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Abstract
Predictability is key for efficient and safe air traffic management. In particular, accu-
rately estimating time of arrival for current passenger flights may help terminal con-
trollers to plan ahead and optimize airport operations in terms of safety and resource 
allocation. While traditional physics-based simulations are still widely used, they 
are complex to model and often fail to include many factors affecting the progress of 
a flight. In this paper, we propose a deep learning approach based on LSTM that lev-
erages the 4D trajectory of the flight and weather data at the destination airport, to 
accurately predict estimated time of arrival. We evaluate our model on flights arriv-
ing at Adolfo Suárez-Madrid Barajas airport (Spain), in the first three quarters of 
2022, achieving a mean absolute error of 2.65 min over the entire flight and report-
ing competitive short- and long-term predictions at different spatial and temporal 
horizons.
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1  Introduction

Intelligent Transportation Systems (ITS) play a key role in making transport 
services more predictable, improving their safety and reducing their costs and 
emissions. These systems use data collected from a wide range of in-vehicle 
sensors and other context-specific sources (e.g. scheduled services, movement 
flows, traffic congestion, weather, etc.) to monitor, analyse and improve transport 
operations.

The role of ITS is particularly interesting in the case of air traffic management 
(ATM), a sector that has almost recovered pre-pandemic traffic levels after the 
severe impact of the air traffic restrictions caused by COVID-19 [1]. This return 
to normality also brings back old problems, like flight delays, one of the com-
mon issues in this sector. A recent report of EUROCONTROL [2] shows that 
more than 35% of flights in Europe arrived at least 15 min. late with respect to 
their scheduled arrival time, what has a huge impact in terms of costs, emissions, 
and passenger satisfaction. This report also identifies reactionary delays (those 
caused by previous flights) as the main cause of flight delays, thus stressing the 
importance of having accurate predictions of the time of arrival to plan ahead 
and minimize cascading effects. Additionally, other sources of delays include air-
line or airport operations and weather conditions, among others. These situations 
increase the complexity of ATM operations, especially around airports, where air 
traffic controllers must monitor and handle incoming and outgoing flights, while 
making efficient use of the available resources and ensuring safety. To do this 
effectively, controllers must have a good understanding of the current situation 
and, when possible, predict ahead the future conditions of the airspace.

Flight plans have been one of the main information sources for air traffic con-
trol. Any flight taking place in European airspace must file its flight plan, indicat-
ing the intended flight path (in the form of waypoints, i.e. relevant geographic 
locations to describe the flight path), as well as the scheduled departure and 
arrival times, and other relevant information for planning purposes [3]. Flight 
plans are communicated up to one week before the start of the flight, but may 
be modified or amended at any time, enabling tactical decisions to be made in 
terms of resource allocation, estimation and meeting of the needs of all stake-
holders (airlines, authorities and customers) and security assurance. In practice, 
flight plans provide only a rough description of the expected flight path based on 
forecast conditions that may change during the flight. However, in-flight updates 
are not frequent and are mainly due to significant changes in the flight plan, such 
as long delays at any point in the flight or diversions due to bad weather. This still 
leaves a high level of uncertainty for pilots and air traffic controllers, who often 
have to make decisions in the event of sudden changes. This has been reported as 
a potential factor of risk, given the workload and the pressure the controllers are 
under [4].

Surveillance systems are also used to assist air traffic controllers, by providing 
them with the position of the aircraft throughout the flight. ADS-B (Automatic 
Dependent Surveillance-Broadcast) [5] has progressively replaced secondary 
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radars for this purpose, taking advantage of the aircraft’s capabilities to determine 
its position as well as other important flight parameters (altitude, speed, bearing, 
etc.), which are continuously emitted by the vehicle. ADS-B equipment is manda-
tory for aircraft operating commercial flights in the world’s major airspaces and 
plays a key role in introducing the concept of Trajectory-Based Operations (TBO) 
[6] in intelligent ATM systems. TBO go beyond decision making based on flight 
plans thanks to the notion of 4D trajectory, which integrates time into the 3D 
(latitude, longitude, and altitude) flight path [7]. Trajectories are thus described 
in terms of position and time and are agreed upon by all involved stakeholders to 
allow for better allocation of airspace and airport resources. Therefore, 4D tra-
jectories enable flight delays to be considered as deviations from the expected 
trajectory, in the same way as changes in horizontal positions or flight levels, con-
tributing to understand these deviations and improve the predictability of ATM 
operations.

This paper explores how 4D trajectories can be used to improve predictions of 
the estimated time of arrival (ETA). ETA is a major factor for ATM operations, 
because it determines when a flight will arrive at the destination airport, allowing 
for efficient resource allocation in the transit airspace and at the airport. In the con-
text of this work, ETA is defined as the estimated time until a flying aircraft lands 
at the destination airport, that is, until touchdown. Therefore, our study does not 
include taxiing times at the origin and destination airports. Most current research 
predicts ETAs in the Terminal Manoeuvring Area (TMA) [8–13], as this is where 
some of the most critical ATM operations take place, but these predictions can be 
valuable at any point along the flight path to cover as much airspace as possible. 
On the other hand, some studies [14] take an individual approach, looking at a 
single route or segmenting the traffic according to different criteria. However, as 
flights approach the airport, the traffic coming from the different routes becomes 
more homogeneous when performing the approach manoeuvres defined for that 
airport. The behaviour of the aircraft may also be similar during the flight, espe-
cially during the cruise phase. In other words, learning from multiple routes should 
help to identify and model increasingly rich flight patterns, rather than focusing on 
single routes that require, on the other hand, training and maintenance of specific 
models, with the additional costs that this entails.

Our approach treats flight trajectories as time series (including the four dimen-
sions mentioned above and some other features from surveillance, flight plan 
and weather data) and trains a deep learning model to make ETA predictions 
for incoming flights to a given airport. In particular, we designed an architecture 
based on Long-Short Term Memory (LSTM) neural networks [15] to leverage 
flight dependencies in the long and short terms of the flight that influence on the 
accurate estimation of its time of arrival. This architecture combines data rela-
tive to surveillance, flight plans and weather conditions at the destination airport, 
to characterize the flight state and predict an accurate estimated time of arrival 
based on the actual conditions in which the flight is taking place. We apply a 
global approach, unlike other proposals that define a single model for each pair 
of origin and destination airports, to leverage the similarities between trajectories 
departing from different airports.
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A comprehensive evaluation is conducted to analyse the performance of our pro-
posal on the basis of the different parameters that characterise it and to compare its 
results with a selected baseline, which includes prominent comparable solutions in 
the state of the art. Our approach is evaluated at the Adolfo Suárez-Madrid Bara-
jas airport, using incoming flights (from 40 different airports) during the first three 
quarters of 2022, reporting a mean absolute error (MAE) of 2.65 min and a root-
mean-squared error (RMSE) of 4.30 min over the entire flight, for all of the routes 
considered in this study. These results demonstrate that LSTM is a viable approach 
to ETA prediction in ATM and can surpass other techniques that are the state-of-
the-art at this task, such as ensemble and boosting machine learning methods. This 
paper also demonstrates how a global model can outperform individual models that 
are specific for a single route. Our experiments show that including trajectories from 
different routes improves the robustness of the model for each of those routes, with 
generalized improvements along the whole route.

In summary, this paper makes three main contributions:

•	 A novel approach to estimating the time of arrival at any point along the flight 
path, based on surveillance data and taking into account the weather conditions 
at the destination airport.

•	 An effective LSTM-based architecture that leverages the similarities between dif-
ferent routes arriving at the destination airport to provide more accurate results 
than specialized, state-of-the-art individual models.

•	 A case study of European international flights arriving at Madrid Barajas-Adolfo 
Suárez (Spain), an airport that has not yet been studied in the literature, despite 
its high traffic volume.

The rest of the paper is organized as follows. Section  2 gives a broad picture of 
the estimated time of arrival problem, and Sect. 3 provides the basic background to 
understand our approach. Section 4 describes the selected data that we use to make 
ETA predictions using the LSTM-based architecture presented in Sect. 5. Section 6 
describes our case study and the process of generating the dataset used in our exper-
iments, which are carefully presented and analysed in Sect. 7. Finally, Sect. 8 pre-
sents our main conclusions and devises our lines of future work.

2 � Related work

Accurate prediction of the estimated time of arrival (ETA) is crucial to reduce costs 
and environmental impact of flights, and, at the same time, to improve its safety, 
capacity and efficiency [14]. Moreover, an inaccurate prediction of the ETA of a 
flight can have a cascading effect which, in turn, may have an impact on the arriv-
als of other flights that will have to wait until the necessary resources are available 
for landing. However, due to all the nondeterministic events that can occur during a 
flight, providing accurate predictions of the ETA is a challenging task.

ETA prediction for commercial flights was originally addressed using determinis-
tic methods [16], based on aircraft performance and physics simulations. The basic 
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idea of these methods is to compute a reference flight trajectory and then calculate 
the time needed to fly it. Although effective, these methods are complex and expen-
sive to develop, and their predictions are highly dependent on the considered simu-
lation conditions (weather, traffic congestion, etc.), so predictions will be inaccurate 
if these conditions do not hold during the flight.

