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Abstract

We introduce notions of generalized ε-quasi solutions to approxi-
mate set type solutions of set optimization problems. We study
their properties, consistency and limit behavior as approximations
to efficient and strict weak efficient solutions. Moreover, we prove
an existence result for such solutions and a bound for their
asymptotic cone. Finally, we obtain optimality conditions for them.
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1 Introduction

Let us consider the scalar optimization problem:

(P̃)

{
Minimize f(x)
subject to x ∈ C

1
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where f : Rn → R ∪ {+∞} is a proper function and C ⊂ dom f is a
nonempty set. Loridan introduced in [26] two approximate solution notions for
this problem. Let ε > 0 be fixed. A vector x̄ ∈ C is said to be

� an ε-approximate solution of this problem, if f(x̄) ≤ f(x) + ε for all x ∈ C;
� an ε-quasi solution of this problem, if f(x̄) ≤ f(x) + ε‖x− x̄‖ for all x ∈ C.

By Ekeland’s Variational Principle (see [10]), if f is lsc and bounded from below
and C is closed, we obtain that some ε-quasi solutions are near to approximate
solutions; i.e., for every scalar α > 0 and ε-approximate solution x̄ there exists
a (ε/α)-quasi solution x̂ such that ‖x̂−x̄‖ ≤ α. Thus, when solving numerically
a scalar optimization problem, one can consider ε-quasi solutions with a small
error ε, since some of them are near to feasible points whose objective value is
almost optimal. For some problems, the limit of ε-quasi solutions when ε↘ 0
is a true solution and for the convex case, true solutions can be thought as a
limit of ε-quasi solutions (see [8, Remark 3.1]). Thus, ε-quasi solutions are good
candidates for the notion of approximate solution (see also [3, Corollary 2.14]).

Loridan [27] extended the notion of ε-quasi solution to vector optimiza-
tion problems whose final space is finite dimensional ordered by components.
Gutiérrez et al. [18] generalized it to the same setting and a closed pointed con-
vex ordering cone. Gao et al. [11] and Gutiérrez et al. [16] extended it to vector
optimization problems with a Hausdorff locally convex final space ordered by
an arbitrary proper convex cone, which is assumed to be pointed in [11]. It is
important to point out that ε-quasi solutions are better than ε-approximate
ones since the necessary optimality conditions are described exactly at each
point and so they can be used in a more practical and effective way, just like
the usual multiplier rules (see [13, Remark 4.13]).

From the above background, we conclude that ε-quasi solutions are useful
from both a computational as well as a theoretical viewpoint. They also allow
us to deal with scalar and vector optimization problems with no solutions or
when it is not possible to apply/check any existence theorem or when it is
difficult to calculate the solutions and some inaccuracy can be assumed by the
decision maker. One expects the same state of affairs for optimization problems
with set-valued objective maps.

In the last few years, optimization problems with set-valued objective maps
or set optimization problems (SOPs for short) have attracted the attention
of the mathematical community due to their vast applications in economics,
finance, game theory, interval and fuzzy optimization, optimal control and dif-
ferential inclusions, among others (see [21]). For these problems there exist
vector-type and set-type solution notions. Most of the approximate solution
notions for SOPs from the literature have been developed for vector-type
solutions (see for instance [15, 33] among others). The study of approximate
solutions of set-type is less developed.

In this paper, we approximate set-type solutions of a finite dimensional SOP
by new concepts of generalized ε-quasi solutions. Our definitions encompass
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not only those for vector optimization problems, but also most of the well-
known approximate solutions for SOPs from the literature. Gutiérrez et al. [14]
defined three notions of approximate minimizers for sets using the lower-type
set relation. Gutiérrez et al. [17] defined strict approximate solutions of SOPs
under the set criterion and studied their limit behavior when the error tends to
zero. They proved a general existence result and used it to obtain approximate
Ekeland variational principles. Khahn and Quy [22] obtained versions of the
Ekeland variational principle for set-valued maps not only for usual vector-type
minimizers but also for set-type ones. Qiu and He [32] obtained new versions
of such Ekeland variational principles. In this paper, we employ a different
approach to derive the existence of ε-quasi solutions of SOPs.

The paper is structured as follows. In Section 2, we fix the notation and
recall some preliminaries. We recall continuity and convexity notions for set-
valued maps. We state the SOP and recall set-type solution notions for it. In
Section 3, we introduce notions of generalized ε-quasi `-solutions for set-type
solutions of SOPs w.r.t. the lower set less relation. We study their properties
and establish conditions that ensure the consistency of the definitions. We also
study their convergence properties when varying the error ε and when approx-
imating the ordering cone by means of Henig dilating cones. In Section 4, we
obtain existence results. To this end, we use a scalarization procedure. In addi-
tion, a bound for the asymptotic cone of the set of generalized strict weak
ε-quasi `-solutions is derived. Finally, Section 5 is devoted to obtain optimality
conditions for generalized strict weak ε-quasi `-solutions.

2 Preliminaries

Throughout this paper, we denote by B the closed unit ball in Rm. We denote
by intA, clA, coA, coneA, δA, σA, and A∞, respectively, the interior, closure,
convex hull, generated cone, indicator function, support function, and asymp-
totic cone of a set A ⊂ Rm, see [5]. For ε ≥ 0, we write εk ↘ ε (resp. εk → ε+)
if εk ≥ εk+1 ≥ ε (resp. εk ≥ ε) for all k and εk → ε. The nonnegative orthant
of Rm will be denoted by Rm+ .

In the sequel, D is a solid (intD 6= ∅) pointed (D ∩ (−D) = {0}) closed
convex cone in Rm. We have D + D = D, λD = D and λ(Rm\(−intD)) ⊂
Rm\(−intD) for all λ > 0; D + intD = intD; Rm\(−intD) + D =
Rm\(−intD); and D ⊂ Rm\(−intD). The following properties for a set A in
Rm hold: cl(A + D) + D = cl(A + D) and int(A + D) + D = int(A + D) =
A+ intD, int cl(A+D) = int(A+D) and cl(A+D) = cl(A+ intD), see [6].

The (positive) polar cone of D is D+ := {ξ ∈ Rm : 〈ξ, p〉 ≥ 0, ∀p ∈ D}, its
strict (positive) polar cone is Ds+ := {ξ ∈ Rm : 〈ξ, p〉 > 0, ∀p ∈ D\{0}} and
D− := −D+. By the bipolar theorem, we have

p ∈ D ⇐⇒ 〈ξ, p〉 ≥ 0, ∀ξ ∈ D+. (1)
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As D is pointed, we have intD+ 6= ∅ (see [34, Exercise 6.22]) and intD+ =
Ds+. Moreover,

p ∈ intD ⇐⇒ 〈ξ, p〉 > 0, ∀ξ ∈ D+\{0}. (2)

If y, z ∈ Rm, we denote by y ≤D z if z − y ∈ D and y �D z if z − y ∈ intD.
As usual, we simplify the notation of a singleton {y} by y and according

we denote A+ y := A+ {y}, for all A ⊂ Rm and y ∈ Rm. Recall that A is said
to be D-proper if A+D 6= Rm; D-convex if A+D is a convex set; D-closed if
A+D is a closed set; and D-bounded from below if A ⊂ ρB+D for some ρ > 0.

To compare sets A,B from Rm, we recall the preorder ≤`D defined by

A≤`D B
def⇐⇒ B ⊂ A+D ⇐⇒ B +D ⊂ A+D. (3)

We also recall the set relation <<`D defined by

A<<`D B
def⇐⇒ B ⊂ A+ intD ⇐⇒ B +D ⊂ A+ intD. (4)

Clearly, Rm≤`D A≤`D ∅ for every set A ⊂ Rm. Hence, the sets Rm and ∅ play
the same role in (2R

m

,≤`D) as −∞ and +∞ in (R ∪ {±∞},≤).
We recall the equivalence relation ∼`D for nonempty sets defined by

A ∼`D B
def⇐⇒ A≤`D B and B≤`D A ⇐⇒ A+D = B +D. (5)

To simplify notation, we introduce the set relation �`D defined by

A�`D B
def⇐⇒ A≤`D B and A 6∼`D B ⇐⇒ B +D ( A+D. (6)

We recall a convergence notion for a sequence of sets {Ak} from Rm (see [34]):
lim supk Ak := {x : ∃xkj ∈ Akj → x} is its outer limit and lim infk Ak :=
{x : ∃xk ∈ Ak → x} is its inner limit, where {Akj} is a subsequence of {Ak}
and xk ∈ Ak → x denotes xk ∈ Ak for all k large enough and xk → x. We
say that {Ak} converges to a set A ⊂ Rm in the sense of Painlevé-Kuratowski,
denoted by Ak → A or limk Ak = A, if lim supk Ak ⊂ A ⊂ lim infk Ak.

