0839 1.5329 0.0816

Peak and trough times and signals:
t.Upper Z.Upper t.Lower Z.Lower

FMM wave 1: 0.1115 10.6191 6.0686 9.6825

Residuals:
Min. 1st Qu. Median Mean 3rd Qu. Max.

-9.751e-02 -3.490e-02 2.269e-03 -1.530e-06 2.670e-02 1.890e-01

R-squared:
[1] 0.8752

The behavior of the FMM versus COS model to describe this asymmetric pattern has been com-
pared in terms of R2. The FMM model clearly outperforms the COS one with an R2 of 0.8752 and
0.2835, respectively. In addition, a difference of 4.73 hours in peak time estimation between both
models is observed, the FMM peak estimate being much more reliable, as is shown in Figure 2.

Example 2: Electrocardiography

ECG records the periodic electrical activity of the heart. This activity represents the contraction and
relaxation of the atria and ventricle, processes related to the crests and troughs of the ECG waveform.
Heartbeats are decomposed into five fundamental waves, labelled as P, Q, R, S and T, corresponding
to the different phases of the heart’s electric activity. The main features used in medical practice for
cardiovascular pathology diagnosis are related to the location and amplitudes of these waves, and,
of them, those labeled as P, R and T are of particular interest (Bayes de Luna, 2007). Standard ECG
signals are registered using twelve leads, calculated from different electrode locations. Lead II is the
reference signal, as it usually provides a good view of the main ECG waves (Meek and Morris, 2002).

The FMM package includes the analysis of a typical ECG heartbeat from the QT database (Laguna
et al., 1997). This recording, from the subject sel100, belongs to the Normal category, regarding
Physionet’s pathology classification (Goldberger et al., 2000). The data illustrate the voltage of the
heart’s electric activity, measured in mV, along the heartbeat with a sampling frequency of 250Hz.
Specifically, the ECG signal from lead II in the fifth of the thirty annotated heartbeats is analysed.
Recordings are publicly available on (http://www.physionet.org). Data are saved as ecgData in the
package. For an ECG heartbeat, an FMMecg, a fifth order multicomponent FMM model can be fitted
with the instruction:
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Figure 2: Iqgap2 gene expression data along two periods (grey dots); FMM (red line) and COS (blue
line) fitted signals.

> data("ecgData", package = "FMM")
> fitEcg <- fitFMM(ecgData, nback = 5, showProgress = FALSE)
> summary(fitEcg)

Title:
FMM model with 5 components

Coefficients:
M (Intercept): 5.2717

A alpha beta omega
FMM wave 1: 0.6454 5.5151 3.2926 0.0325
FMM wave 2: 0.0994 4.4203 3.7702 0.1356
FMM wave 3: 0.2443 5.3511 0.6636 0.0323
FMM wave 4: 0.3157 5.5919 4.8651 0.0126
FMM wave 5: 0.0666 1.7988 2.1277 0.1632

Peak and trough times and signals:
t.Upper Z.Upper t.Lower Z.Lower

FMM wave 1: 2.3686 6.2370 3.1841 4.7241
FMM wave 2: 1.1905 4.9487 2.0693 4.6897
FMM wave 3: 2.3965 6.0828 2.1872 4.5551
FMM wave 4: 2.4210 5.7933 2.4719 4.7175
FMM wave 5: 5.1212 4.8646 4.3689 4.7228

Residuals:
Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.0690885 -0.0095597 -0.0001127 0.0000000 0.0098533 0.0623569

R-squared:
Wave 1 Wave 2 Wave 3 Wave 4 Wave 5 Total
0.7645 0.0920 0.0581 0.0493 0.0278 0.9918

It is worth noting that the FMM package not only provides ECG signal-fitting (the left hand panel
in Figure 3), but it also does wave decomposition and fiducial mark annotations on the desired waves
(the right hand panel in Figure 3). It is clearly visible how the specific shapes of the five main waves
contribute to drawing and explaining the lead II ECG waveform from the Normal morphology. See
Rueda et al. (2021b) for a complete review of FMMecg.
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Figure 3: FMMecg performance on a single beat from patient sel100 from the QT database. Left: Data
(grey dots) and FMM fitting (red line). Black dots locate the P, R and T fiducial marks. Right: ECG
decomposition on P(orange), Q (purple), R (green), S (yellow) and T (blue) waves. Dash lines indicate
P, R and T peak times.