On the other hand, data-driven approaches have gained importance in recent 
years, due to the increased availability of air traffic-related data and hardware 
resources capable of running computationally intensive machine learning algo-
rithms. These methods leverage historic data to learn hidden patterns and are bet-
ter suited to adapt to unseen or rare circumstances, providing more accurate pre-
dictions in the uncertain conditions that govern ATM operations. Thus, data-driven 
approaches generalize better than fine-tuned deterministic ones and are therefore 
currently the most appropriate choice to address the problem at hand.

Most of the existing data-driven approaches [8–13, 17] build a prediction model 
for a particular arrival airport, enabling ETA predictions for all incoming flights, 
regardless of their departure airport. All of them report figures for short-term ETA 
predictions, when the aircraft is close to the destination airport in terms of dis-
tance (mostly between 25 and 100 nautical miles, or NM, away from the airport) or 
time (between 5 and 60 min before landing), but do no report numbers at the early 
stages of the flight. In [18], a single model is proposed to predict all flights within 
a given area, but it is suggested that individual models for each destination airport 
(or groups of related airports) would be more effective. Ayhan et al. [14] follow this 
approach and build optimized models for each particular route (i.e. a pair of depar-
ture and arrival airports), enabling long-term accurate ETA predictions, at the price 
of a complex deployment that involves maintaining multiple models (one per route) 
at the destination airport.

A second aspect to consider is the data used to construct the prediction models. 
This decision must take into account the many factors that can affect the operation of 
a flight. Surveillance information (mainly ADS-B) is present in most of the propos-
als, allowing to describe enriched 4D trajectories, where time and situation (latitude, 
longitude and altitude) are enhanced with other valuable features, such as speed or 
heading, to characterize the aircraft movement over time. Weather data (wind direc-
tion and speed, visibility, etc.) is also present in most of the solutions, but they dif-
fer in whether they consider this information only at the arrival airport [8, 11, 12, 
17, 18], also at the departure airport [19] or throughout the flight [14]. Flight plan 
data, reporting origin and destination airports, the (scheduled and actual) off-block 
and takeoff times (if the flight has already started), the scheduled arrival time or the 
expected total duration of the flight, among other features, are also commonly used 
[10, 11, 13, 14, 17–19]. Finally, seasonality information [8, 12, 17, 19] (e.g. the day 
of the week, the month or the time of the day in which the flight will occur), conges-
tion information [12, 14, 18, 19] (traffic density metrics at the airports or airspace 
levels) or information about resource management [8, 11] (e.g. configuration of run-
ways) have proven to be useful for ETA prediction.

The main difference between the existing state-of-the-art solutions lies in the 
method they used to predict ETAs. Various machine learning methods have been 
evaluated for such purpose, highlighting bagging ensemble models, such as random 
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forests (RF) [20] or Extra-Trees (ET) [21], and boosting methods, such as Gradi-
ent Boosting Machines (GBM) [22] or Adaptive Boosting (AB) [23]. More recently, 
Feed-Forward Neural Networks (FFNN) [24] and other deep learning models, such 
as Long Short-Term Memory (LSTM) networks [15], have been used with varying 
degrees of success.

Glina et al. [8] propose a RF-based model (called Quantile Regression Forest), 
which provide short-term predictions (between 3 and 60 NM) with RMSE values 
between 0.33 and 1.25 min, for flights arriving at Dallas/Fort Worth International 
Airport (ICAO code, KDFW). Kern et  al. [18] also use random forests to predict 
ETAs for domestic routes in the USA and report a MAE reduction of 42.7%, com-
pared to the ETA prediction provided by the Federal Aviation Administration (FAA) 
system. Kim [17] uses linear and median regression and a nonparametric additive 
model to predict ETAs for incoming domestic flights at the Denver International 
Airport (KDEN). In this case, the models were trained on 2010 data and then predic-
tions were made for flights in 2011, reporting a mean absolute deviation of 8.63 min 
and concluding that departure delays are the most important factor for improving 
predictions. Dhief et al. [11] compare RF, ET and GBM models, at the Changi Air-
port (WSSS), concluding that ET performs better than the other methods, and report-
ing a RMSE of 1.92 min at 100 NM from the destination airport.

Subsequent publications demonstrate the superiority of GBM over bagging meth-
ods, at different time horizons. In [13], a GBM-based model is used to predict ETAs 
for incoming flights to the Malpensa-Milan Airport (LIMC), reporting RMSE values 
of 175  s and 304  s, at 20 and 60 min from the arrival airport, respectively. Chen 
et al. [12] compare GBM, RF and FFNN predictions at different distances from the 
Zurich airport (LSZH), concluding that GBM performed slightly better than RF 
and reporting RMSE values of 3.16 and 4.75 min, at 45 and 250 NM of distance, 
respectively. An ensemble “stacked” model is proposed in [10], reporting slightly 
better figures than GBM (and other methods) for ETA prediction at the entry point 
of Terminal Manoeuvring Area (TMA) of the Beijing Capital International Airport 
(ZBAA). Achenbach et  al. [19] also propose an ensemble model, which combines 
GBM and linear regression. This ensemble performs better than its constituent mod-
els, reporting effective predictions at long term (RMSE of 5.9 min at departure), for 
flights flown by the A320 European fleet arriving at two airports. Ayhan et al. [14] 
make an exhaustive comparison of machine learning methods for ETA predictions 
on 10 major flight routes in Spain, including LSTM for the first time. In this case, 
GBM and AB report the best numbers, within 4 min of RMSE on average, regard-
less of the flight length. It is worth noting that LSTM reports unstable numbers in 
this evaluation, providing the most accurate prediction for a given route and report-
ing twice as much error as AB on another. Recently, Ma et al. [9] proposed a spatio-
temporal neural network model that reports comparable numbers to a LSTM-based 
approach, for incoming flights to the ZBAA airport.

Table  1 summarizes the main features of the reviewed approaches: the scope of 
their models and the machine learning method they used (RF: random forests, LR: lin-
ear regression, GBM: gradient-boosting machines, AB: adaptive boosting, ET: extra 
trees, and LSTM: long short-term memory neural networks); the data used to build 
these models are then displayed (Su: surveillance, W: weather, FP; flight plans, Se: 
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seasonality, C: congestion and R: resources); and the flight points where the ETA is 
predicted. It is worth noting that the last row also describes our proposal in the same 
terms, for comparison purposes.

3 � Background

Estimating time of arrival based on 4D-trajectory data can be intuitively 
approached as a sequence modelling problem. Each trajectory is described by mul-
tiple sequences of values, where each value depends on the previous values in the 
sequence. Moreover, these data points have time information associated with them, 
which allows us to interpret them as a time series problem. As such, the analysis 
of these data using deep learning can be tackled using different types of Recurrent 
Neural Networks (RNN). In this section, we succinctly describe how RNN work, 
focusing later on the Long Short-Term Memory (LSTM) architecture, which is 
used in this paper.

3.1 � Recurrent neural networks

In recent years, methods based on Recurrent Neural Networks (RNN) have shown 
good performance in time series modelling tasks, provided that they are able to 
capture temporal dependencies in sequential data [25]. In contrast with tradi-
tional feed-forward neural networks, in which each layer passes information only 
to the next layer, recurrent layers present cycles within them, that is, they have 
links between the neurons in the layer. This fact enables RNN to have “memory” 
from the elements that have already been processed. A simple recurrent layer 
contains a single recurrent neuron that expects a sequence of elements as input. 
Recurrent neurons contain a cell state that changes after processing each input 
element and is used to process the next input element. The layer iterates on every 
element in the sequence: at each step, cell state is propagated from the previous 
iteration and used to process the next element in the sequence. Thus, the layer 
has “memory” of the elements that were processed before in the input sequence. 
When all elements in the sequence have been processed, the final output is passed 
to the next layer.

This structure causes RNNs to form very deep structures that increase the risk of 
vanishing gradient problem [25], particularly when analysing sequences with long-
distance dependencies. Vanishing gradient problem consists on the error becoming 
too small or zero during the back-propagation step in model training. If errors are 
zero, the parameters of the model are not updated (their value does not change); this 
translates into a part of the model is not “learning” correctly, or taking a lot of time 
to learn long-term dependencies in long sequences. This problem can be handled 
using different techniques, but Long Short-Term Memory networks in particular 
have attracted much attention in recent years.
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3.2 � Long short‑term memory

Long Short-Term Memory (LSTM) [15] is a gated recurrent network architecture 
that ensures error propagation even in deep recurrent layers, allowing the model to 
have “long-term” memory without the loss of “short-term” memory shown by tra-
ditional RNN. Inside a LSTM cell, three multiplicative units are defined that act as 
gates with different purposes: forget gate, input gate and output gate (see Fig. 1). 
The forget gate determines the extent to which the output of the previous iteration 
is used to process the next input element. The input gate controls how much infor-
mation from the input element will contribute to the hidden state. This gated unit 
protects the hidden state from perturbations and irrelevant elements in the input 
sequence. The output gate outputs the most relevant parts of the hidden state, once 
it has been updated. This helps to filter the information to be passed on to the next 
iteration, avoiding the propagation of irrelevant information from the current hid-
den state. When the last element in the sequence has been processed, this output is 
passed to the next layer in the neural network. During this process, hidden state and 
output are updated separately, which helps to ensure long-term memory.

