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Abstract

This work concerns with a vector optimization problem with set-valued map-

pings. In solving this problem, weakly efficient solutions with respect to the so-

called vector criterion are considered. These solutions are defined via the notion

of quasi interior, in order to provide useful results to certain problems where the

topological and algebraic interior of the ordering cone is empty. Moreover, the

domination set that defines the domination structure of the problem is assumed

to be free disposal with respect to a convex cone. In this setting, optimality condi-

tions via linear scalarization results and Lagrangian multiplier theorems are stated.

Some of them improve several recent ones of the literature, since they are obtained

under weaker assumptions.
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1 Introduction

A vector optimization problem is a mathematical programming problem that involves

(single or set valued) vector mappings. In particular, the image space of the objective

function is usually assumed to be a real Hausdorff topological vector space. Two con-

cepts are really important in this kind of problems. On the one hand, the preference
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order assumed by the decision maker. On the other hand, the notion of solution (see

[8, 15, 16, 18, 19]).

In dealing with the above two concepts, a very popular approach in the literature

focuses on an ordering in the objective space defined through a convex cone C (see

(2.1) with M = C), which is assumed to be pointed (C ∩ (−C) = {0}). This binary

relation is a partial order. Then, in a problem whose objective function is single valued,

a feasible point is said to be a solution if its image is a nondominated point of the image

set.

This criterion is extended to problems with set-valued objective mappings by con-

sidering as solutions the feasible points whose image sets have some nondominated

point with respect to the whole image set of the problem.

In the last years, researchers have been interested in preference orders defined by a

free disposal set E, i.e., by a set that coincides with its conical extension with respect

to the ordering cone: E = E + C (see, for instance, [4, 11, 13, 20]). By this kind of

domination sets, one can deal simultaneously with exact and approximate solutions of

the problem (see [4, 13] and the references therein).

On the other hand, it is well known that a vector optimization problem is more

tractable from a mathematical point of view if one considers the topological interior of

C as ordering set instead of C. Although the nondominated solutions of this problem,

called weakly efficient solutions, could be improper from a practical point of view, they

deserve to be taken into account since they give valuable information for the first ones.

For example, necessary optimality conditions for the second ones are also necessary

optimality conditions for the first ones.

Unfortunately, there are a lot of important ordering cones whose topological interior

is empty (for example, the positive cones `p+ and Lp+ of the Banach spaces `p and Lp, for

all p ∈ [1,+∞)). To overcome this problem, the concepts of algebraic interior, relative

algebraic interior (also named as intrinsic core), quasi interior and quasi-relative interior

of a convex set are considered (see [2, 14, 15, 17, 21]).

The aim of this work is to provide optimality conditions for weakly efficient solu-

tions of vector optimization problems, that are defined through the quasi interior of

a free disposal domination set. We study the convex case and the optimality condi-

tions are formulated by linear scalarization results and Lagrangian multiplier theorems.

These results improve several ones of the literature since they are stated by weaker

assumptions. Moreover, they can be applied to problems where the topological and

algebraic interior of the ordering cone is empty. The mathematical approaches and

techniques of the paper are strongly motivated by the ones in [7, 22].

This paper is structured as follows. In Section 2, the setting and the basic no-

tations and concepts are introduced. In particular, the vector optimization problem

is introduced, the notions of quasi interior and quasi-relative interior and their main
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properties are recalled, and some basic properties on generalized convexity are stated

in connection with the concept of quasi-relative interior.

In Section 3, characterizations of weakly efficient solutions of a vector optimization

problem with set-valued mappings are stated via linear scalarization results. It is no-

ticed that they encompass other similar ones of the literature. In section 4, Lagrangian

optimality conditions are derived via a scalar Lagrangian set-valued mapping. As in

the previous section, it is noticed that the obtained Lagrange multiplier rules improve

other similar results of the literature since they are proved by weaker assumptions.

Finally, in Section 5, the highlights of the paper are underlined.

2 Preliminaries

Throughout Y,Z denote two real locally convex Hausdorff topological linear spaces and

Y ∗, Z∗ are their topological dual spaces, respectively. We refer to the duality pairing

in Y and Z as 〈λ, y〉 and 〈µ, z〉, i.e., 〈λ, y〉 := λ(y) and 〈µ, z〉 := µ(z), for all y ∈ Y ,

z ∈ Z, λ ∈ Y ∗ and µ ∈ Z∗. Moreover, let us assume that K ⊂ Y and D ⊂ Z are two

convex cones.

In the sequel, clM and intM denote the closure and the topological interior of a

set M ⊂ Y . We say that M is solid if intM 6= ∅. Moreover, coM stands for the convex

hull of M . Let us recall that the positive polar cone of a cone C ⊂ Y is the set

C+ := {λ ∈ Y ∗ : 〈λ, y〉 ≥ 0,∀y ∈ C},

and the positive polar cone of M is the set M+ := (coneM)+, where coneM denotes

the generated cone by M , i.e., coneM := ∪α≥0αM . We say that a cone C ⊂ Y is

proper if C 6= Y . Moreover, we denote cone+M = ∪α>0αM and R+ := [0,+∞).

In this paper we focus on the following set-valued optimization problems:

Min{F (x) : x ∈ S}, (VOP)

Min{F (x) : x ∈ Q,G(x) ∩ (−D) 6= ∅}, (CVOP)

where X is a real linear space, S,Q ⊂ X and F : X ⇒ Y , G : X ⇒ Z are set-

valued mappings. We assume that the feasible sets of problems (VOP) and (CVOP)

are nonempty. Let us notice that problem (CVOP) is a constrained version of problem

(VOP). In other words, problem (VOP) encompasses problem (CVOP) by taking the

feasible set

S = {x ∈ X : G(x) ∩ (−D) 6= ∅} ∩Q.

