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ABSTRACT
This work concerns Ekeland variational principles for scalar and vector cyclically
antimonotone bifunctions on complete metric spaces. The scalar results work for
extended bifunctions and they are obtained by a generalized version of the Dancs-
Hegedüs-Medvegyev’s fixed point theorem. As a result, weaker lower-semicontinuity
assumptions have been considered, that generalize the concept of strictly decreas-
ingly lower-semicontinuous real-valued function. The vector results are derived
from the previous ones by a scalarization approach and are based on new no-
tions of cyclical antimonotonicity, lower boundedness and strictly decreasingly lower-
semicontinuity for vector bifunctions. Several results in the literature are improved
since they are stated by weaker assumptions.
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1. Introduction

Lots of basic results in mathematical programming have been generalized to equilib-
rium problems since they were introduced in 1994 by Blum and Oettli [1]. These
contributions are really valuable, because equilibrium problems encompass several
fundamental issues in applied mathematics, like optimization problems, variational
inequalities, saddle point theorems, Nash equilibrium problems, fixed-point theorems,
complementary problems and so on.

The Ekeland variational principle is one of the aforementioned basic results. The
first equilibrium version of the Ekeland variational principle was stated by Oettli and
Théra [2] in 1993 and it works for bifunctions satisfying the so-called triangle inequality
property.

Although this seminal Ekeland variational principle has been reformulated and gen-
eralized in several ways (see [3–5]), only in the recent works [6–8] the triangle inequality
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assumption has been weakened via the cyclical antimonotonicity condition. Notice that
an unconstrained variational inequality problem can be reformulated as an equilibrium
problem satisfying the triangle inequality property if and only if the linear operator
that defines the variational inequality is constant (see [7,9]). This assertion illustrates
how strong the triangle inequality property is in the setting of an equilibrium problem.

This paper addresses Ekeland variational principles for vector equilibrium prob-
lems. Analogously to the scalar case, one can find in the literature these results for
vector bifunctions that fulfill the triangle inequality property (see [10–14]) and also
for cyclically antimonotone vector bifunctions (see [14–16]). In [14,15], the obtained
vector equilibrium versions of the Ekeland variational principle depend strongly on
the existence of the supremum for each upper bounded set. As a result, they can be
applied provided that the final space of the bifunction is a real bounded complete
linear space, i.e., provided that the ordering cone is strongly minihedral (see [14,15]).

The approach in [16] is different from the previous one and it is based on the
scalarization of the nominal equilibrium problem through linear functionals in the
positive polar cone of the ordering cone. Therefore, the Ekeland variational principles
in [16] can be applied to vector bifunctions whose final space is locally convex.

The main objective of this work is to derive Ekeland variational principles more gen-
eral than the ones in [14–16]. In this sense, the most powerful results are Theorems 3.9,
4.12 and 4.17. For our aim, a new concept of cyclically antimonotone vector bifunction
is introduced by a scalarization approach. We underline that in our main results, both
the lower-semicontinuity assumptions and the lower boundedness assumptions involve
only the objective bifunction of the problem.

This work is structured as follows. In Section 2, the setting of the paper is introduced
and a basic Ekeland variational principle for strictly decreasingly lower-semicontinuous
extended-real-valued functions is recalled. This result is obtained from a generalized
version of the so-called Dancs-Hegedüs-Medvegyev’s fixed point theorem. In Section 3,
several equilibrium versions of the Ekeland variational principle are derived for cycli-
cally antimonotone extended-real-valued bifunctions. Therefore, they can be applied to
extended-real-valued equilibrium problems whose objective bifunction does not satisfy
the triangle inequality property. In Section 4, we address Ekeland variational princi-
ples for vector equilibrium problems, which are derived by a new notion of cyclically
antimonotone vector bifunction and the results of the previous section.

The main Ekeland variational principles of this paper encompass and extend some
others in the literature for scalar and vector bifunctions, like the ones by Miholca [15]
and Qiu [16], because weaker assumptions are considered. In particular, it is worth
noticing several new strictly decreasingly lower-semicontinuity notions not only for
real bifunctions but also for vector bifunctions.

2. Preliminaries

Let Y be a real locally convex Hausdorff topological linear space and consider the
preorder ≤D in Y defined by a closed convex cone D ⊂ Y :

y1, y2 ∈ Y, y1 ≤D y2 ⇐⇒ y2 − y1 ∈ D. (1)

The following property is obvious:

y1, y2, z1, z2 ∈ Y, y1 ≤D y2, z1 ≤D z2 ⇒ y1 + z1 ≤D y2 + z2. (2)
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Recall that D is said to be pointed if D∩ (−D) = {0}. In the sequel, IR+ refers to the
set of nonnegative real numbers. The positive polar cone of D is denoted by D+, i.e.,

D+ := {λ ∈ Y ∗ : λ(d) ≥ 0,∀d ∈ D},

where Y ∗ stands for the topological dual space of Y .
This work addresses the so-called vector equilibrium problem (VEP): Find x̄ ∈ X

such that

x ∈ X\{x̄}, f(x̄, x) ≤D 0⇒ f(x̄, x) = 0,

where X is a nonempty set and f : X ×X → Y is a bifunction. A point x̄ ∈ X is said
to be a strict solution of (VEP) if

f(x̄, x) 6≤D 0 ∀x ∈ X\{x̄}.

The formulations of the Ekeland variational principle in the framework of problem
(VEP) that are studied in this paper look for strict solutions of the equilibrium problem
whose vector objective bifunction is the following perturbation of the nominal vector
bifunction: f(·, ·)+d(·, ·)q : X×X → Y , where (X, d) is a metric space and q ∈ D\{0}.

If Y = IR and D = IR+, then (VEP) reduces to the following scalar equilibrium
problem:

Find x̄ ∈ X such that f(x̄, x) ≥ 0, ∀x ∈ X\{x̄}.

As usual, the effective domain of an extended-real-function g : X → IR ∪ {±∞} is
denoted by dom g, i.e.,

dom g := {x ∈ X : g(x) < +∞}

and g is said to be proper if dom g 6= ∅ and g(x) > −∞ for all x ∈ dom g.
The main mathematical tool of this work is the subsequent Ekeland variational

principle. It is a simple consequence of the next generalization of the well-known
Dancs-Hegedüs-Medvegyev’s fixed point theorem (see [17, Theorem 3.1]).

Recall that (xn) ⊂ X is said to be a Picard sequence of a dynamical system S :
X →→ X if xn+1 ∈ S(xn) for all n ∈ IN . It is said to be distinct if xn+1 6= xn, for all
n ∈ IN .

Theorem 2.1. Let (X, d) be a metric space and consider x0 ∈ X and a dynamical
system S : X →→ X satisfying the conditions:

(A1) x ∈ S(x) for all x ∈ S(x0) ∪ {x0};
(A2) x2 ∈ S(x1) ⇒ S(x2) ⊂ S(x1) for all x1 ∈ S(x0);
(A3) For each Picard sequence (xn) ⊂ X of S whose initial point is x0, we have that
limn→∞ d(xn, xn+1) = 0;
(A4) For each distinct and Cauchy Picard sequence (xn) of S whose initial point is
x0, there exists x̄ ∈ S(xn) for all n ∈ IN ;

Then there is a point x̄ ∈ S(x0) such that S(x̄) = {x̄}.

Notice that in Theorem 2.1 it is not assumed that the metric space is complete. As
a result, assumption (A4) is different from the one imposed in [18, Corollary 2.4]: For
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each Picard sequence (xn) of S being convergent to x̄ and whose initial point is x0, it
follows that x̄ ∈ S(xn) for all n ∈ IN .

The next lower-semicontinuity notion was introduced in [19, Definition 9].

Definition 2.2. Let X be a topological space. A proper extended-real-valued function
g : X → IR∪{+∞} is said to be strictly decreasingly lower-semicontinuous at a point
x̄ ∈ X (<-lsc at x̄ in short form), if for every sequence (xn) ⊂ X converging to x̄, one
has

∀n ∈ IN, g(xn+1) < g(xn) =⇒ ∀n ∈ IN, g(x̄) ≤ g(xn).

The function g is called <-lsc when it is <-lsc at x, for all x ∈ X.

Remark 1. A close notion to the previous one is that of decreasingly lower-
semicontinuous functions introduced by Kirk and Saliga [20] (called by them lower-
semicontinuity from above) meaning that g(x̄) ≤ limn→∞ g(xn) for every sequence
(xn) being convergent to x̄ and satisfying g(xn+1) ≤ g(xn), for all n ∈ IN .

Let us consider a function g : IR→ IR defined by

g(x) :=

{
2n if n < x < n+ 1 and n ∈ Z,
1
2(2n−1 + 2n) if x = n and n ∈ Z.

Obviously, g is not either lower-semicontinuous or decreasingly lower-semicontinuous
at every point x = n for n ∈ Z. But, g is <-lsc since there is no any convergent
sequence (xn) such that the sequence (g(xn)) is strictly decreasing.

It is important to note that the sum of a <-lsc function and a continuous function
might not be <-lsc. Consider the function g above and the continuous function h :
IR→ IR defined by h(x) = −x+ 5

2 . The sequence (xn) with xn := 1− 1
n converges to

x̄ = 1. For each n ≥ 2 we have

g(xn) + h(xn) =
5

2
+

1

n
and g(x̄) + h(x̄) = 3.

Since the sequence (g(xn)+h(xn)) is strictly decreasing, but g(xn)+h(xn) < g(x̄)+h(x̄)
for all n ∈ IN , n ≥ 3, the function g + h is not <-lsc at x̄ = 1.

Theorem 2.3. Let (X, d) be a complete metric space and g : X → IR ∪ {+∞} be
a proper extended-real-valued function. Assume that the function g is bounded from
below and <-lsc. Then, for any x0 ∈ dom g, there is x̄ ∈ X such that

(a) g(x̄) + d(x0, x̄) ≤ g(x0);
(b) g(x) + d(x̄, x) > g(x̄), for all x ∈ X\{x̄}.

Note that in [19, Corollary 3] Bao et al. established a version of the Ekeland varia-
tional principle in pseudo-quasimetric spaces which says that this variational principle
holds for the class of <-lsc functions.

