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A B S T R A C T

It is well-known that the demand rate for some products depends on several factors, such as price, time, and
stock, among others. Moreover, the holding cost can vary over time. More specifically, it increases with time
since a long period of storage requires more expensive warehouse facilities. This research introduces an inventory
model with shortages for a single product where the demand rate depends simultaneously on both the selling
price and time according to a power pattern. Shortages are completely backordered. Demand for the product
jointly combines the impact of the selling price and a time power function, which is performed as an addition.
Furthermore, the holding cost is a power of the time that the product is held in storage. The main objective is to
derive the optimal inventory policy such that the total profit per unit of time is maximized. For optimizing the in-
ventory problem, some theoretical results are derived first to prove that the total profit function is strictly pseudo
concave with respect to the decision variables. Next, an efficient algorithm that obtains the optimal solution is
provided. The proposed inventory model is a generalmodel because it contains several published inventory mod-
els as special cases. Some numerical examples are presented and solved to illustrate and validate the proposed
inventory model. Also, a sensitivity analysis is conducted in order to highlight and generate significant insights.

© 2021

1. Introduction

In any economic sector, product inventories are critical for all firms.
Therefore, firms must develop robust inventory models to determine op-
timal product inventory policies (e.g., what to order, when to order, and
in which quantities), and in some cases specify the degree of shortages
that can be permitted in order to minimize costs or maximize profits. To
accomplish this, firms usually have a department responsible for manag-
ing the inventory which proposes effective and efficient methodologies
for controlling product stocks with the aim of always having items avail-
able to satisfy customer demands. It is for this reason that researchers
across the world have been developing inventory models that perfectly
fit and solve inventory issues. For instance, (Akan et al., 2021), (Fang
et al., 2021), (Feng et al., 2021) and (Hemmati et al., 2021) have
studied the joint pricing-inventory management.

⁎ Corresponding author.
E-mail addresses: lecarden@tec.mx (L.E. Cárdenas-Barrón); buddhamath@tec.mx (B.

Mandal); jsicilia@ull.es (J. Sicilia); augusto@mat.uva.es (L.A. San-José); babdul@ull.es (B.
Abdul-Jalbar)

In many production and inventory models, the rate of demand is con-
sidered to be constant and known. However, in real life situations, the
rate of demand actually depends on many factors such as price, time,
and stock, to name a few. This paper is strongly related to four topics
in inventory management: price-dependent demand, power demand pat-
tern, nonlinear holding cost, and shortages. Within the inventory theory
literature, large efforts are still dedicated to building inventory models
that incorporate these topics in isolation, or by perhaps considering the
effects of two topics jointly. However, no previous study has considered
the combined impact of all four topics. In the next section, a literature
review of the research works most closely associated with the mentioned
topics is presented.

1.1. Literature review

1.1.1. Power demand pattern
In the research area of inventory models, one stream of studies in-

vestigates the inventory problems associated with demand that is de-
pendent on time (i.e., products are sold at the beginning of the period,
withdrawn at the end of the cycle, or consumed uniformly during the

https://doi.org/10.1016/j.cor.2021.105339
0305-0548/© 2021.



UN
CO

RR
EC

TE
D

PR
OO

F

2 L.E. Cárdenas-Barrón et al. / Computers and Operations Research xxx (xxxx) 105339

period). These distinctive manners in which the demand happens within
a time period are referred to as power patterns.

There exists a vast amount of research literature that models the de-
mand by using the power demand pattern function. In this direction,
Naddor (1966) proposed a power demand pattern that depends on
both the time and the length of the cycle time. Since then, several other
researchers have developed inventory models that model the demand
using the power pattern as a function of time. For example, Aggarwal
and Goel (1982) developed an inventory model using the power de-
mand pattern for the case when a constant portion of the on–hand in-
ventory deteriorates over time. Afterwards, Datta and Pal (1988) in-
troduced an inventory system that used a power demand pattern for
items with a variable rate of deterioration. Girlich (1990)solved the
EOQ inventory model that used a power demand pattern. Later, Lee
and Wu (2002) examined an EOQ inventory model with permissible
shortages and a power demand pattern when the products deteriorate
according to a Weibull distributed rate. Dye (2004) revisited and ex-
tended the research work of Lee and Wu (2002) by including a general
class time-proportional backlogging rate and a power demand pattern.
Jung et al. (2008) identified some questionable results in the inven-
tory model proposed by Dye (2004) and improved it. Abdul-Jalbar et
al. (2009) formulated an inventory model as a mixed nonlinear pro-
gramming problem and analyzed the implications of utilizing a power
demand pattern and backordering in a scenario with one-warehouse and
N-retailers. Singh et al. (2009) formulated an EOQ inventory model
in which shortages are permitted and these are partially backordered
when the demand of deteriorating products follows a power demand
pattern. Their inventory model considers the backordering rate as be-
ing inversely proportional to the waiting time of the subsequent re-
plenishment. Tripathy and Pradhan (2010) built an EOQ inventory
model when the items deteriorate with a two-parameter Weibull dis-
tributed rate and assumed a power demand pattern with partial back-
logging. Kumar and Singh (2011) modeled an inventory system by
considering that the product deteriorates after a fixed time period re-
ferred to as the life time) and by taking into account an incremental hold-
ing cost and the impact of partial backlogging. Rajeswari and Van-
jikkodi (2011) presented an inventory model in which the products
have a constant deterioration rate and demand follows a power pattern.
Shortages are permissible and these are partially backordered. Sarbjit
and Shivraj (2011) proposed deterministic and probabilistic EOQ in-
ventory models with shortages and a power demand pattern for prod-
ucts having a variable rate of deterioration. Moreover, the impacts of
inflation and a permissible delay in payment are studied and analyzed.
Singh and Sehgal (2011) constructed an EOQ inventory model for ar-
ticles that deteriorate with a two-parameter Weibull rate by considering
a power demand pattern when shortages are permissible and are com-
pletely backordered. Krishnaraj and Ramasamy (2012) dealt with
an inventory system without shortages for a power demand pattern in-
cluding a two-parameter Weibull distribution to model the deteriora-
tion rate. Mishra et al. (2012) investigated the effects of both the
time value of money and inflation in an inventory system with shortages
for perishable products with a power demand pattern when a two-pa-
rameter Weibull distribution is used to account for the deterioration
rate by taking into consideration that deterioration begins after a fixed
time period. Rajeswari and Vanjikkodi (2012) considered an inven-
tory model with a time-dependent power demand pattern when de-
terioration follows a two-parameter Weibull distribution. Their inven-
tory model includes three different situations: complete, partial, and no
backlogging. Sicilia et al. (2012) developed inventory systems with
a power demand pattern for cases without and with shortages. In ad-
dition, complete backordering and fully lost sales inventory models are
derived. Sicilia et al. (2014aa) developed a production-inventory sys-
tem with a power demand pattern, a production rate proportional to
the demand rate and full backlogging. San-José et al. (2017) deter

mined the optimal inventory policy for an inventory system with a
power demand pattern and fixed partial backlogging. San-José et al.
(2018a) studied an economic order quantity inventory model with
shortages fully backlogged and where the demand rate was the prod-
uct of a price-logit function and a power-time function. San-José et al.
(2019) analyzed an inventory model without shortages for a single item
where the demand rate was the sum of a linear function with respect
to the unit selling price and of a power-time function. Other inventory
models with a power demand pattern have been proposed by Sicilia et
al. (2013), Sicilia et al. (2014b), Sicilia et al. (2015), Rajeswari
et al. (2017), Tripathi et al. (2017), San-José et al. (2018b) and
San-José et al. (2020). Table 1 presents a list of selected inventory
models with a power demand pattern that have been developed since
2000.

