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Abstract: Augmented reality applications involving human interaction with virtual objects often rely
on segmentation-based hand detection techniques. Semantic segmentation can then be enhanced
with instance-specific information to model complex interactions between objects, but extracting
such information typically increases the computational load significantly. This study proposes
a training strategy that enables conventional semantic segmentation networks to preserve some
instance information during inference. This is accomplished by introducing pixel weight maps into
the loss calculation, increasing the importance of boundary pixels between instances. We compare
two common fully convolutional network (FCN) architectures, U-Net and ResNet, and fine-tune the
fittest to improve segmentation results. Although the resulting model does not reach state-of-the-art
segmentation performance on the EgoHands dataset, it preserves some instance information with
no computational overhead. As expected, degraded segmentations are a necessary trade-off to
preserve boundaries when instances are close together. This strategy allows approximating instance
segmentation in real-time using non-specialized hardware, obtaining a unique blob for an instance
with an intersection over union greater than 50% in 79% of the instances in our test set. A simple
FCN, typically used for semantic segmentation, has shown promising instance segmentation results
by introducing per-pixel weight maps during training for light-weight applications.

Keywords: computer vision; convolutional neural networks; deep learning; hand segmentation;
semantic segmentation

1. Introduction

Real-time hand segmentation information is essential in augmented reality (AR) ap-
plications involving human interaction with virtual objects. Additional instance-specific
information can further enhance segmentation data to model complex interactions, but can
be computationally expensive to obtain. AR has been proved to increase the effectiveness
of motor function rehabilitation systems, particularly in upper extremities [1,2]. In this
study, we explore a light-weight semantic segmentation technique that preserves some
instance information, aiming to power an AR-based upper-limb rehabilitation platform.
This instance segmentation approximation allows minimizing the hardware requirements
of the target rehabilitation platform, as this information is only occasionally required and is
not critical for the proper functioning of the application. Instance segmentation is inherently
a more challenging task than semantic segmentation, and is more closely related to object
detection than semantic segmentation. Furthermore, in the general case, images can contain
an arbitrary number of instances, requiring the use of clever segmentation strategies or
complex architectures.

Existing fully supervised instance segmentation methods can be divided into three cat-
egories based on number of stages present in the inference pipeline: single-stage, two-stage,
and multi-stage methods. Two-stage instance segmentation is the most widely used [3],
with Mask R-CNN the most representative work in this category [4]. These pipelines
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generally compose object detection with semantic segmentation, and can be divided into
top-down or bottom-up methods, depending on the order in which segmentation and
detection operations are applied. Examples of top-down methods, which first select regions
of interest and then segment, are Sharpmask [5], PANet [6], Mask SSD [7], Mask R-CNN [4],
Mask Scoring R-CNN [8], MaskLab [9], and Explicit Shape Encoding (ESE) [10]. Examples
of bottom-up methods, which first segment and then detect instances, are DeepCRFs [11],
Dynamically Instantiated Network (DIN) [12], Contour Information Deep Watershed Trans-
form (DWT) [13], Pixel Center Prediction Box2pix [14], Depth Information Pixel-level
Encoding and Depth Layering (PEDL) [15], Recurrent Pixel Embedding (RPE) [16], Deep
Metric Learning (DML) [17]. Example of multi-stage methods include those based on
cascade architectures [18–20] and Recurrent Neural Network (RNN)-based approaches
such as Recurrent Instance Segmentation (RIS) [21], End-to-End Instance Segmentation
(ETE) [22], Recurrent Neural Networks for Semantic Instance Segmentation (RSIS) [23].
Additionally, transformers-based methods like QueryInst [24], SOLQ [25], ISTR [26], and
Mask2Former [27] exemplify advanced techniques in this domain.

The use of multi-stage detectors presents a number of disadvantages. The overall
performance is constrained by the weakest element of the pipeline, with errors cascading
irreversibly through the inference process. Scalability may be compromised, as many
multi-stage approaches require computation for each instance detected at some point in
the pipeline. Some of these approaches, particularly top-down methods, do not segment
images holistically, which reduces the contextual information available during segmenta-
tion. Certain detectors, moreover, cannot be trained end-to-end, and may require multiple
datasets and complex training schemes. Single-stage detectors avoid these problems but
require employing novel techniques to accomplish the complex task of instance segmenta-
tion. Some single-stage approaches use parallel branches, in favor of sequential ones, that
perform subtasks that are composed into the final segmentation masks, such as You Only
Look At Coefficients (YOLACT) [28] and SOLO [29]. Single-stage methods can be further
divided into anchor-based and anchor-free methods. Examples of anchor-based methods
are InstanceFCN [30], FCIS [31], TensorMask [32], and YOLACT [28], with the latter being
the most representative. Examples of anchor-free methods are EmbedMask [33], Blend-
Mask [34], CondInst [35], Polarmask [36], CenterMask [37], SOLO [29], and SOLOv2 [38].