3. Ekeland variational principles for extended-real-valued bifunctions

As far as we know, the first Ekeland variational principle for an equilibrium problem
was stated by Oettli and Théra [2]. This result can be applied to an extended-real-
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valued bifunction h : X ×X → IR ∪ {+∞} that is diagonal null, i.e., h(x, x) = 0 for
all x ∈ X, and satisfies the so-called triangle inequality property:

h(x1, x3) ≤ h(x1, x2) + h(x2, x3), ∀x1, x2, x3 ∈ X. (3)

The notion of cyclically antimonotone real-valued function was introduced by
Castellani and Giuli [7, Definition 2.11] in order to state Ekeland variational prin-
ciples for an equilibrium problem whose objective bifunction is finite and does not
satisfy the triangle inequality property.

Next, this concept is recalled in a slightly more general setting because it involves an
extended-real-valued bifunction. This fact is needed not only to encompass the seminal
Oettli and Théra’s Ekeland variational principle, but also to apply it to vector equi-
librium problems via a scalarization approach based on the well-known Gerstewitz’s
functional (see [21]).

Definition 3.1. Let X 6= ∅ and h : X ×X → IR ∪ {+∞}. We say that h is cyclically
antimonotone if for each finite nonempty set {x1, x2, . . . , xn} ⊂ X it follows that

h(x1, x2) + h(x2, x3) + · · ·+ h(xn−1, xn) + h(xn, x1) ≥ 0. (4)

In the subsequent theorem, we characterize the cyclically antimonotone extended-
real-valued bifunctions by a similar result as [7, Theorem 2.13]. It is proved for the
convenience of the reader, since some technical adjustments must be carried out in
order to avoid the improper value +∞−∞.

Theorem 3.2. Let X 6= ∅ and h : X ×X → IR ∪ {+∞}. If there exists an extended-
real-valued function g : X → IR ∪ {+∞} such that{

domh(·, x) ⊂ dom g, ∀x ∈ X,
h(x1, x2) + g(x2) ≥ g(x1), ∀x1, x2 ∈ X,

(5)

then h is cyclically antimonotone. Conversely, if h is cyclically antimonotone and
domh(x0, ·) = X for some x0 ∈ X, then there exists an extended-real-valued function
g : X → IR ∪ {+∞} such that{

domh(·, x0) ⊂ dom g,
h(x1, x2) + g(x2) ≥ g(x1), ∀x1, x2 ∈ X.

(6)

Proof. Suppose that an extended-real-valued function g : X → IR ∪ {+∞} fulfills
statement (5) and consider an arbitrary finite nonempty set {x1, x2, . . . , xn} ⊂ X.
Define xn+1 := x1. Then, for each j ∈ {1, 2, . . . , n} we have that

h(xj , xj+1) + g(xj+1) ≥ g(xj). (7)

If there exists j ∈ {1, 2, . . . , n} such that h(xj , xj+1) = +∞, then condition (4) is
satisfied. Otherwise, by the first assertion of (5) we deduce that g(xj) < +∞, for all
j ∈ {1, 2, . . . , n} and adding relation (7) for j = 1, 2, . . . , n we see that (4) is true.

Conversely, suppose that h is cyclically antimonotone and there exists a point x0 ∈
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X such that domh(x0, ·) = X. Define gx0
: X → IR ∪ {±∞},

gx0
(x) := inf{h(x, xn) + h(xn, xn−1) + · · ·+ h(x1, x0) : ∀n ∈ IN,

∀{x1, x2, . . . , xn} ⊂ X} (8)

(the value h(x, x0) is considered whenever n = 0). It is clear that gx0
satisfies the first

assertion of (6). Moreover, as h is cyclically antimonotone, for each finite nonempty
set {x1, x2, . . . , xn} ⊂ X we have that

h(x, xn) + h(xn, xn−1) + · · ·+ h(x1, x0) ≥ −h(x0, x) > −∞.

Thus, gx0
(x) > −∞, for all x ∈ X. Finally, in order to check the second statement

of (6), let {u1, u2, . . . , un} ⊂ X be an arbitrary finite nonempty set and consider two
points x1, x2 ∈ X. It follows that

h(x1, x2) + h(x2, un) + h(un, un−1) + · · ·+ h(u1, x0) ≥ gx0
(x1).

As the set {u1, u2, . . . , un} ⊂ X is arbitrary, we have that

h(x1, x2) + gx0
(x2) ≥ gx0

(x1)

and the proof is completed.

Remark 2. 1. Notice that the first hypothesis of (5) could be replaced with the
condition domh(x, ·) ⊂ dom g, for all x ∈ X. Moreover, gx0

(x0) < +∞ and if h fulfills
the triangle inequality property, then we have gx0

(x) = h(x, x0), for all x ∈ X.
2. Notice that a bifunction h : X × X → IR ∪ {+∞} is cyclically antimonotone if

and only if the bifunction h′ : X×X → IR∪{+∞}, h′(x1, x2) := h(x2, x1) is cyclically
antimonotone. For this reason, Theorem 3.2 reduces to [7, Theorem 2.13] when the
bifunction h is finite.

The first part of Remark 2 motivates the subsequent two corollaries.

Corollary 3.3. An extended-real-valued bifunction h : X ×X → IR ∪ {+∞} is cycli-
cally antimonotone provided that it satisfies the triangle inequality property (3) and
there exists x0 ∈ X such that domh(·, x0) = X.

Proof. Consider an arbitrary point x0 ∈ X satisfying domh(·, x0) = X and define
g : X → IR, g(x) = h(x, x0), for all x ∈ X. Let x1, x2 ∈ X. By the triangle inequality
property (3) we have that

h(x1, x2) + g(x2) = h(x1, x2) + h(x2, x0) ≥ h(x1, x0) = g(x1).

Therefore, the result follows by applying the first part of Theorem 3.2.

Corollary 3.4. An extended-real-valued bifunction h : X ×X → IR ∪ {+∞} is cycli-
cally antimonotone if it satisfies the triangle inequality (3) and is bounded from below
in the second argument for each value of the first argument.

Proof. Define g(x) = infz∈X h(x, z), for all x ∈ X. We have g > −∞ because of the
lower boundedness assumption. Let x1, x2 ∈ X. By the triangle inequality property
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(3), for each x ∈ X we have that

h(x1, x2) + h(x2, x) ≥ h(x1, x) ≥ g(x1)

and since x ∈ X is arbitrary we deduce that h(x1, x2) + g(x2) ≥ g(x1).
Consider z, x ∈ X such that h(z, x) < +∞. It follows that g(z) ≤ h(z, x) < +∞.

Therefore, domh(·, x) ⊂ dom g and the result follows by applying the first part of
Theorem 3.2.

In the next proposition, the function gx0
introduced in the proof of Theorem 3.2 is

related with any other function g that satisfies assertion (5).

Proposition 3.5. Let h : X ×X → IR ∪ {+∞} be an extended-real-valued bifunction
satisfying domh(x0, ·) = X for some x0 ∈ X. Suppose that g : X → IR ∪ {+∞}
fulfills condition (5). Then g(x0) < +∞ and the function gx0

defined in (8) fulfills
gx0

(x) ≥ g(x)− g(x0), for all x ∈ X.

Proof. As domh(x0, ·) = X and domh(·, x) ⊂ dom g for all x ∈ X, we deduce that
g(x0) < +∞.

Let x ∈ X. If x /∈ dom gx0
, the result is obvious. Suppose that x ∈ dom gx0

and let
{x1, x2, . . . , xn} ⊂ X be any finite set such that

h(x, xn) + h(xn, xn−1) + · · ·+ h(x2, x1) + h(x1, x0) < +∞.

Then, h(x, xn) < +∞ and h(xj , xj−1) < +∞, for all j ∈ {1, 2, . . . , n}. By (5) it
follows that g(x) < +∞, g(xj) < +∞, h(x, xn) ≥ g(x) − g(xn) and h(xj , xj−1) ≥
g(xj)− g(xj−1), for all j ∈ {1, 2, . . . , n}. Therefore,

h(x, xn) + h(xn, xn−1) + · · ·+ h(x2, x1) + h(x1, x0)

≥ g(x)− g(xn) +
∑n

j=1(g(xj)− g(xj−1))

= g(x)− g(x0)

and the result follows.

Next, several Ekeland variational principles for extended-real-valued bifunctions are
obtained.

Theorem 3.6. Let (X, d) be a complete metric space and h : X ×X → IR ∪ {+∞}
be an extended-real-valued bifunction. Suppose that there exists a proper extended-real-
valued function g : X → IR ∪ {+∞} such that

h(x1, x2) + g(x1) ≥ g(x2), ∀x1, x2 ∈ X. (9)

Assume that g is bounded from below and <-lsc. Then, for each x0 ∈ dom g there exists
x̄ ∈ dom g satisfying

(a) d(x0, x̄) ≤ g(x0)− g(x̄) ≤ h(x̄, x0);
(b) h(x̄, x) + d(x̄, x) > 0, ∀x ∈ X\{x̄}.

Proof. Consider a point x0 ∈ dom g. By Theorem 2.3 we deduce that there is a point
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x̄ ∈ X satisfying

g(x̄) + d(x0, x̄) ≤ g(x0), (10)

g(x) + d(x̄, x) > g(x̄), ∀x ∈ X\{x̄}. (11)

Condition (10) implies x̄ ∈ dom g and by assumption (9) it follows that

d(x0, x̄) ≤ g(x0)− g(x̄) ≤ h(x̄, x0).

Analogously, condition (11) and assumption (9) imply

h(x̄, x) ≥ g(x)− g(x̄) > −d(x̄, x), ∀x ∈ X\{x̄},

and the proof finishes.

Condition (9) is satisfied provided that the bifunction h fulfills the triangle inequality
property. This fact motivates the subsequent result.

Corollary 3.7. Let (X, d) be a complete metric space and h : X ×X → IR ∪ {+∞}
be an extended-real-valued bifunction. Suppose that h fulfills the triangle inequality (3)
and there exists x̂ ∈ X such that h(x̂, ·) is proper, bounded from below and <-lsc. Then,
for all x0 ∈ X, h(x̂, x0) < +∞, there exists x̄ ∈ X satisfying

(a) h(x̂, x̄) + d(x0, x̄) ≤ h(x̂, x0);
(b) d(x0, x̄) ≤ h(x̄, x0);
(c) h(x̄, x) + d(x̄, x) > 0, ∀x ∈ X\{x̄}.