We recall a result about the convergence of monotone sequences of sets.

Proposition 2.1 [34, Exercise 4.3]

(a) If {Ak} is nondecreasing; i.e., Ak ⊂ Ak+1, then limk Ak = cl
⋃
k Ak.

(b) If {Ak} is nonincreasing; i.e., Ak+1 ⊂ Ak, then limk Ak =
⋂
k clAk.

We denote by F : Rn ⇒ Rm a set-valued map that associates to x ∈ Rn
a set F (x) ⊂ Rm. Its domain is domF := {x : F (x) 6= ∅} (F (x) = ∅ for
x /∈ domF ). We denote by F (A) :=

⋃
x∈A F (x) the image of A under F ,
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gphF := {(x, y) : y ∈ F (x)} its graph, epiF := {(x, y) : F (x)≤`D y} its `-
epigraph, lev(F, y) := {x : F (x)≤`D y} its `-level set of height y ∈ Rm (to
simplify, we write the singleton set {y} by y), and FD : Rn ⇒ Rm its profile
map defined by FD(x) := F (x) +D.

Whenever “N” denotes some property of sets in Rm, it is said that F is
“N”-valued if F (x) has the property “N” for every x. For instance, F is closed-
valued if F (x) is closed for every x. We say that F is closed (resp. convex) if
its graph is closed (resp. convex).

We recall some boundedness notions for maps. We say that F is bounded if
F (Rn) is bounded; `-bounded from below if there exists b such that b≤`D F (x)
for all x; D-bounded from below if F (Rn) is D-bounded from below; locally
bounded at x if for some neighborhood U of x the set F (U) is bounded; and
locally bounded if it is so at every x. We list some properties of these notions.

Proposition 2.2 (a) If F is bounded, then F is D-bounded from below.

(b) If F is D-bounded from below, then F is D-bounded-valued from below.

(c) The following conditions are equivalent:

(i) There exists b such that b ≤D y for all y ∈ F (Rn);
(ii) F is `-bounded from below;
(iii) F is D-bounded from below.

Proof Parts (a)–(b) are easy to check. Equivalence (i)⇔ (ii) and implication (ii)⇒
(iii) in (c) are trivial. We prove implication (iii) ⇒ (ii). By hypothesis F (Rn) ⊂
ρB+D for some ρ > 0. We assert that for a fixed q ∈ intD, we have ρB ⊂ −kq+D for
some k ∈ N and this implies (ii) by taking b := −kq. On the contrary, if we suppose
that ρB 6⊂ −kq+D for all k ∈ N, then there exists uk ∈ ρB such that uk /∈ −kq+D.
Hence 1

ku
k + q /∈ intD for all k and after taking the limit, we obtain q /∈ intD, a

contradiction. �

Remark 2.3 In [32], the notions of D-boundedness from below and `-boundedness
from below are called quasi D-lower boundedness and D-lower boundedness, respec-
tively. Therein it is shown that, without the solidness of D, they are different
concepts. In [24, 32] one can find weaker boundedness notions from below via linear
scalarizations.

A map F is said to be inner semicontinuous (isc) at x if F (x) ⊂
lim infk F (xk) for every xk → x; outer semicontinuous (osc) at x if
lim supk F (xk) ⊂ F (x) for every xk → x; upper semicontinuous (usc) at x if
for any open set V containing F (x), there exists an open set U containing x
such that F (U) ⊂ V . It is said to be isc (resp. osc, usc) if it is so at every x.
Clearly, F is osc iff it is closed. We list some properties of these notions.

Proposition 2.4 [4, 34]
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(a) If F is compact-valued, then F is D-closed-valued.

(b) If F is usc and compact-valued, then F is locally bounded and osc.

(c) F is locally bounded iff F (B) is bounded for every bounded set B iff whenever
yk ∈ F (xk) for all k and {xk} is bounded, then {yk} is bounded.

(d) If F is usc at x and F (x) is closed, then F is osc at x. The reverse implication
holds if, in addition, F is locally bounded at x.

We recall a continuity notion for set-valued maps defined via ≤`D (see [20]
and the references therein).

Definition 2.5 A map F is said to be `-outer semicontinuous (`-osc) at x if
F (x)≤`D lim supk(F (xk) + D) for every xk → x. It is said to be `-osc if it is so at
every x.

There exist various weaker notions of semicontinuity for set-valued maps,
as K-lower semicontinuity and K-sequentially lower monotonicity (see [32]
and references therein). We employ `-outer semicontinuity since it is char-
acterized by the closedness of the `-epigraph that usually is assumed when
approximating SOPs. We recall some properties of this notion.

Proposition 2.6 [20]

(a) F is `-osc iff F is D-closed-valued and it has closed `-level sets iff epiF is closed.

(b) If F is osc and locally bounded, then F is `-osc.

We recall a convexity notion for set-valued maps defined via ≤`D (see [20]
and [35] for some remarks on the origin of these notions).

Definition 2.7 A map F is said to be `-convex, if for all x, x′ ∈ Rn and t ∈ (0, 1)
one has F (tx+ (1− t)x′)≤`D tF (x) + (1− t)F (x′).

Clearly, the domain of an `-convex map is convex. It is easy to check that F
is convex iff tF (x) + (1 − t)F (x′) ⊂ F (tx + (1 − t)x′) for all x, x′ ∈ Rn and
t ∈ (0, 1). Convex maps are `-convex. We list some properties of this notion.

Proposition 2.8 [20]

(a) F is `-convex iff epiF is convex iff FD is convex.

(b) If F is `-convex, then F is D-convex-valued, FD(Rn) is convex and F has convex
`-level sets.
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A set optimization problem reads as follows:

(P)

{
Minimize F (x)
subject to x ∈ C

where F : Rn ⇒ Rm is a set-valued map and C ⊂ domF is a nonempty set.
This problem arises naturally in a variety of theoretical and practical

problems. There exist two types of solutions for this problem (see [20, 21]):
vector-type ones, when the preferences are defined on elements of Rm by the
binary relations ≤D and �D, and set-type ones, when the preferences are
defined on elements of 2R

m

by the binary relations ≤`D and <<`D . In this paper,
we focus on the latter.

Definition 2.9 A vector x̄ ∈ C is said to be:

� an `-efficient solution of (P), denoted by x̄ ∈ `-E(P, D), if there is no x ∈ C
such that F (x)�`D F (x̄).

� a strict `-efficient solution of (P), denoted by x̄ ∈ `-SE(P, D), if there is no
x ∈ C with x 6= x̄ such that F (x)≤`D F (x̄).

� a weakly `-efficient solution of (P), denoted by x̄ ∈ `-WE(P, D), if x ∈ C
and F (x)<<`D F (x̄) imply F (x̄)<<`D F (x).

� a strict weakly `-efficient solution of (P), denoted by x̄ ∈ `-SWE(P, D), if
there is no x ∈ C with x 6= x̄ such that F (x)<<`D F (x̄).

We have the following relationships between these notions:

`-SE(P, D)⊂`-E(P, D)⊂`-WE(P, D) and `-SWE(P, D)⊂`-WE(P, D). (7)

Notice that one could assume without loss of generality that the values of F
are free disposal sets w.r.t. the cone D, i.e., F (x) + D = F (x), for all x ∈ C,
in the sense that all above solution sets do not change if we replace F by FD.