LSTM networks have already proven to be effective in dealing with air traffic 
data in different problems in the ATM field. In [26], LSTMs were combined with 
convolutional neural networks to predict the aircraft type using ADS-B data. Dif-
ferent aircraft types present particular patterns in their displacement, which can be 
identified in sequences of surveillance data. LSTM can analyse the progression of 
the latitude and longitude values, among other features, to classify the flight accord-
ing to the aircraft type. Beyond RTA prediction, other regression problems have also 
been tackled with the use of LSTM. Shi et al. [27] proposed an architecture for tra-
jectory prediction based on ADS-B data. Their results showed that the last reported 
positions of an aircraft, among other features of interest for this task, allow accurate 
prediction of its future positions.

Gated Recurrent Units, or GRU [28], reduced the number of gates in LSTMs 
by merging forget and input gates into a single “update gate”. This simplification 

Fig. 1   LSTM unit internal structure
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often leads to small improvements in training times since the architecture has fewer 
parameters to train. However, the performance difference between GRU and LSTM 
units depends mostly on the problem.

4 � Data description

This section describes the data used in our approach, according to the experiences 
reported in the related work. We organize the corresponding features in three main 
groups: surveillance, flight plans and weather, which are summarized in Table 2.

4.1 � Surveillance data

Surveillance data are used to describe the flight status over time. Each data point 
has an associated timestamp (assigned by the ground receiver at the reception time) 

Table 2   Description of the features extracted from data to train the proposed models

Feature Description Sample value

Surveillance
Latitude Latitude of a position update 51.477402
Longitude Longitude of a position update −0.4745
Altitude Altitude over the ground at a position update (feet) 225.0
Distance Haversine distance to LEMD airport (miles) 773.208995
Speed Horizontal speed with respect to the ground (knots) 141.0
Vertical rate Speed of climb or descend (feet per second) 2689.0
Track Angle between aircraft heading and north 267
Operator IATA code of the operating airline BAW

Flight plans
Departure airport ICAO code of origin airport EGLL
Day of week Arrival day within a week 5
Time of day Scheduled arrival period of the day evening
Departure delay Difference in minutes between planned and actual off-block 

time
0

Weather
Wind direction Direction from where the wind blows 35.0
Wind speed Wind speed (knots) 4
Max. temperature Maximum expected temperature 15.0
Min. temperature Minimum expected temperature 1.0
Cloud altitude Altitude of lowest clouds, if any (miles) 30
Visibility Horizontal visibility in case of fog (miles) 4
Sky status Qualitative description of sky status CAVOK

Target variable
RTA​ Remaining time to arrival (seconds) 7048
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and contains information about the 3D-position of the aircraft (longitude, latitude 
and altitude), the instant speed (both horizontal and vertical) and the direction the 
aircraft is heading (track). Information about the airline that operates the flight is 
extracted from the callsign (ID code of the flight). Additionally, we calculate a dis-
tance feature, which is the Haversine distance of the aircraft with respect to LEMD 
airport.

We use surveillance data provided by OpenSky [29], an open, community-based 
network of receivers with great coverage of the European airspace. ADS-B messages 
are broadcasted from the aircraft and received by ground stations, as shown in Fig. 2. 
Ideally, the broadcasted message should be received by a specific ground station with-
out incident, but two main problems can arise: (i) data duplication, when the same 
message is received by more than one ground station, and (ii) data loss, when ADS-B 
messages are not received due to lack of coverage in a particular region. OpenSky 
post-processes ADS-B messages to deal with some of these issues and convert them 
into state vectors [5], which preserve the most important surveillance information 
(identification, position and speed) of the aircraft, and assigns the corresponding flight 
callsign. However, there are still irregularities in the resulting data. To further reduce 
them and improve data quality, we perform additional data processing tasks, which are 
described in Sect. 6.1.

4.2 � Flight plan data

Flight plans provide us with scheduling data such as the expected times of depar-
ture and arrival, the actual times of departure and arrival (which are calculated 
after the end of the flight) or the departure airport. We use this information to 
calculate the delay of departure, which is obtained as the difference between the 
scheduled time and the actual time of the takeoff, and two seasonality features, to 
exploit daily and weekly time patterns: (i) the day of week, in which the flight is 

Fig. 2   ADS-B messages are broadcasted from the aircraft and captured by receivers on the ground. Over-
lapping of coverage areas of different receivers can result in data duplication, while lack of coverage can 
result in data losses
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scheduled to end; and (ii) the time of day [19], that describes the hour range the 
aircraft is scheduled to arrive; based in our observations, we consider three periods: 
morning (7–13 h), evening (13–20 h) and night (20–7 h).

We use the EUROCONTROL Network Manager1 as source of flight plans. On 
the one hand, it provides the Flight Plans feed, which publishes (i) plans for future 
flights, including pre-flight scheduling information (such as planned departure and 
arrival times), airline, origin and destination airports and estimated flight time, and 
(ii) modifications with respect to a previous version of a flight plan, for flights not 
yet departed. On the other hand, the Flight Data feed provides information during 
and after the flight has departed, such as the actual departure and arrival times, or 
any significant changes with respect to the flight plan. We identify the last version 
of the flight plan (which contains the most up-to-date information) to extract the 
features explained above.

4.3 � Weather data

Weather data are used to characterize the expected weather conditions at the destina-
tion airport for the flight’s estimated time of arrival. The most relevant features are 
those related to wind condition (direction and speed), because these factors deter-
mine the direction of approach the aircraft must take, and influence its speed and 
manoeuvres. Other selected features describe temperatures, visibility conditions and 
sky conditions.

In this case, we use forecast reports from weather stations located at the des-
tination airport (TAF, or Terminal Aerodrome Forecast). These reports describe 
the weather conditions expected in the surroundings of the airport over a period 
of time (typically, for the next 24  h), which is accordingly subdivided into 
smaller time periods when changes in conditions are expected. Weather fore-
casts include data about wind (direction and speed), temperatures, precipitation, 
icing probability and visibility, many of which may influence landing and take-
off operations.

4.4 � Target variable

We define a remaining time to arrival (RTA) value, which is used as target vari-
able for our model. RTA is the difference (in seconds) between the timestamp of 
each state vector and the actual landing time of the flight to which it belongs. We 
use surveillance information to obtain the landing time, even though flight plans 
provide an end time value, but it usually corresponds to the time at which the 
pilot was cleared to initiate the landing procedure, several minutes before actually 
landing.

1  https://​www.​euroc​ontrol.​int/​netwo​rk-​opera​tions.

https://www.eurocontrol.int/network-operations
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5 � Architecture

4D trajectories consist on long sequences (several hundreds or even thousands) 
of flight points, which hide long- and short-term temporal dependencies within 
the multiple time series they comprise. As stated in Sect.  3, LSTM-based net-
works are able to learn from long sequences of data, such as 4D trajectories, to 
capture both short-term and long-term dependencies between the elements in the 
sequence. This fact motivates our decision to build a LSTM-based neural network 
to predict the estimated time of arrival of a flight, as shown in Fig. 3. This archi-
tecture consists of a single LSTM layer, with a hidden state of dimension n, and 
a fully connected (FC) layer with one cell and linear activation, to transform the 
output of the LSTM layer (a vector of length n) into a scalar value, which is the 
predicted RTA value for the input sequence. There are some considerations for 
the input sequences to LSTM networks that need to be taken into account to make 
ETA predictions over 4D trajectories.

Fixed-length sequences LSTM networks expect input sequences of fixed 
length, but 4D trajectories from different routes, or even trajectories within the 
same route, may have different lengths (depending on the travel distance and the 
amount of available surveillance state vectors), so trajectory data need to be trans-
formed into a suitable form. We use a sliding window of length lookback (lb) to 
ensure fixed-length sequences: for a trajectory with p state vectors, (x1, x2, ..., xp) , 
we generate p − lb sub-sequences of length lb (as illustrated in Fig. 4) and label 
each one with the RTA value corresponding to the last vector in that window. 
Thus, lb is a determinant parameter to our model: the longer the input sequence, 
the more clues the model has to make a prediction, but it also increases the com-
plexity and time of the training process.