However, these modern solutions required high-end GPUs to achieve very high frame
per second (FPS) rates. To reduce the complexity of instance segmentation, a simple
approach is imposing an upper limit on the number of instances detected but would in-
evitably introduce biases and limitations; it would not be scalable, as different datasets
would be required to train different versions with different limits. Therefore, this solution
was discarded to maintain flexibility, especially for AR rehabilitation platforms that may
require interactions involving therapists or additional users besides the patient. The de-
ployed model must run within a real-time application, which imposes a minimum average
inference rate to the model of approximately 40 FPS, ideally in regular consumer CPUs.

In light of these constraints, we opted for a light-weight solution. The instance-specific
information required for the task is relatively minimal, as basic instance segmentation data
are sufficient to model interactions between multiple objects, such as in a rehabilitation
scenario. Thus, we chose simple, fully convolutional networks (FCNs) like U-Net and
ResNet, integrated with a pixel-weighted loss function to enable segmentation of distinct
instances into separate blobs, particularly emphasizing boundary pixels between interacting
hands. Morphological operations are employed as a processing step to extract individual
instances from the segmentation mask, adding minimal overhead. Our approach effectively
substitutes complex instance segmentation models with simpler semantic segmentation
networks, prioritizing real-time performance over high accuracy. Although the instance
information produced by this method may be of lower quality, it is sufficient for the task at
hand, and it bypasses the complications typically associated with instance segmentation.

In this article, we first introduce the materials and methods employed, including the
EgoHands dataset, the required image preprocessing, the two proposed FCN architectures



Appl. Sci. 2024, 14, 11357 3 of 19

(U-Net and ResNet) along with different loss functions (binary cross entropy, focal loss,
and dice loss), activation functions (ReLU and PReLU), and performance metrics used to
evaluate the models. Subsequently, we present the results obtained for the two proposed
architectures, and upon selecting the optimal architecture, we perform a fine-tuning of
model hyperparameters, including dropout rate, loss function, and learning rate scheduler.
Finally, we discuss and conclude the results obtained, comparing them with state-of-the-art
segmentation results.

2. Materials and Methods

This section presents the dataset, and the preprocessing steps required to make it
suitable for the proposed approach. It also outlines the neural network architectures to be
tested, and the key hyperparameters tuned to optimize the model for the presented task.

2.1. Dataset

Our segmentation approach has been evaluated using the Egocentric Hands (Ego-
Hands) dataset [39]. The dataset contains 4800 labeled images from 48 videos of complex
interactions between two people, recorded from a first-person perspective. The labels
are four precise segmentation masks, classified into four possible classes, distinguishing
between the left and right hands of the observer and the other person. This representation
allows for instance segmentation, semantic segmentation, and object detection, with simple
mask manipulation. Both the segmentation masks and the images have a resolution of
1280 × 720 pixels, which is considered high quality for the majority of relevant applications.
The 48 videos feature two out of four people, in one of three environments, performing
one of four different activities (Figure 1). These different combinations introduce variabil-
ity in the environments and lighting conditions in which the classifier must learn. This
variability suggests that there are relevant invariants in hand detection represented in the
data, allowing a network trained with this dataset to learn to ignore irrelevant contextual
information and properly generalize.

(a) (b)
Figure 1. Images from the EgoHands dataset with their segmentation masks. (a) Jenga game in the
backyard. (b) Card game at the office.

2.2. Image Preprocessing and Data Augmentation

The four independent masks are preprocessed before being combined into a single
segmentation mask to ensure that there is at least one background pixel between each
instance, which is required to encode hand separation using weight maps. Combining the
mask directly leads to two problems. First, there are overlapping masks, where in extreme
cases, a single pixel partially belongs to two classes in the original ground truth. Second,
some masks are adjacent without actually overlapping.

The dataset masks, with values ranging from 0 to 255, blob interiors have a value of
255, background pixels are encoded with a value of 0, and the borders that separate these
have intermediate values. Masks are first binarized, to encode whether a pixel belongs to a
hand or not. A threshold of 128 is empirically chosen as a value that produces regular and
coherent hand borders. Once the masks are binarized, dilations (⊕) and logical operations
AND (∧), OR (∨), and NOT (¬) will be used to detect and eliminate conflicts between
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instance masks. Conflicting regions are obtained from dilated versions of the original masks,
rather than the original masks directly; this allows removing conflicts from overlapping
and also non-overlapping masks. A round 5 × 5 kernel (k) that preserves smooth borders
is used to dilate these masks.

k =


0 0 1 0 0
0 1 1 1 0
1 1 1 1 1
0 1 1 1 0
0 0 1 0 0


Let A, B, C, and D denote the four segmentation masks associated with an image.

