
 

 

Cite this document as: 

Daniel Álvarez, Andrea Crespo, Fernando Vaquerizo-Villar, Gonzalo C Gutiérrez-Tobal, Ana Cerezo-

Hernández, Verónica Barroso-García, J Mark Ansermino, Guy A Dumont, Roberto Hornero, Félix del 

Campo, Ainara Garde. Symbolic dynamics to enhance diagnostic ability of portable oximetry from the 

phone oximeter in the detection of paediatric sleep apnoea 2018 Physiol. Meas. 39 104002. 

 

DOI: https://doi.org/10.1088/1361-6579/aae2a8 

 

 

 

 

  

https://doi.org/10.1088/1361-6579/aae2a8


 

 

Physiological Measurement 

PAPER 

Symbolic dynamics to enhance diagnostic ability of 

portable oximetry from the Phone Oximeter in the detection 

of paediatric sleep apnoea 

Daniel Álvarez1,2, Andrea Crespo1,2, Fernando Vaquerizo-Villar2, Gonzalo C Gutiérrez-Tobal2, 

Ana Cerezo-Hernández1, Verónica Barroso-García2, J Mark Ansermino3, Guy A Dumont3, 

Roberto Hornero2, Félix del Campo1,2, Ainara Garde4 

1Servicio de Neumología, Hospital Universitario Río Hortega, c/ Dulzaina 2, 47012, Valladolid, España 
2Biomedical Engineering Group, University of Valladolid, Paseo de Belén 15, 47011, Valladolid, España 
3The University of British Columbia and British Columbia Children’s Hospital, 4480 Oak St., Vancouver, Canada 
4Biomedical Signals and Systems, Faculty EEMCS, University of Twente, 7500 AE, Enschede, The Netherlands 

E-mail: dalvgon@gmail.com 

Keywords: Paediatric obstructive sleep apnoea-hypopnoea syndrome, nocturnal oximetry, portable, signal 

processing, symbolic dynamics, pattern recognition 

 

Abstract 

Objective. This study is aimed at assessing symbolic dynamics as a reliable technique to characterise complex 

fluctuations of portable oximetry in the context of automated detection of childhood obstructive sleep apnoea-

hypopnoea syndrome (OSAHS). Approach. Nocturnal oximetry signals from 142 children with suspected OSAHS 

were acquired using the Phone Oximeter: a portable device that integrates a pulse oximeter with a smartphone. An 

apnoea-hypopnoea index (AHI) ≥5 events/h from simultaneous in-lab polysomnography was used to confirm 

moderate-to-severe childhood OSAHS. Symbolic dynamics was used to parameterise non-linear changes in the 

overnight oximetry profile. Conventional indices, anthropometric measures, and time-domain linear statistics were 

also considered. Forward stepwise logistic regression was used to obtain an optimum feature subset. Logistic 

regression (LR) was used to identify children with moderate-to-severe OSAHS. Main results. The histogram of 3-

symbol words from symbolic dynamics showed significant differences (p <0.01) between children with AHI <5 

events/h and moderate-to-severe patients (AHI ≥5 events/h). Words representing increasing oximetry values after 

apnoeic events (re-saturations) showed relevant diagnostic information. Regarding the performance of individual 

characterization approaches, the LR model composed of features from symbolic dynamics alone reached a 

maximum performance of 78.4% accuracy (65.2% sensitivity; 86.8% specificity) and 0.83 area under the ROC 

curve (AUC). The classification performance improved combining all features. The optimum model from feature 

selection achieved 83.3% accuracy (73.5% sensitivity; 89.5% specificity) and 0.89 AUC, significantly (p-value 

<0.01) outperforming the other models. Significance. Symbolic dynamics provides complementary information to 

conventional oximetry analysis enabling reliable detection of moderate-to-severe paediatric OSAHS from portable 

oximetry. 

 

1. Introduction 

Obstructive sleep apnoea syndrome (OSAHS) is a prevalent condition in children (Marcus et al 2012). 

Untreated paediatric OSAHS is associated with significant negative consequences for children’s health 

and quality of life, including impairment of neuropsychological and cognitive performance, metabolic 

dysfunction, behavioural abnormalities, and long-term cardiovascular effects (Marcus et al 2012). 
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Childhood OSAHS is characterised by recurrent episodes of prolonged partial and/or intermittent 

complete upper airway obstruction during sleep, leading to disruption of normal oxygenation and sleep 

patterns (Marcus et al 2012, Kaditis et al 2016a). In-laboratory nocturnal polysomnography (PSG) is 

considered the gold standard for an objective diagnosis of this disease (Marcus et al 2012, DeHaan et al 

2015). PSG allows for quantitative evaluation of cardiorespiratory events so that children can be stratified 

in terms of OSAHS severity (Marcus et al 2012). However, several studies pointed out the drawbacks of 

in-lab PSG concerning lack of availability and intrusiveness (Kheirandish-Gozal 2010, Lesser et al 2012, 

Katz et al 2012). In order to overcome these limitations, abbreviated portable monitoring has been 

proposed to increase accessibility to diagnostic resources while decreasing intrusiveness, particularly 

pertinent for children (Marcus et al 2012, Kaditis et al 2016a). 

Simplified portable monitors focus on a relevant subset of physiological sleep-related recordings 

while allowing the attachment of sensors by caretakers or patients themselves. In the most common 

procedure, the device is returned to the sleep laboratory next morning in order to be scored by a qualified 

sleep technician. Although this protocol has enabled abbreviated portable monitoring to be a first-line 

screening method for OSAHS (Penzel et al 2018), telemedicine-based technologies are able to enhance 

diagnostic methodologies and overall health management. In this regard, the use of smartphones has 

gained increasing popularity due to their acquisition, storage, processing, and transmission capabilities. 

In the framework of sleep apnoea, smartphone-based medical applications cover both diagnostic and 

therapeutic purposes, although treatment compliance monitoring in adult patients is the most popular 

(Penzel et al 2018). In addition, there are several popular apps for mobile devices aimed at tracking and 

assessing sleep quality. However, there are major concerns on their clinical effectiveness due to the lack 

of scientific evidence and regulatory approval (Behar et al 2013, Ko et al 2015). In the context of 

childhood OSAHS, the Phone Oximeter is a major exception, achieving a robust design and independent 

clinical validation. The Phone Oximeter integrates a low-cost oximetry probe in a smartphone, showing 

high diagnostic performance in the detection of moderate-to-severe paediatric OSAHS and has been 

extensively validated against the standard PSG (Garde et al 2014). 

Oximetry is considered an appropriate screening tool for sleep-related breathing disorders due to its 

simplicity and readiness (Tsai et al 2013, Kaditis et al 2016b). Conventional indexes such as the oxygen 

desaturation index (ODI) and the presence of clusters of desaturations (Velasco et al 2013, Van Eyck et 

al 2015, Villa et al 2015, Chang et al 2013, Tsai et al 2013) have been found to provide significant 

information for OSAHS detection. Recently, the application of novel signal processing and automated 

pattern recognition techniques have increased the diagnostic ability of overnight oximetry (Garde et al 

2014, Álvarez et al 2017, Hornero et al 2017). However, there are still some discrepancies on the efficacy 

of abbreviated methods as a single tool for childhood OSAHS detection, particularly oximetry alone. 

Recent reports have highlighted that nocturnal pulse oximetry is far from a perfect screening tool for mild 

cases and specific subgroups of children (Kirk et al 2017, Van Eyck and Verhulst 2018). Therefore, 

further research is demanded in order to provide additional evidence of the effectiveness of single-channel 

overnight oximetry for paediatric OSAHS diagnosis. 

In this regard, recent studies have focused on obtaining relevant as well as complementary 

information to conventional signal processing approaches due to the presence of non-stationarities and 

nonlinearities inherent in biological systems.  Crespo et al (2017) used the multiscale sample entropy to 

characterise non-linear patters present in the overnight profile of oximetry linked with apnoeic events. 