Fig. 3   LSTM model architecture. Unrolled form (right) explicitly represents each timestep in the input 
sequence
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Sequences with regular periodicity
LSTM networks are not explicitly designed to deal with incomplete or irreg-

ular time series data, so irregular patterns in the time dimension, due to missing 
elements or uneven element spacing, can affect the performance of the predic-
tive model [30]. This is the case with ADS-B surveillance data, and that is due 
to two main reasons. On the one hand, it is not the aircraft that provides the 
timestamp when sending the ADS-B messages, but the ground receivers when 
receiving those messages; as a result, chronologically sorted surveillance data 
may not be in the same order as they were sent. On the other hand, surveil-
lance coverage is limited in some (mainly maritime) regions, so that messages 
sent when the plane is flying above these areas are often lost. There are also 
other problems, such as ADS-B messages captured by multiple receivers, and 
therefore having different timestamps, or messages where the timing informa-
tion is inconsistent for different reasons. Figure  2 illustrates these situations. 
Any ADS-B message broadcasted outside of the combined coverage area of the 
receiver network will be lost. On the contrary, if there are two or more receivers 
in range, each of the receivers will capture the message and set its timestamp as 
the time of reception. If the transmission times ( t1 and t2 in the figure) are dif-
ferent, then the same ADS-B message is recorded twice with inconsistent time 
data.

All these situations are addressed to ensure that the input data are evenly distributed 
over time, with a regular time interval between adjacent elements. First, trajectories are 
downsampled [30] to ensure higher temporal uniformity. The resulting representation 
can be seen as a summarised trajectory, in which the generalisation of the discovered 
patterns is improved and potential noise data are removed. However, sampling might 
discard valuable information if applied too aggressively. Second, sub-sequences that 
contain gaps of more than a given time threshold are also removed, to minimize irregu-
larities. In this paper, we set this threshold at a maximum of 3 min between adjacent 
state vectors.

Fig. 4   Extraction of sub-sequences using a sliding window
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6 � Case study

In this work, we focus our case study on the Adolfo Suárez-Madrid Barajas air-
port (ICAO code, LEMD), the leading Spanish airport in terms of passenger traf-
fic and the fifth in Europe in 2022. LEMD has four physical runways, arranged as 
two pairs of parallel runways, that can be used for either takeoff or landing opera-
tions, depending on the current runway configuration. LEMD uses two different 
configurations: north (north-facing runways are used for takeoffs and south-east-
facing runways are used for landings) and south (vice-versa), which are chosen on 
the basis of weather conditions and available resources. A sample of 200 flights 
landing at LEMD for January 2022 is illustrated in Fig. 5, which shows prevailing 
the runway configuration at that moment. The north configuration was the most 
frequently used configuration in the first two months of 2022, but from March 
onwards, the distribution between configurations became more even due to the 
change in prevailing weather conditions. Due to this fact, the estimated time 
of arrival at Madrid-Barajas is even more uncertain. This is because incoming 
flights may need to execute different approximation manoeuvres depending on 
the airport’s current configuration in order to land on the assigned runway. These 
manoeuvres may take several minutes and cannot be anticipated, since the land-
ing runway is only assigned and communicated to the pilot when the aircraft is 
already close to the airport and therefore cannot be used as input to the proposed 
model.

Fig. 5   Sample of 200 flights arriving at LEMD (Jan, 2022)



17227

1 3

A deep learning‑based approach for predicting in‑flight…

6.1 � Dataset generation

Our study covers incoming flights to LEMD in the first nine months of 2022, i.e. we 
collected data from the above-mentioned sources from 1 January to 30 September 
2022. It is worth noting that there is a significant imbalance in the number of flights 
from each departure airport to LEMD, which could bias the model in favour of more 
frequent routes. We choose the 40 most frequent routes to avoid it and limit them to 
a maximum of 70 trajectories per month. Figure 6 shows the 40 selected airports on 
the map and indicates, using colours, the number of available trajectories for each 
one during the study period.

The acquired raw data collection needs to be transformed to ensure high-qual-
ity 4D trajectories. This process is performed in three stages that are described as 
follows.

Trajectory reconstruction This first stage focuses on determining flight trajecto-
ries and enriching them with flight plan data. First, we search the Network Manag-
er‘s Flight Plan feed for flights arriving at LEMD, from all of the 40 selected depar-
ture airports. Their identification (aircraft ICAO24 code and flight callsign) and time 
information (departure and arrival times) are then used to assign ADS-B vectors to 
individual flights and reconstruct the corresponding trajectory. Surveillance or flight 
plan data that cannot be joined are discarded at this time, and flights with less than 
300 state vectors are also removed. Finally, each vector is enhanced with the latest 

Fig. 6   Airports considered in the study. Marker colour indicates the number of trajectories in our dataset
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available weather forecast (the most recent report published before the vector times-
tamp) valid for the scheduled arrival time.

Quality checking Once reconstructed, the trajectories are cleaned to remove the 
quality problems inherent in ADS-B: incorrect time information, duplicate data or 
incorrect field values (altitude, speed, GPS position, etc.). It includes various clean-
ing operations: elimination of vectors with unrealistic latitude, longitude, altitude or 
velocity values; sorting of the state vectors within the trajectory in case of misplaced 
vectors in the time sequence; and linear interpolation of timestamp and altitude val-
ues for reordered vectors. Then, RTA values are updated accordingly to the new 
timestamps (i.e. the difference between its timestamp and the landing time).

Trajectory selection Trajectories with multiple loops during a holding procedure 
are removed at this stage, as they present a different challenge, due to their complex-
ity and unpredictability [31]. Holding procedures force an aircraft to wait in the air 
until they are given permission to land at the airport and are characterized by their 
looping trajectory pattern near the airport. As stated before, these procedures can-
not be predicted before the aircraft enters in the TMA. Given the formulation of our 
problem, holdings create a time shift in the entire trajectory (holding manoeuvres 
can last several minutes), which leads to an inconsistent computation of the RTA for 
state vectors of similar nature. In total, 338 trajectories (1.61%) with multiple hold-
ing patterns were removed.

Finally, trajectories that exceed the monthly limit set for each departure airport 
are randomly discarded at this stage. The resulting dataset from the above process 
consists of 19,633,275 state vectors from 20,560 trajectories, describing flights from 
the 40 selected airports to LEMD, during the study period. The monthly distribution 
of trajectories among the airports is shown in Appendix A.

This Appendix presents the distribution of trajectories among the airports con-
sidered in the study. The data are divided in months, since the data were sampled 
to ensure a homogeneous time distribution and an equivalent representation of each 
route.

6.2 � Adaptation to the model

Additional transformations must be applied to the resulting dataset to satisfy LSTM 
constraints for different experimental configurations. First, trajectories are down-
sampled to ensure a regular distribution over time of their state vectors. The state 
vectors of each trajectory are divided into buckets of SP seconds (sampling period) 
according to their timestamp: the first vector of each bucket (in chronological order) 
is kept, and the rest are discarded. This operation is depicted in the top half of Fig. 7 
for the case SP = 15. We also remove all sub-sequences that contain a gap of more 
than 180 s, between adjacent vectors. Then, the categorical features are transformed 
into real values using label encoding (i.e. replacing each categorical value with an 
integer), and all features are normalized into [0,1] range according to Eq. 1, where 
v is the original value of the feature f, and vf

min
 and vfmax are the minimum and maxi-

mum values of the distribution for that feature.
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Finally, trajectories are transformed into fixed-length sequences of lb elements 
(lookback), as illustrated in Fig. 4. For each trajectory, we generate all possible sub-
sequences of lb neighbouring vectors (using a sliding window of equal length) and 
assign them the RTA value of the last vector in the window.

It is worth noting that the length of the “flight history” we use to make a pre-
diction is determined by the sampling period and the lookback value. For exam-
ple, for a sampling of 60 s and a lookback of 32 vectors, the model has access to 
the last 32 min of flight time to make a prediction. If the lookback is increased 
to 64 (keeping 60  s of sampling), then the “flight history” taken into account 
extends to the last 64 min of flight time. This is also true if we increase sampling 
period to 120 s, while keeping 32 vectors of lookback. However, these choices 
are not equivalent as the configuration with a lower lookback and higher sam-
pling (32 and 120, respectively) provides less detailed data, because it describes 
the same time period with half as many state vectors. Figure 7 shows an example 
with lookback = 5. If we sample every 15 s (SP:15), a single window represents 
the previous 75  s of flight time. However, if the sampling period is 30  s, then 
each window amounts for 150 s of flight time. While the length of the window 
is the same in all cases (5 state vectors), the flight time and the level of detail in 
which the trajectory is described are different for each configuration.

(1)v� =
v − v

f

min

v
f
max − v

f

min

Fig. 7   Example of a downsampled trajectory where the periodicity is increased from 5̃ s in the original 
OpenSky data to 15 s. The values of sampling period and lookback (in the figure, lookback = 5) deter-
mine the time the model has access to make a prediction
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7 � Experiments

This section describes the experimental process we have performed to evaluate our 
proposal and compare it with the state of the art. First, we describe the experimental 
setup and methodology that we have followed to assess the performance and gener-
alizability of our model. Then, we present our main findings and discuss the results 
and their contribution to the state of the art.

