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ABSTRACT
The paper concerns with exact and approximate Ekeland variational principles for
vector-valued functions and bifunctions, that are derived via linear and nonlinear
scalarization processes by an approximate scalar formulation of the Ekeland vari-
ational principle and a revised version of Dancs-Hegedüs-Medvegyev’s fixed point
theorem. Both results are also interesting in themselves and involve really mild as-
sumptions. As a result, the obtained Ekeland variational principles improve some
recent results in the literature since weaker assumptions are required.
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1. Introduction

The celebrated Ekeland variational principle (EVP) is an important mathematical tool
with many applications in different fields in nonlinear analysis and optimization theory.
The best references for those are given by Ekeland himself: his survey article [11] and
his book with J.-P. Aubin [4]. It is well established that Dancs-Hegedüs-Medvegyev’s
fixed point theorem [9, Theorem 3.1] has served as a significant tool in proving versions
of the EVP and their extensions to vector and set optimization; see, for example, [17]
and the references therein. Recently, Bao and Théra [6] proposed a revised version
of Dancs-Hegedüs-Medvegyev’s result which not only unifies the existing generalized
versions of this theorem including the one-sequence version in [17, Lemma 3.4] and the
preorder principle in [21, Theorem 2.1], but also improves them as weaker assumptions
are required.

In [14, Theorem 4.1] Gutiérrez et al. established exact and approximate EVPs for
vector equilibrium problems without assuming any topology on the final space of the
bifunction of the problem. For this aim, the domination set is assumed to be free-
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disposal. This kind of sets were introduced in mathematical economics by Debreu (see
[10]). The main tool is Theorem 3.5, a result for the existence of a kind of strict fixed
point of a set-valued mapping.

This paper has two folds: (1) we propose a general approximate scalar EVP and a
refined version of Dancs-Hegedüs-Medvegyev’s fixed point theorem which would lead
to better exact EVPs and (2) we deduce approximate and exact EVPs for vector-
valued functions. The obtained results improve other recent ones of the literature
since weaker assumptions are required. For instance, the final space of the vector
functions is not equipped with any topology and a new lower semicontinuity notion
named strictly ≤D-decreasing lower semicontinuity is considered, that generalizes the
so-called sequentially submonotonicity (see [7,12,19,20]).

Moreover, the role of some mathematical tools and assumptions usually required on
the vector EVPs are clarified. For instance, by Corollary 2.9 we can emphasize that
[14, Theorem 3.5] can be viewed as another form of Dancs-Hegedüs-Medvegyev’s fixed
point theorem.

The paper is organized as follows. In Section 2, the framework and some general no-
tations are presented. In addition, we develop two basic mathematical tools from which
the approximate and exact EVPs are obtained: an approximate version of the scalar
EVP (see [8, Proposition 2.5]) and a revised version of Dancs-Hegedüs-Medvegyev’s
fixed point theorem (see, [9, Theorem 3.1]). In Section 3, an approximate vector EVP
is stated. Its assumptions are weaker than the ones considered in the previous re-
sults of the literature. Section 4 is devoted to a new exact vector EVP based on
free-disposal domination sets and its corollaries. It is worth underlining the one based
on approximate solutions of the problem, where no lower boundedness assumptions
are required. We also prove that the vector EVP is satisfied for strictly decreasing
lower-semicontinuous vector-valued functions.

2. Preliminaries

Let T be a topological space and consider a set H ⊆ T . Throughout this paper,
clH denotes the closure of H. IRn+ stands for the nonnegative orthant of IRn and
IR+ := IR1

+. We assume 0 ∈ IN and (xn) denotes the sequence {xn : n ∈ IN}.
Let A be an arbitrary nonempty set. Given an extended real function ϕ : A →

IR ∪ {±∞}, domϕ stands for the effective domain of ϕ; i.e.,

domϕ := {a ∈ A : ϕ(a) < +∞}.

The function ϕ is said to be proper if domϕ 6= ∅ and ϕ(a) > −∞, for all a ∈ A. As it
is usual we assume infa∈A ϕ(a) = +∞ whenever A = ∅. A bifunction η : A× A → IR
is said to satisfy the triangle inequality property if

η(a1, a3) ≤ η(a1, a2) + η(a2, a3), ∀a1, a2, a3 ∈ A.

Consider a dynamic system Φ : A ⇒ A. Then, (an) ⊆ A is called a generalized
Picard sequence of Φ if an+1 ∈ Φ(an), for all n ∈ IN .

The algebraic dual space of a real linear space Y is denoted by Y ′. Moreover,
G+ ⊆ Y ′ (resp. Gs+ ⊆ Y ′) stands for the positive (resp. strict positive) polar cone of
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a nonempty set G ⊆ Y ; i.e.,

G+ := {λ ∈ Y ′ : ∀y ∈ G,λ(y) ≥ 0}(
resp. Gs+ :=

⋃
δ>0

{
λ ∈ Y ′ : ∀y ∈ G\{0}, λ(y) ≥ δ

}
∪ {0}

)
.

For each λ ∈ Y ′, we denote τG(λ) = infy∈G λ(y).
The preference relation defined by a domination set ∅ 6= E ⊆ Y is denoted by ≤E ;

i.e.,

y1, y2 ∈ Y, y1 ≤E y2 ⇐⇒ y2 − y1 ∈ E.

Then, a function ξ : Y → IR ∪ {±∞} is said to be nondecreasing with respect to ≤E
(≤E-nondecreasing for short) if

y1, y2 ∈ Y, y1 ≤E y2 ⇒ ξ(y1) ≤ ξ(y2).

A bifunction h : A × A → Y is said to fulfill the triangle inequality property with
respect to ≤E if

h(a1, a3) ≤E h(a1, a2) + h(a2, a3), ∀a1, a2, a3 ∈ A.

Moreover, h is said to be diagonal null if h(a, a) = 0, for all a ∈ A.
The sublevel set of a vector-valued function g : A→ Y at y ∈ Y with respect to the

relation ≤E is denoted as follows:

[g ≤E y] := {a ∈ A : g(a) ≤E y}.

A set E ⊆ Y is said to be free disposal with respect to a convex cone D ⊆ Y if
E + D = E. If additionally 0 /∈ E, then E is said to be an improvement set. The
generated cone by E is denoted coneE. Moreover, the so-called algebraic interior and
recession cone of E are denoted by coreE and 0+E, respectively, i.e.,

coreE := {y ∈ Y : ∀v ∈ Y, ∃γ > 0 s.t. y + [0, γ]v ⊆ E},
0+E := {v ∈ Y : y + tv ∈ E,∀y ∈ E,∀t ∈ IR+}.

Recall that the vector closure of E in the direction of a vector q ∈ Y is the set (see
[22])

vclqE := {y ∈ Y : ∀t > 0 ∃t′ ∈ [0, t] s.t. y + t′q ∈ E}.

We say that E is algebraic solid (resp. q-vectorial closed) if coreE 6= ∅ (resp. vclq E =
E). It is easy to check that vclq E is q-vectorial closed (i.e., vclq vclq E = vclq E). The
vector closure of E is the set vclE :=

⋃
q∈Y vclqE (see [1]). We have the next basic

properties.

Lemma 2.1. Suppose that coneE is proper (i.e., coneE 6= Y ) and convex and q ∈
core coneE. Then, core coneE + vclqconeE = core coneE and q /∈ − vcl coneE.
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Proof. The first assertion is a direct consequence of [15, Proposition 18]. For the
second one, notice that vcl coneE = vclqconeE (see [22, Proposition 2.3]). Then, if
q ∈ − vcl coneE it follows that

0 ∈ core coneE + vcl coneE

= core coneE + vclqconeE

= core coneE

that is a contradiction, since coneE is proper.

In this work, the EVPs concerning with vector-valued functions are stated by linear
and nonlinear scalarization. For the second approach, the so-called Gertewitz’s scalar-
ization functional ϕqE : Y → IR ∪ {±∞} is considered. For each q ∈ Y \{0}, ϕqE is
defined as follows:

ϕqE(y) := inf{t ∈ IR : y ∈ tq − E}. (1)

In the subsequent lemma we provide some basic properties of ϕqE (see [15, Proposi-
tion 2, Theorem 4 and Theorem 8]).

Lemma 2.2. It follows that

(i) If q /∈ − vcl coneE, then ϕ > −∞.
(ii) ϕqE is q-translative, i.e., ϕqE(y + tq) = ϕqE(y) + t, for all y ∈ Y and t ∈ IR.

(iii) ϕqE(0) > 0 if and only if 0 /∈ cone {q}+ vclq E.
(iv) Consider ∅ 6= C ⊆ Y . Then, ϕqE is ≤C-nondecreasing if and only if E + C ⊆

[0,+∞)q + vclq E.

The next two theorems state the basic mathematical tools from which the approxi-
mate and exact EVPs of Sections 3 and 4 are obtained. We begin with an approximate
version of the scalar EVP (see [8, Proposition 2.5]). Assertion (b) of this result shows
the existence of approximate strict solutions of the perturbed problem.

