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ABSTRACT Trajectory prediction plays a key role in modern air traffic management. The ability to predict
the future position of aircraft in flight allows for greater predictability, safety and efficiency. In recent years,
recurrent neural networks, and particularly LSTM (Long-Short Term Memory), have been successfully
applied (alone or in combination with other kinds of network) to this problem. However, the criticality
of the supervision of these operations and the difficulty of predicting trajectories in high density traffic
zones, such the Terminal Area around the airports, require high accuracy methods that takes into account all
factors involved in these operations. In this paper, we propose an architecture based on Temporal Fusion
Transformer (TFT) for multi-route, long-term trajectory prediction using surveillance data (Automatic
Dependent Surveillance - Broadcast, ADS-B). We conduct our experiments on the case study of the Madrid
Barajas-Adolfo Suárez airport (Spain), using nine months worth of data. In particular, we focus on predicting
the next 150 seconds at any point in the trajectory for flights arriving at this airport. Compared with other
LSTM networks developed in this work, TFT provides an increased accuracy for 2D positioning, with mean
absolute errors of 0.0091 and 0.0104 degrees for latitude and longitude, respectively, in the Terminal Area
of the destination airport. These results have been shown to be competitive with, or even superior to, more
consolidated approaches based on LSTM networks that have been proposed for single route, short-term
predictions.

INDEX TERMS LSTMnetworks, temporal fusion transformer, air trafficmanagement, trajectory prediction.

I. INTRODUCTION
Intelligent Transportation Systems have gained much atten-
tion in the latest decades, thanks to the unprecedented growth
in global mobility. The volume and complexity of these
movements have enforced the development of advanced
management processes, mostly reliant on monitoring data
via in-vehicle sensors and data analysis techniques. In this
context, Air Traffic Management (ATM) constitutes one of
the main challenges due to its particular characteristics and
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its current importance in the global transportation system.
In particular, the area near the airports, often referred as
Terminal Maneuvering Area or Terminal Control Area (TMA
or TCA, respectively), is a highly complex environment to
manage, due to the concentration of aircraft and the safety
concerns that may arise during the maneuvers required by
the landing and takeoff operations. Furthermore, a diverse set
of factors, often very difficult to predict and analyse in real-
time operations, may cause deviations from the original flight
plan. As a consequence, a great degree of uncertainty is still
present in ATM operations, and all of them are performed
under intense supervision and continuous monitoring, and
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subject to a continuous, real-time decision making process,
aiming at detecting and resolving any conflicts in the airspace
in safe conditions.

Surveillance systems are one of the most important
resources to assist air traffic controllers, by providing them
with the states of the aircraft throughout the flight. ADS-
B (Automatic Dependent Surveillance-Broadcast) [1] has
progressively replaced secondary radars for this purpose,
taking advantage of the aircraft’s capabilities to determine its
position as well as other important flight parameters (altitude,
speed, bearing, etc.), which are continuously recorded by the
vehicle. Mandatory for aircraft operating commercial flights
in the world’s major airspaces, ADS-B equipment plays a
key role in introducing the concept of Trajectory Based
Operations (TBO) [2] into intelligent ATM systems. TBO
goes beyond decision making based on flight plans thanks to
the notion of 4D trajectory, which integrates time into the 3D
(latitude, longitude, and altitude) flight path [3]. Trajectories
are thus described in terms of position and time and are
agreed upon by all involved stakeholders to allow for better
allocation of airspace and airport resources. This detailed
description also supports advanced management tasks, such
as airspace capacity management, enhanced tactical planning
and improved safety assessment.

Trajectory prediction plays a fundamental role in all of
these tasks, specially during the tactical phase of the flight
(shortly before and during the flight) [4]. Traditionally,
trajectory prediction has been addressed using kinematic
model-based approaches. However, these models do not
take into account the dynamics of the aircraft and the
actual context in which the flight takes place, especially
when the time dimension is considered. Delays, adverse
weather conditions, diverted flights and complex interactions
in high-density traffic areas (such as around departure and
arrival airports) are all factors that have a profound effect
on how a flight unfolds. In this context, data-driven methods
can integrate all of these factors in the decision-making
process. These methods rely on data describing the past
states of the aircraft and the context in which the flight
takes place (weather conditions, airspace congestion, etc.),
to accurately predict the future states of the aircraft. To make
these predictions, data-driven models learn from historical
data that provide an exhaustive description of how flights take
place depending on the flight conditions.