7.1 � Experimental Setup

In the following, we provide a comprehensive description of the experimental setup 
used in our study. Note that all experiments are conducted on a 4-core Intel Core 
i5-1035G4 at 1.10  GHz with 16GB RAM. No GPU acceleration was used. The 
execution environment includes Python 3.9, TensorFlow 2.9.1 and Keras 2.11.0 for 
LSTM models, and Scikit-Learn 1.1.3 for GBM, AB and RF models.

Dataset The dataset produced by the generation process described in Sect. 6.1 is 
divided into the usual train, validation and test subsets (containing 72.25%, 12.75% 
and 15% of the trajectories, respectively). A randomized, stratified approach is 
applied by distributing trajectories in direct proportion to their monthly and route 
frequency. In this way, the trajectories are evenly distributed across the three subsets 
according to the distribution of the original data. Finally, data in each subset are 
adapted to the particular model configuration, according to the process described in 
Sect. 6.2.

LSTM model We evaluate two parameters that have a direct impact on the model: 
lookback and units. On the one hand, lookback determines the number of individual 
elements (state vectors) the model expects to process in order to make a prediction. 
The longer the sequence, the more information the model has to characterize the 
evolution of the flight. However, longer sequences require more computing power 
or model complexity to learn long-term, complex patterns from the data. We choose 
lookback values of 32 and 64, because our preliminary experiments reported poor 
performance for l = 4, 8, 16 , and values larger than 64 were discarded as it was not 
possible to generate windows for some of the shorter routes considered. On the other 
hand, the number of units determines the dimensions of the internal representation 
that the model constructs from the input data. The higher this value, the more com-
plex the model and the greater the risk of overfitting. After some preliminary test-
ing, values of 10, 20, and 30 units were chosen.

We assign fixed values to the other hyperparameters of the model: we set the 
hyperbolic tangent as the activation function; the batch size to 128; the loss function 
to mean absolute error (MAE), and Adam [32] is used as optimizer. We also experi-
mented with the ReLU activation function, but it caused unstable training processes 
due to exploding gradient problems. During training, early stopping was used as a 
regularization measure to avoid overfitting. Models were trained for 30 epochs and 
the version with the lowest validation loss was selected for evaluation. These con-
figurations were applied to data with a sampling period of 30 and 60 s.
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Baseline We consider a baseline that includes the most prominent approaches 
to ETA prediction in the state of the art: Gradient Boosting Machines (GBM), 
Random Forest (RF) and Adaptive Boosting (AB). Similar to  [14], all models 
were configured by using the default hyperparameters from their implementation 
in the Scikit-learn package (version 1.1.3), but reducing the number of estima-
tors from 100 to 50 in all models due to memory constraints. Preliminary tests 
showed that AB performed poorly compared to other models because the decision 
trees used as the default base estimator were too shallow. We decided to replace 
the base estimator of AB with the estimator implemented in RF, reporting better 
results. None of these models are designed to work with time series, so we pro-
vide individual state vectors as inputs instead of the constructed windows.

As an aside, we also tested using GRUs instead of LSTM units, but found no 
significant differences in model performance, so we excluded them from our study.

Metrics The models are evaluated using MAE (mean absolute error) and RMSE 
(root-mean-squared error) metrics. MAE is the mean of the absolute values of the 
differences between each objective RTA value, yi , and the predicted value, ŷi , for 
every input i (Eq. 2). RMSE is the square root of the mean value of the squares of the 
differences between each objective value and the predicted value across all examples 
(Eq. 3). Due to its linear nature, MAE weights equally each example regardless of 
its error value. In RMSE errors are squared, so larger errors are weighted more than 
smaller errors and can be used as a metric of the variance of the error values. The 
values are provided in seconds to enable direct comparisons.

In this paper, we use two types of metrics: (i) global metrics to indicate the mean 
error value across all sequences (examples) in the dataset, regardless of the point 
of the trajectory in which they are placed; and (ii) at-time and at-distance metrics, 
which are used to characterize the prediction error at particular points of the trajec-
tory. These particular points can be selected by time (e.g. the error 60 min before 
landing) or by distance (e.g. the error at 100 NM from the destination airport).

Note that longer trajectories are subject to greater uncertainty, but “cutting” all 
trajectories at the same remaining time or at the same distance to the arrival airport 
allows for fair comparison, regardless of the route they describe. To calculate these 
metrics, we evaluate the model on the last available sequence at the selected point in 
the trajectory, provided that it is close enough to the cutting point. We define maxi-
mum thresholds of 300 s and 10 NM for the difference between the cutting point and 
the RTA value and distance of the last state vector in the sequence. Otherwise, the 
sequence is not taken into account in the evaluation, as it is not representative of the 
designated point in the trajectory.

(2)MAE =

1

n

n∑

i=1

|yi − ŷi|

(3)RMSE =

�
1∑

n

i=1

(yi − ŷi)
2
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7.2 � Results and analysis

Table 3 shows global metric results for different model configurations. To make it 
easier to refer to individual configurations, we will use the notation (SP:X,LB:Y,U:Z) 
to indicate the model with sampling period of X seconds, lookback of Y vectors, 
and Z units, respectively. Note that the third column (Time) refers to the length (in 
minutes) of the input sequences, and it is obtained by multiplying the value of SP 
and LB. The results for the baseline methods are also reported at the bottom of the 
table using data sampled at 30 s, as in our most prominent configuration.

We first analyse the impact of downsampling by comparing same time values 
and different samplings. In this case, they report similar numbers for sequences 
describing either 16 or 32  min of flight time, but SP:30 outperforms SP:60 for 
longer sequences, reporting a reduction in MAE between 0.13 and 4.36 s. It is also 
shown that the number of units has little effect on the reported error values, but it 
is worth noting that more units imply higher training costs. Finally, the lookback 
value has the greatest impact on the result. By doubling the number of state vec-
tors of the input sequences, the model has access to twice the flight time, which 
helps to better characterize its current state and provide a more accurate prediction. 
(SP:60,LB:32,U:30) reduces MAE in 50.39  s compared to (SP:60,LB:16,U:30), 
and this difference is consistent for 10 and 20 unit models. The gap is even larger 
for SP:30, where (SP:30,LB:64,U:20) outperforms (SP:30,LB:32,U:20) in 60.82  s 
in terms of MAE. The smallest MAE (159.24  s) is reported by the configuration 
(SP:30,LB:64,U:20), although (SP:60,LB:32,U:30) also reports competitive error 
values, increasing MAE by ≈2 s (161.17 s). In all cases, the RMSE values for each 
configuration confirm all of these observations.

We promote the configuration (SP:30,LB:64,U:20) for comparison purposes with 
the baseline models, which are trained on data with the same sample period. As 

Table 3   Global metrics Model SP LB Time Units MAE (s) RMSE (s)

LSTM 10 224.27 338.52
30 s 32 16 m 20 220.06 333.95

30 233.31 341.55
10 162.90 260.85

30 s 64 32 m 20 159.24 257.82
30 161.04 261.52
10 218.77 321.59

60 s 16 16 m 20 218.79 332.58
30 211.56 320.56
10 164.18 262.22

60 s 32 32 m 20 163.60 263.56
30 161.17 259.91

GBM 30 s – – – 220.45 323.73
AB 30 s – – – 222.41 458.28
RF 30 s – – – 256.92 552.01
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shown in Fig. 8, GBM and AB provide similar results, with a MAE of 220.45 and 
222.41 s, respectively. However, GBM achieves a significantly lower RMSE value 
than AB, indicating that GBM error values have a lower variance and thus its pre-
dictions are more consistent. RF performs poorly in both metrics, confirming that 
boosting approaches are superior to ensemble approaches, as noted in the related 
work. The LSTM model is superior to all the baselines, improving their best result 
in terms of MAE by 61.23 s. The study of the RMSE yields the same conclusions, 
with LSTM providing a result 65.09 s better than the best baseline method, GBM, 
which highlights the improved stability of LSTM over GBM.