Theorem 2.3 (Approximate scalar EVP). Let A be a nonempty set, ϕ : A → IR ∪
{±∞} be a proper function, η : A×A→ IR be satisfying the triangle inequality property
and τ > 0. Assume that a0 ∈ domϕ and

c := inf
a∈S(a0)

{ϕ(a) + η(a0, a)} > −∞, (2)

where

S(a0) := {a ∈ A : ϕ(a) + η(a0, a) ≺ ϕ(a0)− τ}

and ≺∈ {≤, <}. Then, there exists ā ∈ A such that

(a) ϕ(ā) + η(a0, ā) ≺ ϕ(a0)− τ or ā = a0,
(b) ϕ(a) + η(ā, a) 6≺ ϕ(ā)− τ, ∀a ∈ A.

Proof. Consider the set-valued mapping S : A⇒ A given by

S(a) := {u ∈ A : ϕ(u) + η(a, u) ≺ ϕ(a)− τ}.
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If S(a0) = ∅, then ā = a0 satisfies (a) and (b). Otherwise, we could choose a1 ∈
S(a0). Then, we have ϕ(a1) + η(a0, a1) ≺ ϕ(a0) − τ . If S(a1) = ∅, we set ā = a1. We
claim that there is a finite number k such that S(ak) = ∅. Arguing by contradiction,
assume that there is a sequence (an) such that an+1 ∈ S(an) for all n ∈ IN , i.e.,

ϕ(an+1) + η(an, an+1) ≺ ϕ(an)− τ. (3)

Clearly, (ϕ(an)) ⊆ IR. Moreover, (S(an)) is a sequence of nested sets because of the
triangle inequality property of η. Summing up inequality (3) for n = 0, . . . , k while
taking into account the triangle inequality property of η, we have

ϕ(ak+1) + η(a0, ak+1) ≤ ϕ(ak+1) +

k∑
n=0

η(an, an+1) ≺ ϕ(a0)− (k + 1)τ.

The boundedness assumption ensures that −∞ < c ≤ ϕ(a0)− (k + 1)τ and thus k is
a finite number. Finally, ak ∈ S(ak−1) ⊆ S(x0) and the proof is complete.

Next we state a formulation of Theorem 2.3 involving approximate solutions of
optimization problems.

Definition 2.4. Let (P) be the optimization problem defined by a proper objective
function ϕ : A→ IR ∪ {+∞} on a nonempty set A:

Min{ϕ(a) : a ∈ A}. (P)

Consider ε ≥ 0. A point a0 ∈ A is said to be an approximate (resp. strict approximate)
solution of problem (P) with error ε, and it is denoted x0 ∈ A(ϕ, ε) (resp. x0 ∈
SA(ϕ, ε)) if ϕ(a0)− ε ≤ ϕ(a) (resp. ϕ(a0)− ε < ϕ(a)) for all a ∈ A\{a0}.

Corollary 2.5 (Approximate scalar EVP). Let A be a nonempty set, ϕ : A → IR ∪
{±∞} be a proper function, η : A × A → IR+ be satisfying the triangle inequality
property, γ > 0, ε > 0 and δ > 0. Then, for each a0 ∈ A(ϕ, ε + δ) there exists ā ∈ A
such that

(a) ϕ(ā) +
ε

γ
η(a0, ā) ≤ ϕ(a0)− δ or ā = a0,

(b) If ā 6= a0, then η(a0, ā) ≤ γ,

(c) ϕ(a) +
ε

γ
η(ā, a) > ϕ(ā)− δ, ∀a ∈ A.

If in addition η is diagonal null, then assertion (c) states that ā ∈ SA(ϕ+ η(ā, ·), δ).

Proof. Consider a point a0 ∈ A(ϕ, ε) and the bifunction η′ : A×A→ IR+, η′ :=
ε

γ
η.

Let us apply Theorem 2.5 by considering the bifunction η′ instead η and τ = δ.
Clearly, η′ also satisfies the triangle inequality property. Moreover, assumption (2)

of Theorem 2.5 is fulfilled. Indeed, since the values of η′ are nonnegative and a0 is an
approximate solution with error ε, we have that:

inf
a∈S(a0)

{ϕ(a) + η′(a0, a)} ≥ inf
a∈A
{ϕ(a) + η′(a0, a)} ≥ inf

a∈A
{ϕ(a)} ≥ ϕ(a0)− ε− δ.
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Then, by applying Theorem 2.5 with ≺=≤ we deduce the existence of a point ā ∈ A
satisfying:

(a) ϕ(ā) +
ε

γ
η(a0, ā) ≤ ϕ(a0)− δ or ā = a0,

(c) ϕ(a) +
ε

γ
η(ā, a) > ϕ(ā)− δ, ∀a ∈ A.

If ā 6= a0, as a0 ∈ A(ϕ, ε), by statement (a) we see that

ε

γ
η(a0, ā) ≤ ϕ(a0)− ϕ(ā)− δ ≤ ε

and so statement (b) is obtained. Finally, it is obvious by assertion (c) that ā ∈
SA(ϕ+ η(ā, ·), δ) as long as η is diagonal null and the proof finishes.

It is worth noticing that in contrast to the usual (exact) EVP, the point ā is a
strict approximate solution of the perturbation ϕ + (ε/γ)η(ā, ·) instead of a strict
exact solution whenever η is diagonal null, since neither completeness conditions nor
lower-semicontinuity assumptions are assumed.

Theorem 2.3 encompasses [8, Proposition 2.5] (see Corollary 2.5). In comparison
with this result, notice that a function η satisfying the triangle inequality property
is considered instead of a metric. In addition, the lower boundedness assumption is
weaker whenever bifunction η is nonnegative. For example, the function ϕ : IR → IR
with ϕ(x) = x is unbounded from below, but for each x0 ∈ IR, the set S(x0) is
empty provided that the usual distance is considered. Furthermore, the initial set A
of function ϕ is an arbitrary set.

Subsequently we provide a revised version of the so-called Dancs-Hegedüs-
Medvegyev’s fixed point theorem (see [9, Theorem 3.1]) for a dynamic system Φ :
X ⇒ X not enjoying the properties Φ(x) is closed and x ∈ Φ(x), for all x ∈ X.

Theorem 2.6 (Dancs-Hegedüs-Medvegyev’s fixed point theorem). Let (X, d) be a
complete metric space, x0 ∈ X and Φ : X ⇒ X be a dynamic system. Suppose that
each generalized Picard sequence (xn) of Φ whose starting point is x0 satisfies the
following conditions:

(B1) Φ(xn+1) ⊆ cl Φ(xn) for all n ∈ IN .
(B2) d(xn, xn+1)→ 0 as n→ +∞.
(B3) If xn → x and xn+1 6= xn for all n ∈ IN , then Φ(x) ⊆ cl Φ(xn) for all n ∈ IN .

Then, there is a fixed point x̄ ∈ cl Φ(x0)∪ {x0} of the dynamic system Φ; i.e., Φ(x̄) ⊆
{x̄}. Assume furthermore that Φ(x̄) 6= ∅, then Φ(x̄) = {x̄}.

Proof. If the distance d satisfies condition (B2), then the equivalent distance d′ =
d/(1 + d) also does, so we can suppose d is bounded on X. Denote the diameter of a
subset A in X by δ(A); i.e.,

δ(A) := sup{d(a, u) : a, u ∈ A}.

If Φ(x0) ⊆ {x0}, then x̄ = x0. Otherwise, choose x1 ∈ Φ(x0) and x1 6= x0 such that

d(x0, x1) ≥ δ(Φ(x0))/2− 1/2.

Assume that there are x1, . . . , xn with xk+1 ∈ Φ(xk) and xk+1 6= xk for k = 0, . . . , n−1.
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If Φ(xn) ⊆ {xn}, then x̄ = xn. Otherwise, choose xn+1 ∈ Φ(xn) and xn+1 6= xn such
that

d(xn, xn+1) ≥ δ(Φ(xn))/2− 1/2n+1. (4)

If there is a generalized Picard sequence (xn) of Φ satisfying condition (4), conditions
(B1) and (B2) yield

Φ(xn+1) ⊆ cl Φ(xn) ⊆ cl Φ(x0) and δ(Φ(xn))→ 0 as n→ +∞

clearly justifying that (xn) is a Cauchy sequence. Since the space X is complete, there
is a limit x̄ ∈ cl Φ(x0). By condition (B3), we have

Φ(x̄) ⊆ cl Φ(xn) for all n ∈ IN. (5)

We show that Φ(x̄) ⊆ {x̄} by contradiction. Assume that there is some y 6= x̄ such
that y ∈ Φ(x̄). By (5) we have y ∈ cl Φ(xn) for all n ∈ IN and thus d(xn+1, y) ≤
δ(Φ(xn)) → 0 as n → +∞. This means that y = x̄. This contradiction completes the
proof of the theorem.

Example 2.7. Let (X1, d) be the complete metric space given by the set X1 = {1/n :
n ∈ IN\{0}} ∪ {0} and the metric d(x1, x2) = |x1 − x2|, for all x1, x2 ∈ X1. Consider
the point x0 = 1 and the following dynamic system Φ1 : X1 ⇒ X1:

Φ1(x) =

 {0} if x = 0,
{1/m : m ∈ IN\{0},m > n} if x = 1/n and n is even,

{1/m : m ∈ IN\{0},m > n} ∪ {0} if x = 1/n and n is odd.