This paper explores how 4D trajectories can be used to
improve predictions of in-flight aircraft trajectories, follow-
ing a data-driven approach. Trajectory prediction enables
better predictability in airspace operations, supporting the air
traffic controllers to know in advance the future positions of
all aircraft, and facilitating the timely detection of conflicting
or potentially-risky situations. The ability to predict the future
state of the airspace also allows better resource allocation,
resulting in more effective and efficient air traffic manage-
ment. In our approach, flight trajectories are modeled as
time series (including the four dimensions mentioned above
and some other features from surveillance and flight plan

data), and a deep learning model is trained to make trajectory
predictions. In particular, we propose two architectures that
have been applied before to approach sequence-to-sequence
problems with multivariate time series data: Long-Short Term
Memory (LSTM) neural networks [5], and Temporal Fusion
Transformer (TFT) [6]. LSTM have received much attention
in trajectory prediction, as described in Section III, and
their capabilities have been repeatedly proven. TFT has not
been used before to predict aircraft trajectories, to the best
of our knowledge. However, TFT should be particularly
appropriate to perform trajectory prediction, given its ability
to combine time series data (such as aircraft trajectory data)
with additional features that help to improve the time series
interpretation by providing the relevant context (such as
weather conditions or the airspace situation). We evaluate
our approach at the Adolfo Suárez-Madrid Barajas airport,
using incoming flights (from 40 different airports) during
the first three quarters of 2022. The results show that
TFT can predict the next 10 states (equivalent to the next
150 seconds) on a flight with a mean absolute error (MAE)
of 0.0133 and 0.0170 degrees, and a root mean squared
error (RMSE) of 0.285 and 0.0536 degrees for latitude and
longitude, respectively. These results demonstrate that TFT
are a viable approach to trajectory prediction in ATM, and
can outperform other state-of-the-art techniques for this task,
such as LSTM-based architectures.

Therefore, this paper makes two main contributions:
• An approach to long-term flight trajectory prediction
at any point in the flight that uses data from different
routes, in contrast with other approaches that tackle
either short term predictions, are applicable to a single
route or focus only on the area around the destination
airport.

• An effective implementation of this approach using
LSTM and TFT networks, that achieve competitive
results in this multi-route, multi-step, full-trajectory
scenario. The proposal is evaluated on flights arriv-
ing at Madrid Barajas-Adolfo Suárez Airport (Spain)
from 40 European airports.

The rest of the paper is organized as follows. Section II
provides the basic background to understand our approach,
and Section III gives a broad picture of the state of the
art on aircraft trajectory prediction. Section IV explains
the implemented architectures, and Section V describes the
selected data used to develop and evaluate our models.
Section VI describes our case study, the methodology behind
our experiments and their results. Finally, Section VII
presents our main conclusions, and devises our lines of future
work.

II. BACKGROUND
Predicting trajectories from 4D-trajectory data can be
approached intuitively as a sequence modelling problem.
Each trajectory is described by several sequences of values,
where each value depends on the previous values in the
sequence. In addition, these data points have time information
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associated with them, which allows us to interpret them as a
time series problem. Therefore, the analysis of 4d-trajectories
using deep learning can be tackled using architectures
based on Recurrent Neural Networks (RNN), which excel
on processing this kind of data, or attention-based archi-
tectures, which have proven to be effective at sequence
modelling.

In this section, we briefly describe how the LSTM and TFT
architectures work to motivate their use in our approach, and
introduce the different strategies that can be applied to predict
sequences of data.

A. LONG SHORT-TERM MEMORY
In recent years, methods based on Recurrent Neural
Networks (RNN) have shown good performance in time
series modelling tasks, given that they are able to capture
temporal dependencies in sequential data [7]. In contrast
with traditional feed-forward neural networks, recurrent
layers present cycles within them, that is, they have
links between the neurons in the layer. This structure
causes RNNs to form very deep structures that increase
the risk of vanishing gradient problem [7], particularly
when analyzing sequences with long-distance dependencies.
The vanishing gradient problem consists on the error
becoming too small or zero during the back-propagation
step in model training, which hinders the network
training.

FIGURE 1. LSTM unit internal structure.

Long Short-TermMemory (LSTM) [5] is a gated recurrent
network architecture that ensures error propagation even in
deep recurrent layers, allowing the model to have ‘‘long-
term’’ memory without the loss of ‘‘short-term’’ memory
shown by traditional RNN. Three multiplicative units are
defined within an LSTM cell, which act as gates with dif-
ferent purposes (see Figure 1): (i) The forget gate determines
the extent to which the output of the previous iteration is used
to process the next input element. (ii) The input gate controls
howmuch information from the input element will contribute
to the hidden state. This gated unit protects the hidden
state from perturbations and irrelevant elements in the input
sequence, and (iii) The output gate outputs the most relevant
parts of the hidden state, once it has been updated. This helps
to filter the information to be passed on to the next iteration,
avoiding the propagation of irrelevant information from the
current hidden state. When the last element in the sequence

has been processed, this output is passed to the next layer in
the neural network. During this process, hidden and output
states are updated separately, helping to ensure long-term
memory.

B. TEMPORAL FUSION TRANSFORMER
Attention mechanisms [8] help models to discover implicit
patterns in sequences of data by identifying which elements
are more important for performing a task. In this way, the
model can modulate the importance of each element in the
sequence by assigning weights to them, and focus more on
the most relevant elements.