1.1.2. Holding cost
The majority of the production and inventory models are derived as-

suming a constant holding cost. However, in the real world, the hold-
ing cost varies. Therefore, another research area of interest is the de-
velopment of inventory models that consider a variable holding cost. In
this field, there are different types of models such as those that con-
sider stock-dependent holding cost, time-dependent holding cost, or in-
clude multiple-dependence holding cost or any other holding cost vari-
ability. In this direction, Alfares and Ghaithan (2019) presented an
excellent and comprehensive state-of-the-art review on inventory mod-
els that consider variable holding cost. For the case of time-dependent
holding cost, normally the authors use linear or nonlinear time func-
tions. Weiss (1982) introduced deterministic and stochastic EOQ in-
ventory models by assuming that the unit holding cost is non-linearly
dependent on the duration of time in storage. Goh (1994) considered
two types of variations of the holding cost: a nonlinear function for the
duration of time the products are maintained in storage, and a non-
linear function with respect to the amount of on-hand inventory. Giri
and Chaudhuri (1998) revisited and extended the inventory models
of Goh (1994) by taking into account that the products are perishable.
Chang (2004) also improved the inventory models of Giri and Chaud-
huri (1998) by optimizing the maximum profit and relaxing the con-
straint of a zero-ending inventory. They showed that the profits are sig-
nificantly larger than those obtained by Giri and Chaudhuri (1998)’s
inventory model. Ferguson et al. (2007) extended Weiss (1982)’s in-
ventory model and pointed out that it is an approximation of the op-
timal order quantity for the case of perishable items. They also incor-
porated surcharges for infrequent ordering and discounts. On the one
hand, Goh (1994) treated the variation of the holding cost over time
as a continuous nonlinear function, whereas Alfares (2007) proposed
two kinds of discontinuous step functions for the variable holding cost
in which the storage time of the items is separated into several periods
and the holding cost increases continuously. Additionally, as the storage
time of the items approaches the subsequent time period, the holding
cost can be charged either retroactively to all storage cycles or incre-
mentally to the subsequent storage cycle only. It is important to remark
that Alfares (2007) imposed the constraint that the inventory level at
the end of the cycle must be equal to zero. Conversely, Urban (2008)
revisited and generalized the Alfares (2007)’s inventory model by per-
mitting that the ending inventory level be a non-zero value. Mahata
and Goswami (2009) studied fuzzy inventory models for perishable
goods by assuming that the holding cost varies according to a nonlin-
ear function of the time the product is held in storage and the deteri-
oration rate occurs according to a triangular fuzzy number. Mao and
Xiao (2009) formulated and solved an inventory model for non-instan-
taneous deteriorating goods by taking into consideration that shortages
occur and that these shortages are completely backordered. A general-
ized function of the on-hand inventory was used in this study to rep-
resent the holding cost. By considering the holding cost as a nonlin
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Table 1
Selected inventory models related to power demand pattern from 2000.

Authors Price dependent demand Power demand pattern Holding cost Allowed shortages Type of backlogging Objective function

Lee and Wu (2002) No Yes Constant Yes Full Min. cost
Dye (2004) No Yes Constant Yes Partial Min. cost
Jung et al. (2008) No Yes Constant Yes Partial Min. cost
Abdul-Jalbar et al. (2009) No Yes Constant Yes Full Min. cost
Singh et al. (2009) No Yes Constant Yes Partial Min. cost
Tripathy and Pradhan (2010) No Yes Constant Yes Partial Min. cost
Kumar and Singh (2011) No Yes Constant Yes Partial Min. cost
Rajeswari and Vanjikkodi (2011) No Yes Constant Yes Partial Min. cost
Sarbjit and Shivraj (2011) No Yes Constant Yes Full Min. cost
Singh and Sehgal (2011) No Yes Constant Yes Full Min. cost
Krishnaraj and Ramasamy (2012) No Yes Constant No Min. cost
Mishra et al. (2012) No Yes Constant Yes Partial Min. cost
Rajeswari and Vanjikkodi (2012) No Yes Constant Yes Full/Partial Min. cost
Sicilia et al. (2012) No Yes Constant Yes Full Min. cost
Sicilia et al. (2013) No Yes Constant No Min. cost
Sicilia et al. (2014aa) No Yes Constant Yes Full Min. cost
Sicilia et al. (2014b) No Yes Constant Yes Full Min. cost
Sicilia et al. (2015) No Yes Constant No Min. cost
Rajeswari et al. (2017) No Yes Linear Yes Partial Min. cost
San-José et al. (2017) No Yes Constant Yes Partial Max. profit
Tripathi et al. (2017) No Yes Constant No Min. cost
San-José et al. (2018a) Yes Yes Linear Yes Full Max. profit
San-José et al. (2018b) Yes Yes Non-linear Yes Partial Max. profit
San-José et al. (2019) Yes Yes Non-linear No Max. profit
San-José et al. (2020) Yes Yes Constant Yes Full Max. profit
This paper Yes Yes Non-linear Yes Full Max. profit

ear function of time and taking into account inflation, Valliathal and
Uthayakumar (2011) formulated a production inventory model as-
suming shortages with partial backordering. Pando et al. (2012) ex-
amined an inventory system without stockouts when both the holding
cost and demand are nonlinear functions with respect to the time in stor-
age. Sazvar et al. (2012) determined the optimal (r,Q) policy for a
three-echelon supply chain with a nonlinear holding cost when the lead
time for the purchaser is uncertain. Pando et al. (2013) analyzed an
economic lot size inventory model for when the demand depends on in-
ventory level, and the holding cost is a nonlinear function for both the
amount of units in inventory and the time that these units are held in
storage. Prasher and Pundir (2013) studied the nonlinearity of the
holding cost with respect to the amount of on–hand inventory. Sazvar
et al. (2013a) dealt with a continuous review inventory system, which
assumes that the lead time is stochastic and the demand rate is constant
and known during the course of an infinite planning horizon. Their in-
ventory model uses the time dependent nonlinear holding cost function
of Weiss (1982), and also allows for shortages that are fully backo-
rdered. Sazvar et al. (2013b) proposed a new way to determine the
inventory up to a level policy for perishable goods with a normally dis-
tributed demand and lead time by including service level requirements.
Other inventory models with a nonlinear holding cost have been de-
rived by San-José et al. (2015), Khalilpourazari and Pasandideh
(2017), Paknejad et al. (2018), Pando et al. (2018), San-José
et al. (2018b), Edalatpour and Al-e-Hashem (2019), Pando et
al. (2019), San-José et al. (2019), Tripathi (2019) and (Cárde-
nas-Barrón et al., 2020).

1.1.3. Price-dependent demand
Given that the demand of several products is influenced by price, an

increase in price induces clients to buy fewer products. Alternatively, a
low price motivates clients to buy more items. In this line of research,
a large variety of inventory models have been developed to account for

demand that is dependent on a linear price when analyzing inventory
policies. The most recent works in this area include those by Jadidi et
al. (2017), Panda et al. (2017), Rubio-Herrero and Baykal-Gur-
soy (2018), Marand et al. (2019) and San-José et al. (2019).

In the business world, the demand is affected by several factors. To
model this complexity, the demand is defined as a function that depends
simultaneously on some factors in additive form. In this context, Her-
bon and Khmelnitsky (2017) built an inventory model for deriving
the optimal ordering and pricing policies for a perishable good by con-
sidering that the demand is influenced by time and price in an additive
way. In the same direction, San-José et al. (2019) derived an inven-
tory model for goods whose demand depends on both price and time.
However, their inventory model did not consider the case of shortages
and this modeling aspect is the focus of the present research.

