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LIMIT BEHAVIOUR OF APPROXIMATE PROPER SOLUTIONS IN
VECTOR OPTIMIZATION*

CESAR GUTIERREZ', LIDIA HUERGA!, VICENTE NOVO!, AND MIGUEL SAMA?

Abstract. In the framework of a vector optimization problem, we provide conditions for approx-
imate proper solutions to tend to exact weak/efficient/proper solutions when the error tends to zero.
This limit behaviour depends on an approximation set that is used to define the approximate proper
efficient solutions. We also study the special case when the final space of the vector optimization
problem is normed, and more particularly, when it is finite dimensional. In these specific frameworks,
we provide several explicit constructions of dilating ordering cones and approximation sets that lead
to the desired limit behaviour. In proving our results, new relationships between different concepts
of approximate proper efficiency are stated.

Key words. Vector optimization, approximate efficiency, approximate proper efficiency, dilating
cone, approximating family of cones

AMS subject classifications. 90C48, 90C26, 90C29

1. Introduction. When solving a vector optimization problem, heuristic/itera-
tive algorithms are usually employed, specially when the feasible set is too big. How-
ever, in practice, when applying these algorithms the accuracy of the solutions is
sometimes sacrificed to solve the problem in a reasonable lapse of time. Thus, it is
essential to measure the quality of the computed solutions.

With this aim, several notions of approximate efficiency have appeared in the
literature. The most known are those ones introduced, respectively, by Kutateladze
[17], Németh [19], White [26], Helbig [12] and Tanaka [25]. The common idea in
these concepts is to consider a set that approximates the ordering cone, that is, an
approximation set similar to the ordering cone, that does not contain the point zero,
in order to impose the approximate efficiency (or nondomination) condition in the
notions.

This idea motivated the concept of approximate efficiency introduced by Gutié-
rrez, Jiménez and Novo in [9, 10], in which they considered a general approximation
set, in such a way that this concept reduces to the notions defined by the previous
authors by taking a specific approximation set for each of them.

On the other hand, the concepts of approximate proper efficiency are more re-
strictive than the last ones, and arise with the purpose of providing a more depurated
approximate efficient set by removing approximate solutions with non desirable prop-
erties. The most known are those ones given by Li and Wang [18], Rong [23] and El
Maghri [3], in which they combine the approximate efficiency notion due to Kutate-
ladze with, respectively, the proper efficiency concepts introduced by Geoffrion [4],
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2 C. GUTIERREZ, L. HUERGA, V. NOVO, AND M. SAMA

Benson [1] and Henig [14].

With the aim of unifying, Gutiérrez, Huerga and Novo [8] and Gutiérrez, Huerga,
Jiménez and Novo [7] introduced two notions of approximate proper efficiency based
on the more general concept of approximate efficiency stated in [9, 10] and, respec-
tively, the proper efficiency notions by Benson and Henig.

One of the main properties of the approximate proper efficient solutions is that,
under generalized convexity conditions, they can be characterized through linear
scalarization (see, for instance, [7, 8]), i.e., by means of approximate solutions of
scalar optimization problems associated to the original one. This fact is an impor-
tant advantage in the computation of the solutions, and because of that, the notions
of approximate proper efficiency are usually chosen to determine a suitable set of
approximate efficient solutions.

Thus, we focus on this type of solutions with the final aim of studying their limit
behaviour when the error goes to zero. Depending on the nature of the optimization
problem, one may be interested in its exact efficient, weak efficient or proper efficient
solution set. Because of that, it is essential to know how to construct an approximation
set, that replaces the ordering cone, in such a way that the corresponding approximate
proper solutions tend to exact efficient, weak efficient or proper efficient solutions.

In papers [6, 7], a preliminary study of the limit behaviour of approximate proper
solutions was made. In both papers, the common purpose was to obtain a sufficient
condition for these solutions to tend to exact efficient solutions when the error tends
to zero. These sufficient conditions are stronger than the ones presented in this paper
and they only focuses on the approximation to the exact efficient set, no results were
obtained to approximate neither the weak efficient set nor the proper efficient set.

Furthermore, when the final space of the vector optimization problem is normed,
and more particularly, finite dimensional with a polyhedral ordering cone, we provide
explicit constructions of the approximation sets, which are easier to handle computa-
tionally, overall in the latter setting, in which the approximation sets are defined in
terms of matrices.

In this paper we will deal specially with the notion of approximate proper ef-
ficiency in the sense of Henig, introduced in [7], and we will determine sufficient
conditions that imply the equivalence of these solutions to the approximate proper
solutions in the senses of Benson [8] and Geoffrion [18]. These sufficient conditions
are essentially based on the existence of a family of dilating cones, that approximate
the ordering cone and separate it from another closed cone.

For normed spaces, Sterna-Karwat [24] provided sufficient conditions that guar-
antee the existence of such a family. Moreover, in the finite dimensional case, Henig
[13] proved that one of these families always exists, whenever the ordering cone is
closed and pointed. Also, Kaliszewski [16] constructed such a family in the finite
dimensional case, when the ordering cone is polyhedral.

The paper is organized as follows. In Section 2 we state the framework, the
notations, the main concepts and some previous results. In short Section 3, we study
the relationships between the concept of approximate proper efficiency in the sense
of Henig, that we use to prove our main results, and some important notions of
approximate proper efficiency given in the literature, with the aim of clarifying all the
connections among them. Also, we provide equivalent formulations of approximate
proper solutions that will be useful for the main Section 4, in which we study the limit
behaviour of approximate proper solutions when the precision error goes to zero, and
we establish sufficient conditions for approximate proper solutions to tend to an exact
weak /efficient /proper solution. We also characterize the set of exact Henig proper
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LIMIT BEHAVIOUR OF APPROXIMATE PROPER SOLUTIONS 3

efficient solutions through limits of approximate proper efficient solutions, when the
error tends to zero, and we particularize these results for the case when the final space
is normed, and also when it is finite dimensional with a polyhedral ordering cone, for
which more specific and easier constructions of the set of approximate proper solutions
are given, thanks to the rich structure of the final space. Finally, in Section 5 we state
the conclusions.

2. Preliminaries. Let Y be a real locally convex Hausdorff topological linear
space. As usual, we refer to the topological dual space of Y as Y*. Given a nonempty
set F' C Y, we denote by int F', clF, bd F', F¢, coF and cone F' the topological
interior, the closure, the boundary, the complement, the convex hull and the cone
generated by F, respectively. It is said that F is solid if int F' # (), and coradiant if
afF C F, for all @ > 1. Moreover, the nonnegative orthant of R" is denoted by R,
R, :=R% and we refer to the closed unit ball of a normed space as B.