Transformer [9] is an architecture that replaces recurrence
by attention in deep neural networks, with great success in
tasks such as automatic translation.With the removal of recur-
rence, which enforces a sequential processing of the input
sequences, Transformer allows for parallelization during the
training process, although it loses the notion of the order of
the elements within the input sequence. Transformer relies
on three key concepts: self-attention, multi-head attention and
the positional encoding of the elements in the input sequence.
Self-attention takes into consideration the importance of each
element in the context of the rest of the elements in the
input sequence, rather than using a predefined set of keys.
Multi-head attention allows for different interpretations of the
input sequence by projecting the query vectors into different
representation subspaces. Finally, positional encoding allows
the model to account for the order of the elements in the
sequence.

FIGURE 2. Description of prediction strategies.

Temporal Fusion Transformer (TFT) [6] combines the
Transformer architecture with recurrent layers to perform
multi-horizon forecasting in sequence-to-sequence predic-
tion problems. TFT defines three different input types: static,
known and observed; to account for the different types of
information that intervene in forecasting problems: static
inputs are data that is constant and known for any considered
timestep; known inputs are time-varying inputs that are
known beforehand; and observed inputs are time-varying past
data.
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C. SEQUENCE PREDICTION STRATEGIES
Sequence prediction in time series can be approached using
different strategies. Taieb et al. [10] identified five strategies
to make multi-step predictions in time series, the three main
ones are illustrated in Figure 2.

1) RECURSIVE
The recursive strategy defines a single-output, one-step ahead
model to predict the next timestep: ym+1 = f (x1, . . . , xm).
In order to predict further timesteps, the previous predictions
are appended to the input window; therefore, prediction error
is propagated through successive predictions.

2) DIRECT
The direct strategy defines a single-output model specif-
ically for ea ch time horizon that should be predicted.
This method avoids error propagation, but implies a
conditional independence between successive predictions:
(ym+1, . . . , ym+p) = (f1(x1, . . . , xm), . . . , fp(x1, . . . , xm)).

3) DirRec
The DirRec strategy consists on predicting blocks of
timesteps using a direct strategy, and appending these
predictions to the input sequence, to predict the next block
recursively.

4) MIMO
The MIMO (Multi-input multi-output) strategy defines a
multi-output model to predict the next p timesteps. This
approach conserves the stochastic dependence between the
elements in the predicted sequence and avoids the error
propagation, but has a reduced flexibility given that only one
model is used for all time horizons: (ym+1, . . . , ym+p) =

f (x1, . . . , xm).

5) DIRMO
Finally, DIRMO combines Direct and MIMO strategies:
multiple multi-output models are defined for different blocks,
each of them calculated in a MIMO manner.

III. RELATED WORK
LSTM networks have been extensively applied to approach
sequence prediction tasks, whether alone or combined with
different techniques to improve the natural capabilities of
these neural networks. Shi et al. [11] used LSTM to predict
all aircraft trajectories in an airspace sector using surveillance
data obtained from ADS-B sources. Their approach was later
improved using LSTM networks with constraints [12], which
force the model to take into account different aspects of the
kinematics and behaviour of an aircraft depending on the
flight stage. With this new proposal, they provided the best
performance of all the studied LSTM-based approaches, with
a mean absolute error (MAE) of 0.0050 and 0.0105 degrees
for latitude and longitude predictions, and a MAE of
9.96 feet for altitude. However, these results correspond

with a single route (that is, flights between two particular
airports), in contrast with other works where multiple routes
can be predicted with the same model. Zeng et al. [13] also
applied LSTM networks to model the aircraft dynamics in a
complex scenario, such as the environment around an airport,
by analyzing landing and takeoff operations at theGuangzhou
airport. More recently, Sahadevan et al. [14] successfully
applied bidirectional LSTM to leverage both backwards and
forward dependencies in the trajectories time series. They
evaluated their approach on a single direction from a single
route (from Chhatrapati Shivaji Maharaj airport (VABB) to
Kempegowda airport (VOBL)), and reported MAE values
of 0.0206 and 0.0160 degrees, and 33.75 feet, for latitude,
longitude and altitude, respectively.

Subsequent work has introduced various elements to
enhance the LSTM capabilities. For instance, Convolutional
Neural Networks (CNN) were combined with LSTM to
exploit the spatial aspect inherent in trajectory data. Ma and
Tian [15] proposed a hybrid model where spatial and
temporal inputs are processed sequentially using CNN
and LSTM networks. Each component is responsible for
extracting different patterns in order to characterize better
the current and future state of the aircraft. The presented
case study is similar to [14] in terms of characteristics
(single direction on a single route) and results. Shafienya and
Regan [16] proposedCG3D, amore complex architecture that
combines conventional CNN, GRU and 3D CNN to analyze
the different types of information from surveillance data.
GRU (Gated Recurrent Units) [17] are similar to LSTM, but
with a simpler internal structure. As in other proposals, spatial
and temporal features are processed separately by CNN and
GRU networks, respectively; however, they also add a 3D-
CNN network that combines both sets of features, which in
combination with the CNN-GRU defines the proposed CG3D
architecture. Their results report a global MAE of 0.1176 for
all predicted features.