Their dilated versions, denoted as Ad, Bd, Cd, and Dd, are calculated as follows:

Ad = A⊕ k (1)

Bd = B⊕ k (2)

Cd = C⊕ k (3)

Dd = D⊕ k (4)

Then, the intersection R of any pair of these dilated masks and their dilation Rd

are obtained,

R0 = Ad ∧ (Bd ∨ Cd ∨ Dd) (5)

R1 = Bd ∧ (Cd ∨ Dd) (6)

R2 = Cd ∧ (Dd) (7)

R = R0 ∨ R1 ∨ R2 (8)

Rd = R⊕ k (9)

Finally, the processed mask M is the logical union of A, B, C, and D, representing the
original data, excluding the dilated conflicting areas Rd,

M = (A ∨ B ∨ C ∨ D) ∧ ¬Rd (10)

Thus, the conflicting areas become part of the background. Images are then re-scaled
to a resolution of 640 × 368 pixels to increase throughput of the final model. Pixel weight
maps are then used on top of a per-pixel loss function to emphasize the importance of pixels
separating two blobs, forcing the network to learn this separation (Figure 2). Increasing
weight in certain background regions further amplifies class imbalance, hence the base
weight of background pixels has been reduced to 0.95 compared to 1.0 for hand pixels. This
value of 0.95 was experimentally determined to achieve a balanced rate of false positives
(FP) and false negatives (FN) in an initial test. The weight of background pixels is, therefore,

w(x) = wc(x) + w0 · exp

(
− (d1(x) + d2(x))2

2σ2

)
(11)

where wc represents the base weight of background pixels, w0 is a multiplier, σ is a reference
distance in pixels, and d1 and d2 are distances in pixels from the current pixel to the nearest
two hands. The chosen values were wc = 0.95, w0 = 12.0, and σ = 5.0. The exponentially
decaying nature of the weight function ensures that the value over the base weight is only
significant when both d1 and d2 are sufficiently small. These parameters lead to a maximum
pixel weight of approximately 13 times the base weight.

Datasets used in computer vision typically contain a limited number of images because
their acquisition process is often non-automatable. This is particularly true for segmen-
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tation tasks, which require highly precise labels. Expanding a segmentation dataset is
straightforward by applying simple transformations to images and their masks, thereby
enhancing data utilization efficiency [40]. In this case, 2242 new images were generated
from the initial set of 3200 training images. Among these, 65% are horizontally flipped,
55% have applied zoom and small rotations, 40% exhibit color variations, and 30% have
per-pixel Gaussian noise added.

(a) (b)

(c)
Figure 2. Example image with its segmentation mask and associated pixel weight map. (a) Original
image and its segmentation mask. (b) Segmentation mask. (c) Pixel weight map.

2.3. Network Architectures

This study compares two simple yet modern FCNs: U-Net and ResNet. The U-Net
architecture is a promising candidate for this application due to the positionally precise
image information that is accessible to the decoder when making predictions, which may
facilitate the accurate classification of precise boundaries. The ResNet architecture can be
viewed as a more modern iteration of the U-Net, where long skip connections are replaced
with short ones, and concatenation is replaced by addition. This architectural change
has deep implications, skip connections are no longer used to carry positionally precise
information to the decoder, but to center the network around the identity mapping.

2.3.1. U-Net

The first architecture tested is a standard U-Net (Figure 3), containing three convo-
lutional blocks in both the encoder and the decoder, connected by a bottleneck and the
characteristic skip connections of the U-Net architecture [41]. Each block in the encoder has
two convolutional layers with ReLU activation and a max-pooling operation to reduce the
resolution of the input to the next block. In the decoder, a transposed convolution with a
stride greater than one is used as an upsampling method to increase the resolution of the
intermediate results, which are concatenated with the output of the convolutional layers of
the corresponding encoder block. Then, two convolutional layers are used as processing
units that also reduce the depth channels of the intermediate results. Skip connections
grant the decoder access to positionally precise, lightly processed image information, to
use jointly with the heavily processed, less positionally precise, higher level information
coming from the bottleneck. This makes the U-Net a very appealing architecture for this
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application as positionally precise information might be required to produce reliable re-
sults. The encoder and decoder are connected by a bottleneck, where the most complex,
high-level, and less positionally accurate information should be obtained. All convolutions
use 3 × 3 kernels, as is customary in FCNs. Other sizes were tested, but the best results
were obtained with small kernels. The network has a total of 2.1 million parameters and
dropout is included as regularization method.

Figure 3. U-Net architecture. Color used: lilac—input; light orange—convolutions; dark orange—
ReLU activation; red—MaxPooling; green—dropout; dark blue—upsampling; gray—concatenation;
yellow—concatenated block; purple—sigmoid activation.

2.3.2. ResNet

The ResNet [42] used is also standard (Figure 4), except for the unconventional inclu-
sion of dropout. The first layer is a convolution with a stride greater than 1, which reduces
the resolution of the input image while adding depth channels and initiating processing.
The encoder contains three blocks of convolutional layers, max-pooling, and dropout,
similar to the previous architecture. Additionally, sum operations are added between
the input and output of each residual block. The residual connections in the encoder are
implemented with a convolutional layer using strided convolutions, which adjusts the size
of one of the tensors to be summed. The decoder has three residual blocks symmetrical to
the encoder, using transposed convolutions with a stride of 2 as the upsampling method, as
seen earlier. In this case, the residual connections are made with an upsampling layer and
a convolutional layer. The bottleneck is another convolutional residual block, analogous
to the bottleneck found in U-Net. ReLU activations and primarily 3 × 3 convolutional
kernels are used, except in the residual connections where 1 × 1 kernels are used. These
1 × 1 kernels are conventionally used to adjust the resolution and depth of the inferred
feature tensors. The network has a total of 3.1 million parameters, while requiring the same
amount of memory than the presented U-Net. Batch normalization along with dropout are
used as regularization methods.