As all assumptions of Theorem 2.6 are satisfied, it follows that there exists a point
x̄ ∈ X1 such that Φ1(x̄) ⊆ {x̄}. Obviously, x̄ = 0 and Φ1(0) = {0}. Notice that
1/n /∈ Φ1(1/n), for all n ∈ IN\{0}, Φ1(1/n) is not closed provided that n is even, and
1/m ∈ Φ1(1/n), Φ1(1/m) 6⊆ Φ1(1/n) as long as n is even and m > n is odd. Thus,
assumptions (3.1), (3.2) and (3.3) in the original Dancs-Hegedüs-Medvegyev’s fixed
point theorem (see [9, Theorem 3.1]) are not fulfilled and so it cannot be applied. For
instance, for all n ∈ IN\{0}, 1

2n+1 ∈ Φ1( 1
2n) but Φ1( 1

2n+1) 6⊆ Φ1( 1
2n).

Assumption (B2) cannot be dropped. Indeed, the dynamic system Φ2 : X1 ⇒ X1,
Φ2(x) = X1 for all x ∈ X1, satisfies assumptions (B1) and (B3), but it has not any
fixed point. It is obvious that hypothesis (B2) is not fulfilled.

Analogously, hypothesis (B3) cannot be removed. For instance, the dynamic system
Φ3 : X1 ⇒ X1, Φ3(0) = X1 and Φ3(1/n) = {1/m : m ∈ IN\{0},m > n} fulfills (B1)
and (B2), but is doesn’t satisfy (B3). Clearly, Φ3 has not any fixed point.

Finally, assumption (B1) is also needed. For instance, let

X2 =

{
sn :=

n∑
m=1

1/m : n ∈ IN\{0}

}
.

It is obvious that (X2, d) is a complete metric space. The dynamic system Φ3 : X2 ⇒
X2, Φ3(sn) = {sn+1}, for all n ∈ IN\{0} fulfills hypotheses (B2) and (B3), but it has
not any fixed point. It is easy to check that Φ3(sn+1) 6⊆ Φ3(sn), for all n ∈ IN\{0}.
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In the subsequent result we state the usual “located” version of Dancs-Hegedüs-
Medvegyev’s fixed point theorem (the fixed point x̄ is the starting point x0 or it
belongs to the image Φ(x0) of the starting point x0). The proof coincides with the
proof of Theorem 2.6 and it is omitted.

Corollary 2.8. Let (X, d) be a complete metric space, x0 ∈ X and Φ : X ⇒ X be
a dynamic system. Suppose that each generalized Picard sequence (xn) of Φ whose
starting point is x0 satisfies the following conditions:

(B1) Φ(xn+1) ⊆ Φ(xn) for all n ∈ IN .
(B2) d(xn, xn+1)→ 0 as n→ +∞.
(B3) If xn → x and xn+1 6= xn for all n ∈ IN , then Φ(x) ⊆ Φ(xn) for all n ∈ IN and

x ∈ Φ(x0).

Then, there is a fixed point x̄ ∈ Φ(x0)∪{x0} of the dynamic system Φ; i.e., Φ(x̄) ⊆ {x̄}.
Assume furthermore that Φ(x̄) 6= ∅, then Φ(x̄) = {x̄}.

Remark 1. The counterpart in [6, Theorem 4.1] of conditions (B2) and (B3) of Corol-
lary 2.8 when one reduces that theorem to the metric setting are:

(E2) limn→∞ supu∈Φ(xn) d(xn, u) = 0.
(E3) There is some element x̄ ∈ X such that x̄ ∈ Φ(xn) for all n ∈ IN .
(E5) Φ(x̄) ⊆ Φ(xn), for all n ∈ IN .

Clearly, xn → x̄ and (E2) is equivalent to (B2) since (B1) holds true. Thus, (E2) and
(E3) can be formulated as follows:

(E2) d(xn, xn+1)→ 0 as n→ +∞.
(E3) If xn → x̄, then x̄ ∈ Φ(xn) for all n ∈ IN .
(E5) Φ(x̄) ⊆ Φ(xn), for all n ∈ IN .

These three conditions are stronger than (B1) and (B2) provided that Φ(x̄) = ∅. For
instance, consider the complete metric space (X1, d) introduced in Example 2.7 and
the dynamic system Φ : X1 ⇒ X1,

Φ(x) =

{
∅ if x = 0,

{1/m : m ∈ IN\{0},m ≥ n} if x = 1/n, n ∈ IN\{0}.

We have that assumptions (B1), (B2) and (B3) of Corollary 2.8 are satisfied, but
condition (E3) above is not fulfilled.

The fixed point theorem stated in [14, Theorem 3.5] is a particular case of Theorem
2.6. This assertion is proved in the next corollary, as an illustration of the power of
Theorem 2.6.

Corollary 2.9. Let (X, d) be a complete metric space and consider a set-valued
mapping S : X ⇒ X, a function m : X → IR ∪ {±∞} and x0 ∈ X such that
S : S(x0) ⇒ S(x0), S(x0)\{x0} 6= ∅ and m : S(x0)\{x0} → [0,+∞]. Assume the
following conditions:

(i) If x ∈ S(x0) and y ∈ S(x), then S(y) ⊆ S(x).
(ii) There exists x1 ∈ S(x0)\{x0} such that m(x1) < +∞.
(iii) For each x ∈ S(x0), m(x) < +∞, and y ∈ S(x)\{x}, m(y) < m(x).
(iv) The set S(x) is closed for all x ∈ S(x0), and there exists α > 0 such that for

8



each x ∈ S(x0) and y ∈ S(x) such that m(x),m(y) ∈ IR, it follows that

αd(x, y) ≤ m(x)−m(y). (6)

Then, there exists a point x̄ ∈ S(x0) such that S(x̄) ⊆ {x̄}.

Proof. Take a point x1 ∈ X satisfying condition (ii). If S(x1) ⊆ {x1}, then the result
follows by defining x̄ := x1. Otherwise, by (i) we see that S : S(x1) ⇒ S(x1) and
by (iv) we have that S(x1) is closed. Then, Theorem 2.6 can be applied to the data
X ′ := S(x1), an arbitrary point x′0 ∈ X ′ and Φ := S as long as assumptions (B1),
(B2) and (B3) are fulfilled. Let us check these hypotheses.

Given a generalized Picard sequence (xn) ⊆ X ′ of Φ, for each n we have xn+1 ∈
S(xn). Then, (B1) is a direct consequence of (i), and (B3) follows by (i) and the
closedness of the sets S(x), for all x ∈ S(x0).

Fix n ≥ 1, we have xn+1 ∈ S(x1) with m(x1) < +∞. By condition (iii), we have
m(xn+1) ≤ m(x1). Then, for each n, condition (6) yields

αd(xn, xn+1) ≤ m(xn)−m(xn+1).

Summing these inequalities from n = 1 to n = k, we have

α

k∑
n=1

d(xn, xn+1) ≤ m(x1)−m(xk+1) ≤ m(x1).

Since k was arbitrary, we could pass the relation as k → +∞ to get

α

+∞∑
n=1

d(xn, xn+1) ≤ m(x1) < +∞

clearly verifying that d(xn, xn+1)→ 0 as n→ +∞ and thus condition (B2) is satisfied.

3. Approximate Ekeland variational principles

The main results of this section are the next two approximate EVP for vector-valued
functions, which are derived from Theorem 2.3 by applying nonlinear and linear scalar-
ization techniques, respectively.

Theorem 3.1. Let A be a nonempty set, Y be a real linear space and g : A → Y be
a vector-valued function. Consider two nonempty sets E,G ⊆ Y and q ∈ Y \{0} such
that E+ (E∪G) ⊆ E, E is free-disposal with respect to cone {q}, q /∈ − vcl coneE and
0 /∈ vclq E. Let η : A×A→ IR be satisfying the triangle inequality property.

Consider a0 ∈ A such that

inf{ϕqE(g(a)− g(a0)) + η(a0, a) : a ∈ SE,η(a0)} > −∞, (7)

where

SE,η(a0) := {a ∈ A : g(a) + η(a0, a)q ≤E g(a0)}.
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Then there exists ā ∈ A such that

(a) g(ā) + η(a0, ā)q ≤E g(a0) or ā = a0,
(b) ϕqE(g(a)− g(a0)) + η(ā, a) 6≤ ϕqE(g(ā)− g(a0))− ϕqE(0), ∀a ∈ SE,η(a0),
(c) g(a) + η(ā, a)q 6≤E∪G g(ā)− ϕqE(0)q, ∀a ∈ A.

Proof. In order to apply Theorem 2.3, consider the data A′ = SE,η(a0), ϕ : A′ →
IR ∪ {±∞}, ϕ := ϕqE ◦ (g − g(a0)), τ = ϕ(a0) = ϕqE(0) and ≺=≤.

If A′ = ∅, then the result follows by taking ā := a0. Suppose that A′ 6= ∅. Let us
check the assumptions of Theorem 2.3.

We claim that ϕ is proper. Indeed, by the definition of function ϕqE we see that

ϕ(a) = ϕqE(g(a)− g(a0)) ≤ −η(a0, a), ∀a ∈ A′

and so domϕ 6= ∅. In addition, assumption q /∈ − vcl coneE implies that ϕ > −∞ (see
Lemma 2.2(i)). Thus, ϕ is a proper function.