More recently, attention mechanisms have gained promi-
nence in sequence prediction problems, and therefore have
also been applied to trajectory prediction. Jia et al. [18]
added self-attention layers after LSTM layers to refine their
output by promoting their main features and improving
their prediction accuracy. LSTM have also been combined
with physical simulation models [19], where the LSTM
network processes dynamics information about the aircraft
(e.g. surveillance data) and its output is used to refine the
result of the RM-IMM estimation algorithm. This approach
yielded good results in terms of predicting altitude (MAE
of 2.94), although it is outperformed by other works given
that latitude and longitude are predicted with a MAE of
0.0373 and 0.0397 degrees, respectively.

With respect to the implemented prediction strategy, most
of the analyzedworks aim to predict only the next state update
given the m last updates: ym+1 = f (x1, . . . , xm). However,
this approach has limited use given that the prediction is
too short-term and immediate, so many of them extend
this approach to perform multiple timestep-ahead predictions
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in a recursive manner. Sahadevan et al. [14] studied the
degradation of the prediction accuracy with the number of
predicted timesteps when following a direct strategy. The
results are best at 1 timestep for all features considered
(latitude, longitude, altitude and time), after which the results
rapidly deteriorate as the predicted sequence lengthens.
Similar conclusions can be drawn when using a recursive
strategy, as demonstrated in [19], due to the prediction error
propagation. Reference [16] is the only work that proposes
a MIMO approach, similar to ours, where 5 timesteps are
predicted based on the previous 100 timesteps.

With regard to the context in which each study is carried
out, most of the analyzed proposals focus on the prediction
of trajectories on individual routes [11], [14], [15]; i.e. flights
between two particular airports, a specific airspace sector [20]
or at the TMA of an airport [13], [16], [19], which may
include both landing operations, take-off operations, or both.
In terms of the inputs for the prediction models, all previous
work uses surveillance data (mainly ADS-B data) such as
latitude, longitude and altitude. Most of them also account
for the speed of displacement (vertical or horizontal) and
the heading of the aircraft, which have demonstrated to be
determinant in trajectory prediction. Zeng et al. [13] also
utilize the aircraft type, and the speed and acceleration of
change of the considered features.

IV. ARCHITECTURE
4D trajectories consist on long sequences (several hundreds
or even thousands) of flight points, which hide long and
short-term temporal dependencies within the multiple time
series they comprise. As stated in Section II, LSTM-based
networks are able to learn from long sequences of data, such
as 4D trajectories, to capture both short-term and long-term
dependencies between the elements in the sequence. This fact
motivates our decision to build a LSTM-based neural network
to predict sequences describing the next states of the aircraft
based on the last available states. This architecture consists
of a single LSTM layer, with a hidden state of dimension n,
and a fully connected (FC) layer to transform the output of
the LSTM layer (a vector of length n) into an interpretable
trajectory prediction. In this work, this prediction include
multiple future states (i.e. timesteps) characterized by three
features: latitude, longitude and altitude, in order to determine
the short-term future positions of the aircraft. In particular,
we aim to predict the next 10 timesteps (i.e. 150 seconds
of flight time). The predictions made by LSTM networks
are sometimes unstable, and describe maneuvers that are
unrealistic for an aircraft in the air (such as a jagged paths
that oscillate around the true trajectory followed by the
aircraft). We experimented with a LSTM-based architecture
with two additional FC layers after the LSTM layer to apply
a quadratic polynomial interpolation as a curve smoothing
operation [21] on the output of the network. Thus, LSTM
layers are responsible of extracting and interpreting time-
dependent patterns, and FC layers should transform this
interpretation into more feasible trajectory predictions.

We also applied the original TFT architecture [6] on 4D
trajectory data to explore its capabilities at the trajectory
prediction task. While the architecture also involves LSTM,
the multi-head attention mechanisms should extract the key
information from the output of LSTM layers to further
improve the trajectory predictions.

V. DATA DESCRIPTION
This section describes the data used in our approach, as well
as the necessary means to obtain them. The selected features
are summarized in Table 2.

A. DATA SOURCES
ATM is a complex field of study in multiple aspects, many of
which are not covered in any publicly accessible data source.
Therefore, we need to extract the necessary data from diverse
data sources, in order to integrate and refine them for the
purposes of this work. In particular, we utilize surveillance
and flight plan data.

1) SURVEILLANCE DATA
Surveillance data describe the flight state over time according
to the considered dimensions. Each data point has an
associated timestamp (assigned by the ground receiver at
the reception time), and contains information about the 3D-
position of the aircraft (longitude, latitude and altitude), the
horizontal speed, the vertical rate (the rate at which the
aircraft climbs or descends) and the direction the aircraft is
heading (track). Information about the aircraft and the airline
that operates the flight can be extracted from the transponder
code (hexadecimal unique code) and the callsign (ID code of
the flight), respectively. Additionally, we calculate a distance
feature, which is the Haversine distance of the aircraft with
respect to the destination airport.

We use surveillance data provided by OpenSky [22],
an open, community-based network of receivers with great
coverage of the European airspace. ADS-B messages are
broadcasted from the aircraft and received by ground stations.
OpenSky post-processes ADS-B messages converting them
to state vectors [1], which preserve the most important
surveillance information (identification, position and speed)
of the aircraft (sampled every 5s), and assign the corre-
sponding flight callsign. However, there may be several
irregularities in the resulting data. To further reduce them and
improve data quality, we perform additional data processing
tasks, described in the Section V-B.