The polar and strict polar cones of F' are denoted by F'T and F*T, respectively,
ie.,

Fr={AeY*: \y) >0,Vyc F},
Fst={AeY*: \y) >0,Vy € F\{0}}.

Let D C Y be a nonempty convex cone (i.e., § # D =R, - D = D+ D), which is
assumed to be proper ({0} # D # Y), closed and pointed (D N (—D) = {0}). From
now on, we consider the partial order <p defined on Y by D as usual, i.e.,

yi, 92 €Y, i <py2 <=y —y1 € D.

Next, the notion of approximating family of cones is recalled and some of its main
properties and associated concepts are collected (see [2, 13, 20, 21, 24]). It will be a
key mathematical tool of this work.

DEFINITION 2.1. (a) [24, Definition 3.1] Let F = {D,, CY : n € N} be a family
of decreasing (with respect to the inclusion) solid, closed, pointed convex cones. It is
said that F approxzimates D if D\{0} C int D,, eventually (i.e., there exists ng € N
such that D\{0} C int D,,, for all n > ng) and D =(,, D,,.

(b) Let F be an approzimating family of cones for D. We say that F separates
D from a closed cone K CY if

DNK ={0} < D,NK = {0} eventually.

Remark 2.2. (a) Let F = {D,,} be an approximating family of cones for D that
separates D from another closed cone K. If D N K = {0}, then D\{0} C int D,, and
K\{0} C int(Y'\D,,) eventually. In other words, D and K are strictly separated by
D,, eventually, in the sense of [13, Definition 2.1].

(b) In the finite dimensional setting, each approximating family F for D fulfills
for all fixed n € N the stronger inclusion D,,,\{0} C int D,, eventually (with respect
to m), instead of just D,, C D,, eventually.

Moreover, if Y is normed, then there exists a family F approximating D if and
only if D5t # ) (see [24, Theorem 3.1]).

Observe that condition D5t # () is satisfied if and only if there exists a nonempty
closed convex set B C D\{0} such that cone B = D. This set B is called base of D.
For instance, the sets

Bé:={deD:£d) =1}, V¢e D,
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4 C. GUTIERREZ, L. HUERGA, V. NOVO, AND M. SAMA

are bases of D, and in the finite dimensional setting, they are compact.

In particular, if Y is a separable normed space, we know by the so-called Krein-
Rutman theorem (see [15, Theorem 3.38]) that DT = (.

(¢) Some authors have explicitly built approximating families of cones in certain
settings. For example, Henig [13] obtained an approximating family of cones in the
finite dimensional Euclidean space R", Kaliszewski [16] for polyhedral cones in finite
dimensional spaces, and Sterna-Karwat [24, Theorem 3.1], Borwein and Zhuang [2]
and Gong [5] derived this family when Y is normed.

On the other hand, if Y is finite dimensional, then there exist approximating
families for D separating from each closed cone K (see [13, Theorem 2.1]), and if Y’
is normed and D has a weakly compact base, then there exist approximating families
for D separating from each weakly closed cone K (see [24, Proposition 6.1]).

For the convenience of the reader next we recall two of these results.
THEOREM 2.3. [2/4, Proposition 6.1] Let Y be a normed space and suppose that
B is a weakly compact base of D. Then the sequence

(2.1) DB .= cone (B + (1/n)B), VneN,

approzimates D and separates it from every weakly closed cone K CY.

Consider Y = R” and the polyhedral cone
(2.2) P:={yeR : Ay e R},

where A € M, (i.e., the matrix A has p rows and r columns) and p > r. In this
setting we assume that the elements in R" are column vectors. Also, the transpose of
a vector v € R" is denoted by v'. We suppose that P # {0}, which is equivalent to
0 ¢ intco{al : i =1,2,...,p}, where a; is the i-th row of A. Moreover, we consider
that rank(A) = r. Let us note that P defined in this way is convex, closed and
pointed. Moreover, observe that Ay € Rf\{0} provided that y € P\{0}, since P is
pointed, and so u'Ay > 0 as long as y € P\{0} (i.e., A'u € P*T), where u is the
p-dimensional vector (1,1,...,1)t. The following theorem shows a family of cones
that approximates P and separates it from every closed cone.

THEOREM 2.4. [16] The sequence
P,:={yeR" : Ay+ (1/n)uu’Ay e RY}, VneN

approximates P and separates it from every closed cone K C R".

Notice that the families {DZ} and {P,} are strictly decreasing, in the sense that
DP_\{0} c int D and P,11\{0} C int P,, for all n. Moreover, for each n € N,
¢ = (1/||Aul|)A'u € P5 and

(2.3) Bt ={yeP,:{(y) =1}

is a compact base of P,.
Throughout this paper, we consider the following vector optimization problem:

(VOP) Minimizep f(z) subject to z € S,

where f : X — Y, X is an arbitrary decision set and the feasible set S C X is
nonempty.
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LIMIT BEHAVIOUR OF APPROXIMATE PROPER SOLUTIONS 5

Let us recall that a point zg € S is an efficient (resp., weak efficient) solution
of problem (VOP), and we denote it by zo € E(f, S, D) (resp., xzg € WE(f, S, D)),
if there is not # € S such that f(xz) <p f(xo), f(z) # f(xo) (resp., f(2) <int DUTO}
f(zo), f(x) # f(xo)). The ordering cone D is assumed to be solid when dealing with
weak efficient solutions —otherwise, WE(f, S, D) = S and weak efficiency is a useless
solution concept.

Observe that, for each zg € S,

zo € E(f, 5, D) <= (f(S) — f(z0)) N (=D\{0}) =0,
2o € WE(, S, D) <= (f(S) — f(x0)) N (—int D) = 0.

The notions of approximate efficiency that we remind below are defined by fol-
lowing the common idea of replacing the ordering cone by a nonempty set C' that
approximates it. First, we need to introduce some sets.

For a nonempty set C' C Y'\{0}, we define the set-valued mapping C : R — 2V
as follows:

C ife >0
Cle) = { (cone ON [0} if & = 0,

and we introduce the following sets:

H:={0#£CcY\{0}:Cn(-D) =0},
H:={0#C cY\{0}:cleconeC N (—D) = {0}},

D’ CY : D is a proper solid convex cone,
4(0) :{ D\{0} C int D',C N (—int D') = (2)}

Moreover, given C C Y\{0}, £ > 0 and = € X, we denote by S(C(¢), z) the set of all
families of cones that approximate D and separate D from the cone — clcone(f(S) +
C(e) — f(z)). In particular, condition S(C(e),z) # ) means that there exists such a
family of cones.