In this paper, the vector criterion will be considered to solve problem (VOP) (see

[15, 16, 18]). This approach is based on the pointwise preferences introduced in the

image space Y by a nonempty domination set M ⊂ Y via the following binary relation:

y1, y2 ∈ Y, y1 ≤M y2 :⇐⇒ y2 − y1 ∈M. (2.1)
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Then, a feasible point x0 ∈ S is said to be a solution of problem (VOP) with domination

set M , denoted by x0 ∈ Sol(F, S,M), if there exists a point y0 ∈ F (x0) such that y0 is

a nondominated point of the range F (S), i.e., if we have

y ∈ F (S), y ≤M y0 ⇒ y = y0.

The pair (x0, y0) is called M -minimizer of problem (VOP) and it is denoted by

(x0, y0) ∈ Min(F, S,M). Notice that Min(F, S,M) is a subset of the graph of F :

gphF := {(x, y) ∈ X × Y : y ∈ F (x)}.

A nonempty set E ⊂ Y is said to be free disposal with respect to a convex cone C

if E = E +C. The class of free disposal sets was introduced by Debreu [5]. In the last

years, they have been successfully used to model domination sets (see [13]).

Next, the concepts of algebraic interior, relative algebraic interior (also named as

intrinsic core), quasi interior and quasi-relative interior of a convex set are recalled (see

[2, 14, 15, 17, 21]). The third one is due to Limber and Goodrich [17] and the fourth

one was introduced by Borwein and Lewis [2].

Definition 2.1. Let M ⊂ Y be a convex set. The algebraic interior, the intrinsic core,

the quasi interior and the quasi-relative interior of M are, respectively, the following

sets:

coreM := {y ∈M : cone(M − y) = Y },

icrM := {y ∈M : cone(M − y) is a linear subspace of Y },

qiM := {y ∈M : cl cone(M − y) = Y },

qriM := {y ∈M : cl cone(M − y) is a linear subspace of Y }. (2.2)

Remark 2.2. It is clear that

intM ⊂ coreM ⊂ icrM ⊂ qriM,

coreM ⊂ qiM ⊂ qriM,

and intM = coreM = icrM = qiM = qriM whenever M is solid. On the other hand,

let us notice that icr `p+ = icrLp+ = ∅, while qi `p+ 6= ∅ and qiLp+ 6= ∅, for all p ∈ [1,+∞)

(see [3, 17]).

The next proposition collects the basic properties of the quasi-relative interior (see

[1, 2, 3, 22, 23, 24]). Let M ⊂ Y be a nonempty convex set. Recall that the normal

cone of M at a point y ∈M is the set

NM (y) := {λ ∈ Y ∗ : 〈λ, z − y〉 ≤ 0,∀z ∈M}.
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Proposition 2.3. Let M,A ⊂ Y be two convex sets. We have that:

(i) y ∈ qriM if and only if y ∈M and NM (y) is a linear subspace of Y ∗;

(ii) qriM + qriA ⊂ qri(qriM + qriA) ⊂ qri(M +A);

(iii) if M ∩ qriA 6= ∅, then qri(M ∩A) ⊂M ∩ qriA;

(iv) if qriM ∩ qriA 6= ∅, then qri(M ∩A) ⊂ qriM ∩ qriA;

(v) qri(M ×A) = qriM × qriA;

(vi) qri(M + y) = qriM + y, for all y ∈ Y ;

(vii) qri(αM) = α qriM , for all α ∈ R;

(viii) β qriM + (1− β)M ⊂ qriM , for all β ∈ (0, 1];

(ix) if M is an affine set, then qriM = M ;

(x) qri(qriM) = qriM ;

(xi) qriM = M ∩ qri clM ;

Moreover, if qriM 6= ∅, then:

(xii) cl(qriM) = clM ;

(xiii) cl cone qriM = cl coneM ;

On the other hand, if C ⊂ Y is a convex cone, then qriC+C = qriC. In addition,

if qriC 6= ∅, then for each nonempty set L ⊂ Y it follows that

cl cone(L+ C) = cl cone(L+ qriC) = cl(coneL+ qriC). (2.3)

Remark 2.4. Let M ⊂ Y be a convex set. If qiM 6= ∅, then qiM = qriM (see [17]).

In particular, all properties of Proposition 2.3 are also true by replacing “qri” by “qi”

provided that the quasi interiors of the involved sets are nonempty. Moreover, if A ⊂ Y
is also a convex set, then the following additional properties hold (see [23]):

M + qiA = qi(M + qiA) ⊂ qi(M +A); (2.4)

M ⊂ A⇒ qiM ⊂ qiA. (2.5)

To complete the properties above, we state two characterizations of the elements of

the quasi interior of a convex cone C through properties formulated in the dual space

Y ∗. The first one involves the normal cone of C and it was proved in [3, Proposition

2.4]. The second one involves the elements of C+\{0} and it was obtained in [17,

Theorem 2.2] in the setting of a normed space.

Theorem 2.5. Let C ⊂ Y be a convex cone and y ∈ C. We have that

y ∈ qiC ⇐⇒ NC(y) = {0} (2.6)

⇐⇒ 〈λ, y〉 > 0 ∀λ ∈ C+\{0}. (2.7)

Proof. Let us only check the second characterization. Consider y ∈ qiC and λ ∈
C+\{0}. As y ∈ C, we have 〈λ, y〉 ≥ 0. Reasoning by contradiction, let us suppose that
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〈λ, y〉 = 0 and consider an arbitrary point z ∈ Y . By the definition of quasi interior it

follows that there exist nets (αi) ⊂ R+ and (yi) ⊂ C such that αi(yi − y)→ z. Thus,

〈λ, z〉 = lim
i
αi〈λ, yi − y〉 = lim

i
αi〈λ, yi〉 ≥ 0,

since λ ∈ C+. Then, 〈λ, z〉 ≥ 0, for all z ∈ Y and so λ = 0, which is a contradiction.