2.4. Loss Function

Three loss functions were evaluated to optimize network performance: Binary Cross
Entropy (BCE), Focal Loss (FL), and Dice Loss. The selection of the loss function enables fine
tuning the balance between precision and recall, preserving boundaries while maximizing
IoU. BCE in combination with pixel-weight maps can effectively produce well-defined
segmentation and individual mask for each hand. However, its equal treatment of fore-
ground and background pixels can lead to class imbalance, as background pixels dominate
in number. This imbalance, though partially mitigated by the high confidence typically
assigned to background predictions, could be further optimized. FL extends BCE by in-
troducing parameters α and γ to emphasize harder-to-classify pixels and address class
imbalance more effectively [43]. By adjusting these parameters, segmentation performance
is enhanced, especially in challenging regions. Dice Loss, also designed for imbalanced
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data, prioritizes foreground regions by directly optimizing the similarity between predicted
and ground truth masks [44]. It calculates a differentiable Dice similarity coefficient [45]
to emphasize true positives (TP) while minimizing the impact of class imbalance [46]. To
counteract prediction noise near the decision threshold, predictions were polarized using a
sigmoid function, yielding marginally improved results.

3 I

32 I/
2 64 64 I/

2

64 I/
4 128 128 I/
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128 I/
8 256 256 I/

8

256 I/
16 256 256 I/

16

256 I/
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128 I/
4 64 64 I/
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4 3232 I/
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32 I 1 I
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8

128 I/
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64 I/
2

32 I

Figure 4. ResNet architecture. Colors used: lilac—input; light blue—strided convolution; light
orange—convolutions; dark orange—BatchNorm and ReLU activation; red—MaxPooling; green—
dropout; yellow—sum; dark blue—upsampling; purple—sigmoid activation.

2.5. Activation Function

The ReLU activation function is widely used due to its simplicity, efficient gradi-
ent computation, and ability to mitigate the vanishing gradient problem. However, a
drawback is that neurons producing consistently negative outputs can become inactive
during training. To address this limitation, the PReLU activation function introduces a
parameter α, which allows negative outputs to take on small negative values rather than
being zero [47]. α adapts during training and can be unique to each weight or shared
across multiple weights. In this case, α is shared across each feature channel of every layer,
efficiently increasing model complexity with a modest addition of parameters (around
3000), enhancing its ability to learn and represent complex patterns.

2.6. Performance Metrics

Intersection over Union (IoU) is a commonly used metric for evaluating segmentation
algorithms. It measures the overlap between predicted and ground truth segmentation
masks. Additionally, accuracy, precision and recall were also used as performance metrics.
Accuracy represents the proportion of correctly predicted pixels (both foreground and
background). Precision indicates the percentage of predicted foreground pixels that are
correctly classified, highlighting the model’s conservativeness by minimizing false positives
(FP). Recall represents the percentage of ground truth pixels correctly identified by the
model, reflecting its ability to capture relevant information by minimizing false negatives
(FN). While maximizing both precision and recall is ideal, precision is prioritized in this
application due to the high cost of FP, whereas FN poses minimal risk. Note that balancing
these metrics is challenging, as they directly impact the demanding IoU score.

The instance segmentation performance of the model cannot be adequately measured
using the AP score [48], as the network is designed for semantic segmentation. Hence,
we developed a custom metric, the Centroid Correlation Cofficient (CCC), tailored to
estimate how accurately individual masks are obtained for each ground truth instance,
crucial for approximating instance segmentation through semantic segmentation. The
CCC metric ideally achieves a value of 1.0, typically ranges between 0.95 and 0.3, but can
be negative in highly fragmented segmentations. The CCC metric measures the average
deviation between the centroids of inferred blobs and ground truth blobs, assuming each
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blob represents an instance. It penalizes deviations from the ideal scenario, where each
instance corresponds to a single blob, and accounts for mismatches in the number of blobs
and cases where blobs lack a direct counterpart.

The CCC pseudocode implementation is presented in Algorithm 1. If the number of blobs
is the same in both segmentations, they are paired such that the total distance within the pairs is
minimized. If the number of blobs does not match, each blob in the segmentation with more
blobs is associated with the nearest blob in the other segmentation. The average distance is
calculated as the sum of these distances divided by the number of blobs in the segmentation
with fewer blobs. Hence, this approach penalizes a blob less when it is closer to any blob in the
other segmentation and penalizes based on the disparity of blob count. The average distance
is normalized against the maximum possible distance (the image diagonal), yielding a result
between 0 and 1 when the same number of masks matches, and greater than 0 otherwise. Finally,
the square root of this measure is computed to expand the most common range, and is then
subtracted from 1 to obtain a value less than 1.