The following approximate efficiency notion due to Gutiérrez, Jiménez and Novo
[9] generalizes the most important approximate efficiency concepts defined up to now
(see, for instance, [9, 10] and the references therein), which can be recovered by
considering specific sets C.

DEFINITION 2.5. Let C € H and € > 0. It is said that xg € S is a (C,e)-efficient
solution of problem (VOP), denoted by xg € AE(f, S, C,¢), if

(f(S) = f(=0)) N (=C(e)) = 0.

Remark 2.6. (a) The (C,e¢)-efficiency notion encompasses the concepts of ef-
ficient solution and weak efficient solution. To be precise, if coneC' = D, then
AE(f,S,C,0) = E(f,S,D); if coneC = int D U {0}, we have that AE(f,S,C,0) =
WE(f, S, D); if C = D\{0}, then AE(f,S,C,e) = E(f,S,D), for all € > 0, and if
C =int D, then AE(f, S,C,e) = WE(f, S, D), for all £ > 0.

(b) In Definition 2.5 we consider C' € H to obtain a consistent set of approximate
efficient solutions. Indeed, if C'N (—D) # (, it is possible to find simple problems for
which the approximate efficient set is empty, for all € > 0, while the efficient set is
not empty (see Remark 2.4 and Example 2.5 in [7]). The following properties hold
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6 C. GUTIERREZ, L. HUERGA, V. NOVO, AND M. SAMA

(see [9, Theorem 3.5(iii)]):

(2.4) () AE(f,S.C.¢) = E(f.S. D), if coneC =D,
e>0

(2.5) () AE(f,S,C.e) = WE(f, S, D), if coneC = int D U {0}.
e>0

With respect to the approximate proper efficiency, the next notion was introduced
by Li and Wang in [18] and it extends the concept of proper efficiency in the sense of
Geoffrion to the approximate case.

DEFINITION 2.7. Suppose that Y = R", D = R", and let € > 0 and q € R’ \{0}.
A feasible point xo is a Geoffrion e-proper efficient solution of (VOP) with respect
to q, and it is denoted by xo € Ge(f,S,q,¢), if there exists k > 0 such that for each
x €S andi € {1,2,...,r} with fi(xo) > fi(z) +eq; there exists j € {1,2,...,r} such
that f;(xo) < fj(x) 4+ eq; and

fi(zo) — fi(x) —eqi
Fi(@) — Fywo) Tegy =

In particular, if e = 0 in the above notion, we recover the concept of exact proper
efficiency due to Geoffrion [4]. We denote the set of exact proper efficient solutions
in the sense of Geoffrion by Ge(f,S). Notice that zy € Ge(f,S,q,¢) if and only if
zg € Ge(f —eql{z,y,S), where I,y : X — Ris the indicator function of the singleton
{$0}.

The next concepts of approximate proper efficiency combine the notions of proper
efficiency in the senses of Benson [1] and Henig [14], respectively, with the concept
of (C,¢e)-efficiency. The first one was introduced by Gutiérrez, Huerga and Novo
(see [8]) and the second one by Gutiérrez, Huerga, Jiménez and Novo in [7]. These
two notions extend and improve the most important concepts of approximate proper
efficiency given in the literature (see, for instance, [7, 8] and the references therein).

DEFINITION 2.8. Lete >0 and C € H. A point xg € S is a Benson (C,€)-proper
efficient solution of (VOP), and we denote it by x¢ € Be(f,S,C,¢e), if

(2.6) cleone(f(S) + C(e) — f(xo)) N (=D) = {0}.

DEFINITION 2.9. Let ¢ > 0 and C € H. A point xo € S is a Henig (C,¢)-proper
efficient solution of (VOP), and we denote it by xo € He(f,S,C,¢), if there exists
D' € G(C) such that xo € AE(f,S,C +int D', ¢).

Remark 2.10. (a) It is clear that D\{0} € H, and the concepts of Benson and
Henig (D\{0}, e)-proper efficiency coincide with the concepts of Benson [1] and Henig
[14] proper efficiency, respectively, for all ¢ > 0. Analogously, Benson and Henig
(C,0)-proper efficiency encompass the concepts of Benson [1] and Henig [14] proper
efficiency, respectively, provided that clconeC = D. In the sequel, the sets of ex-
act Benson and Henig proper efficient solutions of problem (VOP) are denoted by
Be(f, S, D) and He(f, S, D), respectively.

(b) The following equivalent formulation for Henig (C, )-proper efficient solutions
was proved in [7, Theorem 3.3(¢)]: A feasible point x is a Henig (C, )-proper efficient
solution of problem (VOP) if there exists D’ € G(C'), with int D’ = D’\{0} such that

(2.7) cleone(f(S)+ C(e) — f(zo)) N (—int D") = 0.
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LIMIT BEHAVIOUR OF APPROXIMATE PROPER SOLUTIONS 7

(¢) From (2.6) and (2.7) it is easy to see that He(f,S,C,e) C Be(f,S,C,¢).
Moreover, observe that both statements (2.6) and (2.7) imply in particular that
clconeC' N (=D) = {0}. Because of that, we consider C' € H in Definitions 2.8
and 2.9.

(d) The concepts of approximate proper efficiency in the senses of Benson and
Henig given by the set C = g+ D, ¢ € D\{0}, were introduced, respectively, by Rong
[23] and El Maghri [3]. These two concepts and the notion of approximate proper
efficiency due to Li and Wang (in the sense of Geoffrion) are based on the notion of
approximate efficiency in the sense of Kutateladze [17], in which the approximation
error is measured by means of a singleton {¢}.

3. Properties of approximate proper solutions. In this section we state
the equivalences between the last concepts of approximate proper efficiency when
problem (VOP) is considered, and we establish useful equivalent formulations of the
approximate proper solutions in the sense of Henig, that will be needed along the rest
of the paper.

THEOREM 3.1. Let e >0 and C € H. If S(C(e),z) # 0 for all x € S, then
(3.1) Be(f,S,C,e) = He(f, S, C.e).

Proof. Inclusion “D” in (3.1) is clear from Remark 2.10(c¢). For proving the other
inclusion, let zy € Be(f, S, C, ). By hypothesis we see there exists an approximating
family of cones {D,} for D separating from the cone — clcone(f(S) + C(e) — f(z0)),
and so

cleone(f(S) + C(e) — f(xo)) N (—D,) = {0} eventually.