As E is nonempty and free-disposal with respect to cone {q} we deduce that IRq ∩
E 6= ∅ and so ϕqE(0) < +∞. Then, a0 ∈ domϕ. Moreover, by Lemma 2.2(iii) we
know that ϕqE(0) > 0 provided that 0 /∈ cone {q} + vclq E, which holds true by the
assumptions. Indeed, as vcl coneE is a cone and 0 /∈ vclq E we have that

q /∈ − vcl coneE ⇒ cone {q}\{0} ∩ (− vcl coneE) = ∅
⇒ cone {q}\{0} ∩ (− vclE) = ∅
⇒ cone {q}\{0} ∩ (−vclqE) = ∅
⇒ cone {q} ∩ (−vclqE) = ∅.

Thus, 0 /∈ cone {q}+ vclq E and so ϕqE(0) > 0.
Next we compute the set S(a0). As ϕqE is q-translative (see Lemma 2.2(ii)), for each

point a ∈ SE,η(a0) we have that

ϕ(a) + η(a0, a) = ϕqE(g(a)− g(a0)) + η(a0, a)

= ϕqE(g(a)− g(a0) + η(a0, a)q)

≤ 0.

Therefore,

SE,η(a0) ⊆ {a ∈ A : ϕ(a) + η(a0, a) ≤ 0}

and so

S(a0) = {a ∈ A′ : ϕ(a) + η(a0, a) ≤ ϕ(a0)− τ}
= {a ∈ A : ϕ(a) + η(a0, a) ≤ 0} ∩ SE,η(a0)

= SE,η(a0).

Then,

inf
a∈S(a0)

{ϕ(a) + η(a0, a)} = inf
a∈SE,η(a0)

{ϕqE(g(a)− g(a0)) + η(a0, a)} > −∞

and all hypotheses of Theorem 2.3 are fulfilled. Thus, there exists ā ∈ A′ such that
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(b) ϕ(a) + η(ā, a) 6≤ ϕ(ā)− τ, ∀a ∈ A′

and the second assertion of the theorem holds true.
As ā ∈ A′, we have g(ā) +η(a0, ā)q ≤E g(a0) and the first statement of the theorem

holds true too. In order to state the third one, suppose reasoning by contradiction that
there exists a ∈ A such that

g(a) + η(ā, a)q ≤E∪G g(ā)− ϕqE(0)q. (8)

We claim that a ∈ A′. Indeed, since ā ∈ A′ and η satisfies the triangle inequality
property we deduce that

g(a) + η(a0, a)q ≤cone {q} g(a) + η(ā, a)q + η(a0, ā)q

≤E∪G g(ā) + η(a0, ā)q − ϕqE(0)q

≤E g(a0)− ϕqE(0)q

Then, since E is free-disposal with respect to cone {q} and E+(E∪G) ⊆ E, it follows
that

g(a0)− (g(a) + η(a0, a)q) ∈ cone {q}+ (E ∪G) + E + ϕqE(0)q

⊆ (E ∪G) + E

⊆ E.

Thus, g(a) + η(a0, a)q ≤E g(a0), i.e., a ∈ A′.
Moreover, we have that

E + (E ∪G) ⊆ E ⊆ vclqE ⊆ [0,+∞)q + vclqE.

Therefore, ϕqE is ≤E∪G-nondecreasing (see Lemma 2.2(iv)). As ϕqE is q-translative, by
statement (8) we have that

ϕ(a) + η(ā, a) = ϕqE(g(a)− g(a0)) + η(ā, a)

= ϕqE(g(a)− g(a0) + η(ā, a)q)

≤ ϕqE(g(ā)− g(a0)− ϕqE(0)q)

= ϕqE(g(ā)− g(a0))− ϕqE(0)

= ϕ(ā)− ϕqE(0),

which is contrary to assertion (b). Therefore, part (c) holds true and the proof finishes.

Remark 2. 1. By Lemma 2.1 it follows that assumption q /∈ − vcl coneE is fulfilled
whenever coneE is proper and convex and q ∈ core coneE. Moreover, it is easy to
check that this hypothesis can be replaced by the conditions ϕqE ◦ (g − g(a0)) > −∞
and cone {q} ∩ (− vclq E) = ∅.

2. It is obvious that E+0+E ⊆ E. Thus, in Theorem 3.1, one can consider G = 0+E
provided that E +E ⊆ E. In this case it is worth noticing in order to apply assertion
(c) that E 6⊆ 0+E in general. For instance, consider Y = IR2, q = (1/4, 2) and let
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E ⊆ Y be the epigraph of the function ϕ : IR→ IR,

ϕ(x) =


+∞ if x ∈ (−∞, 0)

1 if x ∈ [0, 1/2]
2x if x ∈ (1/2, 1]
2 if x ∈ (1, 2]
x if x ∈ (2,+∞).

We have that E is free-disposal with respect to cone {q}, E + E ⊆ E and 0 /∈ E =
vclq E. Moreover,

coneE = {(y1, y2) ∈ IR2
+ : y2 ≥ y1},

0+E = {(y1, y2) ∈ IR2
+ : y2 ≥ 2y1}.

Therefore, coneE is a proper convex cone, q ∈ core coneE and E 6⊆ 0+E.

As an illustration of the second part of Remark 2, we state a formulation of Theorem
3.1 based on Kutateladze’s approximate solutions of vector optimization problems (see
[13,18]).

Definition 3.2. Let Y be a real linear space and D ⊆ Y be a convex cone. Consider
ε ≥ 0, q ∈ D\(−D) and a function g : A → Y from an arbitrary nonempty set A. A
point a0 ∈ A is said to be a Kutateladze’s approximate solution of g in the direction
q with precision ε, denoted by a0 ∈ EK(g, εq), if

a ∈ A, g(a) ≤D g(a0)− εq ⇒ g(a) = g(a0)− εq.

Corollary 3.3. Let A be a nonempty set, Y be a real linear space and g : A→ Y be a
vector-valued function. Consider a convex cone D ⊆ Y , q ∈ D\(−D) and ε, δ, γ > 0.
Let η : A×A→ IR+ be satisfying the triangle inequality property.

Then, for each a0 ∈ EK(g, (ε+ δ)q) there exists ā ∈ A such that

(a) g(ā) +
ε

γ
η(a0, ā)q ≤D g(a0)− δq or ā = a0,

(b) if ā 6= a0, then η(a0, ā) ≤ γ,

(c) g(a) +
ε

γ
η(ā, a)q 6≤D g(ā)− δq, ∀a ∈ A.

Proof. Consider a point a0 ∈ EK(g, (ε+ δ)q), E = δq+D, G = 0+E and
ε

γ
η instead

of η. Let us check that the assumptions of Theorem 3.1 are fulfilled (we consider
the hypotheses ϕqE ◦ (g − g(a0)) > −∞ and cone {q} ∩ (− vclq E) = ∅ instead of
q /∈ − vcl coneE, see Remark 2).

Clearly,
ε

γ
η satisfies the triangle inequality property. In addition, as q ∈ D and D

is a convex cone we deduce

E + E = δq +D + δq +D ⊆ δq +D = E

and

cone {q}+ E = cone {q}+ δq +D = δq +D = E.
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We claim that

cone {q} ∩ (−vclqE) = ∅. (9)

Indeed, suppose by contradiction that there exists t ≥ 0 such that tq ∈ − vclq E. Then,
there exists a sequence (tn) ⊆ IR+, tn → 0, such that −tq+tnq ∈ δq+D, for all n ∈ IN .
Therefore, (−(δ + t) + tn)q ∈ D. Since δ + t > 0 and tn → 0, there exist n0 ∈ IN big
enough such that −(δ + t) + tn0

< 0 and so we deduce that q ∈ −D, a contradiction.
Thus, assertion (9) holds true. In particular, we obtain that 0 /∈ vclq E.
As ϕqD is q-translative (see Lemma 2.2(ii)), we have that

ϕqE(y) = inf{t ∈ IR : y ∈ tq − δq −D}
= inf{t ∈ IR : y + δq ∈ tq −D}
= ϕqD(y + δq)

= ϕqD(y) + δ, ∀y ∈ Y.

It follows that ϕqD(0) = 0. Indeed, as 0 ∈ −D we have that ϕqD(0) ≤ 0. If ϕqD(0) < 0,
then there exists t > 0 such that 0 ∈ −tq −D. Thus, q ∈ −D, that is a contradiction.
Therefore, ϕqE(0) = δ.

Since a0 ∈ EK(g, (ε+ δ)q), we have that

ya := g(a)− g(a0) + (ε+ δ)q /∈ −D\{0}, ∀a ∈ A. (10)

If ϕqD(ya) < 0, then there exists t > 0 such that ya ∈ −tq −D ⊆ −D\{0}, a contra-
diction. Thus, ϕqD(ya) ≥ 0 and since is ϕqD is q-translative we obtain

ϕqE(g(a)− g(a0)) = ϕqD(g(a)− g(a0)) + δ = ϕqD(ya)− ε ≥ −ε, ∀a ∈ A.

In particular,

inf{ϕqE(g(a)− g(a0)) +
ε

γ
η(a0, a) : a ∈ SE, ε

γ
η(a0)}

≥ inf{ϕqE(g(a)− g(a0)) : a ∈ A}
≥ −∞.

Therefore, all assumptions of Theorem 3.1 hold true and it follows that there exists
ā ∈ A such that

(a) g(ā) +
ε

γ
η(a0, ā)q ≤E g(a0) or ā = a0,

(c) g(a) +
ε

γ
η(ā, a)q 6≤E∪0+E g(ā)− δq, ∀a ∈ A.

Clearly, assertion (a) is equivalent to the next one:

(a) g(ā) +
ε

γ
η(a0, ā)q ≤D g(a0)− δq or ā = a0.