Thus, 〈λ, y〉 > 0 and the necessary condition of (2.7) is proved.

Reciprocally, assume that y ∈ C satisfies 〈λ, y〉 > 0, for all λ ∈ C+\{0}. Let us

prove that NC(y) = {0}. Indeed, suppose that λ̄ ∈ NC(y) and λ̄ 6= 0. By definition we

have

〈λ̄, z − y〉 ≤ 0 ∀z ∈ C

and since C is a cone we see that 〈λ̄, z〉 ≤ 0, for all z ∈ C. Thus, −λ̄ ∈ C+\{0}. More-

over, by considering z = 0 we obtain 〈−λ̄, y〉 ≤ 0, that is a contradiction. Therefore,

NC(y) = {0} and the result follows by applying the sufficient condition of (2.6).

It is well-known that optimality conditions for problem (VOP) can be obtained via

alternative theorems and linear scalarization processes whenever suitable convexity

conditions are satisfied. Next we recall a generalized convexity notion introduced in

[12, Definition 2.3] from which the results of the following sections will be derived.

Definition 2.6. Consider a nonempty set M ⊂ Y . A set-valued mapping H : X ⇒ Y

is said to be nearly M -subconvexlike on a nonempty set N ⊂ X if cl cone(H(N) +M)

is convex.

Next we state some relationships between the notion of nearly M -subconvexlikeness

and other generalized convexity concepts of the literature. A previous lemma is needed.

Lemma 2.7. Consider a nonempty set L ⊂ Y and a convex set A ⊂ Y such that

cone+A = A. It follows that

L+A is convex⇒ coneL+A is convex. (2.8)

Proof. Let y1, y2 ∈ coneL, a1, a2 ∈ A and α ∈ (0, 1). Let us check that

y := α(y1 + a1) + (1− α)(y2 + a2) ∈ coneL+A. (2.9)

Indeed, if y1 = 0 or y2 = 0, then (2.9) follows since A is convex. Then, assume that

y1 6= 0 and y2 6= 0. There exist α1, α2 > 0 and u1, u2 ∈ L such that yi = αiui, i = 1, 2.

By defining c := αα1 + (1− α)α2 we have that:

y = c

(
αα1

c
(u1 + (1/α1)a1) +

(1− α)α2

c
(u2 + (1/α2)a2)

)
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and since cone+A = A and L+A is convex we deduce that

y ∈ cone+ co(L+ cone+A) = cone+ co(L+A)

= cone+(L+A)

⊂ coneL+ cone+A

= coneL+A.

Therefore, statement (2.9) is true and the proof is complete.

Proposition 2.8. Consider H : X ⇒ Y , ∅ 6= N ⊂ X and ∅ 6= M ⊂ Y . The following

statements imply that H is nearly M -subconvexlike on N :

(i) H(N) +M is convex.

(ii) M is free disposal with respect to a convex cone C ⊂ Y , qriC 6= ∅ and either

H(N) +M + qriC is convex or cone(H(N) +M) + qriC is convex.

(iii) M is a convex cone such that qriM 6= ∅ and either H(N) + qriM is convex

or coneH(N) + qriM is convex.

Proof. It is clear that H is nearly M -subconvexlike on N provided that H(N) +M is

convex.

Moreover, part (iii) is obtained as a result of part (ii) by taking C = M , since by

Proposition 2.3 it follows that C + qriC = qriC and

cone(H(N) + C) + qriC = qriC ∪ cone+(H(N) + C + qriC)

= qriC ∪ cone+(H(N) + qriC)

= coneH(N) + qriC.

On the other hand, by Lemma 2.7 we see that part (ii) is proved if we only check

the case cone(H(N) +M) + qriC is a convex set. Indeed, by (2.3) we have that

cl(cone(H(N) +M) + qriC) = cl cone(H(N) +M + qriC)

= cl cone(H(N) +M + C)

= cl cone(H(N) +M)

and then H is nearly M -subconvexlike on N if the second assumption of part (ii) is

satisfied. This finishes the proof.

Remark 2.9. (i) Conditions (i)-(iii) of Proposition 2.8 correspond to different gener-

alize convexity concepts (see [11, Section 2]).

(ii) Proposition 2.8 and (2.8) extend parts (i) and (ii) of [11, Proposition 2.13] to

problems whose ordering cone has intrinsic core empty, but its quasi-relative interior

is nonempty (see Remark 2.2).

(iii) In [24, Definition 2.3], the concept of generalized C-subconvexlike set-valued

mapping is introduced, where C is a convex cone which is assumed to be closed and
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pointed (C ∩ (−C) = {0}). Specifically, H : X ⇒ Y is said to be generalized C-

subconvexlike on N ⊂ X if coneH(N) + qriC is convex. Then, by part (iii) of Propo-

sition 2.8 we see that a set-valued mapping is nearly C-subconvexlike on N whenever

it is generalized C-subconvexlike on N .

3 Linear scalarization

Let E ⊂ Y be a free disposal set. The goal of this section is to characterize a kind

of E-minimizers of problem (VOP) by linear scalarization. We derive these optimality

conditions as a consequence of the next result. It is denoted τE : Y ∗ → R ∪ {−∞},

τE(λ) := inf
e∈E
〈λ, e〉 ∀λ ∈ Y ∗.

Notice that mapping τE is close to the support function σ−E of the set −E: τE(λ) =

−σ−E(λ), for all λ ∈ Y ∗.