Thus, it follows that D], := int D,,U{0} € G(C), int D], = D, \{0}, for all n, and they
satisfy statement (2.7) eventually, so xg € He(f, S, C,¢) by Remark 2.10(b). 0

In the particular case when Y is finite dimensional, we have the following result.

THEOREM 3.2. Suppose that Y =R" and let € > 0 and C € H. Then,
Be(f, S,C,e) = He(f,S,C,e¢).
Moreover, if D =R’ and q € R \{0}, then
(3.2) Ge(f,S,q,¢) = Be(f,S,q + R ,e) = He(f, S, ¢+ R’ ,¢).
Proof. We know that in the finite dimensional setting Y = R", there exist ap-
proximating families for D separating from each closed cone (see Remark 2.2(¢)) and
so we only have to prove the first equality in (3.2), since the other ones are clear by

Theorem 3.1. Thus, observe from [1, Theorem 3.2] that

zo € Ge(f,S,q,6) <= x0 € Ge(f — eqlfs,y,5)
<~ Xp € Be(f - 5(]1{10}7 S, Ri)

Furthermore, it is not hard to check that
cleone((f —eqliz})(S) + R} — (f — eqlizg})(20)) = cleone(f(S) + RY — f(zo) +eq)

and then the first equality in (3.2) is proved. d
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8 C. GUTIERREZ, L. HUERGA, V. NOVO, AND M. SAMA

Remark 3.3. Let € > 0 and C € H. Observe that inclusion “>” in (3.1) always
holds, but inclusion “C” could be false. However, the equality is satisfied under
the assumption S(C(g),z) # 0 for all x € S. For example, this assumption is true
whenever Y is finite dimensional (see [13, Theorem 2.1]); also if Y is normed, D has
a weakly compact base and clcone(f(S)+ C(g) — f(x)) is weakly closed for all z € S,
as a consequence of Theorem 2.3.

More generally, it is clear from the proof of Theorem 3.1 that only one strict
cone separation (see Remark 2.2(a)) is needed. Thus, (3.1) could be also true in
some settings different from the setting of Theorem 3.1. For example, [7, Corollary
4.8] states equality (3.1) by supposing that DT is solid with respect to a locally
convex topology on Y* compatible with the dual pair (when Y™* is equipped with the
topology of uniform convergence on the weakly compact absolutely convex sets of Y,
the solidness of DT is equivalent to the existence of a weakly compact base of D, see
[22]) and clcone(f(S) + C(g) — f(x)) is convex, for all z € S.

Let us underline that Theorem 3.1 does not require any convexity assumption.
From this point of view, it is an improvement of [7, Corollary 4.8]. For instance, in
Example 4.12 of this paper, one may deduce by Theorem 3.2 that He(f, S, ¢+ P,0.1) =
Be(f,S,q + P,0.1) and so (1.1,1.2) = (1,1) 4+ 0.1¢ ¢ Be(f,S,q + P,0.1) (see Figure
1). However, [7, Corollary 4.8] cannot be applied since the set clcone(f(S) + 0.1¢ +
P — f(1.1,1.2)) is not convex.

The following two theorems will be useful along the paper.

THEOREM 3.4. Consider ¢ > 0, C € H, g € S and {D,,} € S(C(e),xo). It
follows that xog € He(f, S, C,¢) if and only if 0 ¢ C+G,, and o € AE(f,S,C+Gp,¢)
eventually, where G, = D,\{0} or G,, = int D,,, for all n.

Proof. Suppose that zo € He(f,S,C,e). Then, by Remark 2.10(¢) we know that
xo € Be(f, S,C,¢), ie.,
cleone(f(5) — f(zo) + C(e)) N (D) = {0}
and so
cleone(f(S) = f(zo) + C(e)) N (=D \{0}) =0

eventually, since {D,, } separates D from — clcone(f(S)— f(xo)+C(g)). In particular
we have that

(f(8) = f(z0)) N (=C(e) = Du)\{0}) = 0
eventually. Thus, 0 ¢ C' + D, \{0} and xo € AE(f,S,C + D,\{0},¢) eventually, and
so 0 ¢ C+int D,, and 2y € AE(f, S,C +int D, €) eventually. Notice that D,, € G(C)
eventually, since 0 ¢ C' + D,\{0} eventually.
The reciprocal implication is clear by the definition. Thus, the proof is finished.O

LEMMA 3.5. Consider problem (VOP),C C Y\{0}, e > 0 andlet K CY be a
solid convex cone such that C + K € H. Then,

He(f,S,C + K,e) = He(f,S,C + (K\{0}),e) = He(f,S,C +int K, ¢).
Proof. Let D' C'Y be an arbitrary solid convex cone. It is not hard to check that
(3.3) K +int D" = (K\{0}) +int D' = int K + int D".
Therefore, we see that

(3.4) G(C + K) = G(C + (K\{0})) = G(C + int K).
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Moreover, for all G € {K, K\{0},int K'} it is clear that

(3.5) He(f,S,C+G,e)= |J AE(f,S,C+G+intD,e),
D'eG(C+G)
and the result follows by (3.3), (3.4) and (3.5). |

THEOREM 3.6. Consider problem (VOP), C C Y\{0}, € > 0, o € S and let
{D,} be an approzimating family of cones for D such that 0 ¢ C + Dy for some fi.
Suppose that {Dy} € S((C+ D) (€),xz0). Then, for each Gz € {Dg, Dz \{0},int Dz },

(3.6) xo € He(f, S,C + Ga,e) < z9 € AE(f,S,C +int Dy, ¢).

Proof. First, observe that C' 4+ Dy € H since 0 € C + Dj. Then, C + G5 € H, for
all G € {Dy, Dz\{0},int D5 }. By Lemma 3.5 we see that

He(f,S,C + Ds,e) =He(f,S,C + (Dz\{0}),e) = He(f, S,C + int Dy, ¢).

Then the result follows by proving statement (3.6) for Gz = Ds.

Let zg € He(f,S,C + Dy,e). By applying Theorem 3.4 we deduce that 0 ¢
C+Dy+int D, and zg € AE(f, S,C+Dy+int D,,, €) eventually. Consider an arbitrary
n’ € N, n' > @, such that g € AE(f,S,C + Dy + int D,v,€). As the family {D,} is
decreasing we have that Dy + int D,y = int D5 and so zg € AE(f, S,C + int Dy, €).