If F is not D-proper-valued; i.e., F (x̄) + D = Rm for some x̄ ∈ C, then
F (x̄)≤`D F (x) for all x ∈ C. This means that x̄ is an ideal or strong solution
of problem (P). In this case, it is easy to check that

`-E(P, D) = `-WE(P, D) = {x ∈ C : F (x) +D = Rm}

and the problem is trivial from a theoretical point of view since by assuming
that the values of F are free disposal w.r.t. the cone D, then the `-efficient and
weakly `-efficient solutions of problem (P) are just the feasible points whose
value is the whole space Rm. Then, in the sequel, we will assume that all the
maps are D-proper-valued.

If F is D-closed-valued, then F (x) 6<<`D F (x) for all x ∈ C that implies
`-WE(P, D) = `-SWE(P, D) (see [20, Lemma 1]). Hence x̄ ∈ `-SWE(P, D) iff
there is no x ∈ C such that F (x)<<`D F (x̄).

We recall an existence result of set-type solutions for problem (P).
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Theorem 2.10 [23] If C is compact and F has closed `-level sets, then `-E(P, D) is
nonempty.

If F is `-osc, then F is D-closed-valued and it has closed `-level sets by
Proposition 2.6(a); thus, `-SWE(P, D) = `-WE(P, D). So, under the hypothe-
ses of Theorem 2.10, by inclusion (7), we conclude that `-SWE(P, D) is
nonempty. On the other hand, by [20, Proposition 5], if F is `-osc and locally
bounded, then `-SWE(P, D) is closed.

3 Generalized ε-quasi solutions

We define some new notions of generalized ε-quasi solutions for SOPs that
extend those from [18] given for vector optimization problems.

Let ε ≥ 0, G ⊂ Rm be a nonempty set, and ϕ : Rn → [0,+∞) be a
continuous function such that ϕ(x) > 0 if x 6= 0. We denote A := (G,ϕ).

Definition 3.1 A vector x̄ ∈ C is said to be a generalized (w.r.t. A)

� ε-quasi `-solution of (P), denoted by x̄ ∈ `-E(P, D,A, ε), if there is no x ∈ C
and e ∈ G such that F (x) + εϕ(x− x̄)e�`D F (x̄).

� strict ε-quasi `-solution of (P), denoted by x̄ ∈ `-SE(P, D,A, ε), if there is
no x ∈ C and e ∈ G such that F (x) + εϕ(x− x̄)e≤`D F (x̄).

� weak ε-quasi `-solution of (P), denoted by x̄ ∈ `-WE(P, D,A, ε), if x ∈ C,
e ∈ G and F (x) + εϕ(x− x̄)e<<`D F (x̄) imply F (x̄)<<`D F (x) + εϕ(x− x̄)e.

� strict weak ε-quasi `-solution of (P), denoted by x̄ ∈ `-SWE(P, D,A, ε), if
there is no x ∈ C and e ∈ G such that F (x) + εϕ(x− x̄)e<<`D F (x̄).

� proper ε-quasi `-solution of (P), denoted by x̄ ∈ `-PE(P, D,A, ε), if x̄ ∈
`-E(P, D,A, ε) and there exists a solid pointed convex cone K ⊂ Rm such
that D\{0} ⊂ intK and x̄ ∈ `-E(P,K,A, ε).

Remark 3.2 1. Two important instances of ϕ are ϕ(·) ≡ 1 and ϕ(·) = ‖ · ‖. We
provide more examples of function ϕ in the paragraph before Proposition 4.4.

2. When defining that x̄ is a proper ε-quasi `-solution of (P) we consider that
x̄ is from `-E(P, D,A, ε). We do this, since it is not implied by the remaining
part of the definition, in contrast to the case of vector-valued functions (see [18,
Proposition 3.1(b)]). Indeed, for F : R⇒ R2 defined by

F (x) =

{
[0, 1]× [0, 1], if x = 0;

[−1, 1]× [−1, 1], if x 6= 0,

C = R, D = cone co{(1, 2), (2, 1)}, K = R2
+, G = {(1, 1)}, ϕ ≡ 1 and ε = 1, we have

F (x) + εϕ(x− x̄)e = F (x) + (1, 1) =

{
[1, 2]× [1, 2], if x = 0;

[0, 2]× [0, 2], if x 6= 0.

Clearly, D\{0} ⊂ intK, 0 ∈ `-E(P,K,A, ε) since F (0)+(1, 1) �`K F (0) and F (0) ∼`K
F (x) + (1, 1) for every x 6= 0. However, we have 0 /∈ `-E(P, D,A, ε) since F (x) +
(1, 1)�`D F (0) for x 6= 0.
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We establish properties of these notions that follow from the definitions.

Lemma 3.3 Consider problem (P), A = (G,ϕ) and ε ≥ 0.

(a) `-I(P, D,A, 0) = `-I(P, D) for I ∈ {E,WE},
`-SE(P, D,A, ε) ∪ `-PE(P, D,A, ε) ⊂ `-E(P, D,A, ε),

`-SWE(P, D,A, ε) ⊂ `-WE(P, D,A, ε).
If K ⊂ Rm is a solid pointed convex cone such that D\{0} ⊂ intK, then

`-SWE(P,K,A, ε) ⊂ `-SE(P, D\{0},A, ε).

(b) If F is D-closed-valued, then

`-SWE(P, D,A, 0) = `-SWE(P, D),

`-WE(P, D,A, ε) = `-SWE(P, D,A, ε),
`-E(P, D,A, ε) ⊂ `-SWE(P, D,A, ε). (8)

(c) If K ⊂ Rm is a solid pointed convex cone such that D\{0} ⊂ intK and F is
K-proper and clK-closed-valued, then

`-WE(P,K,A, ε) ⊂ `-SE(P, D\{0},A, ε). (9)

Proof Part (a) is trivial. The equalities in (b) are trivial and the inclusion follows
similarly as in (c).

(c) If on the contrary, we suppose that there exist x̄ ∈ `-WE(P,K,A, ε), e ∈ G
and x ∈ C such that F (x) + εϕ(x− x̄)e ≤`D\{0} F (x̄). Hence F (x̄) ⊂ F (x) + εϕ(x−
x̄)e+D\{0} and as D\{0} ⊂ intK and x̄ ∈ `-WE(P,K,A, ε), we have F (x̄)+intK =
F (x) + εϕ(x− x̄)e+ intK. Therefore

F (x̄) + clK ⊂ F (x) + εϕ(x− x̄)e+D\{0}+ clK

⊂ F (x) + εϕ(x− x̄)e+ intK = F (x̄) + intK ⊂ F (x̄) +K,

a contradiction since F (x̄) is K-proper and clK-closed. �

Remark 3.4 1. From Lemma 3.3, we see that it suffices to deal with generalized
proper and strict weak ε-quasi `-solutions since the first ones are contained in the set
of ε-quasi `-solutions that in turn are contained in the second ones under D-closed
valuedness.

2. It is worth underlining that `-SE(P, D\{0},A, 0) coincides with the set
`-E(P, D,A, 0) whenever F is single-valued.

3. Under the assumptions imposed in (9), we have that proper ε-quasi `-
solutions are strict ε-quasi `-solutions w.r.t. D\{0}. For instance, for the data in
Remark 3.2(2), we have 0 ∈ `-SE(P, D\{0},A, ε). These assumptions hold true when
ε = 0 and F is single-valued.

4. Clearly, if F is K-closed-valued, then F is clK-closed-valued.

We establish some monotonicity properties of the solution sets.

Proposition 3.5 Consider problem (P), A = (G,ϕ) and ε ≥ 0.
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(a) If G ⊂ D and ε < ε′, then `-I(P, D,A, ε) ⊂ `-I(P, D,A, ε′) for I ∈
{E, SWE,PE}.
(b) If A′ = (G′, ϕ) with G≤`D G′, then `-I(P, D,A, ε) ⊂ `-I(P, D,A′, ε) for I ∈
{E, SWE,PE}. Hence, `-I(P, D,A, ε) = `-I(P, D,A′, ε) when G ∼`D G′.