1.2. Our contribution

The research work reported here develops and studies an inventory
model for a product whose demand rate jointly combines the impact of
the selling price and a time power function in an additive way. More
specifically, the demand rate changes linearly at the same time with re-
spect to selling price, and nonlinearly with respect to both time and the
length of cycle time. The inventory model allows shortages that are com-
pletely backordered. Furthermore, the holding cost is a power function
of the time period in storage. This means that the holding cost is nonlin-
ear as reported by Weiss (1982).

The main aim of this research work is to simultaneously determine
the selling price, order quantity, and backordering level in order to
maximize the total profit per unit of time. To optimize the total profit,
some theoretical results are derived first. Then, the theoretical results
are used to develop an effective and efficient algorithm to obtain the
optimal selling price, the optimal time at which the inventory level
reaches zero, and the optimal cycle time that collectively maximize the
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total profit per unit of time. With these three optimal values, the optimal
maximum inventory, the optimal order quantity, and the optimal back-
ordering level are then calculated.

As can be seen in Table 1, and to the best of our knowledge, this
is the first research paper that simultaneously considers the following
characteristics in the inventory system: (i) the demand rate additively
combines the effects of a time-power pattern and a selling price-linear
function, (ii) a non-linear holding cost and (iii) shortages are allowed
and completely backordered. Thus, for example, the differences between
this paper and that developed by San-José et al. (2018b) is that, there
the demand rate is ramp-type and, although there the demand also de-
pends on the selling price, this price is fixed and, therefore, it is not a
decision variable of the optimization problem.

The rest of the manuscript is organized as follows. Section 2 intro-
duces the notation, assumptions and the mathematical formulation of
the inventory model with a nonlinear holding cost, a power demand
pattern, and full backordering. Section 3 presents the optimal inventory
policy when the inventory level at the beginning of the scheduling pe-
riod is zero. Section 4 derives the theoretical results and develops an
efficient algorithm to determine the optimal solution for the inventory
model when the inventory level attains zero at positive time. Section 5
solves five numerical examples. Section 6 presents a sensitivity analysis.
Finally, Section 7 provides some conclusions and suggests some future
lines of research.

2. The inventory problem

In this section, the notation and assumptions of the inventory system
to be studied are introduced first. Then, a mathematical formulation of
the problem is presented.

2.1. Notation

The nomenclature utilized for the development of the inventory
model is shown below.

Parameters:

K = Ordering cost per order .
p = Unit purchasing cost .
w = Unit backordering cost per unit of time .
h = Scale parameter for the holding cost .
= Elasticity parameter for the holding cost .
= Scale parameter for the part of the price-dependent demand .
= Sensitivity parameter for the demand with respect to price .
= Scale parameter for the part of the time-dependent demand .

n = Demand pattern index .

Decision variables:

s = Unit selling price .
= Time period at which the inventory level is greater than or equal to

zero .
T = Cycle time .

Dependent decision variables:

Q = Order quantity .
b = Backordering level .

= Maximum inventory level .

Functions:

= Cumulative holding cost per unit maintained in storage during t
units of time.

= Demand rate at time t for a selling price s, with .

= Stock level at time t for a selling price s, with .
= Total profit per cycle per unit of time.

2.2. Assumptions

The inventory model in based on the following assumptions:

1. The inventory system is for a unique product.
2. The planning horizon is infinite.
3. The lot size Q is the order quantity to replenish the inventory.
4. The replenishment is instantaneous and the product is restocked in

each inventory cycle T.
5. The purchasing cost p is known and fixed.
6. The selling price s is a value that must be obtained.
7. Shortages are permitted and these are completely backordered.
8. The ordering cost K is known and fixed. It is independent of the or-

der quantity.
9. The demand rate is a function, at the same time, of both the

unit selling price and the time that the inventory is maintained in
storage. It is assumed that , where is the
linear price-demand which is expressed as

and is the power-time demand which is denoted as

Here, represents the scale parameter in the linear price-demand,
is the coefficient of the selling price sensitivity, is the scale pa-

rameter of the time-dependent demand, and n is the index of the
power time demand pattern. The index n represents the form in
which the products are withdrawn from the stock in order to cover
the customer demand. Thus, the demand rate jointly combines the
impacts of the selling price and a time-power function. In order to
illustrate the effect of the parameter n on the evolution of the net
inventory level, we have depicted the function for different
demand pattern indexes in Figs. 1–3 A justification of the practi-
cal utility of the function to represent the demand for certain
items can be seen in San-José et al. (2017). We assume, as is done
extensively in the literature, that the demand varies linearly with
the selling price. This is wholly justified for some products in which
demands are lost due to price sensitivity (see, e.g., Panda et al.,
2017 ). Therefore, the function allows us to describe the be-
havior of customer demand for a wide variety of products.

Fig. 1. Net stock level when .
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Fig. 2. Net stock level when .

Fig. 3. Net stock level when .

10. The cumulative holding cost for a unit maintained in stor-
age during t units of time is a power function of the time in stock.
Hence, it is considered that , here is the scale para-
meter of the holding cost and is the elasticity parameter of the
holding cost. That is, represents the relative change in the hold-
ing cost related to the corresponding relative change over time, i.e.,

. Therefore, in the linear case , the hold-
ing cost per unit increases at a constant rate h, while in the general
case , the unit holding cost increases slowly initially and sub-
sequently grows faster.

2.3. Formulation of the inventory model

At the beginning of the inventory cycle (i.e., at ), Q units are re-
ceived and this quantity immediately decreases to units in the stock
due to the covering of shortages from the previous cycle. During the
period , the on-hand inventory level decreases due to de-
mand and eventually reaches zero at , and then the occurrence of
shortages starts which are accumulated until the maximum backorder-
ing level of b units is reached. The quantity is determined with

For all , the inventory level at time t is computed as follows:

The backordering level is calculated with:

The order quantity is equal to the total demand during the cycle length,
that is,

Thus, it follows that .
By considering the above assumptions, the revenue and the inven-

tory costs at each cycle are obtained below.
Revenue: sQ
Purchase cost: pQ
Ordering cost: K
Holding cost:

Backordering cost:

The total profit per unit of time is calculated as the difference
between the revenue per inventory cycle and the sum of the purchasing
cost, the ordering cost, the holding cost, and the backordering cost per
cycle. This difference is then divided by the cycle length T. Mathemati-
cally speaking,

Then, the objective is to maximize the total profit per unit of time
. Therefore, the optimization problem is formulated as below.

(2)

where and .
Notice that the above problem is a nonlinear optimization problem.

In the next section, we begin determining the optimal solution of the
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inventory problem for the case in which the stocking period is equal to
zero. Then, in Section 4, we will develop a procedure to search the solu-
tion of the inventory problem for the scenario . In that case, the
solution to the optimization problem can be obtained with an algorithm
and by applying a numerical method to solve the nonlinear equations.
In general, it is not possible to determine the closed form expressions for
the decision variables.

3. Analysis of the optimal inventory policy when

In this section, the function is studied when . Mathe-
matically speaking,

This case can be interpreted as the analysis of make-to-order production.
In this situation, there are fully backordered stockouts during the inven-
tory cycle, and backorders are supplied with the arrival of the new re-
plenishment of items.

Let us consider T as a given value. Then the first derivative of
with respect to s is

This derivative is, evidently, a decreasing function in s, and at the point
takes the value of . Additionally, this derivative

has one root at the point

For a fixed value of T, since the second derivative
, the function is strictly concave in the interval . Thus,
the maximum value of is attained at the point

(3)

where

(4)

Furthermore, it easy to see that if and only if .
Notice that always because, if , then

, and it is absurd, since T must be always pos-
itive.