Recently, Vaquerizo-Villar et al (2018) assessed the bispectrum as an alternative to conventional PSD in 

order to characterise deviations from linearity and stationarity of SpO2 recordings. Previously, sample 

entropy, central tendency measure, and Lempel-Ziv complexity were predominantly used in the context 

of paediatric OSAHS detection from oximetry due to their proven performance in adult cases (Garde et 

al 2014, Álvarez et al 2017, Hornero et al 2017). 

In the present study, symbolic dynamics is proposed to analyse changes in overnight oximetry 

recordings from children suspected of suffering from OSAHS. Symbolic dynamics provides an 



 

 

alternative approach to investigate complex non-linear systems (Voss et al 1996). Data is transformed 

into a small set of symbols so that the study of the dynamics of the system is accomplished by describing 

symbol sequences (Kurths et al 1995). In the framework of biomedical signals and systems, it has been 

mainly used to analyse non-linear characteristics of heart rate modulation (Kurths et al 1995, Voss et al 

1996, Yeragani et al 2000, Guzzetti et al 2005). Similarly, it has been also applied to characterise 

cardiovascular regulation and cardio-respiratory coupling during sleep (Suhrbier et al 2010, Penzel et al 

2016). In the field of automated OSAHS detection, previous studies assessed its ability to increase the 

performance of single-lead ECG as a simplified screening test for adult OSAHS (Ravelo-García et al 

2014, 2015). Recent preliminary studies also investigated the usefulness of symbolic analysis to 

characterise sleep disordered breathing in children. Immanuel et al (2014) analysed the EEG complexity 

throughout the respiratory cycle to detect electroencephalographic alterations. Similarly, Baumert et al 

(2015) applied joint symbolic dynamics to study temporal interactions between heart period and pulse 

transit time in children with and without sleep disordered breathing while sleeping. However, symbolic 

dynamics has not been previously used to thoroughly analyse the overnight oximetry tracing from 

paediatric OSAHS patients. 

In this research, we hypothesised that symbolic dynamics is able to provide significant new 

information on the non-linear behaviour of overnight oximetric recordings from children with suspected 

OSAHS resulting in improved diagnostic performance. Accordingly, the aim of our research was to assess 

the usefulness of symbolic dynamics for detecting childhood OSAHS from portable nocturnal oximetry. 

 

2. Materials and methods 

2.1. Population under study and biomedical recordings 

A total of 142 children (85 boys and 57 girls) with median age of 9 years old and median body mass index 

(BMI) of 18.4 kg/m2 composed the population under study. Table 1 summarises the socio-demographic 

and clinical data of the children involved in the study. All children were referred to the British Columbia 

Children’s Hospital of Vancouver (Canada) showing clinical suspicion of suffering from OSAHS due to 

the following symptoms reported by their parents or caretakers: snoring, daytime sleepiness, behavioural 

problems and/or clinically large tonsils. Children suffering from cardiac arrhythmia or abnormal 

haemoglobin were excluded from the study. The Research Ethics Board of the University of British 

Columbia and the Children’s and Women’s Health Centre approved the protocol (H11-01769). Written 

informed consent to participate in the study was obtained from children’s parents/guardians prior to the 

enrolment. In addition, all patients over 11 years of age were asked to provide a written assent. 

 

Table 1. Demographic and clinical data of the children involved in the study. Data are presented as median 

[interquartile range] or n (%). The p-value shown in the last column was computed using the Chi2 test for 

categorical variables and the Mann-Whitney test for continuous ones. A level of 0.01 was considered for statistical 

significance (N.S.: non-significant). 

Characteristics All children AHI<5 group AHI≥5 group p-value 

Nº of children (%) 142 87 (61.3%) 55 (38.7%) - 

Age (years) 9 [7] 10 [6] 8 [8] N.S. 

Nº of boys (%) 85 (59.9%) 47 (54.0%) 38 (69.1%) N.S. 

BMI (Kg/m2) 18.4 [7.99] 17.57 [6.12] 20.07 [11.69] N.S. 

AHI (events/h) 2.65 [8.30] 1.20 [1.58] 13.10 [17.85] p <0.01 

 

 



 

 

All the children underwent in-laboratory nocturnal PSG, which was used as gold standard for 

objective OSAHS diagnosis. In-lab PSG was carried out using a polysomnograph Embla Sandman S4500 

(Natus Medical Inc., Pleasanton, CA, USA). The following signals were recorded: electrocardiogram, 

electroencephalogram, peripheral blood oxygen saturation (SpO2) and heart rate by means of oximetry, 

chest and abdominal effort, nasal and oral airflow (thermistor and nasal cannula), and video recordings. 

All PSG studies included in our dataset showed more than 3 hours of total sleep time. 

The same sleep technician visually scored cardiorespiratory and neurophysiological events 

according to the American Academy of Sleep Medicine criteria (Iber et al 2007). Obstructive apnoeas 

were defined as the complete cessation of oronasal airflow during at least two respiratory cycles. 

Similarly, a decrease ≥50% in the amplitude of the nasal pressure signal lasting two respiratory cycles or 

more, accompanied by a desaturation ≥3% or an arousal, was scored as a hypopnoea. The apnoea-

hypopnoea index (AHI) was defined as the number of apnoeas and hypopnoeas per hour of sleep, which 

is commonly used by physicians to diagnose or discard the disease and categorise its severity. In this 

regard, a cut-off of 5 events per hour (events/h) is commonly used to recommend adenotonsillectomy due 

to moderate-to-severe OSAHS is less likely to resolve spontaneously (Marcus et al 2012, Kaditis et al 

2016b). In addition, an AHI ≥5 events/h is linked with an increased risk for cardiovascular negative 

effects in children (Kaditis et al 2016b). Accordingly, a cut-off of 5 events/h was used to split the cohort 

into children with moderate-to-severe OSAHS (AHI≥5 group) and children without moderate-to-severe 

OSAHS (AHI<5 group). 

Simultaneously to standard in-lab PSG, an additional SpO2 signal was acquired using the Phone 

Oximeter (Hudson et al 2012, Petersen et al 2013). The Phone Oximeter (prototype version 1.0) is a 

portable device that integrates a commercially available and Federal Drug Administration (FDA) 

approved microcontroller-based pulse oximetry sensor (Masimo SET® uSpO2 Pulse Oximetry Cable, 

Masimo Corporation, Irvine, CA, USA) with a smartphone (iPhone 4S or later). The sensor is directly 

connected to the smartphone enabling portable acquisition, monitoring, and storage of SpO2 recordings 

both in hospital and at home. The main purpose of the Phone Oximeter is to increase the portability of 

conventional oximeters by attaching the sensor with a mobile smartphone, leading to improved 

availability and accessibility to diagnostic resources. Previous works exhaustively validated technical 

features and usability of SpO2 acquisition systems based on oximetry sensors attached to mobile phones 

via standard communication ports (Karlen et al 2011, Hudson et al 2012, Petersen et al 2013). 

Particularly, Garde et al (2014) found that the Phone Oximeter is able to accurately measure the overnight 

SpO2 profile of children with significant sleep disturbed breathing. 

The finger probe of the Phone Oximeter was applied to the finger adjacent to the one used during 

simultaneous complete PSG. Using this portable device, the SpO2 signal was recorded at a sampling rate 

of 1 Hz and 0.1% resolution. Recordings were downloaded and an automated pre-processing stage was 

carried out before pattern recognition. Samples showing oxygen saturation values below 50% as well as 

changes with slope >4 %/s were consider to be artefacts and removed. In addition, SpO2 recordings with 

total recording time <3 hours after pre-processing were discarded. 

 

2.2. Automated pattern recognition 

Portable SpO2 recordings from the Phone Oximeter were processed off-line. The aim of the automated 

pattern recognition procedure was to perform binary classification of children into two categories: 

“AHI<5 group” versus “AHI≥5 group”. In order to achieve this goal, feature extraction, selection, and 

classification stages were implemented. 