The reciprocal implication is a direct consequence of the definition and the proof
finishes. ]

From Theorems 3.4 and 3.6 we obtain the next corollary.
COROLLARY 3.7. Consider problem (VOP), C € H, e >0 and

{Da} € () S(Ce). )

€S
such that for each x € S, {D,,} € S((C + Dy,)(€), ) eventually. It follows that
He(f,5,C.e)= |J  AE(f,5,C+ (Dn\{0}),¢)
{n:0¢C+D,}

= U AE(f,S,C +int Dy, ¢)
{n:0¢C+int D, }

= |J  He(f,8,C+Gn.e), VG, € {Dy, D,\{0},int Dy, }.
{n:0¢C+D,}

The exact version of Corollary 3.7 is stated in the next result, which is deduced
by considering C' = D\{0} and ¢ = 1.

COROLLARY 3.8. Consider problem (VOP) and {D,} € (\,cs S(D,x) such that
for each x € S, {D,} € S(Dp,x) eventually. It follows that

He(f, S, D) = | JWE(f, S, D).

If additionally, for each n we have D,,\{0} C int D,, eventually, then

He(f, S, D) = | JWE(f,S,Dp) = | JE(f, S, Dy) = | JHe(f, S, D).



10 C. GUTIERREZ, L. HUERGA, V. NOVO, AND M. SAMA

In the finite dimensional case, we have the following result.

COROLLARY 3.9. Consider problem (VOP) and suppose that Y = R".
(a) For each compact base B of D it follows that

He(f,S, D) = | JWE(f,8,Df) = JE(/,5, DY) = JHe(f, S, DF).

(b) If D = P, where P is the polyhedral cone defined in (2.2), then

He(f, S, P) = JWE(f, S, P,) = | JE(f. S, Pn) = | JHe(f, S, P).

4. Limit behaviour. In this section we are going to study the limit behaviour
of Henig (C, e)-proper efficient solutions of (VOP), when ¢ tends to zero, for specific
sets C € H.

As we will see below, depending on the selected set, it is possible to reach exact
weak /efficient /proper solutions in terms of limits of sequences of Henig (C| ¢)-proper
efficient solutions of (VOP), when ¢ tends to zero.

The selection of C' to compute a suitable approximation of the efficient/weak
efficient /proper efficient set is relevant, as it is shown in the following illustrative

example.
Ezample 4.1. Let X =Y = R?, f: R? — R? be the identity function on R?, and
S =D =R3. It is clear that E(f,S,D) = {(0,0)'}. Let ¢ > 0 and ¢ = (1,1)" € R2.
Then, it is easy to check that
AB(f, 5,0+ 2, 0) = B 0 (5 e) + R
He(f,S,q+R%,e) = AE(f,S,q + R, ) U{(e,2)"}.

Thus, for any € > 0 these sets of approximate solutions do not provide good approxi-
mations of the efficient set. In fact, what they provide is a suitable approximation of
the weak efficient set.

On the other hand, if we now consider C' = co{(1,0)%, (0,1)*} + D, then one can
easily see that AE(f,S,C,e) = {(21,22)" € R2 : 29 < & — z1}. In this case, the set
of approximate solutions is bounded and for € > 0 small enough it represents a good
approximation of the efficient set.

In the next theorem, we characterize the set of exact efficient and proper efficient
solutions of (VOP) as intersections of sets of approximate proper efficient solutions.
A previous lemma is needed.

LEMMA 4.2. Let B CY be a base of D. Then,

6B+ (D\{0}) = | JeB + (D\{0}), Vi =>o0.
e>d

Proof. Let § > 0 and € > ¢. As B C D\{0}, it is clear that
eB+ (D\{0}) C 6B + (¢ — §)B + (D\{0}) C 6B + (D\{0}) + (D\{0})
= 0B + (D\{0}).

Reciprocally, let b € B and d € D\{0} arbitrary. There exists A > 0 and b’ € B
such that d = \o’. Thus,

) A



LIMIT BEHAVIOUR OF APPROXIMATE PROPER SOLUTIONS 11
We have that b"” := (6/(5 + X))o+ (A/(6 + )b’ € B, since B is convex. Therefore,

Sb+d=(5+Nb" = (5+A/2)b" + (\/2)" € | ] eB + (D\{0}),

e>d
385 which finishes the proof. ]
386 THEOREM 4.3. Let B CY be a base of D. The following statements hold.
387 (a) He(f,S,D) C (| He(f,S, B+ D,e) C (| He(f,S,q+ D,e) C WE(f, S, D),
e>0 e>0
388 for any ¢ € D\{0}.
389 (b) () He(f,S, B+ D,e) C AE(f,S, B + (D\{0}),6), for all § > 0.

e>0
(c) Suppose that B is weakly compact, there exists an approzimating family for

D, f(S)=Q+H, Q is a weakly compact set of Y and H C D, 0 € H. Then,
AE(f,S,B+ D,e) C He(f,S,B+ D,e), Ve>0.

390 (d) Under the assumptions of part (c), it follows that
391 () AE(f,S, B+ D,e) = (| He(f, S, B+ D,e) = E(f, 5, D).
392 >0 >0

(e) Assume that {Dy} € (,cgS(D,x) and consider a sequence {Cy} of sets in
Y such that C, C D,\{0} and int D,, C (C,, + D\{0})(0), for all m € N.
Then,

() He(f.S.Cn.c) = He(f, S, D).

n >0

Proof. (a) The first inclusion is a particular case of [7, Theorem 3.6(f)], since
B+ D c D\{0}, and the third inclusion is a direct consequence of [7, Remark 3.2(d)]
and [10, Theorem 3.4(iii)], since

int D C cone(q + D\{0})\{0} = (¢ + D\{0})(0) Vg € D\{0}.

For deriving the second inclusion, note that for every ¢ € D\{0} there exists A\ >
0 and b € B such that ¢ = A\b, so (1/A\)g € B. Then, by [7, Theorem 3.6(b)]
He(f,S,B+ D,e) C He(f,S,q+ D,e/X), for all £ > 0, and we have that

() He(f.S, B+ D,e) C (| He(f,S,q+ D,e).
e>0 e>0
(b) Let 6 > 0. By [7, Remark 3.2(d)] it is clear that
() He(f,S,B+ D,e) C () AE(f.S. B + (D\{0}),¢).
e>0 e>d

393 and then the result follows by Lemma 4.2.