Evidently, two possible cases must be analyzed:

1. If , then and the value of the function at the point
is,

(5)

where

(6)

and

(7)

2. If , then and , due to always .

Some properties of the function given in (5 ) are:

1. .
2. It is continuous, since

3. It is differentiable and its derivative is continuous:

where

(8)

Also, we have

Then

4. The function has a unique positive root at point

(9)

which corresponds to the maximum of the function , due to
(the function is strictly concave).

Analysis of the function

1.
2. and .
3. and, thus, has one

root in the point

(10)

4.
y

.

Determination of the optimal value of T
The following theoretical result permits the determination of the op-

timal inventory policy when .



UN
CO

RR
EC

TE
D

PR
OO

F

L.E. Cárdenas-Barrón et al. / Computers and Operations Research xxx (xxxx) 105339 7

Theorem 1 Given the

function given by (8), and . The

maximum value of the function is attained at the point
given by Table 2, where , and y

are given by (6) y (7), respectively.
Proof See Appendix A. ■

The following corollary states the optimal benefit when .
Corollary 1 If , then the maximum profit per unit time is

Otherwise, the maximum benefit per unit time is

Proof If , then from (6), . Now, as , from
(8), . Substituting the right side of
equality into (6), we obtain the expression proposed.Otherwise,
and . From (9), substituting into (7), the desired expres-
sion is obtained. ■

Corollary 2 If , then .Otherwise:

1. If , then .
2. If , then .

Proof It is easily deduced from Table 2. ■

4. Theoretical results and optimal solution for the inventory
model when

In this section, we analyze the inventory problem proposed in (2)
when . We start presenting the optimal policy when .

A) If , Eq. (1) is reduced to

Now let,

Then,

This is the profit function of the inventory model without shortages of
San-José et al. (2019). Therefore, in this case, the optimal solution of
the inventory problem can be obtained applying the algorithm proposed
by those authors.

B) In the following paragraphs, we search for the optimal inventory
policy for the case .

Given selling price s and time at which the inventory reaches zero,
obtaining the first-order derivative of with respect to T and
setting this equal to zero, then a necessary condition for the optimal in-
ventory cycle time is

(11)

For a detailed derivation of this result see Appendix B.
To maximize the total profit subject to , some theo-

retical results in concave fractional programming are utilized. Cambini
and Martein (2009) state that a real function defined on an open
convex set and represented by is (strictly) pseudo concave
if is non-negative, differentiable and (strictly) concave, and is
positive, differentiable and convex. For simplicity, the following value is
defined

(12)

For a fixed and given s and , applying the theoretical result from
Cambini and Martein (2009), it is easy to prove that total profit

is strictly pseudo-concave with respect to T if . Therefore,
in this case, there exists a unique global optimal solution such that

is maximized.

Table 2
Optimal inventory policy when .

– –

Note. The symbol “–” means that this situation cannot occur.
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Theorem 2 Given selling price s and time at which the inventory reaches
zero, if then given by (1) is a strictly pseudo-concave func-
tion with respect to T, and there exists a unique maximum solution for .
Proof See Appendix C. ■

Likewise, for any given T, the function given by (1) is a
strictly concave function in both s and if some conditions are hold. For
simplicity, define

Note that always. By assuming that and , then the fol-
lowing theorem is stated.

Theorem 3 For any given cycle time T, if and , then
given by (1) is a strictly concave function in both s and , and,

consequently, there exists a unique maximum solution for and .
Proof See Appendix D. ■

For any given cycle time T, by obtaining the first order partial deriv-
ative of with respect to s, and setting this equal to zero, then
a necessary condition for the optimal selling price s is determined. Thus,
the condition is

(13)

Similarly, we conclude that a necessary condition for the optimal time
at which the inventory level attains to zero is

(14)

For a detailed derivation of these two conditions, see Appendix E.
Eq. (14) can be reduced to

Therefore, as and , it is easy to show that the optimal cy-
cle time T is given by

(15)

Substituting (15) into Eq. (13), it is straightforward to prove that the
selling price is given by

(16)

Notice that the selling price has the following constraint . There-
fore, any value of s given by (16) such that implies that it is
not allowed. Thus, in this case, the solution for the selling price must be

. From (16), the condition is equivalent to

Since the last term of the above expression is negative, it leads to
when . Consequently, if , then the opti-

mal selling price is .
Let be the point obtained by equating to zero the first partial

derivatives with respect to s and . Evaluating M and N at this point, we
have and

Thus, taking into account Eqs. (15), (16), we conclude that for any
given T, there exists a unique optimal solution .

Considering the theoretical results derived above, the following algo-
rithm is constructed. The procedure uses the sets and . The set
contains all the potential solutions obtained along the algorithm. The set
S collects the positive points that are solutions of Eq. (11) when the
selling price is determined by Eq. (16). The set includes the points
obtained solving Eq. (11) when the selling price is .

Algorithm

Step
0.

Input the inventory parameters.

Step
1.

By using Theorem 1, obtain the optimal inventory policy when
and calculate its profit . Go to Step 2.

Step
2.

By using the algorithm proposed by San-José et al., 2019, obtain the op-
timal inventory policy when and calculate . Go to
Step 3.

Step
3.

Set and . Go to Step 4.

Step
4.

If then go to Step 7. Otherwise, go to Step 5.

Step
5.

Using T given in Eq. (15) and s given in Eq. (16), determine the set S of
real positive points that solve Eq. (11). Go to Step 6.

Step
6.

While do

.
Obtain and set .
Calculate with and Eq. (16).
If , then:
(a) Determine with and Equation ( 15).
(b) From Eq. (12), obtain .
(c) If , then put and calculate

.
End_While.

Step
7.

Using T given in Eq. (15) and , determine the set of positive
points that solve Eq. (11). Go to Step 8.

Step
8.

Set .

While do.
.

. Put and .
Calculate with and Eq. (15). From Eq. (12), obtain .
If , then put and calculate .
End_While.

Step
9.

Set the inventory policy such that its profit is the
greatest profit per unit time of the inventory policies belonging to the set . Go
to Step 10.

Step
10.

Report the optimal solution for , and .

Step
11.

Stop.
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Remark

In the inventory model analyzed here, customer demand is additively
affected by both price and time. For that, it is likely that the managerial
decisions depend on the parameters associated with both demand com-
ponents. Thus, represents the price-dependent average demand
when the product is sold at the purchasing price (note that it also is the
maximum price-dependent demand rate), while is the average demand
during the inventory cycle that is dependent on time. Hence,
is the gap between the average demand due to the selling price if the
item was sold at the purchasing price and the average demand due to
the variation of customer orders over time.

Taking into account the above paragraph, in Step 4 of the algorithm,
if the condition is satisfied, then the optimal selling price
must always be the maximum possible value, that is, . However,
if , then the selling price will depend on the solutions obtained
by solving Eq. (16).

Special cases

It is important to highlight that the inventory model developed in
this research is a general model which contains several previously pub-
lished inventory models as special cases. The conditions that make it
possible to reduce the model analyzed here to the other inventory mod-
els are outlined in Table 3.

5. Numerical examples

With the aim to illustrate the proposed inventory model and accom-
panying algorithm, this section presents and solves five numerical exam-
ples. The data for each example are taken from San-José et al. (2019),
adding a backordering cost w.

Example 1 Consider an inventory system with the following parame-
ters: and

. By applying the algorithm, the optimal solution is as follows:
time at which the inventory level reaches zero is , the sell-
ing price is , the inventory cycle time is and
the maximum profit per unit of time is . Additionally,
the optimal values for the dependent variables are: order quantity is

, and the backordering level is
. In order to ensure that solution to the inventory problem is op-
timal, it is needed to satisfy the following con

Table 3
Special cases.