Theorem 3.1. Let C ⊂ Y be a convex cone and E ⊂ Y be a free disposal set with

respect to C. Consider a nonempty set M ⊂ Y and the statements:

(i) 0 /∈ qri co((M + E) ∪ {0});
(ii) 0 /∈ qri co cone(M + E);

(iii) 0 /∈ qri cone(co(M + E) + C);

(iv) 0 /∈ qri cl co cone(M + E);

(v) 0 /∈ qri(cone co(M + E) + (qriC ∪ {0}));
(vi) There exist λ ∈ C+\{0}, y0 ∈M and e0 ∈ E such that 〈λ, y〉+ τE(λ) ≥ 0, for

all y ∈M , and 〈λ, y0〉+ 〈λ, e0〉 > 0;

(vii) 0 /∈ qri co cone(M + E + qriC);

(viii) 0 /∈ qri((cone co(M + E) + qriC) ∪ {0});
(ix) 0 /∈ qri cl co cone(M + E + qriC);

Then, conditions (i)-(vi) are equivalent. If additionally qriC 6= ∅, then all statements

above are equivalent.

Proof. Given two nonempty sets A,M ⊂ Y , the next properties are true:

co coneA = cone coA; cl coneA is a cone;

co(A+M) = coA+M , provided M is convex;

coneA = cone(A ∪ {0});
cl cone(A+M) = cl(coneA+M) = cl cone(A+M\{0}), provided M is a cone and

M 6= {0};
The equivalence between statements (i)-(v) is a consequence of Proposition 2.3 and

the above relationships, and also the equivalence between (i)-(v) and (vii)-(ix) whenever

qriC 6= ∅. For example, let us check that parts (ii), (iv) and (v) are equivalent. For
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this aim, let us denote by W the family of all linear subspaces of Y . It is clear that

0 ∈ co cone(M +E). Thus, by (2.2) and the first of the above properties we have that

0 /∈ qri co cone(M + E) ⇐⇒ cl cone co cone(M + E) /∈ W

⇐⇒ cl co cone(M + E) /∈ W.

Analogously, as 0 ∈ cl co cone(M + E), by (2.2) and the two first properties above it

follows that

0 /∈ qri cl co cone(M + E) ⇐⇒ cl cone cl co cone(M + E) /∈ W

⇐⇒ cl co cone(M + E) /∈ W.

For dealing with part (v) assume that qriC 6= ∅ (otherwise (v) coincides with (ii)).

Moreover, notice that 0 ∈ cone co(M + E) + (qriC ∪ {0}). Therefore, by (2.2), (2.3)

and the properties above we deduce that

0 /∈ qri(cone co(M + E) + (qriC ∪ {0}))

⇐⇒ cl cone(cone co(M + E) + (qriC ∪ {0})) /∈ W

⇐⇒ cl co cone(M + E) /∈ W.

Then it follows that parts (ii), (iv) and (v) are equivalent.

Finally, in order to complete the proof let us prove that statements (i) and (vi) are

equivalent. Indeed, by [2, Proposition 2.16] we see that condition (i) holds if and only

if there exists λ ∈ Y ∗\{0}, ȳ ∈ co((M + E) ∪ {0}) such that

〈λ, y + e〉 ≥ 0 ∀y ∈M, e ∈ E, (3.1)

〈λ, ȳ〉 > 0.

Since E = E + C, inequality (3.1) can be rewritten as follows:

〈λ, y + e〉+ 〈λ, d〉 ≥ 0 ∀y ∈M, e ∈ E, d ∈ C.

Since C is a cone, we see that 〈λ, d〉 ≥ 0, for all d ∈ C, i.e., λ ∈ C+.

It is clear that condition (3.1) is equivalent to the next one:

〈λ, y〉+ τE(λ) ≥ 0 ∀y ∈M.

On the other hand, as ȳ ∈ co((M + E) ∪ {0}), there exist n points ȳi ∈ M + E

and n real numbers αi > 0, i = 1, 2, . . . , n, such that
∑n

i=1 αi ≤ 1 and ȳ =
∑n

i=1 αiȳi.

Then,

〈λ, ȳ〉 =
n∑
i=1

αi〈λ, ȳi〉

and so 〈λ, ȳi〉 > 0 for some i.

Thus, conditions (i) and (vi) are equivalent and the proof finishes.
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Theorem 3.1 generalizes [7, Theorem 2.1] to free disposal sets. To be precise, it

reduces to [7, Theorem 2.1] by considering the ordering cone as free disposal set.

By dealing with the quasi interior instead of the quasi-relative interior, the following

result is obtained.

Theorem 3.2. Let C ⊂ Y be a convex cone and E ⊂ Y be a free disposal set with

respect to C. Consider a nonempty set M ⊂ Y and the statements:

(i) 0 /∈ qi cone co(M + E);

(ii) 0 /∈ qi cone(co(M + E) + C);

(iii) 0 /∈ qi cl co cone(M + E);

(iv) There exists λ ∈ C+\{0} such that 〈λ, y〉+ τE(λ) ≥ 0, for all y ∈M .

(v) 0 /∈ qi co cone(M + E + qiC);

(vi) 0 /∈ qi((cone co(M + E) + qiC) ∪ {0});
(vii) 0 /∈ qi cl co cone(M + E + qiC);

We have that conditions (i)-(iv) are equivalent. If additionally qiC 6= ∅, then all

statements above are equivalent.

Proof. By the properties of the generated cone and the convex hull (see the proof of

Theorem 3.1) it follows that

cl cone cone(co(M + E) + C) = cl cone(co(M + E) + C)

= cl cone cone co(M + E)

= cl co cone(M + E)

= cl cone cl co cone(M + E).