To complete this analysis, Tables 4 and 5 show the values for the at-time and at-
distance metrics for our two selected configurations. Accordingly with the global 
metrics, (SP:30,LB:64,U:20) outperforms (SP:60,LB:32,U:30) on all at-time metrics 
up to 90 min before landing, although the differences are small, between 2 and 4 s. 
However, SP:60 model yields better results at 120 and 150 min, with a MAE 8.71 

Fig. 8   MAE and RMSE values of baseline models and best LSTM configuration

Table 4   Metrics at-time for LSTM models (time = 32 min). Lowest values (in seconds) for each metric 
are bolded

MAE at-time 15 min 30 min 60 min 90 min 120 min 150 min

SP:30, LB:64, U:20 93.80 143.50 173.92 205.12 264.36 345.03
SP:60, LB:32, U:30 95.84 145.15 175.83 209.12 255.65 326.83
GBM (SP:30) 153.33 189.21 209.46 253.62 298.01 348.24
AB (SP:30) 113.67 198.19 207.74 251.24 358.89 385.19
RF (SP:30) 191.30 225.64 243.60 320.15 385.22 395.16

RMSE at-time 15 min 30 min 60 min 90 min 120 min 150 min

SP:30, LB:64, U:20 173.65 224.92 258.35 299.46 378.32 477.81
SP:60, LB:32, U:30 175.76 229.11 259.39 296.10 356.93 473.09
GBM (SP:30) 255.73 299.60 304.55 342.98 398.16 472.45
AB (SP:30) 379.49 429.63 308.95 489.61 533.39 521.00
RF (SP:30) 693.32 467.57 543.27 638.97 534.18 525.14
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and 18.20 s lower, respectively. These evaluation metrics measure the performance 
when most of the remaining flights are still at cruise level, although they exclude 
most short-range routes (e.g. those corresponding to national flights in Spain). SP:30 
has a bigger density of data around the destination airport than SP:60, which may be 
biasing the model towards the area surrounding the airport in spite of farther parts of 
the routes. Also, sampling reduces the amount of noise in the data and thus may help 
the model to generalize better at higher rates when there are not sudden changes in 
the trajectory. In consequence, SP:30 models might be best fitted to sequences near 
the airport, where the more detailed representation of the trajectory may benefit the 
model, while SP:60 performs better on sequences that are farther away from the air-
port, where there is less variability in the trajectory. This situation holds true for the 
at-distance metrics, although the differences are generally negligible, in concord-
ance with the global results shown in Table 3.

In all cases, our models significantly improve the results reported by GBM, AB, 
and RF, both in terms of at-time and at-distance metrics, with the exception of 
RMSE at 150 min, where GBM performs slightly better than LSTM models.

7.3 � Generalization assessment

This section focuses on further evaluating the performance, quality and reusability 
of our approach, but on a more realistic scenario. For this purpose, we use trajec-
tories that were flown at a later date than the trajectories used to train the models. 
These trajectories describe incoming flights to Madrid-Barajas (from the 40 selected 
departure airports) from 1 to 31 October 2022. The resulting dataset (using the gen-
eration process described in Sect. 6.1) consists of 2,224 trajectories and 2,512,429 
state vectors.

Table 6 reports global MAE and at-time metrics for this scenario, including our 
best model configurations and baseline methods. The performance deteriorates for 

Table 5   Metrics at-distance for LSTM models (time=32 min). Lowest values (in seconds) for each met-
ric are bolded

MAE at-distance 25NM 45NM 60NM 100NM 125NM 250NM

SP:30, LB:64, U:20 55.76 81.77 102.85 132.61 137.54 149.19
SP:60, LB:32, U:30 58.69 83.72 106.45 133.16 136.46 149.62
GBM (SP:30) 103.94 149.69 183.82 204.01 211.04 205.24
AB (SP:30) 69.78 105.11 141.97 187.92 211.32 211.66
RF (SP:30) 127.34 173.51 215.69 248.06 248.70 218.16

RMSE at-distance 25NM 45NM 60NM 100NM 125NM 250NM

SP:30, LB:64, U:20 98.34 138.25 167.18 215.28 218.77 233.83
SP:60, LB:32, U:30 99.72 140.45 172.21 217.29 215.09 234.52
GBM (SP:30) 231.68 282.72 326.47 344.97 358.16 361.29
AB (SP:30) 372.43 396.10 424.19 451.72 474.65 469.91
RF (SP:30) 568.44 780.65 765.67 544.76 515.27 431.92



17235

1 3

A deep learning‑based approach for predicting in‑flight…

all models, as expected, but ours still lead the comparison. The LSTM SP:30 model 
reporting a 25.7% higher global MAE, with an increment of 41 s in absolute terms, 
compared to the results shown in Table  3. The at-time metrics also increase, but 
each at a different rate: at 15, 30, 60, 90 and 120 min, the MAE increases by 8%, 
18%, 24%, 39.5% and 27.5%, respectively. This analysis is also valid for the LSTM 
SP:60 model, since its figures are comparable. These results indicate that the model 
is more robust the closer the aircraft gets to the destination airport. The most likely 
reason is twofold. On the one hand, the manoeuvres around the airport are stand-
ardized, and there is less variability in how the flight should progress. On the other 
hand, there are much more data on how the aircraft will behave in the surround-
ings of the destination airport than in any other area of the airspace, so the model 
may have learned better about this section of the flights. Having more data for each 
route should help the model to reduce the gap in the generalizability at different time 
horizons.

LSTM remains the leading model by a wide margin, improving the MAE by 52 s 
over GBM, which is the most effective state-of-the-art model in this experiment. 
This comparison also applies for every at-time metric considered, demonstrating 
LSTM’s superiority.

7.4 � Individual airport models comparison

We conducted several experiments to assess whether a global approach would be 
better than training specific models for each individual route, as stated in [18]. In 
particular, we trained several (SP:30,LB:64,U:20) models using data from each of 
these individual routes. Each model was trained and evaluated on the subset of the 
global dataset corresponding to the trajectories that belong to its particular route. 
Therefore, the global model and each individual model share exactly the same data 
about the corresponding route. All models were trained for 40 epochs in the same 
conditions that were used to train the (SP:30,LB:64,U:20) global model, including 
the partition of the data in train, test and validation: the training data of each of these 
models were the data from the same route that were used to train the global model. 
The same holds true for test and validation datasets.

The results of these experiments are shown in Appendix 1 for all departure air-
ports, but we focus on five of them: Frankfurt Main International (EDDF), Germany; 

Table 6   Evaluation with future data

Global MAE and at-time metrics for the best LSTM configuration and the baseline models are included. 
Lowest values (in seconds) for each metric are bolded

Model MAE 15 min 30 min 60 min 90 min 120 min

SP:30, LB:64, U:20 200.13 101.48 169.57 215.46 286.24 337.46
SP:60,LB:32,U:30 201.62 106.02 167.43 208.54 282.08 344.30
GBM (SP:30) 252.89 142.71 191.18 226.06 289.77 383.67
AB (SP:30) 267.37 121.84 221.11 264.02 299.01 419.57
RF (SP:30) 313.49 272.07 275.76 248.12 336.18 473.83
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Manchester Airport (EGCC), UK; Amsterdam Airport Schiphol (EHAM), Neth-
erlands; Aeroporto Internazionale Marco Polo di Venezia (LIPZ), Italy; and Istan-
bul Airport (LTFM), which are chosen to cover the main European routes arriving 
at LEMD airport. A sample of the corresponding trajectories is depicted in Fig. 9. 
Nevertheless, it is worth noting that similar conclusions can be drawn for routes that 
follow the same airways to fly to Madrid.

Table 7 shows the results of evaluating global and individual models on the 
test datasets corresponding to each of the selected routes. The global model per-
formed consistently better on every metric for each of the routes. The bottom of 

Fig. 9   A sample of the trajectories from the five airports considered in the study of the individual models

Table 7   Individual route model 
vs. global model approach

All the trained models are (SP:30, LB:64, U:20). Units in seconds

Airport Model MAE 15 min 30 min 60 min 90 min

EDDF Global 136.29 79.90 129.24 158.21 187.53
Individual 222.97 176.10 199.61 239.29 229.86

EGCC​ Global 170.68 93.88 176.37 200.84 189.73
Individual 254.59 259.82 267.79 275.49 236.30

EHAM Global 155.87 93.98 136.58 179.45 244.70
Individual 214.70 146.67 157.59 237.75 298.91

LIPZ Global 147.73 98.33 128.35 179.14 184.72
Individual 203.36 129.06 195.23 222.24 223.89

LTFM Global 221.89 149.14 143.61 128.44 161.11
Individual 269.67 230.73 163.20 167.40 202.82

Mean MAE reduction 61.76 68.57 38.98 57.56 21.65
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the table reports the mean improvements observed on these five routes. The larg-
est reductions in MAE can be observed closer to the airport. EDDF and EGCC 
benefit the most from using the global model: they achieve improvements of 
86.7 and 83.9 s in global MAE. In particular, EDDF shows a great improvement 
at 15 min, with a reduction of MAE of 96 s. These routes have in common that 
the origin airport is located in the hearth of the European airspace, and thus 
the synergy with trajectories from other routes, which is observed in the sur-
roundings of the airport, is extended along most of the trajectory. Other routes, 
such as LTFM, do not have as much path in common with the other trajectories 
used to train the global model, so they do not benefit as much as the rest of the 
considered individual routes, with a MAE improvement of 47.8  s. In a middle 
ground we find EHAM, which still achieves a MAE reduction of almost a min-
ute with the global model.

Provided that global and individual models were trained with the same data 
from each route, it becomes clear that the global model takes advantage of the 
availability of data from other routes. The European airspace is structured as 
a route network, where flights converge on airways, which roughly determine 
the route that an aircraft must follow to fly to the destination airport. Once in 
an airway, most flights will behave similarly under similar conditions (aircraft 
model, weather conditions, etc.). This synergy becomes more apparent closer to 
the airport, given that flights follow standard procedures in the surroundings of 
the airport to approach to the runway and perform a landing procedure, so the 
model benefits from having data from more flights, even if they belong to differ-
ent routes. Therefore, global models can learn a wider variety of patterns using 
data from different routes, thereby improving their performance on each route.