Proof. Consider a point x̂ ∈ X such that the extended-real-valued function gx̂ :=
h(x̂, ·) : X → IR ∪ {+∞} is proper, bounded from below and <-lsc. As h satisfies the
triangle inequality property, for each x1, x2 ∈ X we have that

h(x1, x2) + gx̂(x1) = h(x1, x2) + h(x̂, x1) ≥ h(x̂, x2) = gx̂(x2).

Then, the result follows by applying Theorem 3.6.

Remark 3. By taking x0 = x̂, Corollary 3.7 encompasses [5, Theorem 2.1], where
a finite diagonal null bifunction h is considered. In addition, instead of the <-lsc
assumption, it is supposed that the set

F (x) := {y ∈ X : h(x, y) + d(x, y) ≤ 0}

is closed, for all x ∈ X. This result can be derived by applying Theorem 2.1 to the
dynamical system F : X →→ X. Indeed, conditions (A1), (A2) and (A4) are obviously
satisfied. Concerning (A3), notice that for each Picard sequence (xn) ⊂ X, the triangle
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inequality implies that

k∑
n=0

d(xn, xn+1) ≤
k∑

n=0

(−h(xn, xn+1))

≤
k∑

n=0

(h(x̂, xn)− h(x̂, xn+1))

= h(x̂, x0)− h(x̂, xk+1)

≤ h(x̂, x0)− inf
x∈X

h(x̂, x)

< +∞

and so d(xn, xn+1)→ 0, i.e. condition (A3) is true too.

Next, we state the main result of this section. It is an equilibrium version of the
Ekeland variational principle whose assumptions only involve the bifunction. The next
notion is the counterpart for bifunctions of the concept in Definition 2.2.

Definition 3.8. Let X be a topological space. An extended-real-valued bifunction
h : X ×X → IR ∪ {+∞} is said to be strictly decreasingly lower-semicontinuous at a
point x̄ ∈ X (×>-lsc at x̄ in short form) if for every sequence (xn) ⊂ X converging to
x̄, one has

∀n ∈ IN, h(xn+1, xn) > 0 =⇒ ∀n ∈ IN, h(xn, x̄) ≤ 0. (12)

The function h is called ×>-lsc if it is ×>-lsc at x, for all x ∈ X.

In short notation ×>, symbol × underlines that the notion involves a bifunction,
and the superscript > denotes the binary relation involved in the left-hand side of
condition (12).

Notice that a real-valued function g : X → IR is <-lsc if and only if the bifunction
h : X ×X → IR, h(x1, x2) = g(x2)− g(x1), is ×>-lsc.

Theorem 3.9. Let (X, d) be a complete metric space and h : X ×X → IR ∪ {+∞}
be an extended-real-valued bifunction. Suppose that h is cyclically antimonotone and
there exists x̂ ∈ X such that h(·, x̂) is bounded from above. Assume that one of the
following assumptions holds:

(H1) h is ×>-lsc.
(H2) For every x ∈ X, h(x, x) ≤ 0 and h(·, x) is upper semicontinuous at x.

Then, for all x0 ∈ X, h(x̂, x0) < +∞, there exists x̄ ∈ X satisfying

(a) d(x0, x̄) ≤ h(x̄, x0);
(b) h(x̄, x) + d(x̄, x) > 0, ∀x ∈ X\{x̄}.

Proof. Consider the bifunction h′ : X×X → IR∪{+∞}, h′(x1, x2) = h(x2, x1), for all
x1, x2 ∈ X. As h is cyclically antimonotone, it follows that h′ is cyclically antimonotone
too. Let x̂ ∈ X be such that h′(x̂, ·) is bounded from above. In particular, we have that
domh′(x̂, ·) = X. By Theorem 3.2, we deduce that there exists an extended-real-valued
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function g : X → IR ∪ {+∞} such that{
domh′(·, x̂) ⊂ dom g,

h′(x1, x2) + g(x2) ≥ g(x1), ∀x1, x2 ∈ X.
(13)

Assertions in (13) and the upper boundedness of h′(x̂, ·) yield to the lower boundedness
of g. Indeed, there exists M ∈ IR such that h′(x̂, x) ≤ M , for all x ∈ X. Moreover,
x̂ ∈ dom g as h′(x̂, x̂) < +∞. Therefore, for each x ∈ X,

g(x) ≥ g(x̂)− h′(x̂, x) ≥ g(x̂)−M,

and g is bounded from below.
Next, we prove that g is <-lsc in two cases according to (H1) and (H2).
Case 1: Assume that (H1) is satisfied. Fix an arbitrary sequence (xn) converging

to x̄ such that

∀n ∈ IN, g(xn+1) < g(xn).

The second assertion of (13) yields

∀n ∈ IN, h′(xn, xn+1) ≥ g(xn)− g(xn+1) > 0.

By (12), we have

∀n ∈ IN, h′(x̄, xn) ≤ 0.

Again, the second assertion of (13) ensures that

∀n ∈ IN, g(xn) ≥ h′(x̄, xn) + g(xn) ≥ g(x̄).

Therefore, g is <-lsc.
Case 2: Assume that (H2) is satisfied. The second assertion of (13) and the up-

per semicontinuity of h(·, x) at x ∈ X imply that g is lower-semicontinuous. Indeed,
consider an arbitrary point x ∈ X. Let us check that g(x) ≤ lim infu→x g(u). As
h′(x, x) ≤ 0 and h′(x, ·) is upper semicontinuous at x, for each ε > 0 there exists a
neighborhood U of x such that h′(x, u) ≤ ε, for all u ∈ U . In particular, we see that
h′(x, ·) is finite in U and by (13) we deduce that

g(u) ≥ g(x)− h′(x, u) ≥ g(x)− ε, ∀u ∈ U

and the lower-semicontinuity of g is proved. Thus, g is <-lsc.
Let x0 ∈ X be such that h(x̂, x0) < +∞. By the first statement of (13) we see that

x0 ∈ dom g and the result follows by applying Theorem 3.6.

Remark 4. 1. Theorem 3.9 improves [7, Corollary 2.17] as the upper boundedness
and upper semicontinuity assumptions are weaker.

2. Let X be a topological space and h : X × X → IR ∪ {+∞} be an extended-
real-valued diagonal null bifunction such that for all x ∈ X, h(·, x) : X → IR ∪ {+∞}
is upper semicontinuos at x. The proof of Theorem 3.9 shows that each function
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g : X → IR ∪ {+∞} fulfilling h(x1, x2) + g(x1) ≥ g(x2), for all x1, x2 ∈ X, is lower-
semicontinuous. This assertion improves the first implication of [7, Theorem 2.16],
where only the opposite of function gx0

defined in (8) is considered.

Remark 5. 1. Notice that Theorem 3.6 is a consequence of Theorem 2.3. Recipro-
cally, Theorem 2.3 can be stated by applying Theorem 3.6 to the extended-real-valued
bifunction h : X ×X → IR ∪ {+∞}, h(x1, x2) = g(x2)− g(x1), for all x1 ∈ dom g and
x2 ∈ X, and h(x1, x2) = c otherwise, where c ∈ IR ∪ {+∞} is arbitrary. Therefore,
Theorem 3.6 and Theorem 2.3 are equivalent results.

2. Theorem 3.6 improves [9, Corollary 3.7] and the version of [6, Theorem 6] for
metric spaces instead of quasi-metric spaces, because a weaker lower-semicontinuity
assumption is required and it can be applied to extended-real-valued bifunctions.

3. Corollary 3.7 generalizes [3, Theorem 2.2], [4, Theorem 2.1] and [2, Theorem 1]
because weaker hypotheses are assumed. On the one hand, h is assumed to be <-
lsc instead of lower-semicontinuous. Moreover, this condition is required for a fixed
point in the first argument, instead of for each point in the first argument. On the
other hand, the lower boundedness assumption is required for a fixed point in the first
argument, instead of for each point in the first argument. Finally, the function h is
not assumed to be diagonal null.

4. Ekeland variational principles for vector bifunctions

First at all, a notion of cyclically antimonotone vector bifunction is introduced. It is
based on a nonlinear scalarization approach. Recall that Y is assumed to be a real
locally convex Hausdorff topological linear space and D ⊂ Y is a closed convex cone.

Consider an arbitrary nonempty set E ⊂ Y , q ∈ Y \{0} and the so-called Gerste-
witz’s scalarization function ϕqE : Y → IR ∪ {±∞}, defined as follows (see [21,22] and
the references therein):

ϕqE(y) = inf{t ∈ IR : y ∈ tq − E},

where inf ∅ = +∞.
We denote

S(ϕqE , r,R) := {y ∈ Y : ϕqE(y)Rr}, ∀r ∈ IR, ∀R ∈ {≤, <,=}.

In addition, clE and coneE refer to the closure and the cone generated by E, re-
spectively, and coreE and vclq E stand for the algebraic interior of E and the vector
closure of E in direction q (see [23,24]), respectively, i.e.,

coreE := {y ∈ Y : ∀v ∈ Y ∃δ > 0 s.t. y + [0, δ]v ⊂ E},
vclqE := {y ∈ Y : ∀t > 0∃t′ ∈ [0, t] s.t. y + t′q ∈ E},

and for each λ ∈ Y ∗\{0},

Hλ
+ := {y ∈ Y : λ(y) ≥ 0}.

Recall that E is called algebraically solid if coreE 6= ∅ and ϕqE is said to be ≤E-
monotone if for each y1, y2 ∈ Y , y1 ≤E y2, it follows that ϕqE(y1) ≤ ϕqE(y2). Here,
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≤E extends the binary relation ≤D defined in (1) for the closed convex cone D to an
arbitrary set E, i.e.,

y1, y2 ∈ Y, y1 ≤E y2 ⇐⇒ y2 − y1 ∈ E.

In addition, the function ϕqE is said to be positively homogeneous (resp., subadditive,
convex) if ϕqE(αy) = αϕqE(y), for all y ∈ Y and α > 0 (resp., ϕqE(y1 + y2) ≤ ϕqE(y1) +
ϕqE(y2), ϕqE(αy1 + (1 − α)y2) ≤ αϕqE(y1) + (1 − α)ϕqE(y2), for all y1, y2 ∈ Y , for all
α ∈ (0, 1)). In these definitions we assume +∞−∞ = −∞+∞ = +∞.

The following properties are well-known. For parts (i)-(ix) see [21, Lemma 3 and
Theorems 4, 8 and 14] and [22, Theorem 2.3.1 and Proposition 2.3.7], whereas part
(x) can be easily checked. We denote E+ := (coneE)+.