2) FLIGHT PLAN DATA
Flight plans provide with scheduling data such as the flight
ID data, and the departure and destination airports. We use
this information to filter the relevant data for the selected case
study, and as input feature in the case of the origin airport.

We use the EUROCONTROL Network Manager1 as the
source for flight plan data. In particular, it provides the

1Network Manager: https://www.eurocontrol.int/network-operations.
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FIGURE 3. Dataset construction (left) and model training (right) workflows.

TABLE 1. Examples of surveillance ADS-B data as provided by OpenSky (flight state vectors).

Flight Plans feed, which publishes (i) plans for future flights,
including pre-flight scheduling information (such as planned
departure and arrival times), airline, origin and destination
airports, and estimated flight time, and (ii) modifications with
respect to a previous version of a flight plan, for flights not
yet departed. We identify the last version of the flight plan
(which contains the most up-to-date information) to extract
the features explained above.

3) TARGET VARIABLE
We aim to predict the position of the aircraft in the short-term
future, that is, in the n next time-steps. Therefore, we define
the longitude, latitude and altitude values for the next n
timesteps as the labels for each of the input elements.

B. DATA PROCESSING
The acquired raw data collection needs to be transformed to
ensure high-quality 4D trajectories. A high-level description
of this workflow is provided in Figure 3 and its three
transformation stages are described as follows.

TABLE 2. Model features extracted from the data sources.

1) TRAJECTORY SELECTION AND CLEANING
We first identify and filter relevant trajectories for our case
study using flight plan information (such as departure and
arrival times and airports) and flight ID information (the
callsign of the flight and the aircraft ICAO code). Each
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trajectory is associated with the corresponding surveillance
data, captured from that aircraft during the flight. Trajectories
with less than 300 state vectors and trajectories with multiple
loops during a holding procedure are discarded. In the latter
case note that holding procedures force an aircraft to wait
in the air until it is cleared to land at the airport, and are
characterized by their looping trajectory pattern near the
airport.

The identified trajectories are cleaned to remove the quality
problems inherent in ADS-B: incorrect time information,
duplicate data or incorrect field values (altitude, speed,
GPS position. . . ). The process includes various cleaning
operations: elimination of vectors with unrealistic latitude,
longitude, altitude or velocity values; sorting of the state
vectors within the trajectory in case of misplaced vectors
in the time sequence; and recalculation of timestamp and
altitude values for reordered vectors.

2) DOWNSAMPLING
Trajectories are downsampled to ensure a regular distribution
over time of their state vectors. The state vectors of each
trajectory are divided into buckets of 15 seconds according
to their timestamp: the first vector of each bucket (in
chronological order) is kept, and the rest are discarded.We set
this sampling rate at 15 seconds, which we have found to
be a good compromise between reducing the computational
cost of the model training, and the representativeness of the
original trajectory data.

3) TRANSFORMATION AND WINDOWING
Data is further transformed to fit the model requirements.
First, the track feature is transformed according to f (x) =

sin
( x
2

)
in order to reinforce the similarity between 0◦ and

359◦. The track is divided by 2 to fit the output in the
[0, 1] range. This feature is complemented by an additional
binary feature, sector, in order to differentiate between tracks
in the range [0, 180) and [180, 360), given that the defined
transformation is not injective in this range.

Then, the categorical features are transformed into real
values using label encoding (i.e. replacing each categorical
value with an integer), and all features are normalized into
[0,1] range according to Equation 1, where v is the original
value of the feature f , and vfmin and vfmax are the observed
minimum and maximum values.

v′ =
v− vfmin

vfmax − vfmin
(1)

Finally, trajectories are transformed into fixed-length
sequences of n elements. For each trajectory, we generate
all possible subsequences of m neighbouring vectors (using
a sliding window of equal length) and assign them the next p
vectors in the sequence (the number of timesteps we want to
predict). The sub-sequences that contain a gap of more than
180 seconds between adjacent vectors are also removed to
ensure the continuity within each window.

VI. EXPERIMENTS
This section describes the experimental process we have
performed to evaluate our proposal and compare it with the
state of the art. First, we describe the experimental setup
and methodology that we have followed to evaluate the
performance and generalizability of our model. We then
present our main findings and discuss the results and their
contribution to the state of the art.

FIGURE 4. Sample of 200 flights arriving at LEMD (Jan, 2022).

A. CASE STUDY
Our case study focuses on the Adolfo Suárez-Madrid Barajas
airport (ICAO code, LEMD), the leading Spanish airport in
terms of passenger traffic and the fifth in Europe in 2023.
LEMD has four physical runways, arranged as two pairs of
parallel runways, that can be used for either takeoff or landing
operations, depending on the current runway configuration.
LEMD uses two different configurations: north (north-facing
runways are used for takeoffs and south-east-facing runways
are used for landings) and south (vice-versa), which are
chosen on the basis of weather conditions and available
resources. A sample of 200 flights landing at LEMD for
January 2022 are illustrated in Figure 4, which shows
prevailing the runway configuration at that moment.