Example 3: Neuroscience

Single AP curve

The study of the electrophysiological activity of neurons is one of the main research branches in
neuroscience. The AP curves are oscillatory signals that serve as basic information units between
neurons. They measure the electrical potential difference between inside and outside the cell due
to an external stimulus. Gerstner et al. (2014) can serve as a basic reference for electrophysiological
neuroscience. Recently, the shape and other features of the AP have been used in problems such
as spike sorting (Rácz et al., 2020; Souza et al., 2019; Caro-Martín et al., 2018) or neuronal cell type
classification (Teeter et al., 2018; Gouwens et al., 2019; Mosher et al., 2020; Rodríguez-Collado and
Rueda, 2021b).

The package includes an example of a neuronal AP. The data were simulated with the renowned
Hodgkin-Huxley model, first presented in Hodgkin and Huxley (1952), which is defined as a system
of ordinary differential equations and has been used in a wide array of applications, as it successfully
describes the neuronal activity in various organisms. The simulation has been done using a modified
version of the python package NeuroDynex available at Gerstner et al. (2014). More concretely, a short
square stimulus of 12µA has been applied to the neuron. The data can be accurately fitted by an FMM2
model as follows:

> data("neuronalSpike", package = "FMM")
> fitSingleAP <- fitFMM(neuronalSpike, nback = 2, showProgress = FALSE)
> summary(fitSingleAP)

Title:
FMM model with 2 components

Coefficients:
M (Intercept): 44.9474

A alpha beta omega
FMM wave 1: 52.9014 4.4160 3.0606 0.0413
FMM wave 2: 18.5046 4.6564 4.9621 0.0322

Peak and trough times and signals:
t.Upper Z.Upper t.Lower Z.Lower

FMM wave 1: 1.2777 110.8361 5.9669 -2.5002
FMM wave 2: 1.4319 36.9084 1.5649 -16.2572

Residuals:
Min. 1st Qu. Median Mean 3rd Qu. Max.
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-14.3012 -1.0038 0.7472 0.0000 1.3230 24.8618

R-squared:
Wave 1 Wave 2 Total
0.9064 0.0604 0.9669
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Figure 4: Neuronal AP simulated with the Hodgkin-Huxley model (parameters: C = 1, gNa =

260, gK = 30, gL = 0.31, VK = −12, VNa = 115, VL = 10.6, ãn = 1.15, b̃n = 0.85, ãm = 0.9, b̃m =

1.3, ãh = 1, b̃h = 1 and applying a current of 12µA for 1 millisecond) and the estimated FMM2 signal
in red. An FD model of the same number of degree of freedom has been fitted and plotted in blue.

The goodness of fit of the FMM2 model can be ascertained in Figure 4. For comparison purposes,
an FD model has been fitted with the same number of degrees of freedom. While the FD attains an
R2 = 0.3926, the FMM model achieves a better fit with R2 = 0.9669.

AP train

Multiple AP curves, denominated spike or AP train, are usually observed as the response to a stimulus.
Various models, such as the widely used leaky-and-fire models (Lynch and Houghton, 2015), cut the
signal into segments, each one containing an AP curve. Some authors suggest cutting the signal into
even segments (Gerstner et al., 2014). However, the length of the segments turns out to be significantly
different between different types of neurons, as explained in Teeter et al. (2018), and unequal data
segments can lessen the utility of some approaches. An important aspect to take into account is that
the shape of the APs in the spike train is considered to be similar and, consequently, a restricted FMM
model can accurately fit the entire signal.