Then it is clear that parts (i)-(iii) are equivalent. On the other hand, by (2.6) we have

that (i) it is true if and only if there exists λ ∈ Y ∗\{0} such that

〈λ, y〉 ≥ 0 ∀y ∈ co(M + E).

This condition coincides with part (iv) (see the proof of Theorem 3.1) and so parts (i)

and (iv) are also equivalent.

Let us suppose that qiC 6= ∅. Then we have that parts (v)-(vii) coincide with state-

ments (vii)-(ix) of Theorem 3.1, respectively. Let us check this fact only for condition

(v), since the proofs for the other parts follow the same steps. By properties (2.4) and

(2.5) we have that

co(M + E) + qiC = qi(co(M + E) + qiC) ⊂ qi cone(co(M + E) + qiC)

and so qi cone(co(M + E) + qiC) 6= ∅. Therefore, by Remark 2.4 we deduce that

qri cone(co(M + E) + qriC) = qi cone(co(M + E) + qiC)
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and then it is clear that part (v) is a reformulation of Theorem 3.1(vii).

Analogously, condition (iv) coincides with statement (vi) of Theorem 3.1. Indeed,

it is obvious that Theorem 3.1(vi) implies part (iv) above. Reciprocally, assume that

λ ∈ C+\{0} satisfies 〈λ, y〉+ τE(λ) ≥ 0, for all y ∈M . Consider three arbitrary points

y0 ∈M , e ∈ E and d ∈ qiC. As E is free disposal we have e0 := e+ d ∈ E. Moreover,

by Theorem 2.5 we see that 〈λ, d〉 > 0. Therefore,

〈λ, y0〉+ 〈λ, e0〉 = 〈λ, y0〉+ 〈λ, e〉+ 〈λ, d〉 ≥ 〈λ, y0〉+ τE(λ) + 〈λ, d〉 ≥ 〈λ, d〉 > 0

and part (vi) of Theorem 3.1 is satisfied. This finishes the proof.

From Theorem 3.2 and the generalized convexity notion of Definition 2.6, one can

deduce the following Gordan-type alternative theorem.

Theorem 3.3. Let C ⊂ Y be a convex cone. Let E ⊂ Y be a free disposal set with

respect to C. Assume that the set-valued mapping H : X ⇒ Y is nearly E-subconvexlike

on a nonempty set N ⊂ X. Then, one and only one of the following statements is true:

(i) 0 ∈ qi cl cone(H(N) + E);

(ii) There exists λ ∈ C+\{0} such that 〈λ, y〉+ τE(λ) ≥ 0, for all y ∈ H(N).

If additionally qiC 6= ∅, then condition (i) can be replaced with

(i’) 0 ∈ qi cl cone(H(N) + E + qiC);

Proof. Let us notice that

cl co cone(H(N) + E) = cl cone(H(N) + E).

Indeed, as H : X ⇒ Y is nearly E-subconvexlike on N is follows that

cl cone(H(N) + E) ⊂ cl co cone(H(N) + E)

⊂ cl co cl cone(H(N) + E)

= cl cl cone(H(N) + E)

= cl cone(H(N) + E).

Assume that qiC 6= ∅. Then, by (2.3), Remark 2.4 and the basic properties collected

at the beginning of the proof of Theorem 3.1 we have that

cl co cone(H(N) + E + qiC) = cl cone(co(H(N) + E) + qiC)

= cl cone(co(H(N) + E) + C)

= cl cone(H(N) + E)

= cl cone(H(N) + E + qiC).

Therefore, the result follows by applying parts (iii), (iv) and (vii) of Theorem 3.2

and the proof is complete.
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Remark 3.4. (i) In the setting of Theorem 3.3, assume additionally that qiC 6= ∅,
0 /∈ qiC and cone(H(N) + E) is closed. Let us prove that

H(N) ∩ −(E + qiC) = ∅ ⇐⇒ 0 /∈ qi cone(H(N) + E). (3.2)

Indeed, it is clear that H(N) ∩ −(E + qiC) = ∅ if and only if 0 /∈ H(N) + E + qiC.

Then, let us check that

0 /∈ H(N) + E + qiC ⇐⇒ 0 /∈ qi cone(H(N) + E). (3.3)

To deduce the necessary condition, assume by contradiction that 0 ∈ qi cone(H(N) +

E). Then,

cone(H(N) + E) = Y, (3.4)

since cone(H(N)+E) is closed. Take an arbitrary point q ∈ qiC. By the hypothesis we

have q 6= 0 and from (3.4) we see that there exists α > 0 such that −αq ∈ H(N) +E.

Therefore, 0 ∈ H(N) +E+ qiC, as αq ∈ qiC by Proposition 2.3(vii) and Remark 2.4,

that is a contradiction.

Reciprocally, by (2.4) it follows that

H(N) + E + qiC ⊂ cone(H(N) + E) + qiC

= qi(cone(H(N) + E) + qiC)

⊂ qi(cone(H(N) + E) + C).

Moreover, it is clear that

0 ∈ qi(cone(H(N) + E) + C) ⇐⇒ 0 ∈ qi cone(H(N) + E)

and the sufficient condition of (3.3) is stated.

By (3.2) it follows that [20, Theorem 4.1] is a particular case of Theorem 3.3. As a

result, notice that the assumptions E convex and 0 /∈ E of [20, Theorem 4.1] are not

required in Theorem 3.3.

(ii) The necessary condition of [22, Proposition 28] is obtained by applying Theorem

3.3 to E := C. Analogously, Theorem 3.2(iii),(iv) encompasses the sufficient condition

of [22, Proposition 28] by considering E := C.