Moreover, it is obvious that 0+(δq + D) = D. Thus, E ∪ 0+E = D and assertion (c)
results:

(c) g(a) +
ε

γ
η(ā, a)q 6≤D g(ā)− δq, ∀a ∈ A.
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Finally, if ā 6= a0, by applying assertion (a) and statement (10) with a = ā we see that

g(ā)− g(a0) + δq ∈
(
− ε
γ
η(a0, ā)q −D

)
\(−εq −D\{0}).

Therefore,
ε

γ
η(a0, ā) ≤ ε and assertion (b) is proved, which finishes the proof.

Notice that Corollary 3.3 reduces to Corollary 2.5 when Y = IR, D = IR+ and
q = 1.

Theorem 3.4 (Approximate vectorial EVP). Let A be a nonempty set, Y be a real
linear space and g : A → Y be a vector-valued function. Consider two nonempty sets
E ⊆ Y \{0} and G ⊆ Y such that (G+∩Es+)\{0} 6= ∅. Let h : A×A→ Y be satisfying
the triangle inequality property with respect to ≤G.

Let a0 ∈ A and λ ∈ (G+ ∩ Es+)\{0} be such that

inf{λ(g(a)) + λ(h(a0, a)) : a ∈ Sλ(a0)} > −∞, (11)

where

Sλ(a0) := {a ∈ A : λ(g(a)) + λ(h(a0, a)) ≤ λ(g(a0))− τE(λ)}. (12)

Then there exists ā ∈ A such that

(a) λ(g(ā)) + λ(h(a0, ā)) ≤ λ(g(a0))− τE(λ) or ā = a0,
(b) λ(g(a)) + λ(h(ā, a)) > λ(g(ā))− τE(λ), ∀a ∈ A,
(c) g(a) + h(ā, a) 6≤E g(ā), ∀a ∈ A.

Proof. Under the assumptions made, there is λ ∈ (G+ ∩ Es+)\{0} satisfying (11).
By the definition of Es+ and 0 6∈ E we have that τE(λ) > 0.

Consider the functions ϕ := λ ◦ g, η := λ ◦ h and τ := τE(λ). As λ ∈ G+ and h
fulfills the triangle inequality property with respect to ≤G, it follows that η satisfies the
triangle inequality property. Then by applying Theorem 2.3 we see that there exists a
point ā ∈ A satisfying parts (a) and (b).

Next, we show that ā fulfills (c) as well. Arguing by contradiction, assume that there
is some a ∈ A such that

g(a) + h(ā, a) ≤E g(ā).

Since λ is a linear function we have

λ(g(a)) + λ(h(ā, a)) ≤ λ(g(ā))− τE(λ)

that is a contradiction to (b). Therefore, the proof is completed.

Remark 3. Roughly speaking, assumptions 0 /∈ E and Es+\{0} 6= ∅ imply that
0 /∈ clE whenever Y is a real topological linear space. If the real linear space Y is not
equipped with any topology, then one can claim that 0 /∈ vclqE, for all q ∈ Y .

Corollary 3.5. Let A be a nonempty set, Y be a real linear space and g : A→ Y be
a vector-valued function. Consider two nonempty sets E ⊆ Y \{0} and G ⊆ Y such
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that E + (G ∪ E) ⊆ E and (G+ ∩ Es+)\{0} 6= ∅. Let h : A× A→ Y be satisfying the
triangle inequality property with respect to ≤G.

Let a0 ∈ A and λ ∈ (G+ ∩ Es+)\{0} such that

inf{λ(g(a)) + λ(h(a0, a)) : a ∈ SE,h(a0)} > −∞, (13)

where

SE,h(a0) := {a ∈ A : g(a) + h(a0, a) ≤E g(a0)}.

Then there exists ā ∈ A such that

(a) g(ā) + h(a0, ā) ≤E g(a0) or ā = a0,
(b) g(a) + h(ā, a) 6≤E g(ā), ∀a ∈ A.

Proof. Consider a0 ∈ A and λ ∈ (G+ ∩Es+)\{0} satisfying (13). The result is trivial
whenever SE,h(a0) = ∅. Thus, let us assume that SE,h(a0) 6= ∅.

In order to apply Theorem 3.4 to the set SE,h(a0) instead of A and the functions
g : SE,h(a0)→ Y and h : SE,h(a0)× SE,h(a0)→ Y , notice that the set Sλ(a0) of (12)
reduces to SE,h(a0). Indeed, for every a ∈ SE,h(a0) we have g(a0)−g(a)−h(a0, a) ∈ E
and thus

λ(g(a0))− λ(g(a))− λ(h(a0, a)) ≥ τE(λ)

or equivalently

λ(g(a)) + λ(h(a0, a)) ≤ λ(g(a0))− τE(λ).

Therefore,

Sλ(a0) = {a ∈ SE,h(a0) : λ(g(a)) + λ(h(a0, a)) ≤ λ(g(a0))− τE(λ)}
= {a ∈ A : λ(g(a)) + λ(h(a0, a)) ≤ λ(g(a0))− τE(λ)} ∩ SE,h(a0)

= SE,h(a0).

Thus, Theorem 3.4 ensures the existence of ā ∈ SE,h(a0) such that

(c’) g(a) + h(ā, a) 6≤E g(ā) ∀a ∈ SE,h(a0).

Assertion ā ∈ SE,h(a0) implies part (a). Next, we show that ā satisfies part (b) as well.
Arguing by contradiction, assume that there is some a ∈ A such that

g(a) + h(ā, a) ≤E g(ā). (14)

Let us check that a ∈ SE,h(a0). By the triangle inequality property of h with respect
to ≤G we have

g(a) + h(a0, a) ≤G g(a) + h(a0, ā) + h(ā, a) ≤E g(ā) + h(a0, ā) ≤E g(a0).

Since E + (G ∪ E) ⊆ E we deduce g(a) + h(a0, a) ≤E g(a0); i.e., a ∈ SE,h(a0). Thus,
(14) is a contradiction to (c’), and the proof is completed.
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Remark 4. Notice that assumptions E + G ⊆ E and (G+ ∩ Es+)\{0} 6= ∅ could be
connected. For example, if G is coradiant (i.e., tG ⊆ G, for all t > 1) and E +G ⊆ E
then E+ ⊆ G+. Indeed, let λ ∈ E+ and consider two points y ∈ G and e0 ∈ E. We
have that

y = lim
n→∞

(1/n)(e0 + ny)

and so

λ(y) = lim
n→∞

(1/n)λ(e0 + ny).

As λ ∈ E+ and e0 + ny ∈ E +G for all n ∈ IN , n ≥ 2, we see that λ(y) ≥ 0. Since y
is arbitrary, it follows that λ ∈ G+.

Thus, if G is coradiant, assumptions E + (G ∪ E) ⊆ E and (G+ ∩ Es+)\{0} 6= ∅
reduce to E + (G ∪ E) ⊆ E and Es+\{0} 6= ∅.

In order to illustrate Corollary 3.5, we derive an approximate Ekeland variational
principle for vector bifunctions by Al-Homidan et. al (see [2, Theorem 3.4]).

Corollary 3.6. Let (X, d) be a metric space, f : X ×X → Y and x0 ∈ X. Consider
E ⊆ Y and q ∈ Y \{0} such that 0 /∈ E, E + E ⊆ E and E + [0,∞)q = E, and let
λ ∈ Es+. Suppose that there exists g : X → Y satisfying:

(i) f(x1, x2) ≥E g(x2)− g(x1), for all x1, x2 ∈ X.
(ii) sup{λ(f(x, x0))− λ(q)d(x0, x) : g(x) ≤E g(x0)} < +∞.

Then, there exists x̄ ∈ X such that

(a) g(x̄)− g(x0) + d(x0, x̄)q ≤E 0, or x̄ = x0,
(b) f(x̄, x) + d(x̄, x)q 6≤E 0, for all x ∈ X.

Proof. The result follows by applying Corollary 3.5 to the next data: A = X, G =
cone {q}, h : X × X → Y , h(x1, x2) = d(x1, x2)q and a0 = x0. Indeed, it is obvious
that E + (G ∪E) ⊆ E and h satisfies the triangle inequality property with respect to
≤G.

By Remark 4 we deduce that λ ∈ G+. Moreover, as E is free-disposal with respect
to cone {q} we have SE,h(x0) ⊆ {x ∈ X : g(x) ≤E g(x0)} and then by assumptions (i)
and (ii) we deduce that

inf{λ(g(x)) + λ(h(x0, x)) : x ∈ SE,h(x0)}
≥ inf{λ(g(x)− g(x0)) + λ(q)d(x0, x) : g(x) ≤E g(x0)}+ λ(g(x0))

≥ inf{λ(−f(x, x0)) + λ(q)d(x0, x)) : g(x) ≤E g(x0)}+ λ(g(x0))

≥− sup{λ(f(x, x0))− λ(q)d(x0, x)) : g(x) ≤E g(x0)}+ λ(g(x0))

>−∞.

Therefore, since all hypotheses of Corollary 3.5 are satisfied, there exists a point x̄ ∈ X
such that

(a) g(x̄) + d(x0, x̄)q ≤E g(x0), or x̄ = x0,
(b’) g(x) + d(x̄, x)q 6≤E g(x̄), ∀x ∈ X.