Lemma 4.1. We have that

(i) ϕqE is translative, i.e., ϕqE(y + tq) = ϕqE(y) + t, for all y ∈ Y and for all t ∈ IR.
(ii) S(ϕqE , 0,≤) = (−∞, 0]q − vclqE.

(iii) S(ϕqE , 0, <) = (−∞, 0)q − vclqE.
(iv) S(ϕqE , 0,=) = (−vclqE)\((−∞, 0)q − vclqE).
(v) ϕqE is ≤E-monotone iff E + E ⊂ [0,+∞)q + vclq E.

(vi) Assume that ϕqE > −∞. Then, ϕqE is subadditive iff vclq E+vclq E ⊂ [0,+∞)q+
vclq E.

If E is a closed convex cone, then the next properties are also satisfied:

(vii) ϕqE is positively homogeneous and convex.
(viii) If q /∈ −E, then ϕqE is proper and ϕqE(0) = 0.
(ix) If E is not a linear subspace then domϕqE = Y if and only if {q,−q}∩coreE 6= ∅.
(x) Consider λ ∈ E+ and q ∈ Y such that λ(q) = 1. We have E ⊂ Hλ

+ and
ϕq
Hλ

+
(y) = λ(y) for all y ∈ Y .

Definition 4.2. A vector bifunction f : X × X → Y is said to be D-cyclically
antimonotone if there exists q ∈ Y \(−D) such that the proper extended-real-valued
bifunction ϕqD ◦ f : X ×X → IR ∪ {+∞} is cyclically antimonotone.

Let us denote

Q(f) := {q ∈ Y \(−D) : ϕqD ◦ f is cyclically antimonotone}.

Then, f is D-cyclically antimonotone if and only if Q(f) 6= ∅.

Remark 6. Consider Y = IR, D = IR+ and an arbitrary positive real number q. Then
ϕqIR+

(y) = y/q, for all y ∈ IR, and the function ϕqIR+
◦ f is cyclically antimonotone if

and only if f is cyclically antimonotone. Thus, the notion of D-cyclically antimonotone
vector bifunction encompasses the corresponding scalar concept.

In the next result, we provide some sufficient conditions for the cyclical antimono-
tonicity concept introduced in Definition 4.2.

Theorem 4.3. Consider a vector bifunction f : X ×X → Y and the next assertions:

(i) There exists a vector function g : X → Y satisfying f(x, y) ≥D g(y)− g(x), for
all x, y ∈ X.
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(ii) For each finite nonempty set {x1, x2, . . . , xn} ⊂ X we have that

f(x1, x2) + f(x2, x3) + · · ·+ f(xn−1, xn) + f(xn, x1) ≥D 0.

(iii) For all λ ∈ D+\{0}, λ ◦ f is cyclically antimonotone.
(iv) There exists λ ∈ D+\{0} such that λ ◦ f is cyclically antimonotone.
(v) For each finite nonempty set {x1, x2, . . . , xn} ⊂ X we have that

f(x1, x2) + f(x2, x3) + · · ·+ f(xn−1, xn) + f(xn, x1) ≤D 0

⇒ f(x1, x2) + f(x2, x3) + · · ·+ f(xn−1, xn) + f(xn, x1) = 0.

(vi) For each q ∈ D\(−D), ϕqD ◦ f is cyclically antimonotone.
(vii) f is D-cyclically antimonotone.
(viii) There exists q ∈ Y \(−D) and a real-valued function g : X → IR such that for

each x, y ∈ X,

f(x, y) + tq 6≤D g(y)q − g(x)q, ∀t > 0.

The following implications are true: (i) ⇒ (ii) ⇔ (iii) ⇒ (iv), (ii) ⇒ (vi) and (v)
⇒ (vi); If D is strongly minihedral, i.e., for every subset of Y which is bounded from
above has a supremum, then (ii) ⇒ (i) is also true.

Moreover, (vii) ⇒ (viii) provided that there exists q ∈ Q(f) such that f(X,x0) ∪
f(x0, X) ⊂ IRq −D for some x0 ∈ X.

In addition, if D is not a linear space, then (vi) implies (vii), and if D is pointed,
then (iii) ⇒ (v).

In addition, if Y = IR and D = IR+, then all statements above are equivalent.

Proof. Suppose that assertion (i) is true. Consider an arbitrary finite nonempty set
{x1, x2, . . . , xn, xn+1} ⊂ X such that xn+1 = x1. As D is a convex cone, by property
(2) it follows that

n∑
j=1

f(xj , xj+1) ≥D
n∑
j=1

(g(xj+1)− g(xj)) = 0

and statement (ii) holds true. For the converse implication when D is strongly mini-
hedral, see [15, Theorem 4.4] or [14, Theorem 4.1].

Moreover, by the Bipolar Theorem we have that

n∑
j=1

f(xj , xj+1) ≥D 0 ⇐⇒
n∑
j=1

(λ ◦ f)(xj , xj+1) ≥ 0, ∀λ ∈ D+\{0}

and the equivalence (ii) ⇔ (iii) is proved.
It is obvious that assertion (iii) implies assertion (iv). In addition, (ii)⇒ (vi) follows

since by parts (v), (vi) and (viii) of Lemma 4.1 the function ϕqD is ≤D-monotone,
subadditive and ϕqD(0) = 0.

Assume that D is pointed. Then, relation (iii) ⇒ (v) is obvious, since (ii) and (iii)
are equivalent.

Next, assume that statement (v) is fulfilled and let q ∈ D\(−D). Consider an
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arbitrary finite nonempty set {x1, x2, . . . , xn} ⊂ X and the point

y := f(x1, x2) + f(x2, x3) + · · ·+ f(xn−1, xn) + f(xn, x1).

By parts (vi) and (viii) of Lemma 4.1 we obtain

ϕqD(f(x1, x2)) + ϕqD(f(x2, x3)) + · · ·+ ϕqD(f(xn−1, xn)) + ϕqD(f(xn, x1)) ≥ ϕqD(y).

If y = 0, then ϕqD(y) = 0 by Lemma 4.1(viii). Suppose that y 6= 0. Then, by
statement (v) we see that y /∈ −D. By part (ii) of Lemma 4.1 we have that ϕqD(y) > 0.
Therefore, assertion (v) implies (vi).

If D is not a linear space, then D\(−D) 6= ∅, and part (vii) is an obvious consequence
of part (vi).

Let us check that part (vii) implies part (viii). Assume that the vector bifunction f
is D-cyclically antimonotone and there exist q ∈ Q(f) and x0 ∈ X such that f(X,x0)∪
f(x0, X) ⊂ IRq−D. Define h : X ×X → IR ∪ {+∞}, h(x1, x2) = (ϕqD ◦ f)(x2, x1). As
q ∈ Q(f), we have that ϕqD ◦f is cyclically antimonotone, and so it is obvious that h is
cyclically antimonotone too. Since f(X,x0) ⊂ IRq−D it follows that domh(x0, ·) = X.
Then by Theorem 3.2 we deduce that there exists an extended-real-valued function
g : X → IR ∪ {+∞} such that{

domh(·, x0) ⊂ dom g,
h(x1, x2) + g(x2) ≥ g(x1), ∀x1, x2 ∈ X.

(14)

Thus, dom (ϕqD ◦ f)(x0, ·) ⊂ dom g. As f(x0, X) ⊂ IRq − D we see that dom (ϕqD ◦
f)(x0, ·) = X and it follows that g is finite. Then, as a result of the second assertion
of (14) we deduce that

(ϕqD ◦ f)(x, y) + g(x) ≥ g(y), ∀x, y ∈ X.

Since ϕqD is translative (see Lemma 4.1(i)), we deduce that

ϕqD(f(x, y) + (g(x)− g(y))q) ≥ 0, ∀x, y ∈ X.

Thus,

f(x, y) + (g(x)− g(y))q /∈ S(ϕqD, 0, <), ∀x, y ∈ X

and by using Lemma 4.1(iii) again we obtain

f(x, y) + (g(x)− g(y))q /∈ (−∞, 0)q −D, ∀x, y ∈ X.

Therefore,

f(x, y) + tq 6≤D g(y)q − g(x)q, ∀x, y ∈ X,∀t > 0.

Next, we check that conditions (i)-(viii) are equivalent as long as Y = IR and D =
IR+. Since D is pointed, implications (iii)⇒ (v) and (vi)⇒ (vii) are satisfied. Since λ
is a positive number, parts (ii) and (iv) are equivalent. Moreover, since IRq−D = Y for
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all q 6= 0, part (vii) implies part (viii). The last assertion can be rewritten as follows:
there exists a point q > 0 and a real-valued-function g : X → IR such that for each
x, y ∈ X and t > 0 it follows that

f(x, y) + tq > g(y)q − g(x)q.

This assertion is equivalent to say that there exists a point q > 0 and a real-valued
function g : X → IR such that for each x, y ∈ X,

f(x, y) ≥ g(y)q − g(x)q

and assertion (i) is obtained. Therefore, implication (viii)⇒ (i) holds true. This finishes
the proof.

Remark 7. 1. Assertion (ii) ⇒ (i) of Theorem 4.3 was stated in [15, Theorem 4.4]
and [14, Theorem 4.1] by a constructive proof based on the function gx0

: X → Y ,

gx0
(x) := − inf{f(x, xn) + f(xn, xn−1) + · · ·+ f(x1, x0) : ∀n ∈ IN,

∀{x1, x2, . . . , xn} ⊂ X},

where x0 ∈ X is arbitrary. To be precise, the function gx0
is well-defined whenever D

is strongly minihedral and f fulfills assertion (ii), and it satisfies f(x, y) ≥D gx0
(y)−

gx0
(x), for all x, y ∈ X.
2. Condition f(X,x0) ∪ f(x0, X) ⊂ IRq − D of implication (vii) ⇒ (viii) can be

dropped whenever ϕqD is finite. When D is not a linear subspace and q /∈ −D, this
happens if and only if q ∈ coreD (see Lemma 4.1(ix)).

3. Assertion (ii) ⇒ (vi) of Theorem 4.3 has been stated in [14, Proposition 4.1]
when D is proper (i.e., D 6= Y ), algebraically solid and q ∈ coreD. Notice that the
assertion of Theorem 4.3 is more general as coreD ⊂ D\(−D) and coreD could be
empty.