 

 



 

 

2.2.1. Feature extraction 

Every child in our dataset was represented using 24 variables from four a priori complementary feature 

subsets: 6 conventional oximetry indices; 2 anthropometric variables; 4 common statistical moments; and 

12 novel non-linear measures from symbolic dynamics. 

Age and BMI were considered potentially discriminant features and they were both included in our 

initial feature set (Marcus et al 2012). Similarly, conventional oximetry indices commonly used in clinical 

practice were used to characterise portable oximetry recordings from the Phone Oximeter. Particularly, 

the number of desaturations greater than or equal to 2% (ODI2), 3% (ODI3), and 4% (ODI4) from 

baseline per hour of recording were computed (Chang et al 2013, Tsai et al 2013). The ratio of the 

cumulative time spent below a saturation of 95% to the total recording time (CT95) as well as the average 

(SatAVG) and minimum (SatMIN) saturation were also quantified (Álvarez et al 2017, Crespo et al 2017). 

First-to-fourth order statistical moments of the SpO2 amplitude distribution have also demonstrated 

to provide discriminant information between OSAHS patients and children without the disease (Álvarez 

et al 2017, Crespo et al 2017, 2018). Accordingly, mean (M1t), variance (M2t), skewness (M3t) and 

kurtosis (M4t) were computed to characterise changes in central tendency, dispersion, asymmetry, and 

peakedness of the data histogram related to desaturations, respectively. 

A symbolic dynamics-based non-linear approach was applied to obtain additional as well as 

complementary information to that provided by traditional linear methods in the time domain. Symbolic 

dynamics is based on a coarse-graining procedure, which involves partitioning the range of original 

observations (SpO2 amplitudes) into a finite number of non-overlapping regions (Daw et al 2003). 

Accordingly, each sample from the original time series is mapped into the corresponding symbol so that 

the time series is transformed into a symbol sequence (Kurths et al 1995, Voss et al 1996). In order to 

capture the dynamics of the system successfully, a suitable number of symbols (alphabet size) and the 

partition of the range of amplitudes of the time series have to be set. In the present study, we defined an 

alphabet composed of p=4 symbols {1, 2, 3, 4}, which has been found to be the most appropriate for 

quantifying cardiovascular dynamics (Kurths et al 1995, Voss et al 1996) and, particularly, in the 

framework of adult OSAHS detection from HRV recordings (Ravelo-García et al 2014, 2015). 

The partition generating the coding scheme is usually defined in terms of two parameters (Kurths et 

al 1995, Voss et al 1996): 

- m, which is an overall measure of central tendency of the time series (usually the mean). 

- a, which is a tolerance or measure of dispersion. 

Nevertheless, values assigned to parameters m and a are context dependent. Figure 1 illustrates the 

symbolization process proposed in the present study for mapping the original SpO2 signal into the 

predefined four symbols. Firstly, a region of signal stability was defined using the median of the 

recording: threshold Tm = median(SpO2). Then, additional thresholds were set both below (threshold Tm-

3 = Tm-3%) and above (threshold Tm+3 = Tm+3%) the median in order to capture significant changes in 

SpO2 dynamics related to apnoeic events, i.e. desaturations and re-saturations, respectively. As the 

number of oxygen desaturations ≥3%,( i.e., ODI3), have been demonstrated to capture discriminant 

information between children with and without moderate-to-severe OSAHS (Chang et al 2013), we used 

this “step” below and above the median in order to codify relevant changes in SpO2 recordings. 

Accordingly, the coding scheme is defined as 

𝑠[𝑛] =

{
 

 
Symbol ′4′ if    𝑇𝑚+3 < 𝑆𝑝𝑂2[𝑛] ≤ 100%

𝑆ymbol ′3′ if    𝑇𝑚      < 𝑆𝑝𝑂2[𝑛] ≤ 𝑇𝑚+3
Symbol ′2′ if    𝑇𝑚−3 < 𝑆𝑝𝑂2[𝑛] ≤ 𝑇𝑚
Symbol ′1′ if     50% < 𝑆𝑝𝑂2[𝑛] ≤ 𝑇𝑚−3

.   (1) 

 



 

 

 

Figure 1. Symbolization process within the framework of symbolic dynamics for a segment of an overnight SpO2 

recording from a common moderate-to-severe (AHI ≥5 events/h) OSAHS patient. The continuous black line 

represents the overnight SpO2 recording whereas the dashed grey lines represent the thresholds used to quantise 

the range of input values in order to obtain symbols. 

 

Once the original time series is transformed into a symbol sequence, symbols are typically grouped 

to compose words of a fixed length in order to compute the frequencies of occurring words. In this regard, 

both the number of symbols per word (k) and the length of the sequence (N) must be taken into account 

to reach a compromise between capturing short-term dynamics and the reliability in estimating the word 

frequency (Kurths et al 1995). Previous studies have reported that words composed of k=3 symbols are 

appropriate to analyse symbolic dynamics of cardiorespiratory signals (Suhrbier et al 2010, Kabir et al 

2011, Ravelo-García et al 2014, 2015). Using 3-symbol words and an alphabet of 4 symbols, we obtained 

a vocabulary Wk composed of M=64 (pk = 43) unique words, which lead to each single bin in the histogram 

of words. In the present study, each SpO2 recording was divided into non-overlapping segments of equal 

length (N) prior to symbolic dynamic analyses in order to update the thresholds systematically, i.e., the 

median, throughout the symbolization process. According to Voss et al (1996), 20 should be the average 

minimal number of words per bin (ratio N:M) to accurately estimate the word distribution of a sequence. 

In order to fit this requirement, we divided each overnight oximetric recording into 25-min length 

segments, i.e., N = 1500 samples (fs = 1 Hz) and hence about 23 words per bin (≈ 1500/64) on average. 

In order to parameterise the dynamics of the symbol sequence, the following features were 

computed: 

- The percentage or probability of words (PW{sss}) representative of different states and changes in 

the signal (Voss et al 1996). In this study, we defined the relative frequency of appearance of the 

word {111} as a measure of decreased oxygen saturation due to desaturations, whereas the word 

{444} is representative of increased SpO2 due to re-saturations. Similarly, the probability of the 

words {222} and {333} estimates the stability of the SpO2 signal below and above the median 

value, respectively. Finally, the relative frequency of the appearance of words {112}, {122} and 

{123} quantifies the presence of re-saturations, while the probability of words {321}, {221} and 

{211} estimates the presence of desaturations. As mentioned, the probability of each word is 

computed as the relative frequency of appearance: 



 

 

𝑃𝑊{𝑠𝑠𝑠} =
∑ 𝐼{𝑠𝑠𝑠}
𝑁−𝑘+1
𝑖=1

𝑁−𝑘+1
,     (2) 

  

where N is the sequence length (1500 symbols), k is the word length, and 

 

𝐼{𝑠𝑠𝑠} = {
1 if word {𝑠[𝑖] 𝑠[𝑖 + 1] 𝑠[𝑖 + 2]} = {𝑠𝑠𝑠}
0 otherwise

 . (3) 

 

It is expected that the probability of words characteristic of acute changes in the SpO2 signal 

linked with desaturations and subsequent re-saturations, as well as those words representing 

decreased and increased saturation levels, would be higher in children with moderate-to-severe 

OSAHS (AHI≥5 group) due to frequent apnoeic events. On the other hand, the probability of 

words representative of stability around the median is expected to be higher in the AHI<5 group. 
- Forbidden words (FW), which is the number of words in the vocabulary appearing with a 

probability of less than 0.001 in the symbol sequence (Kurths et al 1995, Voss et al 1996). The 

number of forbidden words is a measure of a stability: the higher the number of forbidden words 

the higher the stability, i.e., the lower the complexity. In the context of OSAHS, children without 

the disease or with mild OSAHS are characterised by an overnight oximetry profile showing an 

almost stable behaviour with small changes around the baseline saturation (lower complexity), 

i.e., there is a small region of predominant amplitude values. On the other hand, children showing 

moderate and severe OSAHS are characterised by lower periods of stability and more changes 

(higher complexity), i.e., the overnight oximetry profile shows a wider range of saturation values 

(new significant words) due to desaturations and re-saturations. Therefore, FW is expected to be 

higher in children without moderate-to-severe OSAHS. 