394 (¢) Consider € > 0 and 2o € AE(f,S, B + D,¢). By the assumptions we deduce
395 that H + D = D and then

396 (4.1) (Q — f(zg)) N (—eB— D) =0.

397 Reasoning by contradiction suppose that z¢ ¢ He(f,S, B+ D,¢) and let {D,,} be

398 an approximating family for D. Then, zo ¢ AE(f,S,B+ D +int D,,,¢), for all n € N.
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As for each n, H + D + int D,, = int D,,, through the same reasoning as before we
deduce that

Q= flxo))N(-eB—int Dp) #0 VneN.

Then there exist sequences (¢,) C @, (b,) C B and (d,) C Y such that d,, € int D,
and g, — f(zg) = —eb, — dy,, for all n. By compactness, taking subsequences if
necessary, we can assume that ¢, — q € @, by, — b€ B, so d, — —q+ f(zo) —eb and
by the definition of approximating family of cones it follows that —g+ f(xo) —eb € D.
Thus, (Q — f(z¢)) N (—eB — D) # () and we reach a contradiction with statement
(4.1).

(d) Tt follows by (2.4) and as a direct consequence of parts (b) and (¢), since

E(f,S,D) = (| AE(f,S,B+ D,e) C (| He(f,S,B + D,e)
e>0 e>0

C AE(f, S, B+ (D\{0}),0) = E(f, 5, D).

(e) First, let us observe that, for each n € N, condition C,, C D,\{0} implies
Cpn € H and

(4.2) (Cp +int D,,)(0) = int D,,.

Let 29 € He(f, S, D). By applying Theorem 3.4 with C' = D\{0} and € = 1 we deduce
that zog € AE(f, S,int D,,, 1) eventually. Thus, there exists m € N such that

o € AE(f, S,int Dy,, 1) = WE(f, S, D) = [ | AE(f, S, Cpy + int Dy, €),
e>0

where the last equality is a consequence of (4.2) and (2.5).
It is clear by Definition 2.9 that

AE(f,S,C,, +int D,y,,e) C He(f, S, Chnye), Ve>0

and so we have that

zo € |J () He(f, 8, Cn,c).

n >0

Reciprocally, for each n € N, by [7, Remark 3.2(d)], [10, Theorem 3.4(iii)] and as-
sumption int D,, C (C,, + D\{0})(0) we see that

U () He(£,8,Cne) < |J () AE(£, S, C + D\{0}, €)

n >0 n >0

= JAE(#, 8,C., + D\{0},0)

c [JWE(f. 5,Dy)
C He(f,S,D)

and the proof finishes. 0
Remark 4.4. (a) Condition C,, C D,\{0} is equivalent to the following one:

0¢ C, and C,, + D\{0} C int D,,.
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Thus, the assumptions on the sets C,, in Theorem 4.3(e) can be reformulated as
follows: 0 ¢ C,, and (C,, + D\{0})(0) = int D,,, for all n. For instance, this condition
is satisfied by C,, € {G,, + Dy, B, + D}, where G,, C D,\{0} and B, is a base of
D,,. A very easy family to construct satisfying the last condition is {q¢ + D,}, for
q € D\{0}.

(b) Let B C Y be a base of D. By [7, Theorem 3.6(b)] we have that

() He(f, S, B+ D,e) = He(f, S, B+ D,8), ¥5>0

e>d

and by applying parts (a) and (b) of Theorem 4.3 we deduce that

He(f, S, D) C (| He(f,S, B+ D,e) C E(f, S, D).
e>0

If additionally the assumptions of part (c¢) are fulfilled, by part (d) we know that

(4.3) () He(f, S, B+ D,e) =E(f, S, D)
e>0

and also

AE(f,8,B + D,6) C He(f,S, B+ D,6) C (| He(f, S, B+ D, )
e>d
C AE(f, S, B+ (D\{0}),8), V&> 0.

Under the assumptions of Theorem 4.3(c¢), we deduce from (4.3) that for § > 0
small enough the set (.~;He(f,S,B+ D,e) = He(f,S,B+ D,§) is a good approxi-
mation of the efficient set, and two proper estimations for He(f, S, B + D, d) are the
sets AE(f,S,B + D,¢) and AE(f, S, B+ D\{0},6). In particular, it must be under-
lined that the set of Henig (B + D, §)-proper efficient solutions represents suitably the
efficient set.

On the other hand, notice by the proof of Theorem 4.3(e) that, for each xy €
He(f, S, D) it follows that xo € (..o He(f,S,Cn,e) eventually. Then, for n € N
big enough, the set (.., He(f,S,Cy,e) may be a good approximation of the set
He(f,S,D). As (\.ssHe(f,S,Cp,e) approximates the set (.., He(f,S,Cy,¢) for
0 > 0 small enough, then it also approximates suitably the set of exact Henig proper
solutions of problem (VOP).

Moreover, we can simplify expression (). s He(f, S, Cy,€) by considering approx-
imation sets that satisfy certain properties. For example, if C, are coradiant sets,
then [7, Theorem 3.6(c)] can be applied and then

() He(f,S,Cy,e) = He(f, S, Chp, ).

e>d

In the following two theorems, we establish sufficient conditions for exact Henig proper
efficient, efficient and weak efficient solutions in terms of limits of sequences of Henig
approximate proper efficient solutions of (VOP).

Previously, a lemma is needed in order to derive part (¢) of Theorem 4.6. It
extends [7, Lemma 3.7] to any (not necessarily finite dimensional) linear space ¥ and
any base B of the ordering cone D.
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LEMMA 4.5. Let B C'Y be a base of D and consider two sequences (e) C R1\{0}
and (yr) CY, and a point y € Y such that e, — 0, yp — Y, Yr+1 <D Yr and

yk € DN (Y\ (e B + (D\{0}))), VkeN.

Then, y = 0.

Proof. As D is closed we have that y € D. Moreover, since yx+1 <p yx for all k,
it is easy to check that y <p v, for all k.

Suppose, reasoning by contradiction, that y % 0. Then, by Lemma 4.2 with § = 0
there exists € > 0 such that y € B + (D\{0}) and for each k € N such that ¢, <&
we obtain that y € e, B + (D\{0}). Fix kg € N such that e, <Z. Then,

Yko =Y + (Yo —Y) € € B + (D\{0}) + D = ex, B + (D\{0}),

which is a contradiction. Therefore, y = 0 and the proof finishes. ]

THEOREM 4.6. In problem (VOP) consider C € H, xog € S and sequences (z) C
X and (er) € Ry\{0} such that xp, € He(f,S,C,¢er), for all k € N, ¢, | 0 and
Fan) = (o).
(a) If C = G+ K, where K € G(D\{0}), G C K\(—K), then z9 € He(f, S, D).
(b) If D is solid and C = G + D, where G C D\{0}, then o € WE(f, S, D).
(¢) If B is a base of D, C = B+ D and f(xx+1) <p f(xk), for all k, then
zo € E(f, S, D).