4. Recently Miholca [15] and Qiu [16] introduced a concept of cyclically antimono-
tone vector bifunction via assertion (ii) of Theorem 4.3. From that theorem it is clear
that the notion of D-cyclically antimonotone vector bifunction is more general.

5. An example of vector variational inequality problem where condition (i) of The-
orem 4.3 is satisfied was introduced in [9] in connection with the so-called strong
supergradients of a cone concave vector mapping (see [9,25]).

Analogously, Qiu [16, Remark 3.8 and Theorem 3.7] defined a vector bifunction
as strongly cyclically antimonotone if it satisfies assertion (i) of Theorem 4.3. This
notion is stronger than Miholca’s concept. The main results of [9] have been obtained
by assuming this type of strong cyclical antimonotonicity. Thus, their counterparts in
this paper improve them as they are stated via a more general cyclical antimonotonicity
notion (compare, for instance, [9, Theorems 3.6 and 4.1] with Theorems 4.12 and 4.14,
respectively).

In the rest of this section, we state some Ekeland variational principles for vector
bifunctions that are more general than some others recently published in the literature.

Theorem 4.4. Let (X, d) be a complete metric space and f : X ×X → Y be a vector
bifunction. Consider q ∈ Y \(−D) and suppose that there exists a proper extended-
real-valued function g : X → IR ∪ {+∞} such that ϕqD ◦ f : X × X → IR ∪ {+∞}
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satisfies

(ϕqD ◦ f)(x1, x2) + g(x1) ≥ g(x2), ∀x1, x2 ∈ X.

Assume that g is bounded from below and <-lsc. Then, for each x0 ∈ dom g there exists
x̄ ∈ dom g such that

(a) g(x̄) + d(x0, x̄) ≤ g(x0);
(b) d(x0, x̄) ≤ (ϕqD ◦ f)(x̄, x0);
(c) f(x̄, x) + d(x̄, x)q 6≤D 0, ∀x ∈ X\{x̄}.

Proof. Assertions (a) and (b) are deduced by applying Theorem 3.6 to h := ϕqD ◦ f .
Moreover, for each x ∈ X\{x̄} we have that

(ϕqD ◦ f)(x̄, x) + d(x̄, x) > 0.

By Lemma 4.1(i) we have that

ϕqD(f(x̄, x) + d(x̄, x)q) > 0.

Then, Lemma 4.1(ii) implies that f(x̄, x) + d(x̄, x)q /∈ −D and the proof is completed.

Corollary 4.5. Let (X, d) be a complete metric space and f : X×X → Y be a vector
bifunction. Consider λ ∈ D+ and q ∈ Y such that λ(q) = 1. Suppose that there exists
a proper extended-real-valued function g : X → IR ∪ {+∞} such that the real-valued
bifunction λ ◦ f : X ×X → IR satisfies

(λ ◦ f)(x1, x2) + g(x1) ≥ g(x2), ∀x1, x2 ∈ X. (15)

Assume that g is bounded from below and <-lsc. Then, for each x0 ∈ dom g there exists
x̄ ∈ dom g such that

(a) g(x̄) + d(x0, x̄) ≤ g(x0);
(b) d(x0, x̄) ≤ (λ ◦ f)(x̄, x0);
(c) f(x̄, x) + d(x̄, x)q 6≤D 0, ∀x ∈ X\{x̄}.

Proof. Let us consider the closed convex cone K := Hλ
+. As λ(q) = 1 we have that

q /∈ −K. In addition, by Lemma 4.1(x) we deduce that λ = ϕqK . Then, parts (a) and
(b) are obtained by applying parts (a) and (b) of Theorem 4.4 to the cone K.

Part (c) follows by Theorem 4.4(c) and the next implications, which are true due
to D ⊂ Hλ

+:

∀x ∈ X\{x̄}, f(x̄, x) + d(x̄, x)q 6≤Hλ
+

0

⇐⇒ ∀x ∈ X\{x̄}, f(x̄, x) + d(x̄, x)q 6∈ −Hλ
+

=⇒ ∀x ∈ X\{x̄}, f(x̄, x) + d(x̄, x)q 6∈ −D
⇐⇒ ∀x ∈ X\{x̄}, f(x̄, x) + d(x̄, x)q 6≤D 0.

This finishes the proof.
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Corollary 4.5 improves [16, Theorem 3.5] since a weaker lower-semicontinuity as-
sumption is considered (see Remark 1).

Condition (15) is fulfilled whenever the vector bifunction f satisfies the triangle
inequality property with respect to the partial order ≤D:

f(x1, x2) ≤D f(x1, x3) + f(x3, x2), ∀x1, x2, x3 ∈ X. (16)

This remark motivates the subsequent corollary.

Corollary 4.6. Let (X, d) be a complete metric space and f : X×X → Y be a vector
bifunction that satisfies the triangle inequality property (16). If there exists x̂ ∈ X and

λ̂ ∈ D+\{0} such that (λ̂ ◦ f)(x̂, ·) : X → IR is <-lsc and bounded from below, then

for each q ∈ Y , λ̂(q) = 1 and x0 ∈ X there exists x̄ ∈ X such that

(a) (λ̂ ◦ f)(x̂, x̄) + d(x0, x̄) ≤ (λ̂ ◦ f)(x̂, x0);

(b) d(x0, x̄) ≤ (λ̂ ◦ f)(x̄, x0);
(c) f(x̄, x) + d(x̄, x)q 6≤D 0, ∀x ∈ X\{x̄}.

Proof. Let gλ̂,x̂ : X → IR be the real-valued function gλ̂,x̂(x) := (λ̂ ◦ f)(x̂, x), for all

x ∈ X. Since λ̂ ∈ D+, and f fulfills the triangle inequality property (16), for each
x1, x2 ∈ X it follows that

(λ̂ ◦ f)(x1, x2) + gλ̂,x̂(x1) ≥ gλ̂,x̂(x2).

Then the corollary follows by applying Corollary 4.5.

Remark 8. The lower-semicontinuity and lower boundedness assumptions of Corol-
lary 4.6 are satisfied in several settings.

For instance, recall that a vector function g : X → Y from a topological space X
to a partially ordered real locally convex Hausdorff topological linear space (Y,≤D)
is said to be lower-semicontinuous if for any x ∈ X and any 0-neighborhood V in Y
there exists a neighborhood U of x in X such that g(U) ⊂ g(x) + V +D (see [16,22]).

Then, if there exists x̂ ∈ X such that the vector function f(x̂, ·) : X → Y is
lower-semicontinuous, then the real-valued function (λ ◦ f)(x̂, ·) : X → IR is lower-
semicontinuous (see [16, Proposition 2.7]) and so it is <-lsc.

Analogously, g is called topologically D-bounded if for any 0-neighborhood V in
Y there exists r > 0 such that g(X) ⊂ rV + D (see [22,26]). Then, if there exists
x̂ ∈ X such that the vector function f(x̂, ·) is topologically D-bounded, it follows that
the real-valued function (λ ◦ f)(x̂, ·) is bounded from below, for all λ ∈ D+ (see [26,
Proposition 4.6]).

For each q ∈ Y \{0}, notation ≤qD stands for the next preorder:

y1, y2 ∈ Y, y1 ≤qD y2 ⇐⇒ y2 − y1 ∈ [0,+∞)q +D.

Notice that ≤qD and ≤D coincide whenever q ∈ D since in this case [0,+∞)q+D = D.
Then, ≤qD encompasses the preorder ≤D introduced in (1). Furthermore, by parts (i)
and (ii) of Lemma 4.1, for each y ∈ Y and s ∈ IR we have that

y ≤qD sq ⇐⇒ ϕqD(y) ≤ s. (17)
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In addition, ≤qD can be also viewed as a special case of the preorder ≤D provided that
q /∈ −D, since in this case the set [0,+∞)q +D is a closed convex cone.

Lemma 4.7. The set [0,+∞)q + D is a convex cone. If, in addition, q /∈ −D, then
it is also closed.

Proof. It is obvious that [0,+∞)q+D is a convex cone, as it is the sum of two convex
cones.

Assume that q /∈ −D and consider two nets (ti) ⊂ IR+ and (di) ⊂ D such that
tiq+di → y. We claim that (ti) is bounded. Otherwise, there exists a subnet (tij ) such
that tij → +∞. Define yi := tiq + di, for all i. Then, since D is closed, we have that

q = lim
ij→∞

(q − (1/tij )yij ) ∈ −D,

that is a contradiction. Thus, (ti) is a bounded net.
As a result, we can suppose, taking a subnet if necessary, that ti → t ≥ 0. Therefore,

di = yi − tiq → y − tq and then y − tq ∈ D. Thus,

y = tq + (y − tq) ∈ [0,+∞)q +D

and the proof finishes.

Definition 4.8. Consider g : X → Y and q ∈ Y \{0}.

(i) The function g is said to be q-order bounded from above if there exists M ∈ IR
such that g(x) ≤qD Mq, for all x ∈ X.

(ii) Let X be a topological space and x̄ ∈ X. The function g is said to be q-order
upper semicontinuous at x̄ if for each ε > 0 there exists a neighborhood U of x̄
in X such that

s ∈ IR, g(x̄) ≤qD sq ⇒ g(x) ≤qD (s+ ε)q, ∀x ∈ U. (18)

Remark 9. 1. If q ∈ D\{0}, then g : X → Y is q-order bounded from above if and
only if there exists M ∈ IR such that g(x) ≤D Mq for all x ∈ X.

2. Analogously, if q ∈ D\{0}, g is q-order upper semicontinuous at x̄ if and only if
for each ε > 0 there exists a neighborhood U of x̄ in X such that g(x̄) ≤D sq implies
g(x) ≤D (s+ ε)q, ∀x ∈ U.

Definition 4.9. Let X be a topological space and q ∈ Y \{0}. The vector bifunction
f : X ×X → Y is said to be q-strictly decreasingly lower-semicontinuous at a point x̄
(×6≤

q
D -lsc at x̄ in short form) if for every sequence (xn) ⊂ X converging to x̄, one has

∀n ∈ IN, f(xn+1, xn) 6≤qD 0 =⇒ ∀n ∈ IN, f(xn, x̄) ≤qD 0. (19)

The function f is called ×6≤
q
D -lsc if it is ×6≤

q
D -lsc at x, for all x ∈ X.