We claim that assertion (b) is a consequence of statement (b’). Indeed, suppose that
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there exists x ∈ X such that f(x̄, x) +d(x̄, x)q ≤E 0. Then, by assumption (i) we have

g(x)− g(x̄) + d(x̄, x)q ≤E f(x̄, x) + d(x̄, x)q ≤E 0,

that is contrary to (b’). Therefore, assertion (b) holds true and the proof is complete.

Next we obtain a formulation of Corollary 3.5 for Helbig’s approximate solutions of
vector optimization problems (see [13,16]).

Definition 3.7. Let Y be a real linear space and D ⊆ Y be a convex cone. Consider
ε ≥ 0, λ ∈ D+\{0} and a function g : A → Y from an arbitrary nonempty set A. A
point a0 ∈ A is said to be a Helbig’s approximate solution of g by λ with precision ε,
denoted by a0 ∈ EH(g, λ, ε), if

a ∈ A, g(a) ≤D g(a0)⇒ (λ ◦ g)(a0)− ε ≤ (λ ◦ g)(a).

Corollary 3.8. Let A be a nonempty set, Y be a real linear space and g : A→ Y be
a vector-valued function. Consider a convex cone D ⊆ Y , q ∈ D, λ ∈ D+ such that
λ(q) = 1 and ε, δ, γ > 0. Let η : A × A → IR+ be satisfying the triangle inequality
property.

Then, for each a0 ∈ EH(g, λ, ε+ δ) there exists ā ∈ A such that

(a) both g(ā) +
ε

γ
η(a0, ā)q ≤D g(a0) and λ(g(ā)) +

ε

γ
η(a0, ā) ≤ λ(g(a0)) − δ, or

ā = a0,
(b) if ā 6= a0, then η(a0, ā) ≤ γ,

(c) for each a ∈ A such that g(a) +
ε

γ
η(ā, a)q ≤D g(ā) it follows that λ(g(ā))− δ <

λ(g(a)) +
ε

γ
η(ā, a).

Proof. Consider a point a0 ∈ EH(g, λ, ε+δ). The result follows by applying Corollary
3.5 to the next data:

E = {y ∈ D : λ(y) ≥ δ},

G = cone {q} and h : A×A→ Y , h(a1, a2) =
ε

γ
η(a1, a2)q. All assumptions of Corollary

3.5 hold true. Indeed, it is obvious that E + (E ∪ G) ⊆ E and λ ∈ (G+ ∩ Es+)\{0}.
Moreover, h satisfies the triangle inequality property with respect to ≤G since η fulfills
the triangle inequality property.

In addition, as E ⊆ D, q ∈ D, D is a convex cone and the values of h are nonnegative
we have that

SE,h(a0) ⊆ {a ∈ A : g(a) ≤D g(a0)}.

Therefore,

(λ ◦ g)(a) ≥ (λ ◦ g)(a0)− (ε+ δ), ∀a ∈ SE,h(a0),
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since a0 ∈ EH(g, λ, ε+ δ), and then,

inf{λ(g(a)) + λ(h(a0, a)) : a ∈ SE,h(a0)} = inf{λ(g(a)) +
ε

γ
η(a0, a) : a ∈ SE,h(a0)}

≥ inf{λ(g(a)) : a ∈ SE,h(a0)}
≥ (λ ◦ g)(a0)− (ε+ δ)

> −∞.

Thus, there exists ā ∈ A such that

(a) g(ā) +
ε

γ
η(a0, ā)q ≤E g(a0) or ā = a0,

(c) g(a) +
ε

γ
η(ā, a)q 6≤E g(ā), ∀a ∈ A.

Clearly, assertions (a) and (b) are equivalent to the next ones:

(a) Both g(ā) +
ε

γ
η(a0, ā)q ≤D g(a0) and λ(g(ā)) +

ε

γ
η(a0, ā) ≤ λ(g(a0)) − δ, or

ā = a0.

(c) For each a ∈ A such that g(a) +
ε

γ
η(ā, a)q ≤D g(ā), we have that λ(g(ā))− δ <

λ(g(a)) +
ε

γ
η(ā, a).

Finally, if ā 6= a0, then by the first part of statement (a) we see that g(ā) ≤D g(a0).
Then, as a0 ∈ EH(g, λ, ε+ δ), by the second part of statement (a) it follows that

ε

γ
η(a0, ā) + δ ≤ λ(g(a0))− λ(g(ā)) ≤ ε+ δ

and then η(a0, ā) ≤ γ, which finishes the proof.

Notice that Corollary 3.8 encompasses Corollary 2.5 by considering Y = IR,D = IR+

and q = λ = 1.
In [14, Theorem 4.1] Gutiérrez et al. established an approximate EVP for a vector-

valued bifunction via an improvement set E. The subsequent result shows that Corol-
lary 3.5 encompasses this EVP.

Corollary 3.9 (Approximate vectorial EVP for bifunctions). Let (X, d) be a metric
space, Y be a real linear space, E ⊆ Y be an improvement set with respect to a convex
cone D ⊆ Y such that E+E ⊆ E. Consider a vector-valued bifunction f : X×X → Y ,
x0 ∈ X and q ∈ D\{0}.

Assume that there exists λ ∈ Es+\{0} such that

inf{λ(f(x0, x)) + λ(q)d(x0, x) : x ∈ SE,q(x0)} > −∞, (15)

where SE,q(x0) := {x ∈ X : f(x0, x) + d(x0, x)q ≤E f(x0, x0)]. Then, there exists
x̄ ∈ X such that

(a) f(x0, x̄) + d(x0, x̄)q ≤E f(x0, x0) or x̄ = x0,
(b) f(x0, x) + d(x̄, x)q 6≤E f(x0, x̄), ∀x ∈ X.

Proof. Define A := X, g : A → Y , g(a) := f(x0, a), for all a ∈ A, h : A × A → Y ,
h(a, u) := d(a, u)q, for all a, u ∈ A, and G := cone {q}.
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It is easy to check that h satisfies the triangle inequality property with respect to
≤G. Moreover, since E+E ⊆ E, E+D = E and q ∈ D we have that E+(G∪E) ⊆ E.
On the other hand, as G is coradiant and E +G ⊆ E it follows that G+ ∩Es+ = Es+

(see Remark 4).
Thus, all assumptions of Corollary 3.5 are fulfilled and its assertions prove this

result.

Remark 5. Notice that in Corollary 3.9, the metric space (X, d) could be replaced
with a nonempty set A and a function η : A×A→ IR satisfying the triangle inequality
property. In addition, the requirements E being an improvement set with respect to
a convex cone D ⊆ Y and q ∈ D\{0} can be also clarified by considering an arbitrary
point q ∈ Y \{0} and an improvement set E with respect to the cone generated by
{q}.

On the other hand, the assumptions E +D = E and E +E ⊆ E could be dropped
by applying Theorem 3.4 instead of Corollary 3.5. In this case, the hypothesis λ(q) ≥ 0
has to be assumed. Notice that the corresponding bounded from below hypothesis (11)
will be in general stronger than (15) and also the conclusion (a) will be weaker.

Corollary 3.9 also reduces to Corollary 3.6 by considering the bifunction f̄ : X×X →
Y , f̄(x1, x2) = g(x2)− g(x1).

4. Exact Ekeland variational principles

In this section, as a simple consequence of Theorem 2.6, we provide a revised vectorial
version of the exact EVP and its corollaries. The subsequent concept is required.

Definition 4.1. Let Y be a real linear space and consider a nonempty set G ⊆ Y and
a function ξ : Y → IR ∪ {±∞}. We say that a function ρ : coneG→ IR is an additive
minorant of ξ in coneG (additive minorant of ξ for short) if

y ∈ Y, z ∈ coneG, ξ(y + z) ≥ ξ(y) + ρ(z).

In the subsequent lemma we provide some classes of functions that fulfill this defi-
nition.

Lemma 4.2. Let Y be a real linear space and consider a nonempty set G ⊆ Y .

(i) If ρi : coneG→ IR is an additive minorant of ξi : Y → IR ∪ {+∞}, i=1,2, then
ρ1 + ρ2 is an additive minorant of ξ1 + ξ2.

(ii) Consider an arbitrary superadditive function ξ : Y → IR ∪ {+∞}. Then, each
function ρ : coneG → IR such that ρ ≤ ξ is an additive minorant of ξ. In
particular, this assertion can be applied to each function ξ in the algebraic dual
space Y ′ of Y .

(iii) Let G = cone {q} be the cone generated by q ∈ Y \{0}. The function ρ : G→ IR,
ρ(tq) = t, for all t ∈ IR+ is an additive minorant for each q-translative function;
in particular, the Gertewitz’s scalarization function ϕqE defined by (1).