Consider problem (VOP) and a nonempty set E ⊂ Y . Next we provide conditions

for E-minimizers of problem (VOP) through certain solutions of the following family

of associated set-valued scalar optimization problems:

Min{〈λ, F (x)〉 : x ∈ S} λ ∈ E+\{0}. (OP(λ))

Notice that 〈λ, F (·)〉 : X ⇒ R is the set-valued mapping:

〈λ, F (x)〉 := {〈λ, y〉 : y ∈ F (x)} ∀x ∈ X.
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Suppose that qiE 6= ∅. Then, a point x0 ∈ S is said to be a weak solution of problem

(VOP) with domination set E if x0 ∈ WSol(F, S,E) := Sol(F, S, qiE). Analogously,

the pair (x0, y0) ∈ gphF is called weak E-minimizer of problem (VOP) if (x0, y0) ∈
WMin(F, S,E) := Min(F, S, qiE).

On the other hand, a pair (x0, y0) ∈ gphF is a suboptimal solution of problem

(OP(λ)) with error ε ∈ R+, and it is denoted by (x0, y0) ∈ Min(〈λ, F 〉, S, ε), if 〈λ, y0〉−
ε ≤ 〈λ, y〉, for all y ∈ F (S).

Theorem 3.3 actually characterizes several types of weak solutions of problem

(VOP) introduced in the literature. The following result is the bridge for showing

this assertion. Notice that (i) and the first part of (ii) work for any nonempty set

E ⊂ Y .

Theorem 3.5. Consider problem (VOP), x0 ∈ S and y0 ∈ F (x0). Let E be an arbi-

trary nonempty set of Y .

(i) If cl cone(F (S)− y0 + E) is proper and convex, then

(x0, y0) ∈
⋃

λ∈E+\{0}

Min(〈λ, F 〉, S, τE(λ)). (3.5)

(ii) Reciprocally, if (3.5) is satisfied, then cl co cone(F (S)− y0 +E) is proper, and

if additionally E is free disposal with respect to K and qiK 6= ∅, then (x0, y0) ∈
Min(F, S,E + qiK).

Proof. (i) It is obvious that E is free disposal with respect to the convex cone C :=

{0}. By the assumptions we have that the set-valued mapping F − y0 is nearly E-

subconvexlike on S and 0 /∈ qi cl cone(F (S)− y0 +E). By Theorem 3.3 we deduce that

there exists λ ∈ Y ∗\{0} such that

〈λ, y〉 ≥ 〈λ, y0〉 − τE(λ) ∀y ∈ F (S). (3.6)

By taking y = y0 in (3.6) it follows that τE(λ) ≥ 0, i.e., λ ∈ E+\{0}. Therefore,

(x0, y0) ∈ Min(〈λ, F 〉, S, τE(λ)).

(ii) Consider again the convex cone C := {0}. We have that E+ ⊂ C+. Then, by the

hypothesis, statement (iv) of Theorem 3.2 is satisfied with M = F (S)− y0. Therefore,

part (i) of Theorem 3.2 is satisfied too, i.e., we obtain that 0 /∈ qi cone co(F (S)−y0+E).

Thus, the cone cl co cone(F (S)− y0 + E) is proper.

Suppose that qiK 6= ∅ and E +K = E. By (2.4) and (2.5) it follows that

F (S)− y0 + E + qiK ⊂ co(F (S)− y0 + E) + qiK (3.7)

⊂ qi(co(F (S)− y0 + E) +K)

⊂ qi(cone(co(F (S)− y0 + E) +K)). (3.8)

Moreover, we have that

0 ∈ qi cone(co(F (S)− y0 + E) +K) ⇐⇒ cl co cone(F (S)− y0 + E) = Y. (3.9)
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Therefore, if (x0, y0) /∈ Min(F, S,E + qiK), then (F (S)− y0) ∩ −(E + qiK) 6= ∅, i.e.,

0 ∈ F (S)− y0 + E + qiK. By (3.7), (3.8) and (3.9) we deduce that cl co cone(F (S)−
y0 + E) = Y , which is a contradiction. This finishes the proof.

Remark 3.6. (i) Theorem 3.5 encompasses [20, Theorem 4.2]. Indeed, consider prob-

lem (VOP) and a convex free disposal set E ⊂ Y \{0} with respect to K. Assume that

qiK 6= ∅ and qiE = E + qiK. Let x0 ∈ S, y0 ∈ F (S) and suppose that F − y0 is

nearly E-subconvexlike on S and cone(F (S)− y0 + E) is closed. By (3.2) we see that

(x0, y0) ∈WMin(F, S,E) ⇐⇒ (F (S)− y0) ∩ − qiE = ∅

⇐⇒ 0 /∈ qi cone(F (S)− y0 + E)

⇐⇒ cone(F (S)− y0 + E) is proper.

On the other hand, by the assumptions it follows that cone(F (S)− y0 + E) is convex

and closed. Thus, by Theorem 3.5 we see that

(x0, y0) ∈WMin(F, S,E) ⇐⇒ (x0, y0) ∈
⋃

λ∈E+\{0}

Min(〈λ, F 〉, S, τE(λ))

and the conclusion of [20, Theorem 4.2] is obtained. Notice that in this result one can

consider λ ∈ E+\{0} instead of λ ∈ K+\{0}. Moreover, the assumptions E convex

and 0 /∈ E are not required in Theorem 3.5.