B. DATASET GENERATION
Our dataset (referred to as Complete) includes data from
incoming flights at LEMD airport in the first nine months
of 2022 (January 1 to September 30, 2022). It is worth
noting that there is a significant imbalance in the number of
flights from each departure airport to LEMD, which could
bias the model in favour of more frequent routes. We choose
the 40 most frequent routes to reduce this effect, and limit
each route to have a maximum of 50 trajectories per month.
As a result, the dataset comprises data from 7,146 trajectories
(2,971,108 state vectors).

A second dataset is defined (called Airport from now on),
which is a subset of the dataset described above. This dataset
contains all state vectors that were emitted closer than 80NM
to the destination airport. The purpose of Airport dataset is
two-fold: (i) to evaluate the performance of the developed
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models in the TMA of the airport; (ii) to produce results that
are comparable to those reported in the state of the art, which
mainly focus on this area around the airport, and not on the
whole trajectories.

C. EXPERIMENTAL SETUP
In the following, we provide a comprehensive description
of the experimental setup used in our study. Note that all
experiments are conducted on a 6-core Intel(R) Xeon(R)
Gold 6226R CPU at 2.90GHz, with 16GB RAM with
GPU acceleration on a Nvidia RTX A40. The execution
environment includes Python 3.9; Tensorflow 2.9.1 andKeras
2.11.0 for LSTMmodels; and Pytorch 1.13.1 for TFTmodels.
We used a publicly accessible TFT implementation2 that is
based on the original implementation from [6].

1) DATASET
The dataset is divided into the usual train, validation
and test subsets (containing 72.25%, 12.75%, and 15% of
the trajectories respectively), as depicted in in Figure 3.
A randomized, stratified approach is applied by distributing
trajectories in direct proportion to their monthly and route
frequency. In this way, the trajectories are evenly distributed
across the three subsets according to the distribution of
the original data. Finally, data in each subset is adapted to
the particular model configuration, according to the process
described in Section V-B.

2) LSTM MODEL
We evaluated two parameters: the input window size (m)
and the number of units of the LSTM network. On the one
hand, input window size determines the number of individual
elements (state vectors) the model expects to receive to make
a prediction. The longer the sequence, the more information
the model has to characterize the evolution of the flight.
However, longer sequences require more computing power or
model complexity to learn long-term, complex patterns from
the data. On the other hand, the number of units determines
the dimensions of the internal representation that the model
constructs from the input data. The higher this value, themore
complex the model and the greater the risk of overfitting.
We tested window sizes between 25 and 60, in increments
of 5, and a range of different numbers of units between 10
and 35, based on previous experiences with this task.
We assigned fixed values to the other hyperparameters

of the model: we set the sigmoid function as the activation
function; the batch size to 128; the loss function to mean
absolute error (MAE), and Adam [23] is used as optimizer.
We experimented with different activation functions (namely,
linear, hyperbolic tangent and sigmoid), but the sigmoid
function provided the best results in terms of training stability
and convergence speed. During training, early stopping was
used as a regularization measure to prevent overfitting. The
models were trained for 40 epochs, and the version with

2https://github.com/andresC98/TSF_Transformers_TFM

the smallest validation loss was selected for evaluation. The
best model was configured with 30 LSTM units and input
sequences of size 55.

3) TFT
We tuned three hyperparameters in the TFT model: head
attention size, number of elements in the hidden layer, and
the input window size. The head attention size is the number
of parallel attention layers applied to the input of the model.
Each of these layers may learn to detect different patterns,
effectively ‘‘paying attention’’ to different aspects in the time
series. The number of hidden elements corresponds with the
number of units in the LSTM network that is integrated
in the TFT architecture. The evaluated head attention sizes
were 1, 2 and 4, and the number of hidden elements ranged
from 140 to 380, in increments of 60 units. Finally, for the
window size we experimented with values of m between 50
and 65 elements. The rest of the hyperparameters were set to
the default values defined in the used implementation. The
best results were achieved using 4 attention heads, a hidden
size of 320 and input sequences of 60 state vectors.

4) METRICS
Themodels are evaluated usingMAE (MeanAbsolute Error),
RMSE (Root Mean Squared Error) and MSE (Mean Squared
Error) metrics.

- MAE is the mean of the absolute values of
the differences between each objective sequence,
(xt+1, . . . , xt+m), and the predicted sequence, (yt+1, . . .,
yt+m), for every input (xt−p, . . . , xt ) (Equation 2).

- MSE is the mean value of the squared differences
between each objective value and the predicted value
(Equation 3).

- RMSE is the square root of themean value of the squares
of the differences between each objective value and the
predicted value across all examples (Equation 4).

MAE =
1
n

∑n

i=1
|yi − xi| (2)

MSE =
1
n

∑n

i=1
(yi − xi)2 (3)

RMSE =

√
1
n

∑n

i=1
(yi − xi)2 (4)

where n is the number of examples in the evaluation dataset,
yi is the tensor comprising the predicted next p future states,
and xi is the tensor that contains the actual next p timesteps.