Subsequently we formulate a refined vectorial version of the exact EVP for a general
free disposal set E in which the usual closedness assumption of the dynamic system
SE,q is weakened.
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Theorem 4.3 (Revised vectorial version of the exact EVP). Let (X, d) be a complete
metric space, Y be a real linear space, g : X → Y be a vector-valued function, E be a
nonempty set in Y and q ∈ Y \{0} with E + E ⊆ E and

E + (0,+∞)q ⊆ E. (16)

Assume that there is a ≤E-nondecreasing function ξ : Y → IR ∪ {±∞} and a nonzero
positively homogeneous additive minorant function ρ of ξ in cone {q}. Consider the
set-valued mapping SE,q : X ⇒ X,

SE,q(x) := {y ∈ X : g(y) + d(x, y)q ≤E g(x)}

and a point x0 ∈ dom (ξ ◦ g) such that

c2 := inf{ξ(g(x)) : x ∈ SE,q(x0)} > −∞ (17)

and the extended monotonicity closedness assumption is fulfilled at x0 in the sense
that for every generalized Picard sequence (xn) of SE,q starting from x0, converging to
x, and xn+1 6= xn for all n ∈ IN , one has SE,q(x) ⊆ clSE,q(xn) for all n ∈ IN . Then
there exists x̄ ∈ X such that

(a) x̄ ∈ clSE,q(x0) or x̄ = x0,
(b) g(x) + d(x̄, x)q 6≤E g(x̄), ∀x ∈ X\{x̄}.

We will prove this theorem by applying Theorem 2.6. That’s the reason for the next
two propositions.

Proposition 4.4. For each x ∈ X and y ∈ SE,q(x) it follows that SE,q(y) ⊆ SE,q(x).
In particular we have that SE,q satisfies condition (B1) of Theorem 2.6.

Proof. Take arbitrary elements x ∈ X, y ∈ SE,q(x) and z ∈ SE,q(y). By the definition
of SE,q and ≤E , we have

g(z) + d(y, z)q ∈ g(y)− E and g(y) + d(x, y)q ∈ g(x)− E.

Combining these two inclusions together while taking into account E + E ⊆ E, we
have

g(z) + d(x, z)q ∈ g(x) + (d(x, z)− d(x, y)− d(y, z))q − E.

The triangle inequality property of the metric d ensures that d(x, z)−d(x, y)−d(y, z) ≤
0 and thus condition (16) forces (d(x, z)− d(x, y)− d(y, z))q − E ⊆ −E and

g(z) + d(x, z)q ∈ g(x)− E

clearly implying z ∈ SE,q(x). Since z was arbitrary in SE,q(y), SE,q(y) ⊆ SE,q(x). The
validity of condition (B1) in Theorem 2.6 is verified.

Proposition 4.5. SE,q satisfies condition (B2) of Theorem 2.6 for all starting point
x0 ∈ dom (ξ ◦ g).
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Proof. For each generalized Picard sequence (xn) ⊆ X (if exists), we have xn+1 ∈
SE,q(xn) for all n ∈ N; i.e.,

g(xn+1) + d(xn, xn+1)q ∈ g(xn)− E (n ∈ IN).

Adding this relation for n = 0, 1, . . . , k while taking into account E +E ⊆ E, we have

g(xk+1) +

k∑
n=0

d(xn, xn+1)q ∈ g(x0)− E.

Let ξ : Y → IR ∪ {±∞} be a ≤E-nondecreasing function satisfying property (17)
and consider a nonzero positively homogeneous additive minorant function ρ of ξ in
cone {q}. It follows that

ξ(g(xk+1)) + ρ(q)

k∑
n=0

d(xn, xn+1) ≤ ξ(g(xk+1) +

k∑
n=0

d(xn, xn+1)q) ≤ ξ(g(x0)). (18)

By Proposition 4.4 we see that (xn) ⊆ SE,q(x0). Then, by property (17) we deduce
that

ρ(q)

k∑
n=0

d(xn, xn+1) ≤ ξ(g(x0))− ξ(g(xk+1)) ≤ ξ(g(x0))− c2.

Since ξ(g(x0))− c2 is a number, ρ(q) > 0 and k was arbitrary, we could pass the last
inequality to limit as k → +∞ to conclude that

+∞∑
n=0

d(xn, xn+1) < +∞

clearly ensuring that d(xn, xn+1)→ 0 as n→ +∞; i.e., (B2) is fulfilled.

Proof of Theorem 4.3. The set-valued mapping SE,q satisfies conditions (B1),
(B2) and (B3) of Theorem 2.6 due to Propositions 4.4, 4.5 and the imposed extended
monotonicity closedness property of SE,q at x0. Employing the revised Dancs-Hegedüs-
Medvegyev’s fixed point theorem, there is x̄ ∈ clSE,q(x0) ∪ {x0} such that SE,q(x̄) ⊆
{x̄}. The proof is complete. �

Remark 6. 1. Theorem 4.3 encompasses [14, Theorem 4.1(ii)] by taking E = vclqD
and g(x) = f(x0, x), where D is a convex cone in Y and f : X ×X → Y . Notice that
the closedness of the sets SE,q(x) for x ∈ SE,q(x0) is not required in Theorem 4.3.

2. If the boundedness condition (17) holds for a function ξ ∈ E+s (and so the
domination set E leads to approximate solutions of the problem), it would be better
to use the approximate EVP established in Corollary 3.5 since it doesn’t require the
extended monotonicity closedness assumption imposed on SE,q. Moreover, the bound-
edness assumption is even weaker than the one in Theorem 4.3, as

inf{ξ(g(x)) : x ∈ SE,q(x0)} > −∞
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implies

inf{ξ(g(x)) + ξ(q)d(x0, x) : x ∈ SE,q(x0)} > −∞.

3. Assumption (16) automatically follows when E is a free disposal set with respect
to a convex cone D and q ∈ D\{0}. Actually, condition (16) means that E is a free
disposal set with respect to the ray generated by q, which is a convex cone. Therefore,
this new EVP holds for a large class of free disposal sets. For instance, let E ⊆ IR2 be
the epigraph of the function ϕ : IR+ → IR with ϕ(0) = 0 and ϕ(x) = 1 for all x 6= 0.
Clearly, E is neither a cone nor a convex set. However, E+E ⊆ E and condition (16)
with q = (0, 1) is satisfied.

The next result is a located version of Theorem 4.3. Its proof coincides with the
proof of this theorem, but applying Corollary 2.8 instead of Theorem 2.6.

Corollary 4.6. Consider the same setting and hypotheses as in Theorem 4.3 and
assume the strong extended monotonicity closedness assumption at x0: for every gen-
eralized Picard sequence (xn) of SE,q whose starting point is x0, converging to x and
xn+1 6= xn for all n ∈ IN , one has SE,q(x) ⊆ SE,q(xn) for all n ∈ IN and x ∈ SE,q(x0).
Then there exists x̄ ∈ X such that

(a) g(x̄) + d(x0, x̄, )q ≤E g(x0) or x̄ = x0,
(b) g(x) + d(x̄, x)q 6≤E g(x̄), ∀x ∈ X\{x̄}.

By Corollary 4.6, one can state Ekeland variational for vector bifunctions. Next, as
an illustration, we derive a generalization of [2, Theorem 3.6], where the ordering cone
D could not satisfy the q-vectorial closedness property.

Corollary 4.7. Let (X, d) be a complete metric space, f : X ×X → Y and x0 ∈ X.
Consider a convex cone D ⊆ Y , q ∈ D\{0} and λ ∈ D+ such that λ(q) > 0. Suppose
that there exists g : X → Y satisfying:

(i) f(x1, x2) ≥D g(x2)− g(x1), for all x1, x2 ∈ X.
(ii) inf{λ(g(x)) : g(x) ≤D g(x0)} > −∞.

(iii) The sets SD,q(x) are closed, for each x ∈ X such that g(x) ≤D g(x0).

Then, there exists x̄ ∈ X such that

(a) g(x̄)− g(x0) + d(x0, x̄)q ≤D 0, or x̄ = x0,
(b) f(x̄, x) + d(x̄, x)q 6≤D 0, for all x ∈ X\{x̄}.

Proof. Let us apply Corollary 4.6 to the following data: E = D, ξ := λ and ρ :=
λ. We only check assumption (17) and the strong extended monotonicity closedness
hypothesis of the dynamic system SD,q at x0 as the other ones are obvious.

Clearly,

SD,q(x0) ⊆ {x ∈ X : g(x) ≤D g(x0)} (19)

since q ∈ D and D is a convex cone. Thus, by assumption (ii) we have that

inf{λ(g(x)) : x ∈ SD,q(x0)} ≥ inf{λ(g(x)) : g(x) ≤D g(x0)} > −∞

and assumption (17) is fulfilled.
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Let (xn) be a generalized Picard sequence of SE,q whose starting point is x0 and
suppose that xn → x. For each n ∈ IN , by Proposition 4.4 we see that xn+k ∈
SD,q(xn) ⊆ SD,q(x0), for all k ∈ IN , k ≥ 1. Then, by (19) and assumption (iii) it
follows that x ∈ SD,q(xn), and by applying Proposition 4.4 again we deduce that
SD,q(x) ⊆ SD,q(xn). Therefore, the dynamic system SD,q satisfies the strong extended
monotonicity closedness hypothesis at x0.

By Corollary 4.6, there exists x̄ ∈ X such that

(a) g(x̄) + d(x0, x̄, )q ≤D g(x0) or x̄ = x0,
(b’) g(x) + d(x̄, x)q 6≤D g(x̄), ∀x ∈ X\{x̄}.

Condition (b’) implies assertion (b). Indeed, suppose that there exists x ∈ X\{x̄} such
that f(x̄, x) + d(x̄, x)q ≤D 0. Then, by assumption (i) we see that

g(x)− g(x̄) + d(x̄, x)q ≤D f(x̄, x) + d(x̄, x)q ≤D 0,

that is contrary to (b’). Therefore (b) holds true and the proof finishes.