Conditions Inventory models

and San-José et al. (2019)
, , and Weiss (1982) and Ferguson et al. (2007)

, , and Sicilia et al. (2012) (inventory system without
shortages)

, , ,
and

Kunreuther and Richard (1971) and Smith et al.
(2007), considering a linear demand

, , ,
and

Kabirian (2012) considering a constant production
cost,
a linear demand rate and the production rate tends to
infinity

, Sicilia et al. (2012) (inventory system with full
back-ordering)

, and Hadley and Whitin (1963) (inventory system with
full backordering)

, , ,
and

Harris (1913)

ditions: . For this example, all conditions are

satisfied: .

Example 2 Consider the following input parameters: and

. By using the algorithm, the optimal inventory policy is as fol-

lows: and . The conditions are satisfied:

.

Example 3 Take into consideration the same data as in Example 2, but
modify the values of and w to and
, respectively. By employing the algorithm, then the optimal inventory

policy is given by and . The conditions

are satisfied: .

Example 4 Take into account the same parameters as in Example 2,
but change the values of n, and w to and , re-
spectively. By applying the algorithm, the following optimal inven-
tory policy is obtained: ,

and . The

conditions are satisfied: .

Example 5 Consider the same data as in Example 1, but modify the val-
ues of , and w to and respectively. By utilizing the algo-

rithm, the optimal inventory policy is given by and

. The conditions are satisfied: .

Notice that the total profit is zero. Therefore, the inventory system is
non-profitable for any unit selling price.
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6. Sensitivity analysis

This section presents a sensitivity analysis. For this, several exam-
ples are considered in which some of the input parameters are fixed,
while the rest of the parameters are allowed to vary across a range of
values. The computational runs were performed on a computer HP Elite
8300 CoreTM i5-3470M CPU @ 3.30 GHz, 8.00 GB RAM, and
64-bit Windows 7 operating system). It is important to remark that the
run times required to solve the numerical instances are insignificant, be-
cause the computer solves them instantaneously.

6.1. Effects of the parameters and on the optimal policy

Consider an inventory model with the following input parameters:
and . To examine the im-

pact of the unit purchasing cost p, the demand pattern index n and
the holding cost elasticity on the optimal inventory policy, a sen-
sitivity analysis is done when and

. Table 4 shows the impact of the parameters and on
the optimal inventory policy: and . The informa-
tion presented in Table Table 2 reveals the following relevant insights
about the inventory model:

1. By considering n and as fixed, the optimal unit selling price , the
optimal time at which inventory level reaches zero, and the op-
timal inventory cycle increment as the unit purchasing cost p in-
creases. But, the optimal maximum inventory level , the optimal
order quantity , the optimal backordering level , and the optimal
maximum profit per unit of time decrement as p increases.

2. By fixing n and p, the optimal unit selling price , the optimal time
at which inventory level reaches zero, the optimal inventory cy-

cle , the optimal maximum inventory level , and the optimal or-
der quantity decrease as the unit holding cost elasticity incre-
ments. In contrast, the optimal maximum profit per unit of time
increases as increments.

3. By placing p and as fixed, the optimal unit selling price , the opti-
mal time at which inventory level reaches zero, the optimal inven-
tory cycle , the optimal order quantity , and the optimal max-
imum profit per unit of time decrement as the power demand
index n increases for values of ; and increment as the power de-
mand index n increases when . However, the optimal maximum
inventory level increases and optimal backordering level decre-
ments when the power demand index n increases.

6.2. Effects of the parameters and on the optimal policy

Now, consider an inventory system with the following data:
and . To study the effects

of the scale parameter of the holding cost h, the backordering cost
w, and the scale parameter for the part of the time-dependent de-
mand on the optimal inventory policy, a sensitivity analysis is carried
out when and .
Table 5 shows the effects of the parameters , and on the opti-
mal inventory policy: and . From the information
shown in Table 5, the following significant insights about the inventory
model are observed.

(i) When w and are fixed, the optimal time at which the inven-
tory level reaches zero, the optimal inventory cycle , the optimal
maximum inventory level , the optimal order quantity , and
the optimal maximum profit per unit of time decrease as the
scale parameter of the holding cost h increments. Conversely, the

optimal unit selling price and the optimal backordering level
increase as h increments.

(ii) If w and h are fixed, the optimal time at which inventory level
reaches zero, the optimal inventory cycle and the optimal max-
imum inventory level decrement as the scale parameter of the
holding cost increases. In contrast, the optimal unit selling price

, the optimal order quantity , the optimal backordering level
, and the optimal maximum profit per unit of time increment
as increases.

(iii) If h and are fixed, the optimal unit selling price , the optimal
time at which inventory level reaches zero, and the optimal max-
imum inventory level increase as the backordering cost w incre-
ments. However, the optimal inventory cycle , the optimal or-
der quantity , the optimal backordering level , and the optimal
maximum profit per unit of time decrement when w increases.

6.3. Effects of the parameters and w on the optimal policy

Now assume an inventory system with:
and . To investigate the ef-

fects of the ordering cost K, scale parameter of the holding cost h, and
the backordering cost w on the optimal policy, a sensitivity analysis is
performed when and .
Table 6 presents the impact of the parameters and w on the opti-
mal inventory policy: and . From the information
displayed in Table 6, the following significant insights are obtained.

(a) When K and w are fixed, the optimal time at which the inven-
tory level reaches zero, the optimal inventory cycle , the optimal
maximum inventory level , the optimal order quantity , and the
optimal maximum profit per unit of time decrease as the scale
parameter of the holding cost h increases. However, the optimal unit
selling price and the optimal backordering level increase as h
increases.

(b) If w and h are fixed, the optimal unit selling price , the optimal
time at which inventory level reaches zero, the optimal inven-
tory cycle , the optimal order quantity , the optimal maximum
inventory level , and the optimal backordering level increase
as the ordering cost K increases. Conversely, the optimal maximum
profit per unit of time decreases as the ordering cost K incre-
ments.

(c) With K and h as fixed values, the optimal unit selling price , the
optimal time at which inventory level reaches zero, and the opti-
mal maximum inventory level increase as the backordering cost
w increases. However, the optimal inventory cycle , the optimal
order quantity , the optimal backordering level , and the op-
timal maximum profit per unit of time decrease when w in-
creases.

(d) From Figs. 4–6, it is deduced that when h is fixed and w increases
then the optimal order quantity , the optimal backordering level

, the optimal inventory cycle , and the optimal maximum profit
per unit of time decrease. In contrast, the optimal maximum in-
ventory level , the optimal unit selling price , and the optimal
time at which inventory level reaches zero increase.

(e) From Figs. 4–6, it is observed that when h is fixed and K increases
then the optimal order quantity , the optimal backordering level

, the optimal inventory cycle , the optimal maximum inventory
level , the optimal unit selling price and the optimal time at
which inventory level reaches zero increase, while the optimal max-
imum profit per unit of time decreases.
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Table 4
Impacts of the parameters , and on the optimal inventory policy.