- Symbolic entropy (SymbEn), which is computed as the normalised corrected Shannon’s entropy 

of the symbol sequence (Aziz and Arif 2006). The Shannon’s entropy of k-th order is computed 

as follows: 

𝐻𝑘 = −∑ 𝑝(𝑤𝑖
𝑘)𝑙𝑜𝑔2(𝑝(𝑤𝑖

𝑘))𝑀
𝑖=1

𝑤𝑖
𝑘∈𝑊𝑘,

𝑝(𝑤)>0

,   (4) 

 

where p(wi
k) is the probability density function of the words belonging to the vocabulary Wk 

composed of k-symbol length words and M is the total number of single words in the vocabulary. 

Then, the SymbEn is computed according to the following equation (Aziz and Arif 2006): 

𝑆𝑦𝑚𝑏𝐸𝑛 =
𝐻𝑘+

𝐶𝑅−1

2𝑀𝐿𝑛2

−𝑙𝑜𝑔2(
1

𝑀
)+

𝑀−1

2𝑀𝐿𝑛2

,    (5) 

 

where CR is the number of words occurring from the possible M words composing the whole 

vocabulary. Regarding equation (5), the term added to Hk is a correction to avoid random as well 

as systematic error or bias in the estimation of the Shannon’s entropy. In addition, the 

normalization makes SymbEn vary from 0 to 1 regardless the word length and symbolization 

scheme. Higher values of SymbEn account for higher complexity in the word distribution, i.e., 

there are more words with significant probability of appearance instead of a dominant word. 

Accordingly, lower SymbEn values are expected for SpO2 recordings from children without 

moderate-to-severe OSAHS due to a higher dominance of words representative of a stable 

behaviour, while higher SymbEn is expected in children with AHI ≥5 events/h due to the 

appearance of more words indicative of desaturations and re-saturations. 

The proposed features from symbolic dynamics were computed for each 25-min segment. For each 

single feature, all segment-based values were averaged to obtain a single measure per SpO2 recording. 



 

 

2.2.2. Feature selection and classification 

The widely used binary logistic regression (LR) model was applied both for feature selection and for 

pattern recognition. This conventional statistical classifier has demonstrated good performance in the 

context of paediatric OSAHS (Gutiérrez-Tobal et al 2015a, Álvarez et al 2017, Crespo et al 2017, 2018). 

Therefore, we considered LR as an appropriate reference modelling approach to assess the usefulness of 

symbolic dynamics to characterise overnight SpO2 recordings. 

Regarding variable selection, bidirectional forward stepwise logistic regression (FSLR) is a well-

known procedure for LR-based model optimization (Álvarez et al 2010, 2013, Gutiérrez-Tobal et al 2012, 

2015b). As proposed by Hosmer and Lemeshow (2000), FSLR explores the original feature space looking 

for a reduced as well as representative feature subset. In order to achieve this goal, FSLR iteratively 

assesses statistical differences between the current model and a candidate one in terms of the likelihood 

ratio test. Both models differ in just one degree of freedom, i.e., one candidate feature (added or removed 

in the current iteration). This procedure yields several nested feature subsets, where the most relevant 

variables are progressively added to the current feature subset (forward selection) while the redundant 

ones are removed (backward elimination). In addition, a bootstrapping procedure was applied during the 

feature selection stage in order to obtain a reduced feature subset independent of a particular dataset. 

According to the bootstrap approach (Witten et al 2011), 1000 bootstrap replicates were derived from the 

whole dataset by means of resampling with replacement. Then, the FSLR algorithm was applied to each 

replicate so that 1000 potentially different optimum subsets were obtained. Finally, only variables 

automatically selected at least 50% of the runs composed our optimum feature space (Hornero et al 2017, 

Vaquerizo-Villar et al 2018). In order to avoid overfitting, the optimization of the input feature subset 

was carried out using only the training bootstrap replicates. The subsequent assessment of the proposed 

optimum model took into account the remaining instances not involved in the tuning of the algorithm, 

according to bootstrap 0.632 (Witten et al 2011). 

Binary LR was used to classify oximetry-derived patterns into the mutually exclusive categories 

under study: children with AHI <5 versus children with AHI ≥5. Every input pattern representing the 

nocturnal SpO2 recording of each child consisted of the optimum independent variables from the previous 

feature selection stage. LR models the probability density of the dependent variable as a Bernoulli 

distribution, applying the well-known logit function and finally assigning each pattern to the class with 

the maximum posterior probability (Bishop 2006). In the present study, several models were investigated. 

Firstly, every feature subset (conventional oximetry indices, anthropometric measures, statistical 

moments, and symbolic dynamics features) was individually assessed. Then, starting from a baseline 

model composed of conventional oximetry indices, the remaining feature subsets were added in 

increasing order of individual diagnostic performance. Finally, the “optimum” LR model was built using 

the features automatically selected by means of FSLR. 

 

2.3. Statistical analysis 

Matlab R2015a (The MathWorks Inc., Natick, MA, USA) was used to implement signal processing and 

pattern recognition algorithms, as well as to perform classification performance analyses. IBM SPSS 

Statistics 20 (IBM Corp., Armonk, NY, USA) was used for descriptive and statistical analyses. Statistical 

differences between AHI<5 and AHI≥5 patient groups were assessed by means of the non-parametric 

Mann-Whitney U test. A p-value <0.01 was considered statistically significant. 

Regarding classification performance assessment, standard metrics derived from binary confusion 

matrices and receiver operating characteristics (ROC) curves were computed: sensitivity (Se), specificity 

(Sp), positive (PPV) and negative (NPV) predictive values, positive (LR+) and negative (LR-) likelihood 

ratios, accuracy (Acc), and area under the ROC curve (AUC). The 95% confidence interval (95% CI) was 

provided per each performance metric. In order to obtain a proper estimation of each metric, the common 

bootstrap 0.632 was applied (Witten et al 2011, Gutiérrez-Tobal et al 2015a, Álvarez et al 2017). Briefly, 



 

 

given an original dataset of size N, M new datasets of equal size (N) are composed using resampling with 

replacement with uniform probability distribution, the so-called bootstrap replicates. Accordingly, each 

bootstrap replicate mi (1≤i≤M) will most likely contain repeated instances, whereas a number of cases 

from the original dataset are not selected. At each iteration i (1≤i≤M), the current replicate mi is considered 

the training set in order to fit coefficients of a LR model, whereas cases from the original dataset not 

included in mi are used for independent assessment. According to bootstrap 0.632, each performance 

metric is obtained as a weighted contribution of both the training and the test components, in order to 

avoid a downward estimation: 

metric(𝑚𝑖) = (0.632 × metricTEST
(𝑚𝑖) ) + (0.368 × metricTRAIN

(𝑚𝑖) ). (6) 

 
Finally, each metric is obtained as the average of the M bootstrap estimates: 

metric =  
1

𝑀
∑ metric(𝑚𝑖)𝑀
𝑖=1 .     (7) 

The user-dependent parameter M was set to 1000, which is considered appropriate to estimate the 

95% CI accurately (Witten et al 2011). The default output cut-off of 0.5 commonly used in LR-based 

modelling was applied to compute performance metrics in both the training and test stages. 

 

4. Results 

Portable SpO2 recordings from the Phone Oximeter were automatically analysed by means of the 

proposed techniques. Tables 2 – 4 show the median values of the features composing the initial feature 

set for the children groups under study.  