The main role of function ξ in Theorem 4.3 is assumption (17) that could not be
satisfied for each ≤E-nondecreasing function ξ : Y → IR ∪ {±∞}. This issue can
be easily addressed whenever the starting point x0 is a Kutateladze’s approximate
solution, as it is showed in the subsequent result.

Corollary 4.8. Let (X, d) be a complete metric space, Y be a real linear space, D ⊆ Y
be a convex cone and g : X → Y be a vector-valued function. Consider q ∈ D\(−D),
ε ≥ 0 and a point x0 ∈ EK(g, εq). Suppose that the set-valued mapping SD,q : X ⇒ X
satisfies the extended monotonicity closedness assumption at x0. Then there exists
x̄ ∈ X such that

(a) x̄ ∈ clSD,q(x0) or x̄ = x0,
(b) g(x) + d(x̄, x)q 6≤D g(x̄), ∀x ∈ X\{x̄}.

If SD,q fulfills the strong extended monotonicity closedness assumption at x0, then
assertion (a) can be replaced by the next stronger one:

(a’) g(x̄) + d(x0, x̄)q ≤D g(x0).

Proof. The result follows by applying Theorem 4.3 and Corollary 4.6 to the following
data: g̃ := g − g(x0), E := D and ξ := ϕqD.

Indeed, as it was already mentioned after Definition 4.1, function ϕqD is q-translative.
Then, by Lemma 4.2(iii) it has a nonzero positively homogeneous additive minorant
function in cone {q}. Moreover, ϕqD is ≤D-nondecreasing (see Lemma 2.2(iv)) and it
is clear from the definition and assumption q /∈ −D that ϕqD(0) = 0. Then, x0 ∈
dom (ϕqD ◦ g̃).

Finally, since x0 ∈ EK(g, εq), we have that g(x) − g(x0) /∈ −εq − D\{0}, for all
x ∈ X, and so ϕqD(g̃(x)) ≥ ε, for all x ∈ X. Therefore, assumption (17) is fulfilled with
c2 := ε.

Remark 7. Corollary 4.8 improves the main results of [23, Section 3], where the
convex cone D is assumed to be algebraic solid and q ∈ coreD. Indeed, on the one
hand, it follows by the proof of Corollary 4.7 that the closedness of the set SD,q(x),
for all x ∈ X, implies that the dynamic system SD,q satisfies the strong extended
monotonicity closedness property at every point x ∈ X.
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On the other hand, if ϕqD ◦ g is bounded from below and ϕqD ◦ g > c, c ∈ IR, then for
each x ∈ X we have that x ∈ EK(g, (ϕqD(g(x)) − c)q). Indeed, if there exists x′ ∈ X
such that g(x′) ≤D g(x)−(ϕqD(g(x))−c)q, as ϕqD is ≤D-nondecreasing and q-translative
(see Lemma 2.2) we have

ϕqD(g(x′)) ≤ ϕqD(g(x)− (ϕqD(g(x))− c)q) = ϕqD(g(x))− ϕqD(g(x) + c = c,

that is a contradiction.
Thus, Corollary 4.8 encompasses the formulation of [23, Corollary 3.1] for a complete

metric space (X, d) and w = (1/ε)d (see [23, Lemma 2.2] with f(x1, x2) = φ(x2)−φ(x1)
to check the closedness of the sets SD,q(x), for all x ∈ X). It is worth noticing that
in the less general setting of a complete metric space instead of a left complete quasi
metric space and a distance instead of a W -distance, Corollary 4.8 improves [23,
Corollary 3.1] since neither the algebraic solidness nor the q-vectorial closedness of D
are required.

Both [23, Theorem 3.1] and [23, Theorem 3.2] are also improved by Corollary 4.8,
since [23, Theorem 3.2] is a consequence of [23, Corollary 3.1] (compare, for instance,
with Corollaries 3.6 and 4.7 in this work) and [23, Theorem 3.1] results of applying
[23, Theorem 3.2] to the function φ : X → Y , φ(x) = f(x0, x) whenever f is diagonal
null, i.e., f(x, x) = 0 for all x ∈ X.

In [3, Section 3], similar results to the ones in [23, Section 3] were stated in the
stronger framework of a locally convex Hausdorff topological linear space Y ordered
by a closed convex cone D with nonempty interior. By the same reasons as above,
Corollary 4.8 can be viewed as an improvement of them.

As a consequence, we will obtain the following EVP for vector-valued functions being
strictly decreasing lower-semicontinuous. This type of lower-semicontinuity generalizes
the decreasing lower-semicontinuity property used in [7]; the latter is known also as
sequentially submonotonicity (see [12,19,20]). Recall that a sequence (yn) ⊆ Y is said
to be ≤D-decreasing (resp. strictly ≤D-decreasing) if yn+1 ≤ yn (resp. yn+1 ≤ yn and
yn+1 6= yn) for all n ∈ IN .

Definition 4.9 (Strictly ≤D-decreasing lower-semicontinuity). Let X be a topolog-
ical space, Y be a real linear space and D ⊆ Y be a convex cone. A vector-valued
function g : X → Y is said to be ≤D-decreasing (resp. strictly ≤D-decreasing) lower
semicontinuous (lsc for short) if for every convergent sequence (xn) ⊆ X with the limit
x̄ such that (g(xn)) is ≤D-decreasing (resp. strictly ≤D-decreasing), one has

g(x̄) ≤D g(xn), ∀n ∈ IN.

Obviously, each ≤D-decreasing lsc function is also strictly ≤D-decreasing lsc, but
the converse implication is not true in general. For instance, consider X = Y = IR,
D = IR+ and the function g : IR→ IR,

g(x) :=

 0 if x < 0,
2 if x = 0,
1 if x > 0.

It is easy to check that g is strictly ≤D-decreasing lsc since there is no sequence
(xn) ⊆ X such that (g(xn)) is strictly ≤D-decreasing. However, g is not ≤D-decreasing
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lsc. Indeed, the sequence xn := 1/n, for all n ∈ IN\{0}, converges to x̄ = 0, (g(xn)) is
≤D-decreasing, but g(x̄) 6≤D g(xn), for all n ∈ IN\{0}.

Corollary 4.10 (EVP for strictly ≤D-decreasing lsc functions). Let (X, d) be a com-
plete metric space, Y be a real linear space, D ⊆ Y be a convex cone and g : X → Y
be a vector-valued function. Consider q ∈ D\(−D), ε ≥ 0 and a point x0 ∈ EK(g, εq).
Suppose that g is strictly ≤D-decreasing lsc and D is q-vectorial closed. Then there
exists x̄ ∈ X such that

(a) g(x̄) + d(x0, x̄)q ≤D g(x0),
(b) g(x) + d(x̄, x)q 6≤D g(x̄), ∀x ∈ X\{x̄}.

Proof. By Corollary 4.8, it is sufficient to check the validity of the stronger extended
monotonicity closedness assumption at x0 of the set-valued mapping SD,q. For this
aim, fix a generalized Picard sequence (xn) of SD,q with starting point x0 such that
xn+1 6= xn for all n ∈ IN and xn → x. Taking into account the definition of SD,q, we
have

g(xn+1) + d(xn, xn+1)q ≤D g(xn), ∀n ∈ IN.

Then, as q ∈ D\(−D), for each n ∈ IN we see that g(xn+1) ≤D g(xn+1) and g(xn+1) 6=
g(xn). Thus, the sequence (g(xn)) is strictly ≤D-decreasing. Since g is strictly ≤D-
decreasing lsc and (xn) converges to x, we have g(x) ≤D g(xn) for all n ∈ IN . As
xn+k ∈ SD,q(xn) for all n, k ∈ IN , we have

g(x) + d(xn, xn+k)q ≤D g(xn+k) + d(xn, xn+k)q ≤D g(xn). (20)

We claim that, for each n ∈ IN , x ∈ SD,q(xn), i.e.,

g(x) + d(xn, x)q ≤D g(xn). (21)

Indeed, as q ∈ D, if there exists k ∈ IN such that d(xn, x) < d(xn, xn+k), by (20) it
follows that

g(x) + d(xn, x)q ≤D g(x) + d(xn, xn+k)q ≤D g(xn)

and statement (21) holds true. Otherwise, for each k ∈ IN , tk := d(xn, x) −
d(xn, xn+k) ≥ 0, tk → 0 and

g(xn)− g(x)− d(xn, x)q + tkq ∈ D.

Therefore, g(xn)− g(x)− d(xn, x)q ∈ vclqD = D and (21) is also satisfied.
By Proposition 4.4 with E = D we see that SD,q(x) ⊆ SD,q(xn). Since n was

arbitrary, the stronger extended monotonicity closedness assumption at x0 of the set-
valued mapping SD,q holds true.

Note that in [5, Corollary 3] Bao et al. established a version of EVP for strict
decreasing lsc extended-real-valued functions in pseudo-quasimetric spaces.
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5. Conclusions

In this paper, we state a really general approximate scalar EVP and we weaken several
assumptions of Dancs-Hegedüs-Medvegyev’s fixed point theorem in [9, Theorem 3.1].
Both results allow us to establish better approximate and exact EVPs for vector-valued
functions in vector optimization with free-disposal domination sets and deduce from
them a number of particular versions of vector EVPs which include known and new
results. In particular, an EVP for strictly ≤D-decreasing lsc vector-valued functions is
deduced. The results in this paper can be easily extended to the setting of quasi-metric
spaces.
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