Algorithm 1 Centroid correlation coefficient pseudocode implementation.
input : 2DArray target_seg(target segmentation),

2DArray inferred_seg(inferred_segmentation)

output: ccc (Centroid Correlation Coefficient) ∈ (−∞, 1]

target_c← find_centroids(target_seg)
pred_c← find_centroids(inferred_seg)

mean_dist← 0
if len(target_c) = len(inferred_c) then

// Pair blobs such that total distance is minimized
dist_matrix← distance_matrix(target_c, inferred_c)
(row_ind, col_ind)← linear_sum_assignment(dist_matrix)

mean_dist←mean(dist_matrix[row_ind, col_ind])
else then

// Associate each blob with its closest counterpart
short, long← sorted([target_c, pred_c], key=lambda x : len(x))
total_dist← sum([min([dist(p, q) foreach q in short]) foreach p in long])
mean_dist← total_dist / len(short)

end

// Normalize the mean distance with its diagonal
diag← sqrt(height(target_seg)2 + width(target_seg)2)
normalized_dist←mean_dist / diag

// sqrt is used to dilate the usable range near CCC values of 1
ccc← 1 − sqrt(normalized_dist)
return ccc

3. Results

The choice of architecture was initially made between U-Net and ResNet, two widely
recognized FCNs. Proper regularization is crucial for FCNs to prevent overfitting. Dropout
has been widely used as an effective regularization technique [49], as batch normaliza-
tion [50]. However, recent works suggest that the standard dropout can be ineffective
or even detrimental to FCN training [51]. Due to the lack of mathematical intuition for
dropout in FCNs, which can make it unpredictable and challenging to adjust during train-
ing, dropout is carefully considered in the architecture selection process. Once the optimal
architecture is selected, its hyperparameters are tuned, including activation function, loss
function, and learning rate schedule.
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3.1. Architecture Selection

Both models were trained using the same data and hyperparameters to ensure a
fair comparison, despite introducing some bias in the architecture selection. Augmented
images were excluded from the set, as the primary goal was to identify the best architecture
rather than achieve precise results at this stage. A pixel-weighted BCE loss function was
employed, combined with the Adam optimizer and the He-Normal kernel initialization [42]
for robust performance without additional adjustments [52]. The models used a constant
learning rate of 0.001, ReLU activation, and a batch size of 2 was used due to memory
constraints. All models were trained over 30 epochs, which preliminary tests showed to be
adequate for validation IoU convergence without significant overfitting.

Table 1 presents the average performance metrics from three training runs for both
ResNet and U-Net models, with dropout rates varying from 0.0 to 0.7. U-Net encountered
convergence issues at dropout rates above 0.3, so results for these rates were excluded.
These results highlight ResNet’s potential to outperform U-Net, which can be attributed to
its 50% higher parameter count, despite both models requiring equivalent GPU memory
and ResNet being faster. This greater parameterization enables ResNet to model more
complex transformations inherent in the dataset, albeit with increased susceptibility to
overfitting. In terms of inference speed, U-Net achieves an unoptimized rate of 19 FPS
on 640 × 368 resolution images when tested on an Intel 11600KF CPU, whereas ResNet
achieves 21 FPS, further underscoring its efficiency despite its larger size. Based on these
findings, ResNet is selected as the preferred architecture for subsequent experiments.

The ResNet architecture was retrained from scratch with augmented samples, testing
dropout rates from 0.0 to 0.4. Using augmented samples increases the importance of
regularization methods like dropout, as augmented images do not contain purely new
information, introducing biases into the training. The averaged results of three training
runs for this training are shown in Table 2. The highest IoU was achieved at a dropout rate
of 0.3, making it the selected model for further fine tuning.

Table 1. Performance of U-Net and ResNet architectures based on the amount of dropout.

Dropout Rate ResNet U-Net
IOU Precision IOU Precision

0.0 0.783 0.901 0.763 0.898
0.1 0.784 0.903 0.758 0.893
0.2 0.786 0.908 0.721 0.878
0.3 0.785 0.905 0.733 0.887
0.4 0.780 0.899 — —
0.5 0.761 0.894 — —
0.6 0.749 0.889 — —
0.7 0.722 0.878 — —

Bold numbers indicate the best results obtained.

Table 2. ResNet performance results based on the amount of dropout using augmented images
for training.

Dropout Rate IOU Precision Recall CCC

0.0 0.789 0.907 0.861 0.813
0.1 0.790 0.915 0.855 0.821
0.2 0.791 0.904 0.864 0.817
0.3 0.795 0.913 0.861 0.822
0.4 0.783 0.908 0.851 0.817

Bold numbers indicate the best results obtained.

3.2. Hyperparameter Optimization

After selecting ResNet as the optimal architecture, hyperparameter optimization was
performed to enhance model performance. This process aimed to add complexity where
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needed, align training with the target objective, and increase search efficiency within the
model’s solution space. Various loss functions and activation functions were tested to
better address the task, while learning rates were adjusted across epochs to optimize search
efficiency. The same sets of videos used for architecture selection were employed for the
train-validation-test split (32-8-8), with additional augmented images for training. Models
were trained for 30 epochs with a batch size of 2, using the Adam optimizer [52] and the He-
Normal kernel initialization method [42], continuing the previously established approach.