 

Table 2. Descriptive analysis of conventional oximetry indexes from overnight SpO2 recordings acquired using 

the Phone Oximeter. Data are presented as median [interquartile range]. The p-value shown in the last column was 

computed using the non-parametric Mann-Whitney U test. A level of 0.01 was considered for statistical 

significance (N.S.: non-significant). 

Characteristics AHI<5 group AHI≥5 group p-value 

SatAVG 97.78 [1.19] 97.26 [1.49] N.S. 

SatMIN 89.70 [7.50] 85.90 [9.73] p<0.01 

CT95 0.25 [1.14] 2.34 [8.63] p<0.01 

ODI2 7.25 [6.72] 17.59 [17.60] p<0.01 

ODI3 1.85 [2.09] 6.29 [9.30] p<0.01 

ODI4 0.73 [1.00] 2.70 [5.52] p<0.01 

 

 
Table 3. Descriptive analysis of common statistical moments in the time domain from overnight SpO2 recordings 

acquired using the Phone Oximeter. Data are presented as median [interquartile range]. The p-value shown in the 

last column was computed using the non-parametric Mann-Whitney U test. A level of 0.01 was considered for 

statistical significance (N.S.: non-significant). 

Characteristics AHI<5 group AHI≥5 group p-value 

M1t 97.78 [1.19] 97.26 [1.49] N.S. 

M2t 0.29 [0.24] 0.61 [0.53] p<0.01 

M3t -0.71 [0.63] -0.70 [0.60] N.S. 

M4t 4.06 [2.97] 2.84 [2.33] p<0.01 

 



 

 

Table 4. Descriptive analysis of all the non-linear features derived from the histogram of words built in the 

framework of symbolic dynamics analysis of overnight SpO2 recordings acquired using the Phone Oximeter. Data 

are presented as median [interquartile range]. The p-value shown in the last column was computed using the non-

parametric Mann-Whitney U test. A level of 0.01 was considered for statistical significance (N.S.: non-

significant). 

Characteristics AHI<5 group AHI≥5 group p-value 

FW 56 [1] 51 [4] p<0.01 

PW{111} (x10-3) 0.83 [2.60] 4.67 [10.89] p<0.01 

PW {222} 0.34 [0.040] 0.36 [0.047] N.S. 

PW {333} 0.47 [0.041] 0.46 [0.036] p<0.01 

PW {444} (x10-3) 0 [0.0] 0 [0.53] N.S. 

PW {112} (x10-3) 0.28 [0.38] 1.11 [1.75] p<0.01 

PW {122} (x10-3) 0.35 [0.42] 1.24 [1.47] p<0.01 

PW {123} (x10-4) 0.42 [1.23] 1.85 [3.57] p<0.01 

PW {321} (x10-5) 3.51 [7.42] 6.36 [14.84] N.S. 

PW {221} (x10-3) 0.37 [0.44] 1.34 [1.70] p<0.01 

PW {211} (x10-3) 0.28 [0.36] 1.11 [1.75] p<0.01 

SymbEn 0.30 [0.019] 0.31 [0.043] p<0.01 

 

Regarding conventional oximetric indexes (table 2), no significant statistical differences between 

groups were found for the average saturation, which highlight the challenge of detecting OSAHS from 

oximetry in paediatric patients. Similarly (table 3), M1t (mean, i.e. central tendency) and M3t (skewness, 

i.e., asymmetry) did not reach statistical significance. On the other hand, common ODIs and M2t 

(variance, i.e., dispersion) reached the highest differences (p <0.01) between moderate-to-severe OSAHS 

patients and children with AHI <5 events/h. 

Figure 2 shows the normalised histogram of words composing the vocabulary from symbolic 

dynamics analysis. A total of 9 out of 12 features derived from the symbolic dynamics approach reached 

significant statistical differences (p <0.01) between groups (table 4). The number of forbidden words was 

significantly higher in children with an AHI <5 events/h. In the same way, the normalised corrected 

SymbEn was significantly higher in moderate-to-severe OSAHS patients. The probability of appearance 

of single words, PW of word {111}, which represents a decreased saturation level, and words {211, 221}, 

indicative of smooth oxygen desaturations, was significantly higher in OSAHS patients due to the 

presence of apnoeic events. On the contrary, PW{321}, which accounts for the deepest desaturations, did 

not reach statistical significant differences between groups. Similarly, PW of words {112, 122, 123} 

indicative of oxygen re-saturations aimed at restoring the normal saturation level after apnoeic events was 

significantly higher in children with OSAHS. PW{444}, which accounts for increased saturation levels due 

to these re-saturations, was slightly higher in the moderate-to-severe OSAHS group though no statistically 

significant for the level of 0.01 (p=0.039). Regarding stability around the median, PW{222} (stability below 

the median) was not significantly different between groups, whereas PW{333} (stability above the median) 

was significantly higher in patients with an AHI <5 events/h. 

Table 5 summarises the results from the feature selection stage. A total of 9 out to 24 (37.5%) features 

were automatically selected. SatMIN, ODI3, BMI, M2t, M3t, M4t, PW{333}, PW{444} and PW{112} composed 

the optimum feature subset. All the approaches proposed to characterise the population under study were 

represented: conventional oximetric indices (SatMIN, ODI3); anthropometric measures (BMI); statistical 

moments (M2t, M3t, M4t); and parameters from symbolic dynamics (PW{333}, PW{444}, PW{112}); which 

suggests their relevancy as well as complementarity in the characterization of children with and without 

moderate-to-severe OSAHS. 



 

 

 

Figure 2. Normalised histograms (probability density function) of 3-symbol length words from symbolic 

dynamics analysis for children with AHI <5 events/h (white) and patients with moderate-to-severe OSAHS (dark 

grey). The words proposed to characterise changes in the oximetric pattern due to apnoeic events are labelled and 

those showing significant statistical differences between groups are highlighted (grey asterisk). 

 

Table 5. Optimum feature subset from FSLR using a bootstrapping approach (1000 repetitions). Features 

automatically selected 50% of runs composed the proposed final feature subset. 

Feature subset Feature Nº of times selected 

Conventional oximetry indices (Oxi) SatMIN 

ODI3 

802 

575 

Anthropometric (Anthr) BMI 734 

First-to-fourth statistical moments (Stats) M2t 

M3t 

M4t 

584 

809 

926 

Symbolic dynamics (Symb) PW {333} 

PW {444} 

PW {112} 

581 

875 

562 

 

Tables 6 and 7 summarise the performance assessment of different LR models composed of the 

proposed features. Individually, anthropometric (Anth) and statistical (Stats) feature subsets reached the 

lowest diagnostic performance, achieving 65.1% Acc (0.65 AUC) and 69.7% Acc (0.75 AUC), 

respectively (table 6). Conventional oximetric indices (Oxi) achieved moderate accuracy (73.2% Acc and 

0.76 AUC) with a highly unbalanced sensitivity-specificity pair (49.5% Se vs. 88.2% Sp), whereas the 

feature subset from symbolic dynamics (Symb) reached the highest performance individually, with 78.4% 

Acc (65.2% Se and 86.8% Sp) and 0.83 AUC. Regarding the combination of the proposed feature subsets 

(table 7), the LR model composed of the 5 common indices from oximetry (LROxi) was the baseline 

(reference) model for comparison purposes. When age and BMI were added as input features to the 

baseline model (LROxi+Anthr), a non-significant (p-value >0.01) performance improvement was obtained: 

74.0% Acc and 0.77 AUC was reached. On the contrary, a statistically significant (p-value <0.01) 

diagnostic performance improvement was obtained by adding features from automated signal processing 

approaches, particularly from symbolic dynamics. Using common statistical moments, the accuracy of 

the model LROxi+Anthr+Stats increased to 77.9% Acc (0.83 AUC). In the same way, adding features from 

symbolic dynamics, the model LROxi+Anthr+Stats+Symb reached higher accuracy (80.3% Acc and 0.85 AUC) 

and more balanced sensitivity-specificity pair (75.0% Se vs. 83.9% Sp). Finally, the highest performance 

was obtained using the optimum feature subset (LROPT), leading to 83.3% Acc and 0.89 AUC. 