These results show that using a global model is better than maintaining mul-
tiple models, one per route (i.e. between an origin airport and a destination air-
port), for three main reasons: (i) the global model can predict the ETA at any 
point in the flight more accurately than any of the individual models that only 
model flights for a specific route; (ii) maintaining a single model is less costly 
than maintaining a large number of smaller models; and (iii) the global approach 
can improve predictions even on routes where there are fewer flights due to a 
lower flight frequency or less data availability.

Table 8   Results of the ablation 
test

Units in seconds

Feature set MAE RMSE

Surveillance 208.77 326.09
Surveillance + Flight Plans 206.43 319.23
Surveillance + Weather 215.70 324.33
Full dataset 159.24 257.82
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7.5 � Ablation test

Our approach combines data from different sources to account for different fac-
tors that influence the course of a flight (surveillance, flight plans and weather 
conditions). We have conducted an ablation test to determine how each factor 
affects the performance of our approach. In particular, we trained a LSTM model 
(SP:30,LB:64,U:20) with three different datasets: (i) a dataset containing only sur-
veillance data, which is the core of 4D trajectories; (ii) a dataset enhancing surveil-
lance with flight plan data; and (iii) a dataset combining surveillance and weather 
data. We replicated the training configuration used for LSTM models in previous 
experiments, changing only the features used by the model from the original dataset.

The results are shown in Table 8. Surveillance data are the backbone of the pre-
dictive power of the model, given that they provide detailed information about the 
trajectory itself, rather than factors influencing on it. On the one hand, adding flight 
plan features (time of day, departure airport, day of week and departure delay) 
slightly lowers the MAE results of the model. On the other hand, the weather fea-
tures cause an increase in the error. However, flight plan and weather data in combi-
nation help the model to refine the results of using surveillance data by 49.5 s.

Table 9   Overview of the main results of the works reviewed in Sect. 2

Each entry includes the used metric, the value reported in the corresponding paper and the value from 
(SP:30,LB:64,U:20) model

Ap Scope Method Metric Main results Our proposal

[8] KDFW RF MAE20NM 58 s 55.76 s
MAE60NM 75.4 s 102.85 s

[17] KDEN LR MAEfut 8.63 min 3.33 min
RMSE 12.2 min 5.35 min

[19] Two airports Ensemble MAE 4.31 min 2.65 min
RMSE 5.9 min 4.29 min

[14] Indiv. route AB/GBM RMSELECO 3.12 min 2.61 min
[13] LIMC GBM RSME60 min 304 s 258 s
[12] LSZH GBM RMSE45NM 3.16 min 2.45 min

RMSE250NM 4.75 min 4.03 min
[11] WSSS ET MAE100NM 85–101 s 132 s

RMSE100NM 104–125 s 215 s
[10] ZBAA Ensemble MAE25NM 48 s 55 s
[9] ZBAA LSTM MAE20 min 89.39 s 93.8 s
[18] US territory RF No comparable results were provided
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7.6 � Discussion

Our previous experiments confirm LSTMs models as a good choice for ETA pre-
diction, outperforming other machine learning methods that have been successfully 
used for the same purpose. The comparison with [14] is particularly interesting, 
because the behaviour of the LSTMs in their evaluation was rather unstable and, 
in all cases, their accuracy was lower than that reported by methods such as AB or 
GBM, contrary to what happens with our proposal.

We will now take a closer look at our results in comparison with the main results 
of the state of the art, which are summarised in Table 9. It is worth noting that these 
results may not be directly comparable in quantitative terms, since each proposal 
analyses different case studies, but it is valuable to consider these numerical results 
in order to elaborate the following qualitative analysis.

One of the strengths of our proposal is its ability to provide good predictions in 
both the long and short term (from few minutes to several hours), which is not com-
mon in the state of the art, where existing proposals focus on one or the other case. 
The approaches in [19] and [17] are the most similar to ours, given that they predict 
ETA during the whole trajectory and using one global model for all traffic incoming 
into a destination airport. [19] reports MAE/RMSE values (on the test set) of 4.31 
and 5.9 min, respectively, using an ensemble model comprised of a linear regressor 
and several GBM models. In comparison, our LSTM model with the best configu-
ration (SP:30,LB:64,U:20) achieves a MAE/RMSE of 2.65/4.29  min. In [17], the 
approach based on a nonparametric additive model reached a MAE and RMSE val-
ues of 8.63 and 12.2 min, respectively, far from those reported by LSTM. However, 
their model was trained on data from 2010 and tested on data from 2011, so a fairer 
comparison may be made with the results reported in Table 6; still, LSTM achieves 
3.33/5.35 min when applied on data outside of the training dataset time frame.

Nevertheless, the state of the art is mainly focused on short-term predictions. 
Muñoz et al. [13] report an RMSE value of 304 s at 60 min before landing, while 
our best configuration achieves 258 s for the same metric. Wang et al. [10] report 
48 s of MAE at 25NM from the destination airport, while we achieve 55 s for the 
same distance. It is worth noting that this approach trains specific models for each 
runway, which removes one of the main sources of uncertainty in the short term, 
and provides only very short-term predictions in the TMA of the destination air-
port. Strottmann Kern and Medeiros [18] also used Random Forest and reported an 
reduction of 42.7% in MAE with respect to the ETMF predictions (the ATM sys-
tem used by the Federal Aviation Administration). However, they do not provide 
any result that enables direct comparison with the results of our study. Glina et al. 
[8] applied Random Forests to predict short-term ETA in the surroundings of the 
airport using 5 days of data. The authors indicate that, during those days, there was 
only one active configuration in the destination airport and good weather condi-
tions, which may reduce the complexity of the problem. The model is evaluated in 
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a short-term scenario, at 20 and 60 NM away from the destination airport, with a 
MAE of 58 and 75 s, respectively. Our LSTM model reaches slightly better results 
at 20 NM and worse at 60 NM, with 56 and 103 s. This difference may be due to the 
airport characteristics: in LEMD, the 60 NM radious falls inside the area where the 
aircraft usually manoeuvres, and therefore is the most difficult part of the flight to be 
predicted.

Dhief et  al. [11] report competitive numbers at 100NM: MAE of 85–101  s 
and RMSE of 104–125  s, depending on the runway and the model, outper-
forming ours: 132 and 215 s of MAE and RMSE. The difference between both 
errors is particularly interesting in our case, because it denotes the presence of 
outliers (which are more heavily penalized by RMSE than by MAE). This is 
due to the fact that, in our dataset, we kept trajectories with single-loop holding 
procedures in our dataset (while in [11] they are removed). However, the exact 
impact of holdings in our results is yet to be determined and will be addressed 
as part of our future work. Finally, the GBM model presented in [12] reports 
3.16 and 4.75 min of RMSE at 45 NM and 250 NM, while our model reports 
2.45 and 4.03 min at the same distances.

Ma and Du [9] proposed a complex model that combines trajectory cluster-
ing, convolutional neural networks, LSTM and attention mechanisms to predict 
ETA in the TMA using surveillance, congestion and weather data. That is, their 
results are based on the elapsed time since the aircraft enters into the TMA of 
the airport. As indicated in the paper, the average time between the entering in 
the TMA and the landing time is approximately 20 min, so their results (MAE 
of 89.39  s) are comparable to our 15  min at-time metric, which is a slightly 
higher (93.80 s).

Finally, Ayhan et al. [14] created different models for a sample of individual 
routes between Spanish airports, and the results supported the authors’ claim 
that LSTM produced unstable predictions. The results of this work may not be 
directly comparable with our proposal since they make the prediction before the 
aircraft takes off; however, we include the following observation. In this paper, 
there is only one route in common with [14]; i.e. the route between LECO (A 
Coruña Airport, Spain) and LEMD. They reported that AdaBoost performed 
best at predicting this route, with a RMSE value of 3.12 and 3.71 min for their 
AdaBoost and LSTM models, respectively. For reference, our global LSTM 
model yields a RMSE value of 2.61  min, which is the same than that of the 
individual model for this route. This route was not included in Sect. 7.4 for a 
deeper analysis because the short length of its trajectories did not allow the cal-
culation of at-time metrics beyond 15 min.
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Table 10   Number of total trajectories for each airport and month