3.2.1. Activation Function

The PReLU activation function with a single parameter per depth channel was tested
along with the ReLU activation function. The averaged results from three training runs
using ReLU and PReLU are shown in Table 3. The PReLU increased the model’s unop-
timized inference time from 52 to 68 ms/image, representing a 40% increase. Training
time also extended from 5.5 h to 6.7 h, a 20% increase. While the accuracy gains achieved
may not justify the slower inference speed in some applications, this new model has
been chosen to be optimized further as results suggest that our original model is indeed
parameter-constrained and performance will be improved at a later stage.

Table 3. Performance of the ResNet architecture using ReLU and PReLU activation functions.

Activation Function IOU Precision Recall CCC

ReLU 0.795 0.913 0.861 0.822
PReLU 0.799 0.919 0.860 0.830

Bold numbers indicate the best results obtained.

3.2.2. Loss Function

The resulting model has been retrained using DICE Loss and several versions of FL.
The average results from three trials are shown in Table 4. The best performance was
achieved using FL, with the optimal parameters found α = 0.5 and γ = 1.1. These results
are in line with expectations, showing slight improvements over BCE due to FL’s greater
versatility. Although FL slightly increases the training time due to additional computations,
it does not impact the model’s inference speed, as it does not alter the model architecture.

Despite the theoretical suitability of Dice Loss for this application, the results indicate
poor performance. Dice’s stringent nature may lead to noisy evaluations during training,
complicating convergence to precise results. Figure 5 illustrates the significant amount of
noise observed in the validation IoU curve. This noise likely arises from Dice’s sensitivity
to small perturbations and its difficulty in adjusting finely to pixel-level details. Pixel
weight maps and pseudo-binarization of the inferred segmentations may contribute to the
significant noise in the model’s evolution during training. Pixels with high weights in the
weight maps are inherently challenging, and will tend to be predicted with low confidence.
Pseudo-binarization polarizes these predictions, increasing their confidence for better or
worse, leading to high variance in the final value with small changes in inferred confidence.
Nevertheless, using pseudo-binarization reduces noise from most pixels, and weighting
pixels with weight maps is necessary for this application.

Table 4. Results obtained with various loss functions in the ResNet architecture with PReLUs.

Loss Function IOU Precision Recall CCC

BCE (FL α = 0.5; γ = 0) 0.799 0.919 0.860 0.831
FL (α = 0.5; γ = 1.0) 0.786 0.886 0.876 0.804
FL (α = 0.6; γ = 1.0) 0.796 0.871 0.903 0.794
FL (α = 0.5; γ = 1.1) 0.802 0.908 0.874 0.834
FL (α = 0.5; γ = 1.2) 0.793 0.920 0.853 0.816

DICE Loss 0.754 0.837 0.885 0.746

Bold numbers indicate the best results obtained.
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(a) (b)
Figure 5. IoU evolution for a ResNet with PReLU using (a) BCE and (b) DICE Loss.

3.2.3. Learning Rate Schedule

In the early training stages, large learning rate changes help the model explore a wide
range of solutions, whereas, as training progresses, reducing fluctuations is crucial for
stable convergence. To achieve this, varying the learning rate over epochs is an effective
approach. A monotonically decaying learning rate starts high for rapid exploration and
gradually decreases for stable convergence. Five learning rate decay schedulers were tested:
constant, linear, exponential, cosine, and square root. Performance results are detailed in
Table 5, generally showing improvements compared to the constant learning rate. Notably,
all schedulers significantly reduced validation IoU noise in later epochs, enhancing stability
and convergence, as illustrated in Figure 6.

Table 5. Performance metrics obtained using different learning rate schedules, detailing the schedule
type, the initial learning rate (LR0), and final learning rate (LRend).

Learning Rate Schedule IoU Precision Recall CCCType LR0 LRend

Constant 0.0010 0.0010 0.802 0.908 0.874 0.834
Linear 0.0017 0.0006 0.795 0.912 0.862 0.831

Exponential 0.0017 0.0007 0.802 0.907 0.877 0.836
Cosine 0.0018 0.0003 0.804 0.914 0.872 0.839

Square root 0.0017 0.0004 0.803 0.919 0.865 0.836

Bold numbers indicate the best results obtained.

Among these, the cosine scheduler demonstrated the most promising results, consis-
tently outperforming a constant learning rate. Its combination of early exploration with
a final precise convergence phase proved highly effective. Consequently, it was selected
as the preferred model configuration after straightforward hyperparameter optimization.
In practice, while further iterations could refine parameters marginally, diminishing re-
turns suggest that more parameter optimization would imply significant overfitting to the
training data.
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(a) (b)

(c) (d)
Figure 6. Training and validation IoU evolution with four different learning rate schedules: (a) Linear
decay, (b) exponential, (c) cosine, and (d) square root.