0.5 45 87.86710 0.978940 6.852582 0.142857 32.85467 288.7191 255.8645 1747.743
50 90.37928 1.011421 7.079946 0.142857 31.40390 280.5125 249.1086 1543.359
55 92.89277 1.047384 7.331689 0.142857 29.88795 272.0587 242.1707 1351.538
65 97.92475 1.132657 7.928602 0.142857 26.62178 254.3119 227.6901 1005.619

1 45 87.85653 0.950759 6.655310 0.142857 40.06826 280.4778 240.4096 1746.020
50 90.36766 0.980416 6.862913 0.142857 38.85619 271.9933 233.1371 1541.581
55 92.87989 1.013050 7.091348 0.142857 37.60451 263.2316 225.6271 1349.699
65 97.90858 1.089535 7.626742 0.142857 34.96472 244.7530 209.7883 1003.636

2 45 87.85792 0.954449 6.681145 0.142857 55.93034 281.5574 225.6270 1746.252
50 90.36917 0.984467 6.891266 0.142857 55.21709 273.1065 217.8895 1541.819
55 92.88157 1.017522 7.122656 0.142857 54.51471 264.3818 209.8671 1349.946
65 97.91067 1.095110 7.665770 0.142857 53.16414 245.9895 192.8253 1003.901

4 45 87.86911 0.984284 6.889987 0.142857 73.98474 290.2813 216.2966 1748.059
50 90.38150 1.017320 7.121242 0.142857 73.91206 282.1330 208.2209 1543.684
55 92.89523 1.053944 7.377608 0.142857 73.92357 273.7445 199.8209 1351.876
65 97.92787 1.140980 7.986857 0.142857 74.28610 256.1555 181.8694 1005.985

0.5 45 87.85168 0.976979 6.770984 0.144289 32.81790 285.3856 252.5677 1748.481
50 90.36387 0.999239 6.992388 0.142904 31.04152 277.1512 246.1097 1544.019
55 92.87739 1.023639 7.237638 0.141433 29.21151 268.6800 239.4685 1352.122
65 97.90956 1.080530 7.819697 0.138181 25.36246 250.9375 225.5751 1006.050

1 45 87.84061 0.956547 6.569751 0.145599 40.32744 276.9767 236.6493 1746.972
50 90.35164 0.976908 6.770287 0.144293 38.73281 268.4308 229.6980 1542.452
55 92.86378 0.999084 6.990837 0.142913 37.10218 259.6133 222.5111 1350.490
65 97.89228 1.050171 7.507331 0.139886 33.71861 241.0433 207.3247 1004.265

2 45 87.84193 0.958996 6.593767 0.145440 55.98582 277.9805 221.9947 1747.459
50 90.35303 0.979459 6.795545 0.144133 54.83715 269.4228 214.5857 1542.946
55 92.86525 1.001743 7.017440 0.142750 53.69559 260.5909 206.8953 1350.991
65 97.89392 1.053067 7.536948 0.139721 51.45170 241.9819 190.5302 1004.782

4 45 87.85328 0.979930 6.800210 0.144103 73.39927 286.6065 213.2073 1749.292
50 90.36551 1.002224 7.022250 0.142721 72.86208 278.3233 205.4612 1544.838
55 92.87906 1.026640 7.267991 0.141255 72.40038 269.7946 197.3943 1352.949
65 97.91124 1.083469 7.850152 0.138019 71.78035 251.9016 180.1213 1006.894

0.5 45 87.84131 0.978055 6.717606 0.145596 32.87698 283.2055 250.3285 1748.980
50 90.35358 0.995096 6.936397 0.143460 30.92861 275.0033 244.0747 1544.467
55 92.86719 1.013672 7.178860 0.141202 28.93511 266.5713 237.6362 1352.518
65 97.89963 1.056583 7.754795 0.136249 24.79048 248.9318 224.1413 1006.346

1 45 87.82990 0.961915 6.513603 0.147678 40.56407 274.6793 234.1152 1747.612
50 90.34094 0.977526 6.710868 0.145663 38.76777 266.1468 227.3790 1543.039
55 92.85309 0.994433 6.927821 0.143542 36.94013 257.3471 220.4070 1351.024
65 97.88165 1.033027 7.435889 0.138924 33.17911 238.8285 205.6494 1004.692

2 45 87.83129 0.963902 6.538548 0.147418 56.11231 275.7221 219.6098 1748.238
50 90.34237 0.979540 6.736529 0.145407 54.73876 267.1548 212.4160 1543.672
55 92.85457 0.996467 6.954149 0.143291 53.37363 258.3148 204.9412 1351.663
65 97.88319 1.035063 7.463198 0.138689 50.68597 239.6942 189.0082 1005.347

4 45 87.84283 0.980186 6.744778 0.145325 73.16406 284.3407 211.1767 1750.061
50 90.35505 0.997129 6.962729 0.143210 72.39225 276.0370 203.6448 1545.555
55 92.86859 1.015565 7.203803 0.140976 71.69535 267.4874 195.7920 1353.614
65 97.90072 1.058004 7.774243 0.136091 70.59999 249.5476 178.9476 1007.454

6.4. Effects of the parameters and on the optimal policy

Now, consider an inventory system with:
and . To investigate the impacts of and n on the opti-
mal policy a sensitivity analysis is done when

and .
Figs. 7–11, shows the effects of the parameters and n on the opti

mal inventory policy: and . From the information
displayed in Figs. 7–11, the following significant insights are found.

(I) It is deduced that when increases then the optimal time at
which inventory level reaches zero and the optimal inventory cycle

decrease. In contrast, the optimal order quantity , the optimal
backordering level , the optimal maximum inventory level , the
optimal unit selling price and the optimal maximum profit per
unit of time increase.
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Table 5
Effects of the parameters , and on the optimal inventory policy.

1.5 0.75 96.31020 2.846459 6.897621 0.412673 73.43327 370.3318 296.8986 2756.655
1 96.40321 2.531313 6.803009 0.372087 63.64288 364.6195 300.9766 2750.253
1.5 96.52684 2.134502 6.690595 0.319030 52.18281 357.7673 305.5844 2742.217
1.75 96.57117 1.997660 6.653412 0.300246 48.42492 355.4840 307.0591 2739.444

2 0.75 96.34915 2.924978 6.133290 0.476902 78.69592 329.0563 250.3603 2727.853
1 96.46206 2.614552 6.032493 0.433412 67.92701 322.9672 255.0401 2719.394
1.5 96.61609 2.219410 5.913747 0.375297 55.41801 315.6990 260.2810 2708.739
1.75 96.67232 2.081943 5.874617 0.354396 51.34697 313.2797 261.9327 2705.052

2.5 0.75 96.36314 2.970791 5.618472 0.528754 83.39532 301.3572 217.9619 2701.097
1 96.49109 2.666714 5.511260 0.483866 71.75459 294.9015 223.1469 2694.644
1.5 96.66978 2.276609 5.386379 0.422660 58.27065 287.2568 228.9862 2681.421
1.75 96.73613 2.139948 5.345511 0.400326 53.90222 284.7226 230.8204 2676.835

3 0.75 96.36400 2.997843 5.244608 0.571605 87.65344 281.2997 193.6463 2686.541
1 96.50305 2.700239 5.130669 0.526294 75.25625 274.4752 199.2189 2674.171
1.5 96.70145 2.316450 4.999419 0.463344 60.88273 266.4618 205.5791 2658.442
1.75 96.77630 2.181293 4.956816 0.440059 56.23430 263.8201 207.5858 2652.970

1.5 0.75 101.2888 2.824154 6.812079 0.414580 60.89290 399.9453 339.0524 3324.923
1 101.3874 2.517594 6.743112 0.373358 52.10013 395.2316 343.1314 3319.442
1.5 101.5185 2.128893 6.661078 0.319602 42.12510 389.5498 347.4247 3312.719
1.75 101.5655 1.994196 6.633819 0.300611 38.92888 387.6438 348.7149 3310.435