 

 

Table 6. Diagnostic ability of each individual feature subset under study using binary LR modelling for moderate-

to-severe paediatric OSAS detection and a bootstrap approach. 

Feature subset Se (%) Sp (%) PPV (%) NPV (%) LR+ LR- Acc (%) AUC 

Oxi 49.5 

(28.9, 71.8) 

88.2 

(76.3, 98.4) 

73.4 

(53.2, 95.9) 

73.6 

(62.6, 85.3) 

5.20 

(2.21, 12.61) 

0.57 

(0.34, 0.79) 

73.2 

(64.0, 81.7) 

0.76 

(0.63, 0.86) 

Anthr 31.2 

(4.7, 59.7) 

86.8 

(63.5, 99.6) 

65.7 

(37.3, 96.6) 

66.8 

(56.1, 78.4) 

3.02 

(1.05, 11.36) 

0.79 

(0.55, 1.01) 

65.1 

(55.0, 75.1) 

0.65 

(0.54, 0.77) 

Stats 50.4 

(22.6, 76.2) 

82.0 

(64.8, 95.9) 

64.8 

(45.3, 86.0) 

72.6 

(60.2, 85.5) 

3.29 

(1.53, 7.79) 

0.60 

(0.31, 0.88) 

69.7 

(59.4, 79.6) 

0.75 

(0.64, 0.85) 

Symb 65.2 

(46.2, 84.5) 

86.8 

(73.9, 96.7) 

76.2 

(59.2, 92.8) 

79.9 

(69.1, 90.8) 

6.88 

(2.86, 17.39) 

0.41 

(0.19, 0.62) 

78.4 

(68.3, 87.1) 

0.83 

(0.73, 0.92) 

 

Table 7. Diagnostic performance of different LR models from joint feature subsets from oximetry. 

Feature subset Se (%) Sp (%) PPV (%) NPV (%) LR+ LR- Acc (%) AUC 

Baseline (Oxi) 49.5 

(28.9, 71.8) 

88.2 

(76.3, 98.4) 

73.4 

(53.2, 95.9) 

73.6 

(62.6, 85.3) 

5.20 

(2.21, 12.61) 

0.57 

(0.34, 0.79) 

73.2 

(64.0, 81.7) 

0.76 

(0.63, 0.86) 

Oxi + Anthr 53.9 

(33.8, 73.2) 

86.9 

(74.0, 96.9) 

72.9 

(52.6, 91.5) 

75.0 

(64.3, 85.8) 

5.34 

(2.14, 14.76) 

0.53 

(0.31, 0.77) 

74.0 

(64.0, 83.2) 

0.77 

(0.66, 0.87) 

Oxi + Anthr + 

Stats 

64.6 

(45.1, 83.6) 

86.5 

(72.4, 96.8) 

75.7 

(57.4, 92.8) 

79.5 

(68.6, 90.7) 

6.81 

(2.67, 18.31) 

0.41 

(0.20, 0.62) 

77.9 

(67.9, 86.5) 

0.83 

(0.74, 0.92) 

Oxi + Anthr + 

Stats + Symb 

75.0 

(56.4, 91.9) 

83.9 

(68.8, 95.9) 

75.5 

(58.0, 92.6) 

84.0 

(72.7, 94.8) 

12.17 

(3.23, 37.57) 

0.32 

(0.12, 0.55) 

80.3 

(69.9, 89.9) 

0.85 

(0.71, 0.95) 

Optimum 

subset (OPT) 

73.5 

(56.1, 89.7) 

89.5 

(77.7, 99.2) 

82.0 

(65.8, 98.7) 

84.3 

(73.9, 93.9) 

10.40 

(3.78, 27.77) 

0.30 

(0.12, 0.50) 

83.3 

(74.4, 91.0) 

0.89 

(0.79, 0.96) 

 

Figure 3 shows the ROC curves of the two components of the proposed bootstrap 0.632 approach (training 

and test contributions based on resampling with replacement) for every model. Both the “complete” 

model (composed of all 24 variables) and the optimum model from FSLR reached an AUC >0.90 in the 

bootstrap training group. In the bootstrap test group, the proposed optimum model showed the highest 

AUC as well as the lower performance decrease, suggesting no influence of overfitting and higher 

generalization ability. 

 

5. Discussion 

In this study, advanced signal processing algorithms and portable technologies, by means of symbolic 

dynamics and smartphones, are combined to develop a reliable screening tool for paediatric OSAHS. The 

main novelty of this study is that symbolic dynamics was applied to analyse complex non-linear changes 

due to intermittent desaturations present in the oximetry signal of children obtained with the Phone 

Oximeter. The normalised histogram of words has been found to provide discriminant variables able to 

enhance the detection of moderate-to-severe paediatric OSAHS from oximetry. Particularly, words 

representing increased values of oximetry and re-saturations after apnoeic events were automatically 

selected to compose the optimum feature subset. The proposed optimum LR model reached 83.3% Acc 

(73.5% Se and 89.5% Sp) and 0.89 AUC, significantly improving the diagnostic performance of models 

composed of conventional variables. 

Regarding the features derived from symbolic dynamics (table 4), there were five words with low 

probability of appearance (<0.001, i.e., forbidden words) within SpO2 recordings from children with AHI 

<5 events/h whose probability of appearance increased in patients with AHI ≥5 events/h, ceasing to be 

forbidden words in this group (median FW: 56 versus 51, respectively): {211}, {221}, {111}, {112}, 

{122}. These words are representative of desaturations and re-saturations due to apnoeic events and 

reached significant differences between both patient groups, which suggest the appropriateness of the 

proposed features to parameterise the histogram of words. 



 

 

 
Figure 3. ROC curves for the models composed of conventional variables and for the proposed optimum model 

from FSLR feature selection for (a) training and (b) test contributions from the bootstrap 0.632 procedure. 

 

All the words proposed to parameterise re-saturations in the framework of symbolic dynamics 

achieved significant statistical differences (p <0.01) between children with an AHI <5 events/h and 

moderate-to-severe OSAHS patients, from the slowest {112, 122} to the fastest re-saturation {123}. This 

would suggest that the recovery process towards a normal saturation plays a major role in children having 

moderate-to-severe OSAHS. Conversely, the word representing the deepest desaturation {321} did not 

reach statistical significant differences, showing that the magnitude of sudden desaturations is not as 

discriminant as the re-saturations in the detection of the disease in children. 

Variables composing the optimum feature subset provide more insight into the relevance of re-

saturations and symbolic dynamics. A total of 3 variables from symbolic dynamics were automatically 

selected: PW{112}, PW{333} and PW{444}. All the words were indicative of re-saturations or increased 

saturation values: the word {112} is a small slow re-saturation while the word {333} represents saturation 

values above the median and the word {444} notably higher saturation levels (close to 99%). 

In the optimum feature subset, measures from all the approaches proposed to characterise children 

suspected of suffering from OSAHS were selected, which highlights the complimentary nature of 

symbolic dynamics and conventional features. Conventional oximetry indices SatMIN and ODI3 account 

for the magnitude and the number of desaturations while novel PW{112}, PW{333}, and PW{444} from non-

linear symbolic dynamics quantify the relative number of words representing increasing slope and higher 

saturation levels. In a complementary way, M2t, M3t, and M4t provided overall measures of dispersion 

(variability, asymmetry, and concentration, respectively) of saturation values due to recurrent apnoeic 

events. In addition, the BMI was also automatically selected, which provides information on the physical 

status of individual children. 

Previous studies applied symbolic dynamics in the context of adult OSAHS from HRV analysis. 