3.3. Visual Analysis

The results achieved are generally of high quality; the model successfully provides
independent masks for each hand, delivering precise and well-defined segmentations.
Figure 7 displays six well-segmented images from the test dataset, demonstrating that
independent masks are effectively obtained even under demanding conditions. This
indicates that the model has successfully learned to maintain a significant separation
between distinct instances. In even more complex scenarios involving overlapping hand
instances, as illustrated in Figure 7e,f, the model continues to perform effectively, delivering
accurate independent masks for each instance. This further underscores the model’s
capability to handle intricate segmentation tasks with high precision. As a reference, the
model successfully generated a unique blob for an instance with an IoU above 50% in
79% of cases in the test set. However, this separation has not been achieved in all cases;
examples of such failures are shown in Figure 8.

There is a clear trade-off between instance separation and segmentation quality; this
complicates the segmentation task and diminishes the expected IoU. This issue is further
exemplified by the observed low-quality segmentations, as shown in Figure 9. While
the model effectively maintains distinct instance boundaries, its performance is signifi-
cantly impaired, with an IoU below 0.6. Specifically, some instances are not recognized
(Figure 9a–c, while other non-existent instances are erroneously identified (Figure 9d).
Hence, IoU no longer accurately reflects the intended objective due to its sensitivity to
boundary preservation. As a result, CCC was designed to serve as a complementary metric
in evaluating the fulfillment of the requirements. Overall, images in Figure 7 reveal that the
model tends to predict smaller areas than the ground truth, particularly around edges. This
observation confirms that the model tends to make relatively conservative predictions, and
aligns with the observed precision and recall values, This design choice aimed to ensure
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disjoint instance masks, but required balancing precision and recall to avoid significantly
reducing IoU.

(a) (b)

(c) (d)

(e) (f)

Figure 7. Examples of successful semantic segmentations (IoU > 0.8) in challenging scenarios:
(a) multiple hands, (b) complex background, (c) overlapping hands, (d) blurry image, (e,f) over-
lapping hand instances. Ground truth is depicted in magenta, while inferred masks are shown
in yellow.

(a) (b)

Figure 8. Examples of segmentations with a high IoU (IoU > 0.8) but that did not provide a distinct
mask for each instance: (a) multiple hands, (b) overlaping hand instances. Ground truth is depicted
in magenta, while inferred masks are shown in yellow.

(a) (b)

(c) (d)

Figure 9. Examples of low-performance segmentation (IoU < 0.6) n challenging cases due to various
factors. (a) Poor lighting. (b) Blurry image. (c) Two skin tones. (d) Person at a distance. Ground truth
is depicted in magenta, while inferred masks are shown in yellow.
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4. Discussion

The integration of the proposed pixel-weight map, combined with morphological oper-
ations, allows common semantic segmentation networks to infer instance-level information
during runtime without additional computational costs. Designed to support AR rehabili-
tation applications, this approach achieves real-time CPU-based semantic segmentation
inference of multiple hands while preserving instance information. The method was vali-
dated on two FCN architectures, ResNet and U-Net, using the EgoHands dataset. Although
U-Net is recognized for its ability to retain positional precision, ResNet outperformed it,
likely due to its network topology, specifically the modern skip connections and higher
parameter count. Li et al. [53] demonstrated that residual connections contribute to convex-
ifying the search space, which significantly enhances training by producing smoother, more
optimizable surfaces. This effect helps explain the performance differences between U-Net
and ResNet, particularly addressing the convergence issues observed with U-Net (Table 1).

The original ResNet architecture was further optimized by tuning various hyperpa-
rameters. The optimal results (IoU = 0.804; precision = 0.914; recall = 0.872; CCC = 0.839)
were obtained by employing a dropout rate of 0.3, integrating the PReLU activation func-
tion, utilizing the FL with α = 0.5 and γ = 1.1, and employing a monotonically decreasing
cosine scheduler. The hyperparameters tested aim to enhance specific aspects of training
or the model itself that have been deemed suboptimal. Based on the conducted tests and
obtained results, the model’s performance limit hovers around 0.8 IoU, and consistently
surpassing this threshold may require significantly increasing the model’s complexity.
This can be achieved by adding more layers or increasing feature channels per layer, but
constraints imposed by available GPU memory necessitate a more efficient approach. This
was finally achieved by using PReLUs, that very efficiently increase model complexity.
Introducing FL then allowed tuning the model for this specific application by adjusting
precision and recall, which significantly enhanced the preservation of instance-level infor-
mation (Table 4). Significant fluctuations appear in the validation results. These instabilities
were mitigated by replacing the constant learning rate with a learning rate scheduler, which
effectively guided the model towards convergence by progressively reducing the learning
rate (Figure 6).