(ii) Theorem 3.5 reduces to [10, Theorem 4.1] and a version of [10, Theorem 4.2]

when the objective function F is a vector-valued function f : X → Y and K is solid

and proper. Indeed, let ∅ 6= C ⊂ Y , E := C + K and suppose that C ∩ − intK = ∅
and f is nearly E-subconvexlike on S. Let x0 ∈WSol(f, S,E). Then, x0 ∈ S and

(f(S)− f(x0)) ∩ −(C + intK) = ∅, (3.10)

since intE = C + intK and 0 /∈ intE. As K + intK = intK, condition (3.10) implies

cl cone(f(S)− f(x0) + E) ∩ − intK = ∅

and so we see that cl cone(f(S)− f(x0) +E) is proper and convex. By (3.5) we deduce

that there exists λ ∈ E+\{0} such that

〈λ, f(x)〉 ≥ 〈λ, f(x0)〉 − τE(λ) ∀x ∈ S. (3.11)

Then, [10, Theorem 4.2] follows since E+ = C+∩K+ and so τE(λ) = τC(λ). As a result,

[10, Theorem 4.2] is a particular case of Theorem 3.5 whenever C is free disposal with

respect to the ordering cone K.

Reciprocally, suppose that condition (3.11) is satisfied and λ ∈ E+\{0}. By Theo-

rem 3.5(ii) we have that x0 ∈ Sol(f, S,E + intK) = Sol(f, S, C + intK). This proves

that Theorem 3.5 encompasses [10, Theorem 4.1].
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(iii) In [9, Theorems 6 and 8], a characterization for the elements of WSol(f, U,K)

is obtained, where f : Y → Y is the identity function, K ⊂ Y is a pointed convex

cone such that qiK 6= ∅, U ⊂ Y is nonempty and convex and it is assumed that

U + qiK = qi(U +K).

Theorem 3.5 encompasses this result. Indeed, if x0 ∈ WSol(f, U,K), then x0 ∈ U
and (U − x0) ∩ − qiK = ∅. By the assumptions, Proposition 2.3(vi) and Remark 2.4

we deduce that

0 /∈ U − x0 + qiK = qi(U +K)− x0 = qi(U +K − x0).

Then cl cone(U − x0 + K) is a proper convex cone and by Theorem 3.5(i) we obtain

that there exists λ ∈ K+\{0} such that 〈λ, x〉 ≥ 〈λ, x0〉, for all x ∈ U .

Reciprocally, if this scalarization condition is satisfied, by Theorem 3.5(ii) it follows

that x0 ∈ Sol(f, U,K + qiK) = WSol(f, U,K) because of Proposition 2.3. Therefore,

[9, Theorems 6 and 8] are particular cases of Theorem 3.5. Notice that the pointedness

condition on the cone K is superfluous.

4 Lagrangian optimality conditions

In the sequel, we provide a kind of Lagrange multiplier rule for problem (CVOP)

from which one can derive different Lagrange optimality conditions for weakly efficient

solutions of the problem. We denote (F ×G)(Q) :=
⋃
x∈Q F (x)×G(x).

Theorem 4.1. Consider problem (CVOP), a nonempty set E ⊂ Y and (x0, y0) ∈
gphF , where x0 is a feasible point of (CVOP).

(i) If the cone cl cone((F ×G)(Q)− (y0, 0) + (E ×D)) is convex and proper, then

there exists λ ∈ E+, µ ∈ D+, (λ, µ) 6= (0, 0), such that

〈λ, y0〉 − τE(λ) ≤ 〈λ, y〉+ 〈µ, z〉 ∀(y, z) ∈ (F ×G)(Q), (4.1)

−τE(λ) ≤ inf
z∈G(x0)

{〈µ, z〉} ≤ 0. (4.2)

(ii) Let (λ, µ) ∈ (Y ∗ × D+)\{(0, 0)} and suppose that statement (4.1) holds. It

follows that λ 6= 0 whenever one of the next two conditions is satisfied:

(a) There exists x ∈ Q such that G(x) ∩ − qiD 6= ∅;
(b) G(Q) +D is convex and 0 ∈ qi(G(Q) +D).

(iii) If λ ∈ E+, µ ∈ D+, (λ, µ) 6= (0, 0) and conditions (4.1) and (4.2) are satisfied,

then the cone cl co cone((F ×G)(Q)−(y0, 0)+(E×D)) is proper. If additionally λ 6= 0,

qiK 6= ∅ and E is free disposal with respect to K, then (x0, y0) is an (E + qiK)-

minimizer of problem (CVOP).

Proof. (i) Consider the set-valued mapping H : X ⇒ Y × Z given by H(x) = F (x)×
G(x), for all x ∈ X. As x0 is a feasible point of problem (CVOP), there exists z0 ∈
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G(x0) ∩ (−D). Then, by the assumption we see that cl cone(H(Q) − (y0, z0) + (E ×
(D + z0))) is convex and proper, and so Theorem 3.5 can be applied. As a result, we

deduce that there exists (λ, µ) ∈ (E × (D + z0))
+\{(0, 0)} satisfying

〈(λ, µ), (y, z)〉 ≥ 〈(λ, µ), (y0, z0)〉 − τE×(D+z0)(λ, µ) ∀(y, z) ∈ H(Q). (4.3)

It is clear that

τE×(D+z0)(λ, µ) = τE(λ) + τD(µ) + 〈µ, z0〉.

Therefore, (4.3) is equivalent to the following condition:

〈λ, y〉+ 〈µ, z〉 ≥ 〈λ, y0〉 − τE(λ)− τD(µ) ∀(y, z) ∈ (F ×G)(Q). (4.4)

Since D is a cone, we have µ ∈ D+ and τD(µ) = 0. Thus, (4.4) becomes to the assertion

〈λ, y〉+ 〈µ, z〉 ≥ 〈λ, y0〉 − τE(λ) ∀(y, z) ∈ (F ×G)(Q). (4.5)

Moreover, as (λ, µ) ∈ (E × (D + z0))
+\{(0, 0)}, we see that

〈λ, e〉+ 〈µ, d〉+ 〈µ, z0〉 ≥ 0 ∀e ∈ E, d ∈ D.