2 0.75 101.3147 2.889141 6.019317 0.479978 66.76341 353.2455 286.4821 3293.584
1 101.4339 2.590396 5.945472 0.435692 56.66323 348.2031 291.5398 3286.094
1.5 101.5971 2.206865 5.859554 0.376627 45.32875 342.2152 296.8864 3276.924
1.75 101.6567 2.072603 5.831327 0.355426 41.74077 340.2189 298.4781 3273.817

2.5 0.75 101.3169 2.922423 5.484590 0.532843 72.28462 321.8526 249.5680 3268.633
1 101.4512 2.632475 5.404446 0.487094 60.99853 316.4239 255.4253 3259.102
1.5 101.6398 2.257032 5.313549 0.424769 48.35868 310.0996 261.7409 3247.413
1.75 101.7101 2.124562 5.284195 0.402060 44.38132 308.0152 263.6338 3243.455

3 0.75 101.3077 2.938247 5.096571 0.576514 77.44325 299.1296 221.6864 3248.202
1 101.4524 2.656587 5.009071 0.530355 65.12519 293.2688 228.1436 3236.645
1.5 101.6609 2.289984 4.912002 0.466202 51.27765 286.5617 235.2840 3222.402
1.75 101.7400 2.159893 4.881224 0.442490 46.92493 284.3803 237.4554 3217.573

1.5 0.75 106.2677 2.801972 6.727497 0.416495 48.59948 428.7589 380.1594 3943.238
1 106.3716 2.503858 6.683393 0.374639 40.70648 425.2536 384.5472 3938.656
1.5 106.5101 2.123235 6.631362 0.320181 32.12680 421.0244 388.8976 3933.227
1.75 106.5598 1.990694 6.614036 0.300980 29.46917 419.5957 390.1265 3931.428

2 0.75 106.2813 2.853957 5.908358 0.483037 55.23527 376.4728 321.2376 3909.434
1 106.4063 2.566468 5.859848 0.437975 45.66872 372.6495 326.9808 3902.867
1.5 106.5781 2.194311 5.805563 0.377967 35.37596 368.1996 332.8237 3895.139
1.75 106.6411 2.063228 5.788023 0.356465 32.23514 366.7228 334.4876 3892.600

2.5 0.75 106.2729 2.875545 5.356173 0.536866 61.72058 341.3331 279.6126 3882.386
1 106.4126 2.598924 5.300687 0.490299 50.62864 337.0567 286.4281 3873.705
1.5 106.6104 2.237604 5.241728 0.426883 38.66382 332.2710 293.6072 3863.475
1.75 106.6844 2.109231 5.223431 0.403802 35.02953 330.7247 295.6952 3860.126

3 0.75 106.2549 2.881201 4.956531 0.581294 67.89877 315.9546 248.0558 3860.195
1 106.4043 2.614267 4.892397 0.534353 55.48653 311.1356 255.6490 3849.354
1.5 106.6215 2.263941 4.826654 0.469050 41.96938 305.9060 263.9366 3836.491
1.75 106.7044 2.138732 4.806999 0.444920 37.85401 304.2619 266.4079 3832.275

(II) It is observed that when increases then the optimal time at
which inventory level reaches zero and the optimal inventory cycle

increase. On the contrary, the optimal order quantity , the op-
timal backordering level , the optimal maximum inventory level

, the optimal unit selling price and the optimal maximum profit
per unit of time decrease.

From the computational results given in Tables 4–6 and Figs. 7–11,

the behavior of the decision variables and the total profit per unit time
can be deduced according with a variation of each of the parameters

and . This is shown in Table 7.

6.5. Managerial implications

In this section, some findings obtained from the sensitivity analysis
are presented. In addition, some comments or suggestions are proposed
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Table 6
Impacts of the parameters , and on the optimal inventory policy.

1000 1.5 101.3874 2.517594 6.743113 0.373358 52.10014 395.2316 343.1315 3319.443
2 101.4339 2.590396 5.945473 0.435692 56.66324 348.2031 291.5399 3286.094
2.5 101.4512 2.632475 5.404446 0.487094 60.99853 316.4239 255.4254 3259.102
2.75 101.4533 2.646253 5.192674 0.509613 63.08850 304.0141 240.9256 3247.387

1500 1.5 101.7901 2.844543 8.238824 0.345261 56.48186 479.5815 423.0997 3252.690
2 101.8670 2.938271 7.254990 0.405000 61.08733 421.7545 360.6671 3210.334
2.5 101.9033 2.995685 6.585337 0.454902 65.49194 382.5861 317.0941 3175.693
2.75 101.9120 3.015573 6.322365 0.476969 67.63460 367.2537 299.6191 3160.541

2000 1.5 102.1422 3.100585 9.509668 0.326046 59.66835 550.2085 490.5402 3196.342
2 102.2485 3.211422 8.368039 0.383772 64.26831 483.2669 418.9986 3146.321
2.5 102.3042 3.281638 7.589297 0.432403 68.68362 437.8703 369.1867 3105.139
2.75 102.3199 3.306720 7.282864 0.454041 70.84387 420.0765 349.2326 3087.034

2500 1.5 102.4611 3.314440 10.63811 0.311563 62.14112 612.1047 549.9635 3146.705
2 102.5959 3.440012 9.356851 0.367646 66.70811 537.1219 470.4138 3089.898
2.5 102.6710 3.521391 8.481468 0.415186 71.10313 486.2339 415.1308 3042.910
2.75 102.6939 3.551053 8.136501 0.436435 73.26296 466.2713 393.0084 3022.176

1000 1.5 101.5185 2.128893 6.661077 0.319602 42.12509 389.5497 347.4246 3312.719
2 101.5971 2.206865 5.859554 0.376627 45.32875 342.2152 296.8864 3276.924
2.5 101.6398 2.257032 5.313549 0.424769 48.35869 310.0996 261.7409 3247.413
2.75 101.6525 2.275219 5.098830 0.446224 49.83073 297.5040 247.6733 3234.423

1500 1.5 101.9458 2.398577 8.151745 0.294241 45.74842 473.2427 427.4943 3245.201
2 102.0637 2.495211 7.164767 0.348261 48.97058 415.0998 366.1292 3200.134
2.5 102.1341 2.559724 6.491037 0.394347 52.01081 375.6097 323.5989 3162.689
2.75 102.1573 2.583876 6.225556 0.415043 53.49281 360.1031 306.6103 3146.107

2000 1.5 102.3180 2.609667 9.420028 0.277034 48.36346 543.3656 495.0022 3188.284
2 102.4728 2.721406 8.275945 0.328833 51.56913 476.0915 424.5224 3135.363
2.5 102.5699 2.797681 7.493891 0.373328 54.58670 430.3751 375.7884 3091.175
2.75 102.6035 2.826780 7.185334 0.393410 56.06066 412.4126 356.3520 3071.532

2500 1.5 102.6543 2.785949 10.54746 0.264135 50.37780 604.8514 554.4736 3138.198
2 102.8442 2.910631 9.264458 0.314172 53.54451 529.5174 475.9729 3078.346
2.5 102.9671 2.997064 8.386500 0.357368 56.52002 478.3061 421.7860 3028.198
2.75 103.0112 3.030464 8.039764 0.376934 57.97582 458.1766 400.2008 3005.844

1000 1.5 101.5655 1.994196 6.633820 0.300611 38.92888 387.6438 348.7149 3310.435
2 101.6567 2.072603 5.831327 0.355426 41.74077 340.2188 298.4781 3273.817
2.5 101.7101 2.124562 5.284196 0.402060 44.38133 308.0152 263.6339 3243.455
2.75 101.7274 2.143895 5.068804 0.422959 45.66330 295.3725 249.7092 3230.032