(c) If G⊂D and A′= (G,ϕ′) with ϕ≤ϕ′, then `-I(P, D,A, ε)⊂ `-I(P, D,A′, ε) for
I ∈ {E,SWE,PE}.
(d) If D ⊂ D′ with D′ ⊂ Rm being a solid pointed convex cone, then

`-SWE(P, D′,A, ε) ⊂ `-SWE(P, D,A, ε).

Proof We prove (a)–(c) for I = E. For the others the proofs run similarly.
(a) Consider x̄ ∈ C. If x̄ /∈ `-E(P, D,A, ε′), then there exist x ∈ C and e ∈ G such

that F (x̄) +D ( F (x) + ε′ϕ(x− x̄)e+D. As G ⊂ D, we have (ε′ − ε)ϕ(x− x̄)e ∈ D
and thus

F (x) + ε′ϕ(x− x̄)e+D = F (x) + εϕ(x− x̄)e+ (ε′ − ε)ϕ(x− x̄)e+D

⊂ F (x) + εϕ(x− x̄)e+D.

Hence, F (x̄) +D ( F (x) + εϕ(x− x̄)e+D; i.e., x̄ /∈ `-E(P, D,A, ε).
(b) Consider x̄ ∈ C. If x̄ /∈ `-E(P, D,A′, ε), then there exist x ∈ C and e′ ∈ G′

such that F (x̄) +D ( F (x) + εϕ(x− x̄)e′+D. As there exists e ∈ G with e′ ∈ e+D,
we have F (x̄)+D ( F (x)+εϕ(x− x̄)e+D; thus, x̄ /∈ `-E(P, D,A, ε). The remaining
assertion is trivial.

(c) Consider x̄ ∈ C. If x̄ /∈ `-E(P, D,A′, ε), then there exist x ∈ C and e ∈ G such
that F (x̄) +D ( F (x) + εϕ′(x− x̄)e+D. As G ⊂ D, we have ε(ϕ′−ϕ)(x− x̄)e ∈ D
and thus

F (x) + εϕ′(x− x̄)e+D = F (x) + εϕ(x− x̄)e+ ε(ϕ′ − ϕ)(x− x̄)e+D

⊂ F (x) + εϕ(x− x̄)e+D.

Hence, F (x̄) +D ( F (x) + εϕ(x− x̄)e+D; i.e., x̄ /∈ `-E(P, D,A, ε).
(d) Consider x̄ ∈ C. If x̄ /∈ `-SWE(P, D,A, ε), then there exist x ∈ C and

e ∈ G such that F (x̄) ⊂ F (x) + εϕ(x − x̄)e + intD. As intD ⊂ intD′, we have
F (x̄) ⊂ F (x) + εϕ(x− x̄)e+ intD′; thus, x̄ /∈ `-SWE(P, D′,A, ε). �

We study the closedness of the set of generalized strict weak ε-quasi `-solutions.

Proposition 3.6 If F is `-osc and locally bounded, and C is closed, then
`-SWE(P, D,A, ε) is closed for all ε ≥ 0.

Proof Let xk ∈ `-SWE(P, D,A, ε) → x̄. For x ∈ C and e ∈ G being fixed, we
have F (xk) 6⊂ F (x) + εϕ(x − xk)e + intD. There exists yk ∈ F (xk) such that yk /∈
F (x) + εϕ(x− xk)e+ intD. As F is locally bounded, the sequence {yk} is bounded;
thus, yk → ȳ for some ȳ up to subsequences. As yk ∈ F (xk) + D → ȳ, we have
ȳ ∈ lim supk(F (xk) +D) that by `-outer semicontinuity of F implies ȳ ∈ F (x̄) +D.
On the other hand, as yk − εϕ(x−xk)e ∈ Rm\ int(F (x) +D), after taking the limit,
we obtain ȳ /∈ F (x)+εϕ(x− x̄)e+intD. Hence F (x̄)+D 6⊂ F (x)+εϕ(x− x̄)e+intD;
thus, x̄ ∈ `-SWE(P, D,A, ε) since x̄ ∈ C (recall that C is closed), x ∈ C and e ∈ G
were arbitrary. �
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We establish conditions on A = (G,ϕ) that allow us to obtain con-
sistent notions of generalized ε-quasi `-solutions. This result extends [25,
Proposition 1.3] obtained for vector optimization problems.

Proposition 3.7 Consider problem (P) and A = (G,ϕ). Then

(a) `-E(P, D,A, ε) = ∅, for all ε > 0 under any of the following items:

(i) G ∩ (−D\{0}) 6= ∅, ϕ(0) > 0 and F is D-bounded valued.
(ii) G ∩ (− intD) 6= ∅ and ϕ(0) > 0.
(iii) G∩(− intD) 6= ∅, lim‖x‖→+∞ ϕ(x) = +∞, C is unbounded and F is bounded.

(b) `-SWE(P, D,A, ε) = ∅, for all ε > 0 under any of the following items:

(i) G ∩ (− intD) 6= ∅ and ϕ(0) > 0.
(ii) G∩(− intD) 6= ∅, lim‖x‖→+∞ ϕ(x) = +∞, C is unbounded and F is bounded.

Proof (a) On the contrary, suppose that `-E(P, D,A, ε) 6= ∅ for some ε > 0.
(i) For x̄ in this set and e ∈ G ∩ (−D\{0}) (note that εϕ(0)e 6= 0), we have:

F (x̄) 6⊂ F (x̄) + εϕ(0)e+D or F (x̄) +D = F (x̄) + εϕ(0)e+D.

If the first case holds true, then 0 /∈ εϕ(0)e+D, that is a contradiction, since e ∈ −D
and εϕ(0) > 0.
If the second case holds true, then it is not difficult to check that F (x̄) + D =
F (x̄) +kεϕ(0)e+D for all k ∈ N. As F is D-bounded valued, there exists ρ > 0 such
that F (x̄) ⊂ ρB+D. Hence F (x̄)+kεϕ(0)e ⊂ ρB+D for all k ∈ N. For ȳ ∈ F (x̄), we
have ȳ + kεϕ(0)e ∈ ρB + D for all k ∈ N. After dividing by k and taking the limit,
we obtain εϕ(0)e ∈ D, a contradiction.
(ii) For x̄ in this set and e ∈ G ∩ (− intD) (note that εϕ(0)e ∈ − intD), we get

F (x̄) 6⊂ F (x̄) + εϕ(0)e+D or F (x̄) +D = F (x̄) + εϕ(0)e+D.

If the first case holds true, then 0 /∈ εϕ(0)e+D, that is a contradiction since εϕ(0)e ∈
−D.
If the second case holds true, then

F (x̄) +D = F (x̄) +
⋃
k∈N

(kεϕ(0)e+D).

As εϕ(0)e ∈ − intD, it is easy to check that Rm =
⋃
k∈N(kεϕ(0)e + D). Then,

F (x̄) +D = Rm, that is a contradiction since F (x̄) is D-proper.
(iii) For x̄ in this set, e ∈ G ∩ (− intD) and {xk} ⊂ C with ‖xk‖ → +∞, for each k
one has

F (x̄) 6⊂ F (xk) + εϕ(xk − x̄)e+D or F (x̄) +D = F (xk) + εϕ(xk − x̄)e+D.

If the first case holds true for a subsequence {xkj}, then F (x̄) 6⊂ F (xkj ) + εϕ(xkj −
x̄)e+D and there exists ykj ∈ F (x̄) such that ykj /∈ F (xkj ) + εϕ(xkj − x̄)e+D for
all j. For wkj ∈ F (xkj ), we have ykj /∈ wkj + εϕ(xkj − x̄)e+D for such j. As {ykj}
and {wkj} are bounded, after dividing by ϕ(xkj − x̄) and taking the limit, we obtain
−εe ∈ cl(Rm\D) = Rm\ intD, a contradiction.
Therefore, the second case holds true eventually, i.e., there exists k0 such that F (xk)+
εϕ(xk − x̄)e ⊂ F (x̄) +D, for all k ≥ k0. For wk ∈ F (xk) there exists yk ∈ F (x̄) such
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that wk + εϕ(xk − x̄)e ∈ yk + D, for all k ≥ k0. As {yk} and {wk} are bounded,
after dividing by ϕ(xk − x̄) and taking the limit, we obtain εe ∈ D, a contradiction.