Thus, since µ ∈ D+ and z0 ∈ −D, by taking d = 0 above it follows that

〈λ, e〉 ≥ 〈λ, e〉+ 〈µ, z0〉 ≥ 0 ∀e ∈ E,

i.e., λ ∈ E+. On the other hand, by taking y = y0 in (4.5) we have

〈µ, z〉 ≥ −τE(λ) ∀z ∈ G(x0).

Therefore,

0 ≥ inf
z∈G(x0)

{〈µ, z〉} ≥ −τE(λ),

since G(x0) ∩ (−D) 6= ∅.
(ii) Assume that G(x) ∩ − qiD 6= ∅ for some x ∈ Q, and consider a point z̄ ∈

G(x) ∩ − qiD. If λ = 0, then by (4.1) we obtain 〈µ, z〉 ≥ 0, forall z ∈ G(Q). In

particular, 〈µ, z̄〉 ≥ 0. However, µ ∈ D+\{0} and by (2.7) we obtain 〈µ, z̄〉 < 0, that is

a contradiction.

Suppose that 0 ∈ qi(G(Q) + D). Then cl cone(G(Q) + D) = Y . If λ = 0, then by

(4.1) we obtain 〈µ, z〉 ≥ 0, forall z ∈ G(Q). Since µ ∈ D+, it follows that 〈µ, y〉 ≥ 0,

forall y ∈ cl cone(G(Q) + D). Therefore, µ ∈ Y + = {0}, that is a contradiction since

(λ, µ) 6= (0, 0).

(iii) Consider λ ∈ E+, µ ∈ D+, (λ, µ) 6= (0, 0), and assume that statements (4.1)

and (4.2) are satisfied. Take an arbitrary point z0 ∈ G(x0). By (4.1) we have that

〈(λ, µ), (y, z)〉 ≥ 〈(λ, µ), (y0, z0)〉 − τE×(D+z0)(λ, µ) ∀(y, z) ∈ (F ×G)(Q).
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Moreover, (λ, µ) ∈ (E × (D + z0))
+, since statement (4.2) implies

〈(λ, µ), (e, d+ z0)〉 ≥ τE(λ) + 〈µ, z0〉 ≥ τE(λ) + inf
z∈G(x0)

〈µ, z〉 ≥ 0 ∀e ∈ E,∀d ∈ D.

Then, by Theorem 3.5(ii) it follows that cl co cone((F×G)(Q)−(y0, z0)+(E×(D+z0)))

is proper.

Moreover, if additionally we have λ 6= 0, qiK 6= ∅ and E is free disposal with

respect to K, then

(F (S)− y0) ∩ −(E + qiK) = ∅. (4.6)

Indeed, suppose reasoning by contradiction that there exist x̄ ∈ S, ȳ ∈ F (x̄), e ∈ E
and q ∈ qiK such that ȳ − y0 = −e− q. Consider an arbitrary point z̄ ∈ G(x̄) ∩ −D.

As E +K = E we have that E+ ⊂ K+. Then, by Theorem 2.5 it follows that

〈λ, ȳ〉+ 〈µ, z̄〉 ≤ 〈λ, y0〉 − 〈λ, e〉 − 〈λ, q〉

≤ 〈λ, y0〉 − τE(λ)− 〈λ, q〉

< 〈λ, y0〉 − τE(λ),

that is contrary to (4.1). Thus, statement (4.6) is true and so (x0, y0) is a (E + qiK)-

minimizer of problem (CVOP) and the proof is completed.

Remark 4.2. (i) Notice that Theorem 4.1(ii) considers two Slater type constraint

qualifications in order to guaranty that the scalarization functional corresponding to

the objective function does not vanish.

(ii) Theorem 4.1 reduces to [24, Theorem 3.1] by considering E = K. In particular,

let us notice that the following assumptions of [24, Theorem 3.1] are superfluous: K,D

closed and pointed, qriK 6= ∅, qriD 6= ∅, qri(cone((F−y0)×G)(Q)+(qriK×qriD)) 6=
∅. On the other hand, assumptions (ii) and (iv) of [24, Theorem 3.1] are stronger than

the hypothesis of Theorem 4.1(i) (see Proposition 2.8).

(iii) Theorem 4.1(iii) reduces to [24, Theorem 3.2] by considering E = K. In order

to check this assertion, notice that qiK = qriK whenever cl(K − K) = Y (see [6,

Proposition 3.1]).

(iv) Theorem 4.1 encompasses [22, Proposition 23] by considering E = K. Notice

that [22, Proposition 23] is provided under a stronger convexity assumption (see part

(i) of Proposition 2.8).

5 Conclusions

The paper has provided optimality conditions for weakly efficient solutions of vector

optimization problems with set-valued mappings. In defining these solutions, the so-

called vector criterion has been considered in connection with the concept of quasi
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interior and an domination set given by a free disposal set with respect to the ordering

cone of the problem.

Because of this general approach, the obtained results could be useful in some

problems where other similar results of the literature cannot be applied. For example,

consider problems (VOP) and (CVOP) given by the following data: the image space

is `p, p ∈ [1,+∞), the ordering cone is the positive cone `p+, and the domination set is

E = εq+ `p+, where q is a point in qi `p+ and ε > 0. The set WSol(F, S,E) is interesting

since its elements are good approximations for the set WSol(F, S, `p+) of weakly efficient

solutions of the problem under mild assumptions. Then, optimality conditions for the

solutions in WSol(F, S,E) can be obtained from Theorems 3.5 and 4.1. However, the

results in [10, 11, 20, 22, 24] cannot be applied. Indeed, papers [10, 11] are not useful

in this setting since core `p+ = ∅. Work [20] does not deal with constrained vector

optimization problems. So, its results do not work in problem (CVOP). Finally, papers

[22, 24] cannot be applied because the domination set is not a cone.
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