The FMM package includes the data of a spike train composed of three AP curves. The proposed
model for use with these data is an FMMST model, as defined in Rodríguez-Collado and Rueda (2021a).
Each AP is modeled by two components. The β and ω parameters are constrained between AP curves.
The code below fits the model.

> data("neuronalAPTrain", package = "FMM")
> nAPs <- 3; restriction <- c(rep(1,nAPs),rep(2,nAPs))
> fitAPTrain<-fitFMM(neuronalAPTrain, nback = nAPs*2,

betaRestrictions = restriction,
omegaRestrictions = restriction,
showProgress = FALSE, parallelize=TRUE)

> summary(fitAPTrain)

Title:
FMM model with 6 components

Coefficients:
M (Intercept): 135.4137
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A alpha beta omega
FMM wave 1: 51.7069 6.1358 2.8172 0.0384
FMM wave 2: 52.0915 1.7541 2.8172 0.0384
FMM wave 3: 51.1140 4.2319 2.8172 0.0384
FMM wave 4: 20.3725 4.4778 4.8637 0.0552
FMM wave 5: 19.2429 1.9981 4.8637 0.0552
FMM wave 6: 19.6748 0.0973 4.8637 0.0552

Peak and trough times and signals:
t.Upper Z.Upper t.Lower Z.Lower

FMM wave 1: 3.0067 111.4319 2.5332 -1.2051
FMM wave 2: 4.9082 111.7323 4.4347 -1.4607
FMM wave 3: 1.1028 111.2700 0.6293 -0.1561
FMM wave 4: 1.2077 58.5986 1.4310 -14.2508
FMM wave 5: 5.0113 58.5537 5.2345 -13.3010
FMM wave 6: 3.1104 58.4889 3.3337 -13.7041

Residuals:
Min. 1st Qu. Median Mean 3rd Qu. Max.

-14.8618 -1.4929 0.5029 0.0000 1.6021 19.1978

R-squared:
Wave 1 Wave 2 Wave 3 Wave 4 Wave 5 Wave 6 Total
0.2524 0.2881 0.3501 0.0244 0.0276 0.0413 0.9839

In Figure 5, the fit of the FMMST model can be visualized. The goodness of fit of the model is
excellent, achieving an R2 = 0.9839.
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Figure 5: Neuronal APs simulated with the Hodgkin-Huxley model (parameters: C = 1, gNa =

232, gK = 45, gL = 0.215, VK = −12, VNa = 115, VL = 10.6, ãn = 0.95, b̃n = 1.3, ãm = 1, b̃m =

1.15, ãh = 1, b̃h = 1 and applying a short square current of 4.5 µA for 1 millisecond) and the estimated
FMMST signal in red. The components plot of the model can be seen on the right hand side of the
figure.

6 Summary

A general overview on the R package FMM, which implements the estimation of FMM models, is
provided in this paper. The flexibility offered by these models to fit oscillatory signals of many different
shapes makes them a very useful tool to model complex rhythmic patterns. The FMM methodology
and its application to very diverse biological data has been described in previous papers (Rueda et al.,
2019, 2021b,c) and recently revised in Rueda et al. (2021a).
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The package allows both single and multicomponent FMM models to be estimated. In order to
provide greater flexibility, equality constraints for shape parameters have also been implemented. In
addition, graphical representations of the fitted models and the possibility of generating synthetic
data are available. The functionality of the package has been illustrated by simulated data and also by
real examples from different areas of application related to present-day biological problems. The latest
release of the FMM package is publicly available on CRAN (http://CRAN.R-project.org/package=
FMM). A development version is also provided via GitHub at https://github.com/alexARC26/FMM
where code contributions and bugs can be reported.

Possible future extensions of the FMM package include the implementation of additional restric-
tions to suit the model to other real signals; the possibility to include weights that determine how much
each observation influences the parameter estimates; and the choice of an optimization technique,
other than the Neldel-Mead method, in the estimation algorithm.
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