If q ∈ D, statement (19) is equivalent to the next one:

∀n ∈ IN, f(xn+1, xn) 6≤D 0 =⇒ ∀n ∈ IN, f(xn, x̄) ≤D 0 (20)

and we write ×6≤D -lsc instead of ×6≤
q
D -lsc.
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Remark 10. In [13, Definition 2.5] and [16, Definition 2.4], a bifunction f : X×X →
Y is called D-sequentially lower monotone at a point x̄ ∈ X (D-slm at x̄ in short
form), if for each sequence (xn) ⊂ X, xn → x̄, it follows that

∀n ∈ IN, f(xn, xn+1) ≤D 0 =⇒ ∀n ∈ IN, f(xn, x̄) ≤D 0. (21)

For real-valued functions, this notion reduces to the decreasing lower-semicontinuity
concept (see Remark 1), whereas the ×6≤

q
D -lsc notion encompasses the strict version of

the previous one that was introduced in Definition 2.2. Indeed, if Y = IR, D = IR+,
g : X → Y and f(x1, x2) = g(x2)− g(x1), then assertions (20) and (21) state that

∀n ∈ IN, g(xn+1) < g(xn) =⇒ ∀n ∈ IN, g(x̄) ≤ g(xn),

∀n ∈ IN, g(xn+1) ≤ g(xn) =⇒ ∀n ∈ IN, g(x̄) ≤ g(xn)

and so the definitions of decreasing lower-semicontinuity and strictly decreasing lower-
semicontinuity of g at x̄ are obtained.

Lemma 4.10. Consider g : X → Y and q ∈ Y \(−D).

(i) g is q-order bounded from above if and only if ϕqD ◦ g is bounded from above.
(ii) Assume that X is a topological space. g is q-order upper semicontinuous at x̄ ∈ X

if and only if ϕqD ◦ g is upper semicontinuous at x̄.

Proof. (i) It is a direct consequence of (17).
(ii) By statement (17) we see that condition (18) is equivalent to the next one:

s ∈ IR, ϕqD(g(x̄)) ≤ s⇒ ϕqD(g(x)) ≤ s+ ε, ∀x ∈ U.

This assertion is true whenever g(x̄) /∈ domϕqD, since there is no any real number
s such that ϕqD(g(x̄)) ≤ s. Otherwise, it is equivalent to the condition ϕqD(g(x)) ≤
ϕqD(g(x̄)) + ε, ∀x ∈ U and the proof finishes.

The next lemma is proved in an analogous way as the previous one.

Lemma 4.11. Let X be a topological space and q ∈ Y \(−D). A vector bifunction
f : X ×X → Y is ×6≤

q
D-lsc if and only if the extended-real-valued bifunction ϕqD ◦ f is

×>-lsc.

Now we are in a position to state the first main result of this section.

Theorem 4.12. Let (X, d) be a complete metric space and f : X × X → Y be a
D-cyclically antimonotone vector bifunction. Suppose that there exists q ∈ Q(f) such
that f(·, x̂) : X → Y is q-order bounded from above for some x̂ ∈ X and one of the
next two conditions holds true:

(H1) f is ×6≤
q
D-lsc.

(H2) For every x ∈ X, f(x, x) ≤qD 0 and f(·, x) is q-order upper semicontinuous at x.

Then, for each x0 ∈ X, f(x̂, x0) ∈ IRq −D, there exists x̄ ∈ X such that

(a) d(x0, x̄) ≤ (ϕqD ◦ f)(x̄, x0);
(b) f(x̄, x) + d(x̄, x)q 6≤qD 0, ∀x ∈ X\{x̄}.
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Proof. Consider a vector q ∈ Q(f) fulfilling the assumptions of the theorem and the
cyclically antimonotone extended-real-valued bifunction h := ϕqD ◦f . By Lemmas 4.10
and 4.11 it is clear that h(·, x̂) is bounded from above and one of the following next
assertions holds true:

(H1) h is ×>-lsc.
(H2) For every x ∈ X, h(x, x) ≤ 0 and h(·, x) is upper semicontinuous at x.

Consider a point x0 ∈ X such that f(x̂, x0) ∈ IRq − D. By applying Theorem 3.9
we deduce that there exists x̄ ∈ X satisfying

(a) d(x0, x̄) ≤ h(x̄, x0);
(b’) h(x̄, x) + d(x̄, x) > 0, ∀x ∈ X\{x̄}.

By parts (i) of Lemma 4.1 and (17), statement (b’) above is equivalent to the assertion
(b) of the theorem and the proof is completed.

The following Ekeland variational principle encompasses [15, Theorem 5.1] and [14,
Theorem 4.3], where the ordering cone is strongly minihedral and condition (ii) of
Theorem 4.3 holds true (since both assumptions ensures the existence of a function
g : X → Y satisfying statement (22), see Theorem 4.3). A version of this result for
D-sequentially lower monotone vector bifunctions satisfying the triangle inequality
property (16) was stated in [13, Corollary 3.7].

Corollary 4.13. Let (X, d) be a complete metric space and f : X × X → Y be a
vector bifunction. Suppose that there exists a vector function g : X → Y satisfying

g(x2)− g(x1) ≤D f(x1, x2), ∀x1, x2 ∈ X. (22)

Assume that f is ×6≤D-lsc and there exist q ∈ D\(−D) and a point x̂ ∈ X such that
f(·, x̂) : X → Y is q-order bounded from above. Then, for each x0 ∈ X, f(x̂, x0) ∈
IRq −D, there exists x̄ ∈ X such that

(a) d(x0, x̄)q ≤ (ϕqD ◦ f)(x̄, x0);
(b) f(x̄, x) + d(x̄, x)q 6≤D 0, ∀x ∈ X\{x̄}.

Proof. By Theorem 4.3 we deduce that f is D-cyclically antimonotone and
D\(−D) ⊂ Q(f). In addition, the orderings ≤qD and ≤D coincide whenever q ∈ D.
Then the result follows by applying Theorem 4.12.

Corollary 4.13 provides a counterpart to [7, Corollary 2.17], [15, Theorem 5.1] and
[14, Theorem 4.3], which involve stronger semicontinuity assumptions. For instance,
Corollary 4.13 reduces to Theorem 3.9 when Y = IR and D = IR+, and this result
improves [7, Corollary 2.17] since weaker upper boundedness and upper semicontinuous
hypotheses are considered (see part 1 of Remark 4).

Next, a Weierstrass theorem for weak solutions of a vector equilibrium problem is
stated as an application of the notions of D-cyclically antimonotone vector bifunction
and q-strictly decreasingly lower semicontinuity. Suppose that coreD 6= ∅ and denote
D̃ := coreD ∪ {0}. It is said that a point x̄ ∈ X is a weak solution of problem (VEP),
denoted x̄ ∈W(f,D), if

x ∈ X\{x̄}, f(x̄, x) ≤D̃ 0⇒ f(x̄, x) = 0.
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Theorem 4.14. Let X be a compact topological space and f : X × X → Y be a
D-cyclically antimonotone vector bifunction. Suppose that there exists q ∈ Q(f) and
x0 ∈ X such that f is ×6≤

q
D-lsc and f(X,x0) ⊂ IRq +D. Then, W(f,D) 6= ∅.

Proof. Consider q ∈ Q(f) and x0 ∈ X satisfying the hypotheses of the theorem and
define h, h′ : X×X → IR∪{+∞}, h(x1, x2) := (ϕqD ◦f)(x1, x2), h′(x1, x2) = h(x2, x1),
for all x1, x2 ∈ X. Clearly, h′ is cyclically antimonotone and by the assumptions we
have that h′(x0, X) = (ϕqD ◦ f)(X,x0) ⊂ IR. Then, by the second part of Theorem 3.2
we deduce that there exists g : X → IR ∪ {+∞} such that{

domh′(·, x0) ⊂ dom g,
h′(x1, x2) + g(x2) ≥ g(x1), ∀x1, x2 ∈ X.

(23)

By Lemma 4.11 we see that h is ×>-lsc. As a result, in the proof of Theorem 3.9
we have deduced that g is <-lsc. Then, by applying the Weierstrass theorem to g we
obtain that arg minXg 6= ∅.

We claim that arg minXg ⊂W(f,D). Indeed, take a point x̄ ∈ arg minXg. By (23)
it follows that

h(x̄, x) = h′(x, x̄) ≥ g(x)− g(x̄) ≥ 0, ∀x ∈ X.

If x̄ /∈ W(f,D), then there exists x ∈ X such that f(x̄, x) ∈ −coreD. Therefore,
h(x̄, x) = ϕqD(f(x̄, x)) < 0, that is a contradiction. Thus, W(f,D) 6= ∅ and the proof
finishes.

Remark 11. Theorem 4.14 improves the Weierstrass theorem for weak solutions of
problem (VEP) in [9, Theorem 4.1]. Indeed, this result assumes the vector bifunction
f to satisfy the following strong cyclical antimonotonicity condition (see part 5 of
Remark 7) for the set E = q +D, q ∈ D\(−D): there exists g : X → Y such that

f(x, y) ≥E g(y)− g(x), ∀x, y ∈ X,

and it never holds true when f is diagonal null.

To complete this section, we illustrate how the result in Theorem 4.12 could be
further extended from a convex ordering cone D ⊂ Y to a domination set E ⊂ Y and
a vector q ∈ Y \{0} which satisfy the following conditions:

(E1) 0 ∈ E and E + E ⊂ E.
(E2) E + [0,+∞)q ⊂ E.
(E3) E is vectorial closed in direction q, i.e., vclq E = E.

Notice that (E1) ensures that the binary relation ≤E is a preorder. In addition, by
Lemma 4.1(v)(vi), assumptions (E1) and (E3) imply that ϕqE is ≤E-monotone and also
subadditive on each nonempty set F ⊂ Y such that ϕqE(y) > −∞, for all y ∈ F . It is
worth underlining that the next results are derived without considering any topological
structure in Y .

Conditions (E1)-(E3) can be fulfilled by nonconvex sets that are not a cone. For
instance, consider Y = IR2, q = (0, 1) and

E = [0,+∞)q ∪ {(y1, y2) ∈ IR2 : y1 ≥ 0, y2 ≥ 1}.
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It is easy to check that E is neither a convex set nor a cone. However, it satisfies
conditions (E1)-(E3).

From now on, for each y1, y2 ∈ Y we say that y1 <
q
E y2 if y2 − y1 ∈ (0,+∞)q + E.