Ravelo-García et al (2014) first proposed the use of features from symbolic dynamics in order to enhance 

automated classification of adult patients. An alphabet of four symbols was used for quantization of the 

HRV time series and symbols were subsequently grouped to compose 3-symbol length words. According 

to previous studies (Kurths et al 1995), the percentage of words that contain symbols ‘1’ and ‘3’ 

(WPSUM13), which is indicative of increased HRV, was proposed to parameterise the histogram of 

words. The authors reported that the classification performance of a LR model composed of both clinical 

(Epworth sleepiness score and intensity of snoring) and physical (age and neck circumference) variables 

significantly increased from 0.907 AUC (87.1% Se and 80.0% Sp) to 0.941 AUC (88.7% Se and 82.9% 

Sp) when adding WPSUM13 to the model. In a recent study by the same group (Ravelo et al 2015), the 



 

 

authors assessed a linear discriminant analysis (LDA) classifier composed of common time- and 

frequency-domain oximetry indices and both linear and non-linear features from HRV. Likewise, words 

of length 3 symbols within a sequence derived from a 4-level coding scheme were used to investigate 

non-linear dynamics of HRV time series. Then, the probability of words indicative of increased and 

decreased complexity, symbolic entropy, symbol variability, and the number of forbidden words, were 

used to parameterise the histogram of words. The LDA model reached 86.5% Acc (75.6% Se and 91.0% 

Sp) using only oximetric indices in an epoch-based binary classification task, whereas the performance 

slightly increased to 86.9% (73.4% Se and 92.3% Sp) when linear and non-linear features from HRV 

were added to the model. In the present research, our results suggest that symbolic dynamics is also a 

reliable methodology able to increase the diagnostic ability of portable overnight oximetry in the context 

of childhood OSAHS detection. 

Tables 8 and 9 summarise the state-of-the-art in the framework of childhood OSAHS detection from 

nocturnal oximetry. Previous studies mainly focused on the screening ability of ODIs (Kirk et al 2003, 

Tsai et al 2013), sometimes including additional data from the clinical history to increase diagnostic 

performance (Chang et al 2013). Using a common cut-off of 5 events/h for OSAHS, in these studies, 

accuracy ranged between 64.0% (automated scoring) and 85.1% (manual scoring). Similarly, the number 

and severity of clusters of desaturations (visual inspection) was assessed as abbreviated screening tool 

(Brouillette et al 2000, Velasco et al 2013, Van Eyck et al 2015, Villa et al 2015). Using a conservative 

cut-off of 1 or 2 events/h for positive OSAHS, accuracy ranged 64.7% to 93.4%, whereas 69.4% Acc was 

reached using an AHI ≥5 events/h. 

 

Table 8. Summary of the state-of-the-art in the context of paediatric OSAHS diagnosis using 

conventional desaturation indices from oximetry. 

Authors 

(year) 

Dataset Gold 

standard 

(cut-off) 

Aim and setting Oximetry 

inspection 

approach 

Classification 

approach 

Se 

(%) 

Sp 

(%) 

Acc 

(%) 

Brouillette 

et al (2000) 

349 children with 

suspected 

OSAHS 

In-lab PSG 

(AHI ≥1) 

Binary classif. /  

In-lab oximetry 

Nº of clusters of 

desaturations >3 + 

Nº drops <90% ≥3 

Visual inspection 42.9 97.8 64.7 

Kirk 

et al (2003) 

58 children with 

suspected 

OSAHS 

In-lab PSG 

(AHI ≥5) 

Binary classif. /  

At-home 

oximetry 

Automated ODI3 ODI3 ≥ 5 66.7 60.0 64.0 

Chang 

et al (2013) 

141 children with 

suspected 

OSAHS 

In-lab PSG 

(AHI ≥5) 

Binary classif. / 

Questionnaires 

and oximetry 

Presence of mouth 

breathing, restless 

sleep, ODI4 

LR 60.0 86.0 71.6 

Velasco-

Suárez 

et al (2013) 

167 children with 

suspected 

OSAHS 

In-lab PSG 

(AHI ≥1) 

Binary classif. /  

In-lab oximetry 

Nº of clusters of 

desaturations >2 + 

Nº drops <90% >1 

Visual inspection 86.6 98.9 93.4 

Tsai 

et al (2013) 

148 children with 

suspected 

OSAHS 

In-lab PSG 

(AHI ≥1, 5, 

10) 

Binary classif. /  

In-lab oximetry 

Manual ODI4 ODI4 >2.05 (AHI ≥1) 

ODI4 >3.50 (AHI ≥5) 

ODI4 >4.15 (AHI ≥10) 

77.7 

83.8 

89.1 

88.9 

86.5 

86.0 

79.0 

85.1 

87.1 

Van Eyck 

et al (2015) 

130 obese 

children with 

suspected 

OSAHS 

In-lab PSG 

(AHI ≥2) 

Binary classif. /  

In-lab oximetry 

Brouillette criteria 

Velasco criteria 

Manual scoring of 

desaturations 

58 

66 

88 

69 

78 

68 

Villa 

et al (2015) 

268 children with 

suspected 

OSAHS 

In-lab PSG 

(AHI ≥1, 5) 

Binary classif. /  

In-lab oximetry 

Clusters of 

desaturations and 

clinical history 

Semi-automatic 

- AHI ≥1 

- AHI ≥5 

 

91.6 

40.6 

 

40.6 

97.9 

 

85.8 

69.4 

 

 



 

 

Recent studies focused on increasing the diagnostic capability of oximetry using automated signal 

processing and machine learning techniques (Garde et al 2014, Álvarez et al 2017, Hornero et al 2017, 

Crespo et al 2017, 2018, Vaquerizo-Villar et al 2018). Time- and frequency-domain statistics, spectral 

features, and non-linear measures (approximate or sample entropy, central tendency measure, and 

Lempel-Ziv complexity) usually compose a wide initial feature set from oximetry, which is subsequently 

optimised using automated feature selection techniques. In these studies, diagnostic accuracies ranged 

between 78.5% and 82.5% (sensitivity: 68.2%-82.2%; specificity: 83.6%-91.4%) when a cut-off of 5 

events/h was set to confirm OSAHS and using information from the SpO2 signal alone. 

Although the widely known non-linear behaviour of biological systems induces a relevant 

component in biomedical signals, no features from non-linear analysis composed the optimum feature 

subset in the works by Garde et al (2014) and Hornero et al (2017). Similarly, only sample entropy was 

selected in the studies by Álvarez et al (2017) and Crespo et al (2018), suggesting that novel non-linear 

techniques could be applied to properly parameterise non-linear dynamics of the oximetry signal. In this 

regard, Crespo et al (2017) demonstrated the reliability of multiscale entropy to characterise non-linear 

patterns present in the nocturnal oximetry signal. Similarly, Vaquerizo-Villar et al (2018) used the 

bispectrum to quantify deviations from linearity in the SpO2 signal linked with apnoeic events. This 

approach has been found to provide relevant and non-redundant information to conventional time- and 

frequency-domain methods. 

 

Table 9. Summary of the state-of-the-art in the context of paediatric OSAHS diagnosis applying 

advanced signal processing and pattern recognition techniques to overnight oximetry recordings. 