Airport Total Month

01–22 02–22 03–22 04–22 05–22 06–22 07–22 08–22 09–22

EBBR 628 70 70 71 76 72 69 65 65 70
EDDB 571 73 69 72 67 43 47 58 70 72
EDDF 628 69 65 65 67 66 66 74 77 79
EDDH 345 31 35 26 46 43 31 50 41 42
EDDL 563 73 68 59 68 70 42 51 62 70
EDDM 616 66 68 78 68 66 74 67 60 69
EDDP 499 71 66 56 53 41 54 66 44 48
EGCC​ 252 39 39 32 35 31 14 16 25 21
EGKK 615 67 69 71 60 64 70 73 71 70
EGLL 612 59 68 74 60 61 69 66 82 73
EHAM 657 68 72 81 77 81 69 75 69 65
EIDW 649 71 75 72 69 77 73 76 70 66
EKCH 284 45 41 28 32 28 18 24 35 33
EPWA 200 32 22 23 20 9 13 18 28 35
LBSF 186 23 12 18 28 18 15 22 22 28
LEBB 587 69 69 68 63 65 62 65 69 57
LEBL 647 74 69 74 71 64 75 77 66 77
LECO 595 58 66 70 62 59 67 70 76 67
LEVC 541 58 70 34 54 66 49 73 71 66
LEZL 596 71 64 51 74 69 56 70 72 69
LFLL 601 70 70 58 69 70 61 63 71 69
LFML 606 67 62 68 72 71 64 64 71 67
LFMN 515 49 44 34 71 70 55 65 72 55
LFPG 555 62 56 59 66 54 66 63 60 69
LFPO 592 59 64 76 76 66 66 63 67 55
LFRS 466 32 28 22 72 73 68 58 62 51
LGAV 401 34 20 29 23 21 64 74 66 70
LHBP 338 31 11 28 53 44 37 34 55 45
LIMC 595 70 40 62 75 79 67 81 56 65
LIPE 561 70 16 62 63 65 66 73 69 77
LIPZ 574 66 27 60 64 76 70 72 66 73
LIRF 585 71 70 64 56 57 70 62 69 66
LIRN 356 41 10 35 – 27 56 59 68 60
LKPR 197 18 20 16 28 16 18 20 34 27
LOWW 570 71 18 62 76 67 73 67 71 65
LPPR 611 70 65 62 74 63 69 68 65 75
LPPT 560 58 55 72 54 63 67 68 61 62
LROP 440 56 30 38 62 50 48 48 58 50
LSGG 615 75 68 62 61 68 70 72 66 73
LTFM 551 50 33 50 72 67 69 70 69 71
Total 20,560 2307 1984 2142 2337 2260 2257 2400 2451 2422
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Table 11   Results of the evaluation of individual and global models. Units in seconds

MAE 15 MAE 30 MAE 60 MAE 90 MAE all

EBBR Individual 130.32 182.54 263.29 410.46 224.42
Global 107.58 161.66 211.04 376.60 185.19

EDDB Individual 200.19 206.30 221.80 283.89 254.63
Global 158.10 177.43 193.63 249.94 215.65

EDDF Individual 160.81 190.38 235.26 243.22 217.95
Global 80.98 136.54 166.99 206.64 142.90

EDDH Individual 156.38 211.76 196.31 219.33 201.22
Global 73.39 155.37 136.17 157.75 134.54

EDDL Individual 177.09 249.97 276.45 353.59 274.62
Global 108.79 214.02 211.17 238.49 196.62

EDDM Individual 150.57 186.80 235.65 299.33 232.37
Global 74.07 120.54 143.25 187.94 129.68

EDDP Individual 111.68 134.04 151.12 224.01 181.29
Global 83.39 124.43 147.30 200.04 164.77

EGCC​ Individual 259.82 267.79 275.49 236.30 254.59
Global 93.88 176.37 200.84 189.73 170.68

EGKK Individual 157.17 222.29 200.15 508.26 197.85
Global 109.61 206.12 189.18 520.55 176.48

EGLL Individual 163.23 274.88 206.18 467.70 212.00
Global 99.46 249.22 176.81 303.23 172.41

EHAM Individual 135.99 148.01 225.03 279.65 205.32
Global 98.95 141.74 190.47 249.56 163.76

EIDW Individual 236.97 181.19 216.53 222.39 216.39
Global 104.65 176.44 174.77 184.62 160.77

EKCH Individual 147.00 147.99 152.89 203.44 199.87
Global 81.64 114.08 106.48 151.01 142.20

EPWA Individual 151.12 177.98 243.64 269.82 293.41
Global 88.88 112.20 166.09 210.62 204.38

LBSF Individual 276.49 331.08 370.60 355.86 399.45
Global 103.98 158.41 158.77 190.08 217.38

LEBB Individual – – – – 80.49
Global – – – – 54.08

LEBL Individual 115.01 – – – 101.52
Global 78.41 – – – 60.03

LECO Individual 77.05 – – – 79.25
Global 106.91 – – – 83.33

LEVC Individual – – – – 339.24
Global – – – – 33.11

LEZL Individual 119.62 – – – 66.00
Global 87.74 – – – 64.50

LFLL Individual 83.09 119.58 396.09 – 110.74
Global 68.43 106.84 276.51 – 89.39
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Table 11   (continued)

MAE 15 MAE 30 MAE 60 MAE 90 MAE all

LFML Individual 118.67 145.67 – – 143.32

Global 101.13 143.22 – – 123.06
LFMN Individual 122.94 185.06 298.67 – 175.55

Global 99.78 162.31 235.79 – 147.18
LFPG Individual 84.57 140.32 203.30 – 152.01

Global 73.03 133.18 172.34 – 126.55
LFPO Individual 136.66 181.16 216.72 – 185.63

Global 97.48 137.69 208.40 – 146.33
LFRS Individual 103.34 120.50 – – 118.34

Global 84.64 109.34 – – 89.53
LGAV Individual 173.54 194.06 283.32 291.90 283.07

Global 121.66 167.63 252.61 152.02 186.60
LHBP Individual 207.05 176.42 216.33 255.85 243.84

Global 63.92 112.86 120.76 184.79 154.41
LIMC Individual 148.90 147.00 201.68 – 185.53

Global 91.72 115.08 144.50 – 125.07
LIPE Individual 133.63 176.53 221.08 493.67 209.38

Global 82.96 158.42 186.99 362.37 165.45
LIPZ Individual 129.06 195.23 222.24 223.89 203.36

Global 98.33 128.35 179.14 184.72 147.73
LIRF Individual 131.07 181.82 320.35 343.06 178.70

Global 114.27 163.34 234.84 216.52 145.39
LIRN Individual 170.17 180.10 267.35 180.26 201.18

Global 81.68 115.53 193.88 131.63 121.94
LKPR Individual 282.28 232.62 282.53 325.89 303.93

Global 101.44 145.04 188.74 171.69 154.58
LOWW Individual 136.06 188.05 246.55 326.52 287.22

Global 92.00 169.82 184.31 211.42 202.01
LPPR Individual 100.28 – – – 79.89

Global 88.14 – – – 70.82
LPPT Individual 125.42 – – – 118.41

Global 81.08 – – – 95.34
LROP Individual 271.66 201.49 217.56 272.13 292.23

Global 97.87 101.55 126.45 173.66 176.08
LSGG Individual 66.51 101.89 141.21 – 103.82

Global 67.87 106.49 125.93 – 92.78
LTFM Individual 224.68 148.71 166.42 213.30 277.56

Global 141.92 137.14 140.70 160.26 214.47
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8 � Conclusions and future work

We have presented a novel approach to predict the estimated time of arrival using 
LSTM neural networks, with the aim of taking a further step towards the predict-
ability of air traffic management operations. We have used surveillance, flight plan 
and weather data to describe incoming flights to the Adolfo Suárez-Madrid Bara-
jas airport, which, to the best of our knowledge, has never been addressed before, 
despite its considerable importance at national and international level. We have con-
ducted an exhaustive evaluation of different model configurations to better exploit 
the features of the generated dataset, reporting competitive numbers. Our proposal 
achieved overall MAE and RMSE values of 2.5 and 4.25 min, respectively, outper-
forming a baseline consisting of leading models such as RF, GBM and AB, which 
have reported competitive results for ETA prediction. Besides, we are able to pro-
vide accurate predictions at the entire flight, being competitive with solutions spe-
cifically designed for short- or long-term predictions.

Our future work will focus on two main lines of research. On the one hand, we 
consider to enhance our approach with more advanced deep learning techniques, 
such as attention mechanisms, to improve the detection of relevant information in 
the input sequences, or convolutional neural networks, to improve the interpreta-
tion of positional data, which is key for ETA prediction purposes. On the other 
hand, we plan to design a more ambitious case study to gain a deeper under-
standing of the unique challenges of ETA estimation, to identify new sources of 
uncertainty and to build a portable solution that can be used in different airspace 
domains.

A Data distribution among routes

This Appendix presents the distribution of trajectories among the airports consid-
ered in the study. The data are divided in months, since the data were sampled to 
ensure a homogeneous time distribution, and an equivalent representation of each 
route (Table 10).

Results of the individual models

This Appendix presents the results of the evaluation of each individual model, 
and the corresponding results of the global model, on their respective test data-
sets, in order to show the improvements explained in the Section 7.5. Where the 
test dataset had too few examples (less than 10), the results of the evaluation were 
not included in the table. This happens for some at-time metrics when the route is 
too short to produce long enough windows, or some windows were discarded due 
to gaps in the trajectories (windows with gaps longer than 180 s with no data are 
discarded) (Table 11).
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