In addition, a set F ⊂ Y is said to be (E, q)-lower bounded if there exists M ∈ IR
such that y 6≤E Mq, for all y ∈ F . By parts (i) and (ii) of Lemma 4.1 it is clear that
F ⊂ Y is (E, q)-lower bounded if and only if ϕqE is bounded from below on F .

Lemma 4.15. Let E ⊂ Y and q ∈ Y \{0} be satisfying conditions (E2) and (E3).
Consider a point y ∈ Y . If a sequence (rn) ⊂ IR converges to r ∈ IR and y+ rnq ≤E 0
for all n ∈ IN , then y + rq ≤E 0.

Proof. Suppose that r ≤ rm for some m ∈ IN . Then, by assumption (E2) we deduce

y + rq = (r − rm)q + y + rmq ∈ (−∞, 0]q − E = −E

and the result follows.
On the contrary, assume that r > rn, for all n ∈ IN . In this case we claim that

−y − rq ∈ vclq E. Indeed, define tn := r − rn for all n ∈ IN . It is clear that tn ≥ 0,
tn → 0 and

−(y + rq) + tnq = −y − rnq ∈ E.

Thus, the assertion is true.
As E is vectorial closed in direction q, we deduce that−y−rq ∈ E and so y+rq ≤E 0.

The proof is completed.

Definition 4.16. Let X be a topological space. A function g : X → Y is said to be
<qE-strictly decreasingly lower-semicontinuous at a point x̄ ∈ X (<qE-lsc at x̄ in short
form) if for every sequence (xn) in X converging to x̄ one has

∀n ∈ IN, g(xn+1) <qE g(xn) =⇒ ∀n ∈ IN, g(x̄) ≤E g(xn).

The function g is called <qE-lsc if it is <qE-lsc at x, for all x ∈ X.

Remark 12. The concept above is a vector version of the notion of strictly decreasing
lower-semicontinuity of a real-valued function introduced in Definition 2.2 (see [13,
Definition 2.4], [16, Definition 2.2] and the references therein for a vector counterpart
of the concept of decreasing lower-semicontinuity of a real-valued function recalled in
Remark 1). For instance, if E = D and q ∈ D\(−D), then g(x1) 6= g(x2) whenever
g(x1) <qD g(x2).

The next theorem is the second main contribution in this section.

Theorem 4.17. (Revised vectorial version of the exact EVP). Let (X, d) be
a complete metric space, f : X ×X → Y be a vector function and the pair (E, q) as
above. Suppose that there exists a vector function g : X → Y satisfying

g(x2)− g(x1) ≤E f(x1, x2), ∀x1, x2 ∈ X. (24)

Consider the set-valued map S : X →→ X with values

S(x) := {u ∈ X : g(u) + d(x, u)q ≤E g(x)}.
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Assume that g is <qE-lsc and the set g(S(x)) − g(x) is (E, q)-lower bounded, for all
x ∈ X. Then, for each x0 ∈ X there exists x̄ ∈ X such that

(a) g(x̄) + d(x0, x̄)q ≤E g(x0);
(b) d(x0, x̄)q ≤E g(x0)− g(x̄) ≤E f(x̄, x0);
(c) f(x̄, x) + d(x̄, x)q 6≤E 0, ∀x ∈ X\{x̄}.

Proof. We have to check the hypotheses of Theorem 2.1 on S and an arbitrary point
x0 ∈ X. It is easy to check that condition (A1) follows of 0 ∈ E and condition (A2)
follows as a result of the triangle inequality property of the metric d, the preorder ≤E
and (E2).

Next, we check (A3). For each Picard sequence (xn) of S whose initial point is x0,
we have

n∑
k=0

d(xk, xk+1)q ≤E
n∑
k=0

(g(xk)− g(xk+1)) = g(x0)− g(xn+1)

and thus

n∑
k=0

d(xk, xk+1)q − (g(x0)− g(xn+1)) ∈ −E.

Taking into account the properties (i) and (ii) of ϕqE in Lemma 4.1, we have

n∑
k=0

d(xk, xk+1) + ϕqE(g(xn+1)− g(x0))

= ϕqE

(
n∑
k=0

d(xk, xk+1)q + g(xn+1)− g(x0)

)
≤ 0

and thus

n∑
k=0

d(xk, xk+1) ≤ −ϕqE(g(xn+1)− g(x0)) < +∞

due to the boundedness assumption imposed in the theorem.
Finally, in order to check condition (A4), let (xn) be a distinct and Cauchy Picard

sequence of S whose initial point is x0. Since X is complete, it converges to some
element x̄. Taking into account the definition of S, we have

g(xn+1) + d(xn, xn+1)q ≤E g(xn) for all n ∈ IN

clearly implying

g(xn+1) <qE g(xn) for all n ∈ IN.

Since g is <qE-lsc, one has

g(x̄) ≤E g(xn) for all n ∈ IN.
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As xn+k ∈ S(xn) for all n, k ∈ IN , we have

g(x̄) + d(xn, xn+k)q ≤E g(xn+k) + d(xn, xn+k)q ≤E g(xn).

Since k was arbitrary, passing to limit as k → +∞ and applying Lemma 4.15 we arrive
at

g(x̄) + d(xn, x̄)q ≤E g(xn)

clearly verifying that x̄ ∈ S(xn). Since n was arbitrary, condition (A4) holds true.

Theorem 2.1 ensures the existence of x̄ ∈ X satisfying

(i) x̄ ∈ S(x0), i.e., g(x̄) + d(x0, x̄)q ≤E g(x0);
(ii) S(x̄) = {x̄}, i.e., g(x) + d(x̄, x)q 6≤E g(x̄) for all x ∈ X\{x̄}.

Obviously, (i) is equivalent to (a). Taking into account (24) and the preorder ≤E , we
have

d(x0, x̄)q ≤E g(x0)− g(x̄) ≤E f(x̄, x0)

clearly verifying (b).
To complete the proof, we prove (c) by contradiction. Assume that (c) does not

hold. Then, we could find x 6= x̄ such that

f(x̄, x) + d(x̄, x)q ≤E 0.

By (24), we have

g(x)− g(x̄) + d(x̄, x)q ≤E f(x̄, x) + d(x̄, x)q ≤E 0

which contradicts (ii).

In the particular case E = D, if condition (24) holds true, then g is <qD-lsc provided
that f is ×6≤D -lsc. Concerning the boundedness assumption of Theorem 4.17, notice
that set S(x) is bounded whenever the set g(S(x)) − g(x) is (E, q)-lower bounded,
since

ϕqE(g(u)− g(x)) ≤ ϕqE(−d(u, x)q) ≤ −d(u, x), ∀u ∈ S(x).

Actually, we have the next sufficient conditions.

Lemma 4.18. Suppose that f : X × X → Y and g : X → Y satisfy condition (24)
for E = D. If f is ×6≤D-lsc at x̄ ∈ X, then g is <qD-lsc at x̄ too, for all q ∈ Y \(−D).

Proof. Let (xn) ⊂ X be a sequence converging to x̄ and satisfying g(xn+1) <qD g(xn),
for all n ∈ IN . Then, g(xn)− g(xn+1) ∈ (0,+∞)q +D, for all n ∈ IN .

If there exists m ∈ IN such that f(xm+1, xm) ≤D 0, by (24) we deduce that
g(xm) ≤D g(xm+1). Therefore, ((0,+∞)q + D) ∩ (−D) 6= ∅ and so q ∈ −D, that
is a contradiction.

Then, f(xn+1, xn) 6≤D 0, for all n ∈ IN and so f(xn, x̄) ≤D 0, since f is ×6≤D -lsc
at x̄. Thus, by (24) we see that g(x̄) − g(xn) ≤D 0 for all n ∈ IN and the proof is
complete.
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Lemma 4.19. Consider a function g : X → Y , the pair (E, q) as above and a
nonempty set A ⊂ X.

(i) If the set g(A) is (E, q)-lower bounded, then g(A) − g(x) is also (E, q)-lower
bounded, for all x ∈ g−1(IRq − E).

(ii) Consider λ ∈ E+ such that λ(q) > 0. If λ is bounded from below in g(A), then
g(A) is (E, q)-lower bounded.

Proof. (i) Assume that g(A) is (E, q)-lower bounded, i.e., there exists M ∈ IR such
that g(a) 6≤E Mq, for all a ∈ A. Consider a point x ∈ g−1(IRq − E). There exists
t ∈ IR such that g(x) ≤E tq. We claim that g(a) − g(x) 6≤E (M − t)q, for all a ∈ A.
Indeed, let us suppose, reasoning by contradiction, that there exists u ∈ A such that
g(u)− g(x) ≤E (M − t)q. Then,

g(u) = (g(u)− g(x)) + g(x) ≤E (M − t)q + tq = Mq,

that is a contradiction. Therefore, the set g(A)− g(x) is (E, q)-lower bounded and the
proof finishes.

(ii) Suppose that λ is bounded from below in g(A). Then, there exists m ∈ IR such
that λ(g(a)) > m, for all a ∈ A. Define M := m/λ(q). We claim that g(a) 6≤E Mq, for
all a ∈ A. Indeed, if there is a point u ∈ A such that g(u) ≤E Mq, then λ(g(u)) ≤ m,
that is a contradiction.

As g(a) 6≤E Mq, for all a ∈ A, we deduce that set g(A) is (E, q)-lower bounded and
the proof finishes.

Remark 13. The (E, q)-lower boundedness condition is more effective on the set
g(S(x))− g(x), for all x ∈ X, than on the whole image set g(X). Let us illustrate this
claim with an example. Let X = IR, Y = IR2, g : X → Y is defined by g(x) = (x/2, 0)
for all x ∈ IR, q = (1, 0) and E = [0,+∞)q. Obviously, g(X) = IR × {0}, domϕqE =
IR× {0} and ϕqE(y, 0) = y for all y ∈ IR. It is clear that

inf
x∈X

ϕqE(g(x)) = −∞

and then g(X) is not (E, q)-lower bounded. However, for each x ∈ X, we have S(x) =
{x} and then

inf
u∈S(x)

ϕqE(g(u)− g(x)) = ϕqE((0, 0)) = 0.

Thus, the set g(S(x))− g(x) is (E, q)-lower bounded, for all x ∈ X.