(b) On the contrary, suppose that `-SWE(P, D,A, ε) 6= ∅ for some ε > 0.
(i) For x̄ in this set and e ∈ G ∩ (− intD), we have F (x̄) 6⊂ F (x̄) + εϕ(0)e + intD.
This implies 0 /∈ εϕ(0)e+ intD, that is a contradiction since εϕ(0)e ∈ − intD.
(ii) For x̄ in this set, e ∈ G∩(− intD) and {xk} ⊂ C such that ‖xk‖ → +∞, we have
F (x̄) 6⊂ F (xk) + εϕ(xk − x̄)e+ intD for all k. There exists yk ∈ F (x̄) such that yk /∈
F (xk)+εϕ(xk− x̄)e+intD. For wk ∈ F (xk), we have yk /∈ wk+εϕ(xk− x̄)e+intD.
As {yk} and {wk} are bounded, after dividing by ϕ(xk− x̄) and taking the limit, we
obtain −εe ∈ cl(Rm\ intD) = Rm\ intD, a contradiction. �

It is worth pointing out that (b)–(ii) implies (a)–(iii) by (8) whenever F is
D-closed-valued.

In what follows, in order to have consistent notions of generalized ε-quasi
`-solutions, we consider:

Assumption 1: G ⊂ Rm is a nonempty set such that G ∩ (−D) = ∅.

As in [18, Lemma 3.1], we capture generalized proper ε-quasi `-solutions by
using a family of Hening dilating cones defined as follows: Let B be a compact
base of D; i.e., B ⊂ Rm is a compact convex set satisfying 0 /∈ B and coneB =
D (such a set exists, see [12]) and c = d(0, B) > 0, we define

Dγ := cone(B + γB), for γ ∈ (0, c).

Each set Dγ is a solid pointed closed convex cone, D = ∩γ∈(0,c)Dγ and
D\{0} ⊂ Dγ\{0} ⊂ intDγ′ for 0 < γ < γ′ < c. From this and
Proposition 2.1(b), we have limkDγk = D for every γk ↘ 0.

Proposition 3.8 Consider problem (P), A=(G,ϕ), ε≥0 and γk∈(0, c)↘ 0.

(a) limk `-SWE(P, Dγk ,A, ε) = cl
⋃
k`-SWE(P, Dγk ,A, ε) ⊂ cl `-SWE(P, D,A, ε).

(b) If F is K-closed and K-proper valued for any solid pointed convex cone K ⊂ Rm
such that D\{0} ⊂ intK, then(⋃

k
`-E(P, Dγk ,A, ε)

)
∩ `-E(P, D,A, ε) ⊂ `-PE(P, D,A, ε)

⊂
(⋃

k
`-E(P, Dγk\{0},A, ε)

)
∩ `-E(P, D,A, ε).

(c) lim supk(`-E(P, Dγk ,A, ε) ∩ `-E(P, D,A, ε)) ⊂ cl `-PE(P, D,A, ε).

Proof (a) As {`-SWE(P, Dγk ,A, ε)} is nondecreasing by Proposition 3.5(d), we have
limk `-SWE(P, Dγk ,A, ε) = cl ∪k `-SWE(P, Dγk ,A, ε) by Proposition 2.1(a). The
inclusion follows also from Proposition 3.5(d).

(b) Inclusion
(⋃

k `-E(P, Dγk ,A, ε)
)
∩ `-E(P, D,A, ε) ⊂ `-PE(P, D,A, ε) is a

direct consequence of the definitions, since D\{0} ⊂ intDγk for all k. We prove the
second inclusion. If x̄ ∈ `-PE(P, D,A, ε), then x̄ ∈ `-E(P, D,A, ε) and there exists a
solid pointed convex coneK ⊂ Rm such thatD\{0} ⊂ intK, and x̄ ∈ `-E(P,K,A, ε).
In the proof of [18, Lemma 3.1] it is shown that for such a cone K there exists
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γk ∈ (0, c) such that Dγk\{0} ⊂ intK. From this, by Lemma 3.3, we obtain
x̄ ∈ `-E(P,K,A, ε) ⊂ `-E(P, Dγk\{0},A, ε) and the second inclusion follows.

(c) The inclusion is an obvious consequence of (b). �

Remark 3.9 It is worth pointing out that the above properties can be written in
terms of limits of solution maps. For instance, part (a) can be written as:

lim sup
γ↘0

`-SWE(P, Dγ ,A, ε) ⊂ cl
⋃

γ∈(0,c)

`-SWE(P, Dγ ,A, ε) ⊂ cl `-SWE(P, D,A, ε).

Indeed, we have

lim sup
γ↘0

`-SWE(P, Dγ ,A, ε) =
⋃

{γk↘0}
cl
⋃
k

`-SWE(P, Dγk ,A, ε)

⊂ cl
⋃

{γk↘0}

⋃
k

`-SWE(P, Dγk ,A, ε)

= cl
⋃

γ∈(0,c)

`-SWE(P, Dγ ,A, ε)

⊂ cl `-SWE(P, D,A, ε).

We write the above properties in terms of sequences in order to highlight the limit
behavior of the approximations.

We study the behavior of generalized ε-quasi `-solutions when εk ↘ ε.

Theorem 3.10 Consider problem (P), A = (G,ϕ) with G ⊂ D\{0}, ε ≥ 0 and
εk ↘ ε.

(a) cl `-I(P, D,A, ε) ⊂ limk `-I(P, D,A, εk) =
⋂
k cl `-I(P, D,A, εk) for I ∈

{E, SWE,PE}.
(b) If F is compact-valued, then `-SWE(P, D,A, ε) =

⋂
k `-SWE(P, D,A, εk).

(c) If F is osc, locally bounded and C is closed, then

limk `-SWE(P, D,A, εk) = `-SWE(P, D,A, ε).

Proof (a) As {`-I(P, D,A, εk)} is nonincreasing by Proposition 3.5(a), we have
limk `-I(P, D,A, εk) =

⋂
k cl `-I(P, D,A, εk) by Proposition 2.1(b). The inclusion

follows again from Proposition 3.5(a).
(b) The left-side set is contained in the right-side one by Proposition 3.5(a). We

prove the reverse inclusion. On the contrary, if there exists x̄ in the right-hand side set
but not in the left-side one, then F (x̄) ⊂ F (x)+εϕ(x−x̄)e+intD for some x ∈ C and
e ∈ G; i.e., F (x̄)− εϕ(x− x̄)e ⊂ int(F (x) +D). As the left-side set is compact, there
exists δ > 0 such that F (x̄)− εϕ(x− x̄)e+ δB ⊂ int(F (x) +D). From this, we obtain
F (x̄)−εkϕ(x−x̄)e ⊂ int(F (x)+D) for some k, i.e., F (x̄) ⊂ F (x)+εkϕ(x−x̄)e+intD,
a contradiction.

(c) This follows from (a)–(b) and Proposition 3.6, since F is compact-valued by
Proposition 2.4(d) and F is `-osc by Proposition 2.6(b). �
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4 Existence results

To study the existence of generalized ε-quasi `-solutions of problem (P), we
extend to set-valued maps the approach used in [25] based on linear scalar-
izations. To do this, we use the scalarization function Fξ : Rn → R ∪ {±∞}
defined for F and ξ ∈ D+\{0} by

Fξ(x) := inf
y∈F (x)

〈ξ, y〉, for all x ∈ Rn

(we set inf∅〈ξ, y〉 = +∞). In [21] it is reported that this function was
introduced by Dien in [7]. It is easy to check that domFξ = domF and
Fξ(x) = −σF (x)(−ξ) for all x. From the latter and by properties of support
functions (see [5, Proposition 1.3.2]), we obtain that for a fixed x the function
ξ 7→ Fξ(x) is usc, positively homogeneous and superadditive and (FD)ξ = Fξ.
If F : Rn ⇒ Rm is the map such that F (x) := clF (x) for all x, then F ξ = Fξ.