1500 1.5 102.0013 2.244660 8.122904 0.276337 42.29562 471.1179 428.8223 3242.658
2 102.1350 2.340785 7.135149 0.328064 45.12399 412.8751 367.7511 3196.682
2.5 102.2192 2.406540 6.460545 0.372498 47.76569 373.2958 325.5301 3158.298
2.75 102.2485 2.431678 6.194534 0.392552 49.04983 357.7439 308.6940 3141.235

2000 1.5 102.3804 2.440687 9.390461 0.259911 44.71813 541.0748 496.3567 3185.552
2 102.5537 2.551121 8.245812 0.309384 47.52955 473.6913 426.1618 3131.658
2.5 102.6672 2.628140 7.463124 0.352150 50.14399 427.8822 377.7382 3086.468
2.75 102.7082 2.658062 7.154157 0.371541 51.41567 409.8742 358.4585 3066.311

2500 1.5 102.7225 2.604387 10.51769 0.247620 46.57887 602.4266 555.8477 3135.316
2 102.9334 2.727070 9.234367 0.295317 49.35140 526.9743 477.6229 3074.444
2.5 103.0751 2.813799 8.356023 0.336739 51.92100 475.6660 423.7450 3023.246
2.75 103.1277 2.847868 8.009002 0.355583 53.17166 455.4903 402.3186 3000.355

to inventory systems managers that could help in improving the effec-
tiveness and efficiency of the inventory control practices.

The sensitivity analysis reveals that the unit purchasing cost p has
the greatest impact on the total profit per unit time among the parame-
ters and . Hence, decision makers should negotiate a reduction of
the purchasing cost with their suppliers by promising them that, if the
price is lowered, then the organization will be able to buy more from
them since the quantity to order of the product will increase.

The variation of the scale parameter associated with the time-de-
pendent demand has a greater effect on the total profit per unit time in
a positive manner, more so than the modification of the cost parameters
h and w. Thus, the decision maker should boost the time-dependent de-
mand by implementing policies that augment demand (e.g., by increas-
ing advertising) instead of reducing the inventory costs h and w.

From the results obtained with the sensitivity analysis, it is deduced
that the impact of the ordering cost K on the total profit per unit time
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Fig. 4. Effects of changes in and on the optimal solution when = 1.

in negative sense, is greater than the effect of the cost parameters h and
w. For this reason, the decision maker should try to reduce the ordering
cost as much as possible. Finally, the increment of the scale parameter

for the price-dependent demand has a greater effect on the total profit
per unit of time in a positive way, more so than the decrease of thesensi-
tivity parameter for the price-dependent demand. Therefore, the deci-
sion maker should boost the price-dependent demand by implementing
policies that increase the scale parameter of the demand (e.g. applying
marketing policies such as quantity discount).

7. Conclusions

This study develops and presents an inventory model for a single
product in which the demand rate of the product is the addition of a
linear function with respect to selling price and of a power time func-
tion. Additionally, the holding cost is considered as a power function of
the time that the product is held in storage. Furthermore, shortages are
permitted and these are backordered. To optimize the total profit per
unit of time, an effective and efficient algorithm is proposed. It is impor-
tant to remark that the algorithm obtains an optimal solution. Based on
the assumptions assumed in the inventory system developed in this pa-
per, the results obtained can be useful for the inventory management of
items where demand is sensitive to both the selling price and time spent
on inventory, the value of the item decreases non-linearly the longer
it is held in stock (see Weiss, 1982) and shortages are allowed. Per-
haps the main limitation of the inventory model is this last assump

tion. Sometimes this condition can be restrictive in real practical situa-
tions where not all customers facing a shortage are willing to wait until
the next order arrives. For this reason, later on we propose as a possi-
ble line of research the inclusion of this topic. Another limitation of the
model is that the payment of the replenishing quantity is made when the
lot size is received. There is no a credit policy for the retailer, where he/
she has a time period to pay the ordered quantity. Thus, to analyze the
inventory system considering a permissible delay in payments would be
another new research line.

Future developments of the current research are certainly required.
Principally, the imminent research directions that can be explored in the
near future from this research paper are to build an inventory model
considering some of the following issues: a) deteriorating products, b)
stochastic demand, c) discounts, d) permissible delay in payment (trade
credit), e) production rate, f) supply chain environment, g) advertising,
h) imperfect quality, i) partial backordering, j) multiple products sub-
ject to constrains, and k) sustainable issues like carbon emissions, among
others.
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Fig. 5. Effects of changes in and on the optimal solution when = 1.5.
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Appendix A. Proof of Theorem 1

Consider the following cases:

1. If , then and optimal planning period is
, where is given by ( 9).

2. If , then . This is due to if , then
.Hence,

in this case the following two alternatives occur:
A. If , then the function has a minimum in the point

.
a) If , or equivalently, ,

then is strictly increasing in and, as

, then is increasing en
and decreasing in . Thus, .

b) If , then the following point is defined

Two possibilities can occur:
i) If , then the function is strictly increas-

ing in and strictly decreasing in . Moreover,
since , it is concluded
that the function is strictly decreasing in .
Hence, .

ii) If , then the function has two roots in the
interval and x. Hence, is strictly increas-
ing in , strictly decreasing in and strictly
increasing in . Additionally, the function is
strictly increasing in and decreasing in
. Thus , if and , if

.
B. If , or equivalently, , then the

function on the interval and,
consequently, the function is strictly decreasing on the
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Fig. 6. Effects of changes in and on the optimal solution when = 1.75.

mentioned interval. Two cases can occur:
a) If , or equivalently, , then

on and is strictly increasing on . Further-
more, taking into account that the function is concave
on the interval and the function is of class , we
have . From this, it is noted
that the function is increasing on and decreas-
ing on . Hence, .

b) If , or equivalently, , then it is stated
the following point

The function is strictly increasing on and de-
creasing on . Additionally, as ,
thus is strictly decreasing on . Then .

Appendix B. A necessary condition for the optimal cycle time

For given s and , the first order derivative of with respect
to T is

Setting this result to zero, then a necessary condition to determine is
obtained as follows:

(17)



UN
CO

RR
EC

TE
D

PR
OO

F

L.E. Cárdenas-Barrón et al. / Computers and Operations Research xxx (xxxx) 105339 17

Fig. 7. Effects of changes in and on the optimal solution when = 0.25.

Fig. 8. Effects of changes in and on the optimal solution when = 0.5.
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Fig. 9. Effects of changes in and on the optimal solution when = 1.

Fig. 10. Effects of changes in and on the optimal solution when = 2.
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Fig. 11. Effects of changes in and on the optimal solution when = 4.

Table 7
Evolution of the optimal policy and the maximum profit as functions of each parameter.

Decision variables Other variables Profit

Parameter

Appendix C. Proof of Theorem 2

From Eq. (1), let

and

As a result, it is determined that

Given s and , by taking first and second order derivative of with
respect to T, thus

and
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Consequently, if then and therefore is nonnegative,
differentiable and strictly concave. Hence, if then as in
Eq. (1) is a strictly pseudo-concave function in T; and there exists a
unique optimal solution for T.

Appendix D. Proof of Theorem 3

From Eq. (1), let

Therefore, for any given T, the total profit per unit of time is expressed
as follows: . Taking first order and second order de-
rivatives of with respect to s,

Also, taking first order and second order derivatives of with re-
spect to ,

and

It is obvious that . Therefore, if and , then the Hes-
sian matrix associated with is negative definite. Hence, for any
given T, if and , then in Equation (1) is a
strictly concave function in s and . Thus, there exists a unique optimal
solution. ■

Appendix E. Optimal selling price and time at which the inventory
level attains zero

For any given T, setting the first derivative of with respect to
s to zero. Thus, a necessary condition for is given as follow:

Likewise, a necessary condition for is given by
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