Proof. (a) First, observe that G + K € H. By [7, Remark 3.2(d)] we see that
z, € AE(f,S,G + K + D\{0},ex), Vk.

We have that K + D\{0} = int K, since K € G(D\{0}). Moreover, G + int K is
coradiant. Then, by [10, Theorem 3.4(iv)] we deduce

20 € AE(f, S, G + int K, 0) = WE(f, S, K),

since (G + int K)(0) = int K, and the result follows since WE(f, S, K) C He(f, S, D).
(b) By [7, Remark 3.2(d)] we deduce that

xp € AE(f,S,G+ D + D\{0},e) C AE(f,S,G +int D,e;), VkeN,

since D + D\{0} = D\{0} D int D. From here, by reasoning in analogous way as in
part (a), we conclude that zo € WE(f, S, D).

(¢) This result follows by applying [11, Corollary 7(b)] to the data K = D,
M = f(S) and G(¢) = eB + D\{0} (Lemma 4.5 ensures that the assumptions of [11,
Corollary 7(b)] are fulfilled). 0

Remark 4.7. (a) If S(C(eg),z) # 0, for all k and for all z € S, then by Theorem
3.1 the approximate Benson and Henig proper solution sets coincide, and we have
that the accuracy of Theorem 4.6(a) is better than in [6, Theorem 3.7 c)], since in
Theorem 4.6(a) it is proved that the approximate proper solutions tend to exact
efficient solutions which are proper solutions.

(b) Part (¢) of Theorem 4.6 extends [7, Theorem 3.8] to any (not necessarily finite
dimensional) linear space Y and any base B of the ordering cone D.

(¢) The easiest way to apply the previous theorem is by considering a singleton
G = {q}, where ¢ € K\(—K) in part (a) and ¢ € D\{0} in part (b).
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In the particular case when Y is normed or finite dimensional, we obtain the following
results as consequences of Theorem 4.6.
For the next result, we suppose that Y is normed and we consider the family of
cones { DB} introduced in (2.1), for a base B of D. We denote D2 = D and B, := B.
Let us also denote by 7 a natural number big enough so that 0 ¢ B,, :== B+(1/n)B.
We have that B,, + DE € H, ¥n,m € NU {0}, n,m > n.

COROLLARY 4.8. Suppose that Y is normed and B C D\{0} is a base of D. Let
xo € S, ni,ne € NU {oo}, ni,ne > 7 and let (z;) C X and (g) C RL\{0} be
two sequences such that x € He(f,S, Bn, + sz,sk), for all k € N, g, | 0 and
f(xx) = flzo).

(a) If ng # 0o, then xo € He(f, S, D).

(b) If D is solid, then o € WE(f, S, D).

(c) If f(xrpt1) <p f(zk), for all k € N, then z¢ € E(f, S, D).

Proof. (i) As B+ DB C B,, + DZ | by [7, Theorem 3.6(b)] we have that

2 nz?

He(f, S, B,, + DB

ng?

ex) C He(f,S,B+ DF ,ep).

Then by applying Theorem 4.6(a) with G = B and K = DJ we see that zy €
He(f,S,D). For parts (b) and (c) observe that since B+ D C By, + D, by [7,
Theorem 3.6(b)] we have that

He(f, S, Bn, + D ,e) C He(f, S, B+ D, ¢y).

Thus, if D is solid, Theorem 4.6(b) implies that g € WE(f, S, D) and if f(zx4+1) <p
f(xy) for all k € N, by applying Theorem 4.6(c) we see that xo € E(f, S, D). d

In the next corollary, we consider that ¥ = R" and D is the polyhedral cone P
defined in (2.2). We are going to work with the approximating family of cones {P, }
stated in Theorem 2.4.

For each n, we remind that BZ is the base of P, defined in (2.3). Denote P, = P
and B4 :={y e P:((y) = 1}.

The proof of this corollary follows from Theorem 4.6, reasoning in analogous way
as in the corollary above.

COROLLARY 4.9. Suppose that Y = R". Let g € S, ni,n2 € NU {oco} and let
(z1) C X and (g) C Ry \{0} be two sequences such that x), € He(f, S, B\ + Pn,.ck),
forallk € N, e, L 0 and f(zr) — f(xo).

(a) If ng # oo, then xo € He(f, S, P).

(b) If P is solid, then xo € WE(f, S, P).

(c) If f(zgs1) <p f(zg) for all k € N, then zo € E(f, S, P).

Let X be a Hausdorff topological space and let F : R, — 2% be a set-valued
mapping. We remind that xy € X belongs to the upper limit of F when € — 0, and
we denote it by z¢ € limsup,_,, F'(¢), if there exist sequences (g) C Ry\{0}, ¢ — 0
and (z) C X, such that zj € F(ex), for all k € N and z — xo.

In the next theorem we formulate the exact proper and weak efficient solutions
of (VOP) in terms of the upper limit of approximate proper solutions when & tends
to zero.

THEOREM 4.10. Consider problem (VOP) and assume that X is a Hausdor(f topo-
logical space, f is continuous on S and S is closed.



16 C. GUTIERREZ, L. HUERGA, V. NOVO, AND M. SAMA

(a) Let {Dn} € ,esS(D,x) and {Gn} be a sequence of nonempty sets in Y
such that Gy, C D, \{0}, for alln € N. Then

UlimsupHe(f, S,Gpn + Dyn,e) = He(f, S, D).

e—0
(b) If D is solid and G C D\{0}, then
limsup He(f,S,G + D,e) C limsup AE(f, S,G +int D,e) = WE(f, S, D).

e—0 e—0

Proof. (a) Let n € N arbitrary. The inclusion
limsup He(f, S, G,, + Dy, e) C He(f, S, D)

e—0
524 follows directly by applying Theorem 4.6(a) to the sets G = G,,, K = D,, and taking
525 into account that f is continuous on S and S is closed.
526 Reciprocally, let =g € He(f,S, D). By considering C,, = G,, + D,, in Theorem
527 4.3(e) we obtain that there exists m € N such that 2o € (.., He(f,S,Gm + D, €)
528 and part (a) is proved.
529 (b) By [7, Remark 3.2(d)] we deduce the inclusion
530 limsup He(f, S,G + D,¢) C limsup AE(f, S,G + int D, ¢).
531 e—0 e—0