Due to its linear nature, MAE weights equally each
example regardless of its error value. In RMSE and MSE
errors are squared, so larger errors are weighted more than
smaller errors, and can be used as a metric of the variance of
the error values. The MAE and RMSE values are provided in
degrees (latitude and longitude) and feet (altitude) to enable
direct comparisons. MSE values are normalized in the range
[0,1).

MSE was used as metric during the preliminary experi-
ments. MAE and RMSE are used in the evaluation of the final
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TABLE 3. MSE (scaled) on the validation set for all feature sets.

models in order to enable direct comparisons with the state of
the art.

D. PRELIMINARY STUDIES
In this section, we report some findings in our preliminary
study to guide the experimentation process.

1) ITERATIVE VERSUS COMPLETE SEQUENCE
In our first tests, we evaluated the recursive andMIMO strate-
gies to approach the trajectory prediction task. We imple-
mented two simple LSTM networks, which predicted one
timestep and ten timesteps ahead, respectively. The results
confirmed the conclusions exposed in [10]. The recursive
approach performed worse, with a MSE of 0.004400. This
strategy led to an accumulation of errors that increased with
successive predictions. In particular, the predicted trajectory
often showed non-existent turns after a small deviation in
the predicted values (mainly latitude or longitude). On the
other hand, theMIMO strategy, whilemaking themodel more
difficult to fit, had a much lower MSE value: 0.000129 (an
order of magnitude lower). Therefore, we adopted MIMO
strategy for the rest of our experiments.

2) FEATURE SET
Two different sets of input features were put under evaluation:
Basic (latitude, longitude, altitude and track), and Expanded
(basic features plus speed, departure airport, and distance to
destination airport). We also evaluated the effect of the sector
feature in the prediction capabilities of the models.

The results are shown in Table 3. Both LSTM models
benefited from having the additional features and improved
their MSE values with the Expanded+sector feature set,
while the TFT model performed best with the Basic feature
set. However, in both cases the differences were rather small.
The best sets of features for each architecture are used for the
rest of the experimentation.

E. RESULTS
Table 4 shows the main results of our experiments on the
Complete dataset, corresponding to the complete trajectories
from flights arriving at LEMD airport, and the Airport
dataset, where only the vectors within the destination airport
TMA are considered. The MAE and RMSE values on each
dataset are also presented in Figure 5 (top and bottom,
respectively). We report per-feature values in their original
scale and units (i.e. latitude and longitude in degrees, and
altitude in feet) to facilitate their interpretation and analysis.

On the one hand, the LSTM and LSTM-FC models report
very similar numbers for the Complete dataset on all the
considered features, in terms of both MAE and RMSE.
There are small differences depending on the predicted
feature: LSTM performs better in longitude (0.0364 vs
0.0373 degrees, equivalent to 4.04 and 4.14 km, respectively)
and altitude (242.8 vs 259.2 feet), while LSTM-FC has
a slight advantage at predicting the latitude (0.0216 vs
0.0208 degrees, around 2.3 kilometers). The TFT model
report different results. The MAE for the latitude is the same
as the achieved by LSTM, although with half the variance
according to the RMSE (0.0403 vs 0.0910 degrees). The
MAE for longitude is worse, with 0.0574 degrees (6.38 km),
but the RMSE halves those presented by the LSTM and
LSTM-FCmodels. Finally, the results for altitude are better in
terms of MAE and RMSE, with the lowest values of the three
models (189.8 and 465.9 feet, respectively). The difference
between MAE and RMSE leads to the conclusion that LSTM
models perform better than TFT in the individual trajectories
that are closer to the most frequent trajectory, and worse in
less frequent scenarios (such as adverse weather conditions,
diverted flights or special procedures like holdings or go-
arounds), where they make larger errors than TFT and
therefore get penalized by the RMSE metric.

We also trained and evaluated the models on the Airport
dataset (with the samemodel configuration used for the Com-
plete dataset). The bottom line in Table 4 shows the
corresponding results. Here, the TFT model provides the
best performance at predicting the 2D position (latitude and
longitude), and improves significantly its altitude predictions
with respect to the previous experiment. Our intuition is that
data from outside the TMA is too disperse and scarce to
train the TFT model correctly, so its performance should
improve as we increase the size of the dataset. This hypothesis
is further discussed in a later section. Inside the TMA, all
the trajectories converge, which reduces the variability found
in the data, and the size of the dataset is large enough
for the model to capture the movement patterns around the
destination airport. On the other hand, the LSTM models
provide error values that are on-par than those observed on
the other experiments in terms of latitude and latitude, while
the longitude predictions are worse.

F. ANALYSIS
Table 5 summarizes the main results of the state of the art
(Section III), including those reported by the best LSTM and
TFT-based approaches presented in this paper.

Although none of these approaches is directly comparable,
as they all represent different case studies (different airports,
number and type of routes, etc.), we think it is interesting to
analyze these numbers to position our current contributions
with respect to the existing literature. To do this, we have
arranged the results in Table III according to the number
of routes that each approach able to predict: the top part
shows the results of approaches that work with data from a
single route, while the bottom part shows the reported results
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TABLE 4. Evaluation results for the Complete and Airport datasets. Values in original units (degrees for latitude and longitude, and feet for altitude). The
best values for each result set and feature are marked in bold.