We obtain other properties of the scalarization function to be used later.
Part (a) is a direct consequence of [32, Proposition 3.4]. Part (b) extends [28,
Lemma 3.18(2)] where the map F is assumed to be osc and locally bounded.
It appears also in [29, Proposition 2.3] under upper D-continuity.

Proposition 4.1 Consider F and ξ ∈ D+\{0}. Then

(a) If F is `-bounded from below, then infRn Fξ > −∞.

(b) If F is `-osc and locally bounded, then Fξ is lsc.

(c) If F is `-convex, then Fξ is convex.

Proof (a) By hypothesis F (x) ⊂ b + D for all x ∈ Rn for some b ∈ Rm. From this,
we obtain Fξ(x) ≥ infd∈D〈ξ, b+ d〉 ≥ 〈ξ, b〉 for all x ∈ Rn.

(b) Let xk → x and α := lim infk Fξ(x
k). Clearly, α ∈ R as F is locally bounded.

As αn := infk≥n Fξ(x
k) ≤ α for all n, we can choose a subsequence {xkn}n such that

Fξ(x
kn) < α+ 1

n for all n. As Fξ(x
kn) = infy∈F (xkn )〈ξ, y〉, there exists ykn ∈ F (xkn)

such that 〈ξ, ykn〉 < α+ 1
n . The sequence {ykn}n is bounded by the local boundedness

of F . Hence ykn → y for some y, up to subsequences. As ykn ∈ F (xkn), we have
y ∈ lim supk(F (xk)+D) that by the `-outer semicontinuity of F implies y ∈ F (x)+D.
After taking the limit to the last inequality, we obtain 〈ξ, y〉 ≤ α. As y = ỹ + d for
ỹ ∈ F (x) and d ∈ D, we have Fξ(x) ≤ 〈ξ, ỹ〉 ≤ 〈ξ, y〉 ≤ α. Hence Fξ(x) ≤ α and we
are done.

(c) See [29, Proposition 2.2(a)]. �

We show that some ε-quasi solutions of the scalarization function are gen-
eralized ε-quasi `-solutions of problem (P). To this end, for a given fixed
scalar ε > 0, we define the set of (ε, ϕ)-quasi solutions of Fξ on C by

(ε, ϕ)-arg minC Fξ := {x̄ ∈ C : Fξ(x̄) ≤ Fξ(x) + εϕ(x− x̄), ∀x ∈ C}.
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We denote also τG(η) := infe∈G〈η, e〉 for all η ∈ Rm.
We now prove that certain (ε, ϕ)-quasi solutions of Fξ on C are generalized

ε-quasi `-solutions of problem (P). To this end, as Fξ(x) = −σF (x)(−ξ), we
use properties of support functions (see [5, Proposition 1.3.3]).

Proposition 4.2 Consider problem (P) with F being D-bounded-valued from below,
A = (G,ϕ) and ε > 0. Then⋃

δ∈[0,ε)
ξ∈D+\{0},τG(ξ)>0

(δτG(ξ), ϕ)-arg minC Fξ ⊂ `-E(P, D,A, ε).

Proof Consider ξ ∈ D+\{0} such that τG(ξ) > 0 and δ ∈ [0, ε). If x̄ /∈
`-E(P, D,A, ε), then we have F (x̄) ⊂ F (x)+εϕ(x− x̄)e+D and F (x̄)+D 6= F (x)+
εϕ(x− x̄)e+D for some x ∈ C and e ∈ G. The latter implies that x̄ 6= x if ϕ(0) = 0.
By properties of support functions, we have σF (x̄)(η) ≤ σF (x)+εϕ(x−x̄)e+D(η) =

σF (x)(η) + εϕ(x− x̄)〈η, e〉+ δD−(η) for all η ∈ Rm. For every ξ ∈ D+\{0}, we have

−ξ ∈ −D+\{0} = D−\{0} and from above we obtain Fξ(x̄) ≥ Fξ(x)+εϕ(x−x̄)〈ξ, e〉.
We have εϕ(x − x̄)〈ξ, e〉 ≥ ετG(ξ)ϕ(x − x̄) > δτG(ξ)ϕ(x − x̄) for 0 ≤ δ < ε since
τG(ξ)ϕ(x − x̄) > 0. As F is D-bounded-valued from below, we have Fξ(x) > −∞
and then Fξ(x̄) > Fξ(x) + δτG(ξ)ϕ(x− x̄); i.e., x̄ /∈ (δτG(ξ), ϕ)-arg minC Fξ and x̄ is
not in the left-hand side set. �

Corollary 4.3 Consider problem (P) with F being D-bounded-valued from below,
A=(G,ϕ) with G compact and ε>0.

(a)
⋃

ξ∈D+\{0}, δ∈[0,ε)

(δτG(ξ), ϕ)-arg minC Fξ ⊂ `-E(P, D,A, ε), if G ⊂ intD.

(b)
⋃

ξ∈ intD+, δ∈[0,ε)

(δτG(ξ), ϕ)-arg minC Fξ ⊂ `-E(P, D,A, ε), if G ⊂ D\{0}.

Proof As G is compact, we have τG(ξ) > 0 when ξ ∈ D+\{0} and G ⊂ intD, or
when ξ ∈ intD+ and G ⊂ D\{0}. �

From Proposition 4.2 and Corollary 4.3, we see that to prove the existence
of generalized ε-quasi `-solutions of problem (P), one can prove the existence
of (ε, ϕ)-quasi solutions of Fξ. To do this, we recall an extension of the Ekeland
variational principle due to Qiu [31]. We write it in our finite dimensional
framework. Let ψ : [0,+∞)→ [0,+∞) be a subadditive (ψ(s+t) ≤ ψ(s)+ψ(t)
for all s, t ∈ [0,+∞)), nondecreasing, continuous function such that ψ(0) = 0
and ψ(t) > 0 for all t > 0. Let Ψ denote the class of all such functions. Some
functions from this class are: ψ(t) = αt, ψ(t) = αt/(1 + βt), ψ(t) = α n

√
t,

ψ(t) = α ln(1 + βt), and ψ(t) = α arctanβt where n ∈ N, α > 0 and β > 0 are
constants (see [30]).
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Proposition 4.4 [31] If f : Rn → R ∪ {+∞} is a proper, lsc, bounded from below
function and ψ ∈ Ψ, then for any x0 ∈ dom f there exists x̄ ∈ Rn such that

f(x̄) + ψ(‖x0 − x̄‖) ≤ f(x0) and f(x̄) < f(x) + ψ(‖x− x̄‖), ∀x ∈ Rn, x 6= x̄.

We now obtain an existence result of generalized ε-quasi `-solutions via the
above scalarization and the Ekeland variational principle.

Theorem 4.5 Consider problem (P), A = (G,ϕ) with ϕ(·) := ψ(‖ · ‖) where ψ ∈ Ψ
and G is closed with G ⊂ D\{0} or G is convex with 0 /∈ clG and D ⊂ coneG. If F is
locally bounded, `-osc, `-bounded from below, then `-E(P, D,A, ε) 6= ∅, for all ε > 0.

Proof If ξ ∈ D+\{0}, then Fξ is proper, lsc, bounded from below by Proposition 4.1.

When G is closed with G ⊂ D\{0}, we claim that τG(ξ) > 0 whenever ξ ∈ intD+.
Indeed, otherwise there exists {ek} ⊂ G such that 〈ξ, ek〉 → 0+. If {ek} is bounded,
then ek → ē for some ē, up to subsequences; thus, 〈ξ, ē〉 = 0. As G is closed, we have
ē ∈ G and thus 〈ξ, ē〉 > 0, a contradiction. On the other hand, if {ek} is unbounded,
then we may consider that ‖ek‖ → +∞. Hence ek/‖ek‖ → ē for some ē 6= 0, up to
subsequences. Clearly, 〈ξ, ē〉 = 0. As ek/‖ek‖ ∈ D and D is closed, we have ē ∈ D\{0}
and thus 〈ξ, ē〉 > 0, a contradiction. By applying Proposition 4.4 to f = Fξ with

ξ ∈ intD+ and δτG(ξ)ψ instead of ψ where δ ∈ (0, ε) (notice that δτG(ξ)ψ ∈ Ψ
since δτG(ξ) > 0), we have (δτG(ξ), ϕ)-arg minC Fξ 6= ∅. Hence `-E(P, D,A, ε) 6= ∅
by Proposition 4.2.