Remark 14. 1. Assume that q /∈ −cl coneE. Then, condition (24) implies that the
function ϕqE ◦ f : X × X → IR ∪ {+∞} is cyclically antimonotone. Indeed, consider
a finite nonempty set {x1, x2, . . . , xn, xn+1} ⊂ X such that xn+1 = x1. By condition
(24) we have that

n∑
j=1

f(xj , xj+1) ≥E
n∑
j=1

(g(xj+1)− g(xj)) = 0.

Since ϕqE is subadditive, ≤E-monotone and ϕqE(0) = 0 (see parts (v), (vi) and (viii) of
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Lemma 4.1), it follows that

n∑
j=1

(ϕqE ◦ f)(xj , xj+1) ≥ ϕqE

 n∑
j=1

f(xj , xj+1)


≥ ϕqE(0)

= 0.

Therefore, ϕqE ◦ f is cyclically antimonotone.
2. Suppose that E = D. In order to compare the boundedness assumptions of

Theorems 4.12 and 4.17, notice that f(·, x̂) is q-order bounded from above whenever
we could find M1 ∈ IR such that f(x, x̂)−M1q ∈ (−∞, 0]q −D for all x ∈ X, i.e.,

−f(X, x̂) +M1q ⊂ [0,+∞)q +D. (25)

By condition (24) with x1 = x and x2 = x̂, we have

−f(x, x̂) ≤D g(x)− g(x̂)

and then, applying the scalarization function ϕqD we deduce

ϕqD(−f(x, x̂)) ≤ ϕqD(g(x)− g(x̂)).

Thus, for ensuring the boundedness from below of ϕqD(g(x)− g(x̂)) when x belongs to
S(x̂), we could assume for some M2 ∈ IR that

ϕqD(−f(x, x̂)) > M2, ∀x ∈ X.

It is equivalent to

(−f(X, x̂)−M2q) ∩ ((−∞, 0]q −D) = ∅.

This assumption is weaker than the q-order boundedness from above considered in
(25).

3. Theorem 4.17 extends the main results of [14, Section 3] when a complete met-
ric space (X, d) and the distance d are considered instead of a left complete quasi-
metric space and a W -distance, respectively. Even in this particular case, Theorem
4.17 improves [14, Theorems 3.1 and 3.2] as more general lower boundedness and
lower-semicontinuity assumptions are required.

Indeed, let Y be a real linear space. Suppose that the ordering cone D is proper,
convex and algebraically solid, and consider an arbitrary q ∈ coreD. Then, the set
E := vcl qD is a convex cone that fulfills properties (E1)-(E3). Consider a vector
bifunction f : X × X → Y satisfying the triangle inequality property (16) and such
that for each x ∈ X and y ∈ Y , the real-valued function (ϕqD ◦ f)(x, ·) : X → IR is
bounded from below and the next sublevel set is closed:

S(f(x, ·), y) := {u ∈ X : f(x, u) ≤E y}.

Fix an arbitrary point x0. By [14, Lemma 2.2] we see thatX0 := S(f(x0, ·)+d(x0, ·)q, 0)
is closed. Suppose that X0 6= ∅ (otherwise, x̄ = x0 fulfills the assertions of [14, Theorem
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3.1]). Let us apply Theorem 4.17 to the complete metric space (X0, d). Consider an
arbitrary point a ∈ X0 and the function ga : X0 → Y , ga(x) = f(a, x), for all x ∈ X0.
For each x1, x2 ∈ X0, by the triangle inequality property (16) we have that

ga(x2) = f(a, x2) ≤E f(a, x1) + f(x1, x2) = ga(x1) + f(x1, x2)

and condition (24) holds true. As ϕqE ◦ ga = (ϕqD ◦ f)(a, ·) (see [21, Lemma 3]), by
Lemma 4.19 we deduce that the set ga(S(x)) − ga(x) is (E, q)-lower bounded, for
all x ∈ X0. In addition, it is easy to check from the closedness of the sublevel sets
S(f(x, ·), y) that ga is <qE-lsc.

Then, by Theorem 4.17 we deduce that there exists x̄ ∈ X0 such that

f(x̄, x) + d(x̄, x)q 6≤E 0, ∀x ∈ X0\{x̄}. (26)

As x̄ ∈ X0, statement (a) of [14, Theorem 3.1] is obtained. Assume, reasoning by
contradiction, that there is a point x′ ∈ X\X0 such that

f(x̄, x′) + d(x̄, x′)q ≤E 0.

Then, by the triangle inequality property (16) and statement (a) of [14, Theorem 3.1]
it follows that

f(x0, x
′) + d(x0, x

′)q ≤D f(x0, x̄) + f(x̄, x′) + d(x0, x̄)q + d(x̄, x′)q

≤E f(x̄, x′) + d(x̄, x′)q

≤E 0

and so x′ ∈ X0, that is a contradiction. Therefore, statement (26) is true for all
x ∈ X\{x̄} and [14, Theorem 3.1] is stated as a result of Theorem 4.17.

Reasoning in the same way can be checked that [10, Theorem 3.1] and [14, Theorem
3.2] are a consequence of Theorem 4.17 when a complete metric space (X, d) and the
distance d are considered instead of a left complete quasi-metric space and a W -
distance, respectively.

It is worth noticing that Theorem 4.17 could be applied to problems whose ordering
cone is not algebraically solid. However, [14, Theorems 3.1 and 3.2] cannot be applied
in that setting. In addition, these results can be also compared with Theorem 4.12 by
considering Y endowed with the so-called core convex topology τc. Recall that (Y, τc)
is a real locally convex Hausdorff topological linear space satisfying int τCD = coreD
(see [27, Proposition 6.3.1] and [28]) and cl τcD = vcl qD (see [28, Lemma 3.1] and [24,
Proposition 2.3]).

Recall that given a function g : X → Y , x0 ∈ X and y ∈ Y , we are denoting:

S(x0) := {x ∈ X : g(x) + d(x0, x)q ≤E g(x0)},
S(g, y) := {x ∈ X : g(x) ≤E y}.

By conditions (E1) and (E2) it follows that S(x0) ⊂ S(g, g(x0)).
Next, a version of [9, Theorem 3.6] for <qE-lsc functions is obtained, where E is the

vector closure of a convex cone C ⊂ Y in direction q ∈ C\{0}. It is a result of Theorem
4.17 and Lemma 4.19. Therefore, Theorem 4.17 encompasses [9, Theorem 3.6].
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Corollary 4.20. Consider a complete metric space (X, d), x0 ∈ X, f : X ×X → Y ,
a convex cone C ⊂ Y , q ∈ C\{0}, E = vcl qC and λ ∈ C+ such that λ(q) > 0. Suppose
that there exists a vector function g : X → Y satisfying

g(x2)− g(x1) ≤E f(x1, x2), ∀x1, x2 ∈ X. (27)

Assume that S(x0) is closed, g is <qE-lsc at x, for all x ∈ S(x0) and

inf{λ(g(x)) : x ∈ S(g, g(x0))} > −∞. (28)

Then, there exists x̄ ∈ X such that

(a) g(x̄) + d(x0, x̄)q ≤E g(x0);
(b) d(x0, x̄)q ≤E g(x0)− g(x̄) ≤E f(x̄, x0);
(c) f(x̄, x) + d(x̄, x)q 6≤E 0, ∀x ∈ X\{x̄}.

Proof. It is easy to check that E satisfies conditions (E1)-(E3). Let us apply Theorem
4.17 to the metric space (X0, d) instead of (X, d), where X0 = S(x0).

As S(x0) is closed, the metric space (X0, d) is complete. By the assumptions we
have that g : X0 → Y is <qE-lsc. Moreover, by applying part (ii) of Lemma 4.19 to
A = S(g, g(x0)) and g−g(x0), we see that the boundedness condition of Theorem 4.17
is fulfilled.

Then, Theorem 4.17 can be applied and we deduce that there exists x̄ ∈ X0 satisfy-
ing statements (a), (b) and (c) for all x ∈ X0\{x̄}. Suppose, reasoning by contradiction,
that there exists x′ ∈ X\X0 such that

f(x̄, x′) + d(x̄, x′)q ≤E 0.

By (27) and part (a) we have that

g(x′) + d(x0, x
′)q ≤E g(x′) + d(x0, x̄)q + d(x̄, x′)q

≤E g(x̄) + f(x̄, x′) + d(x̄, x′)q + d(x0, x̄)q ≤E 0

≤E g(x̄) + d(x0, x̄)q

≤E g(x0),

that is a contradiction, since x′ /∈ X0. Then, statement (c) is true, for all x ∈ X\{x̄}
and the proof finishes.

Remark 15. 1. Notice that the closedness assumptions of Corollary 4.20 and [9,
Theorem 3.6] are different from the one in Theorem 4.17. For instance, consider X =
Y = IR, the usual distance d(x1, x2) = |x1 − x2|, for all x1, x2 ∈ IR, C = IR+, q = 1
and g : IR→ IR,

g(t) =

 −t if t ≤ −1,
0 if t ∈ (−1, 0),

1 + t if t ≥ 0.

It is clear that E = vcl qC = IR+ and so ≤E and <qE coincide with the usual orderings
≤ and < in IR, respectively. It is easy to obtain that S(0) = (−1, 0] and so S(0) is not
closed. However, g is <qE-lsc.
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2. Corollary 4.20 encompasses [11, Theorem 1]. Indeed, consider C = D, q ∈ D\{0}
and λ ∈ D+ such that λ(q) = 1. Assume that f satisfies the triangle inequality
property (16) with respect to the partial order ≤D. Moreover, consider a point x0 ∈ X
and the function gx0

: X → Y given by gx0
(x) = f(x0, x). Suppose that λ is bounded

from below in the image set gx0
(X) and the sublevel set S(gx0

, y) is closed, for all
y ∈ Y . Then, it is clear that gx0

fulfills conditions (27) and (28). In addition, S(x0) is
closed and gx0

is <qD-lsc (the first assertion follows by [11, Lemma 2] and the second
one is trivial). As a result, Corollary 4.20 can be applied and the assertions of [11,
Theorem 1] are obtained.

In a similar way, it is easy to check that Corollary 4.20 generalizes [15, Theorem
3.4].

3. Corollary 4.20 encompasses [16, Theorem 3.7], where a stronger lower-
semicontinuity assumption is considered (see Remarks 12 and 1).
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[20] Kirk WA, Saliga LM. The Brézis–Browder order principle and extensions of Caristi’s
theorem. Nonlinear Anal. 2001;47(4):2765–2778.
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