FIGURE 5. Comparison of the MAE (top) and RMSE (bottom) values of the models in the considered scenarios.

TABLE 5. MAE and RMSE values for latitude, longitude and altitude features from comparable proposals.

of techniques (including ours) that are able to predict the
trajectory for multiple routes. On the other hand, it is worth
noting that most of the studied approaches implement an
one-timestep prediction (with the exception of [14] and its
Direct approach), while ours uses a MIMO approach. This

means that the errors reported in those papers correspond
to the error in the prediction of the next timestep (which is
the one with the least uncertainty), while our results describe
the errors for the next 10 timesteps, whose uncertainty
increases progressively. In consequence, the error made by
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FIGURE 6. Distribution of the mean absolute error of the TFT model across the predicted window. The red lines indicate the mean values across the
vectors in each position.

TABLE 6. Mean and standard deviation values for the MAE values on
each of the positions in the predicted window.

FIGURE 7. Distribution of the mean absolute error values of the TFT
model on the altitude feature at different distances to the destination
airport. The mean value at each distance is indicated in red.

the model would vary across the predicted window. This
intuition is confirmed in Figure 6, where the mean absolute
error distribution on each of the predicted window positions
is shown for the Complete dataset. The outliers (values
that exceed 1.5 times the interquartile range) have been
removed from the graph for clarity. The mean and standard
deviation values (without excluding the outliers) are shown in
Table 6. The mean MAE for altitude increases monotonically

FIGURE 8. Heatmap describing the correlation between altitude and
distance values.

from 100 to 281 feet. The dispersion of the values also
increases progressively due to higher uncertainty the further
in time we aim to predict. The error distribution in latitude
and longitude is more uniform along the predicted window
in terms of mean errors and dispersion. However, there is
still a slight but steady increment of the error the further we
advance within the window. It is worth noting that this fact is
not evident in the Figure 6 due to outlier removal, although it
becomes clear in Table 6. The only exception is that the error
in latitude is slightly higher in the first predicted vector than
in the second one.

Taking these aspects into account, our numbers are
competitive with those reported in the state of the art in
terms of latitude and longitude. TFT outperforms all the
considered works in terms of the MAE in 2D positioning
except [12], albeit this case study is performed on a
single route, which significantly reduces the variance of the
predicted trajectories, and only predicts the next timestep.
Similar conclusions can be made for our LSTMmodel, which
manages to compete with, or even outperform, most of the
analyzed LSTM-based proposals in terms of MAE.

The situation is different when it comes to altitude, with
our models performing worse than the state of the art.
Figure 7 shows the distribution of the MAE values of the
TFT model at different distances to the destination airport.
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The mean and median error values are mostly uniform up
to 650 NM, although the dispersion of the error values
fluctuates significantly. These variations in the metrics are
aligned with the start of the routes: as shown in Figure 8,
many trajectories manifest ascending patterns at several
points within the considered geographical scope, introducing
additional variability into the data of flights occurring in those
areas. As the aircraft gets closer to the airport, the flight
patterns become more clearly defined, which help the model
to provide more consistent results. This can be observed in
the range (200-650), where most of the air traffic organizes at
different, but defined, flight levels. However, the error is still
lower than acceptable from a domain point of view: MAE in
altitude is 318 feet, which is much lower than the minimum
vertical separation for aircraft crossing paths standardized by
ICAO. ICAO specify a minimum separation of 1,000 feet for
aircraft flying at 29,000 feet at most, and 2,000 feet if they
fly above this value [24].

VII. CONCLUSION AND FUTURE WORK
This paper reports the first experience of applying the TFT
architecture to the aircraft trajectory prediction problem. This
architecture is particularly suitable for this task, thanks to
its combination of attention mechanisms, LSTM internal
networks and features management. We also developed
several LSTM models to serve as a baseline and help to
interpret the results of TFT. Our approach report competitive
results, outperforming similar works even in a more complex
context. In particular, TFT is able to predict 2D position with
high accuracy, with a MAE of 0.0133 and 0.0170 degrees for
latitude and longitude, respectively. The results for altitude
are less competitive due to the inclusion of the complete
trajectories from multiple routes, which introduce a higher
variance of the altitude across the used dataset. Further
investigation of the causes that motivate this fact and the
strategies to overcome it are part of our future work. Our
first steps towards this objective will be devoted to construct
enriched trajectories with weather and flight planning data to
further refine predictions and improve our current results for
altitude. Note that these data play a key role in tactical flight
planningwithin the TMA, and have great influence howflight
trajectories develop. TFT architecture, whose performance
for trajectory prediction has been explored in this paper,
should be able to effectively model the relationship between
individual aircraft dynamics and these contextual factors in
such a complex environment. Additionally, we will leverage
the focus on explainability of the TFT architecture to deepen
our knowledge about the data and the performance of these
models.
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