When G is convex with 0 /∈ clG and D ⊂ coneG, by the separation theorem
there exists ξ̄ ∈ intD+ such that τG(ξ̄) > 0. Then, as in the previous part, the
result follows by applying Proposition 4.4 to f = Fξ̄ and δτG(ξ̄)ψ instead of ψ where
δ ∈ (0, ε). �

Remark 4.6 It is worth pointing out that under the hypothesis of Theorem 4.5, we
have `-SWE(P, D,A, ε) 6= ∅, for all ε > 0 by (8) and Proposition 2.6(a).

We obtain properties of `-boundedness from below that complement those
in Proposition 2.2. To do this, we recall the notion of asymptotic map of
F that is a map, denoted by F∞, such that epiF∞ := (epiF )∞ (see [20,
Definition 6]). Part (a) extends a necessary condition in scalar minimization
from [2, Proposition 15.1.2].

Lemma 4.7 (a) If F is `-bounded from below, then 0≤`D F∞(v) for all v; hence
F∞ is also `-bounded from below.

(b) If F (Rn)∞∩{ξ}−={0} for all ξ∈D+\{0}, then F is `-bounded from below.

Proof (a) By hypothesis F (Rn) ⊂ b + D for some b. If w ∈ F∞(v), then (v, w) ∈
epiF∞ = (epiF )∞ and there exist tk → +∞ and (xk, yk) ∈ epiF such that
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(1/tk)(xk, yk)→ (v, w). As yk ∈ F (xk) +D, we have yk−b
tk
∈ D and after taking the

limit, we obtain w ∈ D. As w was arbitrary, we have F∞(v) ⊂ D.
(b) On the contrary, suppose that F is not `-bounded from below. Hence for q ∈

intD being fixed, for every k ∈ N there exists xk ∈ domF such that F (xk) 6⊂ −kq+
D; thus, there exists yk ∈ F (xk) such that yk /∈ −kq +D. By a separation theorem
(see, for instance, [34, Theorem 2.39]), for each k, there exists ξk ∈ Rm\{0} such
that 〈ξk, yk〉 < 〈ξk,−kq + d〉 for all d ∈ D. From this, we deduce that ξk ∈ D+\{0}
and since we may consider that ‖ξk‖ = 1, we have ξk → ξ for some ξ ∈ D+\{0},
up to subsequences. If {yk} is bounded, then dividing the last inequality by k and
taking the limit, we obtain 〈ξ, q〉 ≤ 0, a contradiction to (2). Hence we may consider
that ‖yk‖ → +∞; thus, yk/‖yk‖ → w for some w 6= 0, up to subsequences and we
have w ∈ F (Rn)∞. As 〈ξk, yk〉 < 0 for all k, dividing by ‖yk‖ and taking the limit,
we obtain 〈ξ, w〉 ≤ 0; i.e., w ∈ {ξ}−, a contradiction. �

We study the boundedness of the set of generalized strict weak ε-quasi `-
solutions of (P). To do this, we obtain a bound for the asymptotic cone of this
set. We recall an “asymptotic compactness condition” (see [20, Definition 7]
and the references therein). A map F satisfies condition (CR1) if for every
sequences tk → +∞, vk → v with v 6= 0, tkv

k ∈ C and zk ∈ F (tkv
k) for all k,

the sequence {zk/tk} has a convergent subsequence. We assume the convention
{+∞ · e} = ∅.

Proposition 4.8 Consider problem (P), A = (G,ϕ) with G ⊂ D\{0} and ε > 0.
If F satisfies condition (CR1), then

`-SWE(P, D,A, ε)∞ ⊂
⋂
e∈G
{v ∈ Rn : −ε(−ϕ)∞(−v)e 6<<`D F∞(v)}. (10)

Proof First, we claim that v = 0 belongs to the right-hand side set. Indeed,
as (−ϕ)∞(0) is equal to 0 or −∞ by [5, Proposition 2.5.1], it follows that
{−ε(−ϕ)∞(0)e} is equal to {0} or {+∞· e} = ∅. Since 0 ∈ F∞(0) +D we have that
∅ 6= F∞(0) +D 6⊂ intD, and so −ε(−ϕ)∞(0)e 6<<`D F∞(0).

If v 6= 0 belongs to the left-hand side set, then there exist tk → +∞ and xk ∈
`-SWE(P, D,A, ε) such that xk/tk → v (we have ‖xk‖ → +∞, up to subsequences).
Hence F (xk) 6⊂ F (x) + εϕ(x − xk)e + intD for fixed x ∈ C and e ∈ G; thus, for a
fixed y ∈ F (x), we have F (xk) 6⊂ y + εϕ(x− xk)e+ intD; i.e.,

∃yk ∈ F (xk) such that yk /∈ y + εϕ(x− xk)e+ intD for all k. (11)

By condition (CR1), we have yk/tk → w for some w, up to subsequences. From
this and since (xk, yk) ∈ epiF , we obtain (v, w) ∈ (epiF )∞ = epiF∞; thus, w ∈
F∞(v)+D. Dividing the right-hand side part in (11) by tk and after taking the limit
of the subsequence that yields the limsup for the expression with ϕ, we obtain

− w + ε(lim supk
1

tk
ϕ(x− xk))e ∈ Rm\(− intD) (12)

whenever lim supk
1
tk
ϕ(x− xk) ∈ R.

By the formula for the asymptotic function in [5, Theorem 2.5.1], we obtain

lim supk
ϕ(x− xk)

tk
= − lim infk

−ϕ(tk
x−xk
tk

)

tk
≤ −(−ϕ)∞(−v).
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If (−ϕ)∞(−v) = −∞, then {−ε(−ϕ)∞(−v)e} is equal to {+∞·e} = ∅ and the result

follows since w ∈ F∞(v) +D (and so F∞(v) 6= ∅). Otherwise, lim supk
ϕ(x−xk)

tk
and

(−ϕ)∞(−v) are real numbers and we have

ε
[
− (−ϕ)∞(−v)− lim supk

1

tk
ϕ(x− xk)

]
e ∈ D, (13)

since we have G ⊂ D\{0}. After adding expressions (12) and (13), we obtain that
−w − ε(−ϕ)∞(−v)e ∈ Rm\(− intD); i.e., w /∈ −ε(−ϕ)∞(−v)e + intD. Therefore,
F∞(v) +D 6⊂ −ε(−ϕ)∞(−v)e+ intD and v is in the right-hand side set. �

Corollary 4.9 Under the hypotheses of Proposition 4.8, if⋂
e∈G
{v ∈ Rn : −ε(−ϕ)∞(−v)e 6<<`D F∞(v)} = {0}, (14)

then `-SWE(P, D,A, ε) is bounded.

Proof By Proposition 4.8, we have `-SWE(P, D,A, ε)∞ = {0} that implies the
boundeness of the solution set. �

Remark 4.10 1. If ϕ(x) = 1 (resp. ϕ(x) = ‖x‖) for all x, then (−ϕ)∞(v) = 0 (resp.
(−ϕ)∞(v) = −‖v‖) for all v.

2. The bound (10) with ε = 0 appears in [20, Corollary 3] under condition (CR1);
i.e., `-SWE(P, D)∞ ⊂ {v ∈ Rn : 0 6<<`D F∞(v)}.

3. Clearly, condition (14) holds if there exists some vector e ∈ G such that {v ∈
Rn : −ε(−ϕ)∞(−v)e 6<<`D F∞(v)} = {0}.

5 Optimality conditions

We establish optimality conditions for generalized strict weak ε-quasi `-
solutions of (P). To do this, we recall some notions from [1, 21]. For a nonempty
set A ⊂ Rm, we denote by IMinA := {a ∈ A : a ≤D a′ for all a′ ∈ A} its ideal
minimal point and by T (A, x̄) := {u : ∃tk → 0+,∃uk → u : x̄ + tku

k ∈ A,∀k}
its contingent cone at x̄ ∈ clA. If A is convex, then T (A, x̄) = cl cone(A− x̄).
The contingent derivative of F at (x̄, ȳ) ∈ gphF is a set-valued map
DF (x̄, ȳ) : Rn ⇒ Rm such that gph(DF (x̄, ȳ)) = T (gphF, (x̄, ȳ)). By [21,
Theorem 11.3.7], we have DF (x̄, ȳ)(u) +D ⊂ DFD(x̄, ȳ)(u) for all u.