Authors 

(year) 

Dataset Gold 

standard 

(cut-off) 

Aim and 

setting 

Signal processing 

approaches 

Pattern 

recognition 

approach 

Se 

(%) 

Sp 

(%) 

Acc 

(%) 

Garde 

et al 

(2014) 

146 children 

with suspected 

OSAHS 

In-lab 

PSG 

(AHI ≥5) 

Binary classif. / 

Portable 

oximetry 

(attended) 

Time and spectral: 

- SpO2 

- SpO2 + PR 

 

LDA 

LDA 

 

80.0 

88.4 

 

83.9 

83.6 

 

78.5 

84.9 

Álvarez 

et al (2017) 

50 children with 

suspected 

OSAHS 

In-lab 

PSG 

(AHI ≥1, 

3, 5) 

Binary classif. / 

Port. oximetry 

from at-home 

RP 

Statistical, spectral and 

nonlinear features 

LR (AHI ≥1) 

LR (AHI ≥3) 

LR (AHI ≥5) 

(bootstrapping) 

89.6 

82.9 

82.2 

71.5 

84.4 

83.6 

85.5 

83.4 

82.8 

Crespo 

et al (2017) 

50 children with 

suspected 

OSAHS 

In-lab 

PSG 

(AHI ≥3) 

Binary classif. / 

Port. oximetry 

from at-home 

RP 

Nonlinear features and 

conventional oximetric 

indices 

LR 

(bootstrapping) 

84.5 83.0 83.5 

Hornero 

et al (2017) 

4191 habitually 

snoring children 

In-lab 

PSG 

(AHI ≥1, 

5, 10) 

AHI Estimation 

/ In-lab 

oximetry 

Statistical, spectral, 

nonlinear features, and 

ODI3 

MLP ANN: 

- AHI ≥1 

- AHI ≥5 

- AHI ≥10 

 

84.0 

68.2 

68.7 

 

53.2 

87.2 

94.1 

 

75.2 

81.7 

90.2 

Vaquerizo-

Villar 

et al (2018) 

298 habitually 

snoring children 

In-lab 

PSG 

(AHI ≥1, 

5, 10) 

Multiclass 

classif / In-lab 

oximetry 

Bispectrum, PSD, ODI3, 

age, sex, BMI 

3-class MLP: 

- AHI ≥5 

- AHI ≥10 

 

61.8 

60.0 

 

97.6 

94.5 

 

81.3 

85.3 

Crespo 

et al (2018) 

176 children 

with suspected 

OSAHS 

In-lab 

PSG 

(AHI ≥1, 

3, 5) 

Binary classif. / 

In-lab oximetry 

Statistical, spectral and 

nonlinear features 

LR (AHI ≥1) 

LR (AHI ≥3) 

LR (AHI ≥5) 

(bootstrapping) 

93.9 

74.6 

70.0 

37.8 

81.7 

91.4 

84.3 

77.7 

82.7 

Our 

proposal 

142 children 

with suspected 

OSAHS 

In-lab 

PSG 

(AHI ≥5) 

Binary classif. / 

Portable 

oximetry 

(attended) 

BMI, Age, statistical 

moments, desaturation 

indices, symbolic dynamics 

LR (AHI ≥5) 

(bootstrapping) 

73.5 89.5 83.3 



 

 

Our optimum model involving non-linear features from symbolic dynamics outperformed several 

previous approaches for automated detection of paediatric OSAHS. However, major methodological 

differences between studies are present and need to be discussed. In the study by Hornero et al (2017), 

PSG-derived SpO2 recordings from a large cohort of habitually snoring children were processed. On the 

other hand, Álvarez et al (2017) and Crespo et al (2017) analysed oximetry recordings from portable un-

attended respiratory polygraphy at children’s home. Regarding automated pattern recognition, Hornero 

et al (2017) used a regression artificial neural network to estimate the AHI and subsequently set a cut-off 

of 5 events/h, while Crespo et al (2017) used a clinical threshold of 3 events/h to diagnose OSAHS. 

Similarly, a multi-class artificial neural network was proposed by Vaquerizo et al (2018) to classify 

children into non-OSAHS, moderate, and severe OSAHS. In the study by Garde et al (2014), the 

diagnostic accuracy increased up to 84.9% (88.4% sensitivity and 83.6% specificity) when features from 

SpO2 and pulse rate variability were used jointly. 

Concerning the signal acquisition system, in the present study we used the Phone Oximeter in order 

to increase accessibility to diagnostic resources while decreasing intrusiveness for children. The use of 

portable technologies is a major novelty in the framework of paediatric sleep medicine. Particularly, the 

use of smartphones and telemedicine applications aimed at providing unattended testing at home and 

therapy monitoring is gaining popularity, owing the increasing recognition of both the prevalence and the 

impact of OSAHS (Singh et al 2015). However, the vast majority of smartphone-based tools are mobile 

apps oriented to adult users in the area of wellness and lifestyle with inadequate scientific validation 

against standardised methodologies (Behar et al 2013, Ko et al 2015, Penzel et al 2018). On the contrary, 

in this proposal we developed and properly validated a novel signal-processing module for the Phone 

Oximeter able to enhance its screening functionalities for paediatric sleep apnoea detection. 

Some limitations should be considered in order to generalise our conclusions. A larger dataset would 

be needed for external validation and  extensive and universal optimization of the proposed methodology. 

Nonetheless, a bootstrapping procedure was applied both for feature selection and for pattern recognition 

in order to minimise the effect of a limited sample size. Similarly, a larger and independent  dataset would 

allow for a better characterisation of changes in the overnight oximetry profile by means of symbolic 

dynamics. Nevertheless, our results revealed consistent and significant differences between histograms 

of symbol sequences of children with AHI <5 events/h and moderate-to-severe OSAHS patients. 

Concerning the proposed pattern recognition approach, this study focused on binary classification, which 

is able to derive accurate screening protocols for the disease. In this regard, a cut-off of 5 events/h was 

used for positive OSAHS diagnosis, i.e., we focused on moderate-to-severe cases. This is a clinically 

relevant threshold because it is used by paediatricians to recommend surgical treatment routinely. 

Moderate-to-severe OSAHS is less likely to resolve spontaneously. Furthermore, children showing an 

AHI ≥5 events/h suffer from the most negative consequences, including an increased cardiovascular risk 

(Marcus et al 2012, Kaditis et al 2016b). Notwithstanding, it would be interesting to detect additional 

categories of severity, i.e., non-OSAHS, mild, moderate, and severe. 

Regarding context-dependent parameter tuning in the symbolic dynamics framework, we took into 

account both the nature and the sampling frequency of oximetry during the symbolization process, which 

led to a histogram of words showing significant differences between the groups under study. Based on 

previous evidence (Ravelo-García et al 2014, 2015), we adopted the values of the parameters used in 

similar studies as appropriate for assessing non-linear components of oximetry by means of symbolic 

dynamics in the same context. As previously reported by Voss et al (1996), it is important to point out 

that small changes of the threshold values (m and a) do not influence the results considerably. Although 

m is usually set to the mean of the time series, we selected the median because it is more robust against 

artefacts. Additionally, the same optimum features were systematically selected by FSLR using the 

proposed bootstrapping approach despite slight changes in a (2.8 to 3.2 in steps of 0.1), which shows the 

robustness of the methodology against small changes in the tuning parameters. Nevertheless, in this study 

we investigated a particular scheme: the probability distribution of words of length 3 from an alphabet of 

4 symbols. Therefore, future work could be aimed at optimizing the tuning parameters (m, a, p, k, and N) 



 

 

and searching for novel discriminant words to be able to maximise the performance of symbolic dynamics 

in the context of SpO2 recordings from children showing OSAHS symptoms. In addition, it would be 

interesting to assess the dependence of the proposed algorithm on some technical features of the 

recording, such as the sampling frequency, the averaging time, the threshold for artefact removal used in 

the pre-processing stage, or the minimum number of technically adequate recording hours. 

 

6. Conclusion 

Using the Phone Oximeter to accomplish portable nocturnal oximetry, we investigated the ability of 

symbolic dynamics to discriminate between children with and without moderate-to-severe OSAHS. The 

histogram of words from the symbolization process showed significant differences between children with 

AHI <5 events/h and moderate-to-severe OSAHS patients. We found that changes in the oximetry 

dynamics associated with increased saturation levels and re-saturations after apnoeic events may be 

important in the detection of OSAHS. Our results suggest that features from the histogram of symbols 

complement oximetry indices commonly focused on the number and severity of desaturations. An 

optimum feature subset composed of conventional linear measures in the time domain and novel non-

linear features from symbolic dynamics significantly improved the diagnostic performance of overnight 

oximetry. Therefore, automated analysis of portable nocturnal oximetry by means of symbolic dynamics 

is able to increase the diagnostic capability of smartphone-based screening tests in order to provide 

available, as well as accurate detection of moderate-to-severe OSAHS in children. 
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