532 On the other hand, it is not hard to check that the sets AE(f,S,G + int D, ¢) are
533  closed. Moreover, since G + int D is coradiant, by [10, Theorem 3.4(ii)] the collection
534  of these sets is decreasing with respect to € > 0. Thus,

535 limsup AE(f, S, G +int D,e) = (| AE(f, S, G + int D, ) = WE(f, S, D)
536 =0 >0
537 where the last equality is obtained by taking into account that (G +int D)(0) = int D
538 and statement (2.5), and the proof is finished. d
539 Remark 4.11. (a) As in Theorem 4.6, the more effective way to apply parts (a)
540 and (b) of Theorem 4.10 is consider in part (a) singletons G,, = {g,}, where ¢, €
541 Dp\{0} for all n € N, and G = {q} with ¢ € D\{0} in part (b).
542 (b) In Theorem 4.10(a), inclusion
543 (4.4) \Jlimsup He(f, S, Gy, + Dy, €) C He(f, S, D)

e—0

544 is true provided that {D,} is an approximating family for D and G,, C D,\{0}.
545 Then, Theorem 4.10(a) improves [6, Theorem 3.7(c)], and it follows that

546 limsup He(f, S, Cy,,€) C limsup Be(f, S,Cn,e) C E(f, S, D),

e—0 e—0
547 for every n € N (we have applied Remark 2.10(¢) in the first inclusion and [6, Theorem
548 3.7(c)] in the second one). But actually, in (4.4) we have shown that the upper limit
549 of Henig approximate efficient solutions is included in the set of exact proper efficient
550 solutions He(f, S, D), which is a more precise estimation than E(f,.S, D).
551 Furthermore, if {D,} € [,cqS(D, ), then Theorem 4.10(a) characterizes the
552 set of Henig proper efficient solutions of problem (VOP) in terms of limits of Henig
553 approximate proper efficient solutions when the error tends to zero.
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(¢) By means of Theorem 4.10(b) we see that for ¢ € D\{0} and £ > 0 small
enough, the notion given by El Maghri [3], and consequently by Rong [23] (see Remark
2.10(d) and Theorem 3.1) provide a set of approximate proper solutions that tend to
weak efficient solutions. However, if our aim is to provide a suitable approximation
of the proper efficient set, we have to consider a more restrictive approximation set
than ¢ + D, as for instance, the sets C,, = G,, + D,,, with G,, C D,\{0} and n big
enough, as it was proved in part (a) (take also into account Remark 4.4).

t
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In the following example, we illustrate the results.

Ezample 4.12. Let X =Y = R?, f : R? — R? be the identity function on R?,
S =R2NQ°, where Q denotes the open square (0,1) x (0,1) and D = P = {(z1,22)" €
Ri : X9 > x1}. It is easy to see that

He(f,S,P) = E(f,S,P) = {(z1,1) € R*: 0 < 2y < 1} U {(21,0)! € R? : 2y > 1},

562 and WE(f,S,P) =bdS.

563 Let us consider e = 0.1 and ¢ = (1,2)" € P. In Figure 1 we have represented the
564 set He(f,S,q+ P,0.1) in dark grey.

2 He(f,S,q+ P,0.1)
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'

'
05 i
'
'
'
'
'

-0.5

Fic. 1. He(f,S,q+ P,0.1)

565 As it can be observed, this set does not provide a suitable approximation of the
566 proper efficient set (which, in this case, is also equal to the efficient set), since we can
567 find approximate proper solutions as far as one wants from He(f, S, P).

568 Indeed, every point (z1,22)! € R?, with 0 < 27 < 0.1 and x5 > 1 is an approxi-
569 mate proper efficient solution, and the distance from such a point to the efficient set
570 tends to infinity when xs goes to infinity.

1 In this case, what we obtain is a good approximation of the weak efficient set.
572 On the other hand, it is clear that the cone P is polyhedral, constructed through
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the matrix

A

I
O =
)

We know from Theorem 2.4 that {P,} €
n = 10, it follows that

»esS(P,x). If we consider, for instance,

1 0.2
Pig = { (z1,20)" € R?: 0 1.2 ( il > € Ri
-1 1.2 2

So take now C19 = ¢+ P1g. The set He(f, S, C19,0.1) is illustrated in Figure 2. As it
can be observed, it provides a good approximation of the proper efficient set. Indeed,
every approximate proper solution is close to the proper efficient set, which is precisely
the property studied in Theorem 4.3(e) and Remark 4.4(a),(b).

He(f)S7q_|_P10)0'1)

0.5

-0.5

Fia. 2. He(f, S, q+ Pio, 0.1)

Although it is clear from Theorem 4.3(e), we underline that set He(f, S, C1,0.1)
does not contain any point of the set

{(0,22)" € R? : 2y > 1} U{(1,22)' € R?: 0 <y < 1},

that represents the collection of weak efficient solutions that are not efficient solutions.
This situation can be visualized better in Figure 3, in which we have improved the
accuracy by considering € = 0.03.

Of course, the higher the value of n and the smaller the value of €, the better the
approximation of He(f, S, q+ P,,¢) to the proper efficient set (see Theorem 4.10(a)).
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He(f, S, q = Pl(), 003)
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Fic. 3. He(f, S, q + Pio,0.03)

5. Conclusions. We have studied the limit behaviour when the precision goes
to zero of approximate proper efficient solutions of a vector optimization problem
with an arbitrary closed pointed convex ordering cone. These solutions are defined
by means of a set that approximates the ordering cone. For different choices of the
approximating set, we have obtained sufficient conditions for approximate proper
solutions to tend to exact weak/efficient/proper solutions when the precision error
goes to zero.

Moreover, we have guaranteed the convergence of the approximate proper solu-
tions to the exact proper efficient solutions for different families of approximating
sets.

The main results of this work are useful to characterize approximate proper solu-
tions of the vector optimization problem through scalarization. In this case, one could
obtain suitable approximate proper efficient solutions by solving scalar optimization
problems.

Thus, this research is the theoretical basis of a forthcoming paper, where we will
address with scalarization processes, paying attention to some interesting settings from

a computational point of view, as the nonconvex finite dimensional vector optimization
problems with a polyhedral ordering cone.

6. Acknowledgements. The authors are very grateful to the referees for their
valuable comments and suggestions.
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