The Dini-Hadamard upper (resp. right-sided) directional derivative of ϕ
at x̄ in the direction v is defined by

ϕDH+(x̄; v) := lim sup
(t,u)→(0+,v)

ϕ(x̄+ tu)− ϕ(x̄)

t

(
resp.ϕ′+(x̄; v) := lim

t→0+

ϕ(x̄+ tv)− ϕ(x̄)

t

)
.

Next, we assume C = domF (otherwise, we redefine the objective map by
F (x) = ∅, for all x /∈ C, resulting in an equivalent formulation of the problem).
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Theorem 5.1 Consider problem (P), A = (G,ϕ) with G ⊂ D\{0} and (x̄, ȳ) ∈
gphF such that domDFD(x̄, ȳ) 6= ∅.

(a) Assume ϕ(0) = 0. If x̄ ∈ `-SWE(P, D,A, ε) and IMinF (x̄) = {ȳ}, then

DFD(x̄, ȳ)(u) + εϕDH+(0; u)G ⊂ Rm\(− intD), ∀u ∈ T (C, x̄). (15)

(b) If F is `-convex, ϕ is convex and

DFD(x̄, ȳ)(u) + εϕ′+(0; u)G ⊂ Rm\(− intD), ∀u ∈ T (C, x̄), (16)

then x̄ ∈ `-SWE(P, D,A, ε).

Proof (a) Clearly, condition (15) holds when ϕDH+(0; u) = +∞ (note that
ϕDH+(0; u) ∈ [0,+∞] since ϕ(0) = 0) or u ∈ T (C, x̄)\domDFD(x̄, ȳ) (recall that
domDFD(x̄, ȳ) ⊂ T (C, x̄)).

Let u ∈ domDFD(x̄, ȳ) and ϕDH+(0; u) be finite. If v ∈ DFD(x̄, ȳ)(u), then
there exist tk → 0+ and (uk, vk)→ (u, v) such that ȳ + tkv

k ∈ F (x̄+ tku
k) +D for

all k (see [21, Proposition 11.1.8]). As x̄ ∈ `-SWE(P, D,A, ε) and x̄ + tku
k ∈ C for

all k, we have F (x̄) 6⊂ F (x̄ + tku
k) + εϕ(tku

k)e + intD for e ∈ G. Hence F (x̄) 6⊂
ȳ + tkv

k + εϕ(tku
k)e + intD for such k. From this and F (x̄) ⊂ ȳ + D, we obtain

ȳ +D 6⊂ ȳ + tkv
k + εϕ(tku

k)e+ intD; thus, tkv
k + εϕ(tku

k)e /∈ − intD and so

vk + ε
(ϕ(0 + tku

k)− ϕ(0)

tk

)
e ∈ Rm\(− intD), for such k.

Moreover, as

ε
(

sup
j≥k

ϕ(0 + tju
j)− ϕ(0)

tj
− ϕ(0 + tku

k)− ϕ(0)

tk

)
e ∈ D,

after adding these expressions, we have

vk + ε
(

sup
j≥k

ϕ(0 + tju
j)− ϕ(0)

tj

)
e ∈ Rm\(− intD), for such k.

After taking the limit, we obtain

v + ε
(

lim supk
ϕ(0 + tku

k)− ϕ(0)

tk

)
e ∈ Rm\(− intD).

As ε(ϕDH+(0; u)− lim supk
ϕ(0+tku

k)−ϕ(0)
tk

)e ∈ D, after adding the last two expres-

sions, we get v + εϕDH+(0; u)e ∈ Rm\(− intD) and condition (15) holds.
(b) On the contrary, suppose that condition (16) holds but it holds that x̄ /∈

`-SWE(P, D,A, ε). Hence there exist x ∈ C and e ∈ G such that F (x̄) ⊂ F (x) +
εϕ(x− x̄)e+ intD. As F is `-convex, we have F (x)− ȳ ⊂ DFD(x̄, ȳ)(x− x̄) by [21,
Corollary 11.1.23]. Moreover, as ϕ is convex, we have ϕ(x− x̄) ≥ ϕ(0)+ϕ′+(0; x− x̄);
thus, ε(ϕ(x − x̄) − ϕ′+(0; x − x̄))e ∈ D since e ∈ D\{0}. From these relationships
and condition (16) for u = x − x̄, we obtain F (x̄) − ȳ ⊂ Rm\(− intD) + intD, a
contradiction since 0 ∈ F (x̄)− ȳ. �

Remark 5.2 1. In part (a) we can put F instead of FD. In such a case the reverse
implication holds under the convexity of F (see [21, Theorem 11.1.22]).

2. Interval-type, box-type and cone-valued-type maps [9, 19] are important
instances of maps whose images have an ideal element.



Springer Nature 2021 LATEX template

20 Generalized ε-quasi solutions of SOPs

3. [21, Proposition 11.1.9] Let (x̄, ȳ) ∈ gphF . If x̄ ∈ intC and F is Lipschitz
around x̄ (i.e., there exist L > 0 and a neighborhood U of x̄ such that F (x) ⊂
F (z) + L‖x− z‖B for all x, z ∈ U), then domDF (x̄, ȳ) = Rn.

4. Theorem 5.1 extends [26, Propositions 3.1–3.2] and [8, Propositions 3.1–3.2]
for scalar functions and is related to [11, Theorem 4.2] for vector functions. Point
out that if ϕ(x) = ‖x‖, then ϕDH+(0; u) = ‖u‖.
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References

[1] Ansari, Q.H., Lalitha, C.S., Mehta, M.: Generalized Convexity, Non-
smooth Variational Inequalities, and Nonsmooth Optimization. CRC
Press, Boca Raton (2014)

[2] Attouch, H., Buttazzo, G., Michaille, G.: Variational Analysis in Sobolev
and BV Spaces: Applications to PDEs and Optimization. SIAM, Philadel-
phia (2006)

[3] Attouch, H., Riahi, H.: Stability results for Ekeland’s ε-variational
principle and cone extremal solutions. Math. Oper. Res. 18, 173–201
(1993)

[4] Aubin, J.-P., Cellina, A.: Differential Inclusions: Set-Valued Maps and
Viability Theory, Springer. Berlin (1984)

[5] Auslender, A., Teboulle, M.: Asymptotic Cones and Functions in Opti-
mization and Variational Inequalities. Springer, Berlin (2003)

[6] Breckner, W.W., Kassay, G.: A systematization of convexity concepts for
sets and functions. J. Convex Anal. 4, 109–127 (1997)

[7] Dien, P.H.: Locally Lipschitzian set-valued maps and generalized extremal
problems with inclusion constraints. Acta Math. Vietnam. 8, 109–122
(1983)

[8] Dutta, J.: Necessary optimality conditions and saddle points for approx-
imate optimization in Banach spaces. Top 13, 127–143 (2005)

[9] Eichfelder, G.: Cone-valued maps in optimization. Appl. Anal. 91, 1831–
1846 (2012)



Springer Nature 2021 LATEX template

Generalized ε-quasi solutions of SOPs 21

[10] Ekeland, I.: On the variational principle. J. Math. Anal. Appl. 47, 324–353
(1974)

[11] Gao, Y., Hou, S.H., Yang, X.M.: Existence and optimality conditions for
approximate solutions to vector optimization problems. J. Optim. Theory
Appl. 152, 97–120 (2012)
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[18] Gutiérrez, C., López, R., Novo, V.: Generalized ε-quasi-solutions in
multiobjective optimization problems: Existence results and optimality
conditions. Nonlinear Anal. 72, 4331–4346 (2010)
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