To provide context for the performance of the proposed model, Table 6 compares its
results with those achieved by other authors using the EgoHands dataset [39]. Bambach
et al. [39] reported an IoU of 0.556 for hand detection and segmentation, employing a
sliding-window-based CNN approach. Khan and Borji [54] utilized RefineNet for hand
segmentation, achieving IoU, precision, and recall scores of 0.814, 0.879, and 0.919, respec-
tively. Wang et al. [55] proposed a method leveraging an RNN for hand segmentation,
reporting IoU, precision, and recall values of 0.873, 0.935, and 0.924. Similarly, Li et al. [56]
presented a video-based hand segmentation technique using optical flow, achieving an IoU
of 0.872. Cai et al. [57] reported an IoU of 0.466. Tsai et al. [58] achieved IoU, precision, and
recall values of 0.902, 0.954, and 0.940, respectively. Finally, Lin et al. [59], using RefineNet,
reported an IoU of 0.824. Regarding processing efficiency, Li et al. [56] reported a latency of
20.28 ms (equivalent to 49 FPS) using a single NVIDIA P100 GPU. Tsai et al. [58] achieved
200 FPS on an RTX 2080 Ti GPU. Lin et al. [59] recorded a processing time of 50.5 ms on
a GeForce RTX 2080 Ti, translating to 19.8 FPS. Roy et al. [60] achieved 65.4 FPS on an
NVIDIA GeForce GTX 1080 Ti GPU.

Although the proposed model falls behind some state-of-the-art methods in terms
of performance, it successfully meets its primary objective of real-time performance. The
model delivers a fast inference time of just under 23 ms per 640x368 image (equivalent to
44 FPS) on an Intel Core i5-11500KF. This demonstrates that, while performance may not
be on par with the best-performing models, the optimized speed is a significant accom-
plishment considering the approach taken to address hardware limitations. On the other
hand, while Khan and Borji [54] achieved a slightly superior IoU, their model exhibited
lower precision, as they predicted foreground regions more liberally, leading to larger
segmentation masks. This approach, while improving overall metrics, is less suitable for
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the considered application, where maintaining instance separation requires conservative
predictions. Consequently, our model prioritizes precision over recall, striking a balance
that maintains acceptable IoU while ensuring effective instance separation. Nevertheless,
this method is unable to accurately address instances where occlusions divide an object into
multiple fragments, and will struggle if objects to detect are of small size relative to the im-
age. This means that the quality of the instance information obtained through this method
is application specific and can be temporally inconsistent. Dedicated instance segmentation
networks should be used if instance information is crucial for the overall correctness of the
algorithm. However, these issues are not present in the current application, making this
approach a preferable solution to using more complex and computationally costly instance
segmentation networks.

Table 6. Comparison with state-of-the-art models.

Model IoU Precision Recall FPS

Bambach et al. [39] 0.556 - - -
Khan and Borji [54] 0.814 0.879 0.919 -

Wang et al. [55] 0.873 0.935 0.924 -
Li et al. [56] 0.872 - - 49 1

Li and Kitani [61] 0.478 - - -
Cai et al. [57] 0.466 - - -
Tsai et al. [58] 0.902 0.954 0.940 200 2

Lin et al. [59] 0.824 - - 19.8 3

Roy et al. [60] 0.902 0.982 0.968 65.4 4

Our model 0.804 0.914 0.872 43.7 5

Hardware setup: 1 NVIDIA P100 GPU, 2 NVIDIA RTX 2080 Ti GPU, 3 NVIDIA RTX 2080 Ti, 4 NVIDIA GTX 1080
Ti GPU, 5 Intel i5-11500KF CPU.

While successful in achieving the main goal, it is important to note that instance
segmentation in this manner may not be suitable for applications with different constraints
or more intricate object boundaries. The approach strikes a balance between semantic and
instance segmentation tasks, addressing the challenge of segmenting multiple instances
of hands within images effectively. Future research could explore further refinements to
enhance boundary delineation and scalability across diverse datasets and object types,
thereby extending the applicability of the proposed methodology in broader computer
vision tasks. The obtained model has margin for improvements in segmentation perfor-
mance. Further fine tuning could be performed by testing more modern optimizers like
AdamW [62]. Another strategy to be tested is to add a third category (border) other than
background and foreground, which was initially rejected for being a discrete version of the
presented approach, where the arbitrary definition of the boundary may have an observ-
able effect in the resulting model. Additionally, evaluating the model on additional hand
segmentation datasets, such as the Georgia Tech Egocentric Activities (GTEA) dataset [63],
would provide further insight into its generalization capabilities across diverse scenarios
and environments.

5. Conclusions

Precise results comparable to state-of-the-art segmentation algorithms have been
achieved with the proposed segmentation strategy. The primary objective of this work was
to explore the feasibility of using simple neural network architectures typically employed
in semantic segmentation to achieve a reasonable approach to instance segmentation.
By preprocessing the dataset to identify critical pixels separating different instances, the
model was trained to prioritize these pixels, facilitating the generation of independent
segmentation masks for each instance. Additionally, the proposed method does not incur
any computational overhead during inference, minimally complicates model design and
training, and requires straightforward post-processing of inferred segmentations to detect
individual instances. The obtained results demonstrate moderately high accuracy and
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the provision of individual masks for each instance, showcasing the model’s effectiveness
in segmenting complex objects like hands with distinct boundaries. It has limitations
regarding the temporal stability and quality of the instance information, so its viability is
also application specific. Finally, the model is light-weight, which is crucial for applications
such as VR, and it operates in real-time at 44 FPS. This combination of high performance
and real-time capability underscores the model’s effectiveness in segmenting complex
objects like hands with distinct boundaries.
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