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Abstract
New hierarchical crossbar switch architectures, such as Omni-Path (OPA) and Cray 
X2, have appeared to improve packet latency, reduce overall cost and increase fault 
tolerance of the high-performance interconnection networks in supercomputing 
and data center systems. These and other interconnect technologies (Infiniband or 
40/100 Gigabit Ethernet) include support to provide quality of service (QoS) to the 
applications. In this paper, we show how this QoS support can be enabled to achieve 
bandwidth and/or latency differentiation in Omni-Path interconnection networks, as 
a representative case of hierarchical switches. To do that, three different table-based 
schedulers are used. We include the description of these schedulers and a compara-
tive study by using the results obtained when we evaluate them with Hiperion, a 
simulation tool that implements an OPA model.

Keywords  Quality of Service (QoS) · Scheduling algorithms · Interconnection 
networks · Omni-Path (OPA) · Simulation · Hierarchical-crossbar-switch 
architecture

1  Introduction

In the last decades, there has been a constant advancement in high-speed intercon-
nection network technologies. This development has been fueled by the growth of 
the supercomputing and data center services, where the interconnection network 
is usually the limiting factor (bottleneck), i.e., the central element upon which the 
performance of the whole system relies. Therefore, it is critical to keep improving 
the overall interconnection network performance. This is achieved by the introduc-
tion of continuous improvements in the physical elements of the network (links, 
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switches, NICs, etc.) and the techniques they implement (routing algorithms, con-
gestion avoidance mechanisms, etc.).

Moreover, the total bandwidth per switch has increased due to a combination 
of higher pin density and faster signaling rates. As the total bandwidth increases, 
switch designers face two possibilities to exploit this bandwidth: to build switches 
with a high number of thin ports (high-radix switches) or to build switches with 
a low number of fat ports (low-radix switches). The current trend is to use high-
radix switches [1–3] as they present advantages such as: the final packet latency 
is reduced, the interconnection network overall cost is reduced, the wiring is also 
reduced, the power dissipated by the network decreases, the network fault tolerance 
is increased and a distributed packet arbitration process may be applied. However, 
high-radix switches also face some problems: the cost and efficiency balance is not 
easy to be maintained, increased buffer requirements drive cost up, the virtual chan-
nel allocation process becomes more complex, among others. To address some of 
these issues, fully-buffered crossbar and hierarchical crossbar switch architectures 
have been introduced. Fully-buffered crossbar switches require a huge silicon area 
when the radix increases, making them unfeasible due to the associated costs. Hier-
archical crossbar switch architectures overcome that drawback while achieving a 
very high port count. Some high performance devices such as YARC [1], Omni-
Path [4] and Slingshot’s Rosetta switches [5] use a hierarchical crossbar architecture 
to achieve high-radix interconnection devices.

Omni-Path (OPA) emerged with the aim of occupying a space in the select group 
of high-performance interconnection network technologies, such as InfiniBand (IB) 
[6] or 40/100 Gigabit Ethernet (GE) [7]. These interconnection network technolo-
gies have been competing to achieve better performance and market share than oth-
ers. In terms of market share, since its introduction in the most powerful computers 
list TOP500 [8], OPA has ranged from 1.6 to 10%. Considering the 100 most power-
ful computers on the list, OPA have reached up to 13%.

Current interconnection networks carry not only traffic of applications such as 
backup or file transfer protocols, which does not require service differences, but also 
traffic from others like real-time protocols [9], MPI communications or traffic from 
users with different privilege levels in the system [10]. Therefore, QoS has become 
the focus of much discussion and research during the last decades [11, 12]. A sign 
of this interest is the inclusion of support aimed to provide QoS on interconnection 
networks such as GE, IB and also OPA.

One of the most important QoS mechanisms is the scheduling algorithm [13, 14]. 
High performance interconnection networks usually use packet-switching as switch-
ing technique. This kind of networks can carry packets from different applications, 
users and flows, interacting with each other in every interconnection network ele-
ment. Without any scheduling policy, packets from different traffic flows1 use as 
many resources as they need and, in the worst scenario, a single flow may consume 
all the system resources causing starvation on others. In such way, users may experi-
ence a poor system performance even if the system is not overloaded. Therefore, the 
scheduling algorithm is a crucial element to provide QoS.
1  In this paper, we will use the term traffic flow, packet flow or just flow for referring to a sequence of 
packets with similar characteristics (delay and/or bandwidth requirements).
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Scheduling algorithms orchestrate when packets from different flows will be 
delivered to satisfy the specified end-to-end delay and/or bandwidth requirements. 
However, in the context of high performance interconnection networks, the sched-
uling algorithms have to be as simple as possible in terms of computational and 
implementation complexity [15]. The scheduling algorithm latency must be smaller 
than the average packet transmission time for the obvious reason that the system 
will expend more time choosing packets to deliver than delivering packets, there-
fore degrading system performance. Also, low complexity is required because the 
scheduling algorithm is typically implemented in hardware, and thus a very complex 
scheduler will be more complex. Therefore, the scheduling algorithm design process 
involves some trade-offs.

A well-known scheduling algorithm family is “sorted-priority” schedulers, which 
use a global variable, called virtual time, that keeps track of the server’s progress 
and it is updated when a packet is received or transmitted. Each packet has a time-
stamp tag, computed as a function of the virtual time. These schedulers offer very 
good fairness and low latency [16], but they are computationally complex due to the 
tag calculation and the sorting process.

Table-based schedulers are another well-known family of scheduling algorithms. 
This approach has been used in high performance interconnection network technolo-
gies such as OPA [17] and IB [6]. Table-based schedulers offer good latency and 
bandwidth performance with a low computational complexity.

Simulation is one of the most common approach to explore new techniques in 
high-performance interconnection networks. As stated before, the interest of hierar-
chical switch architectures is growing. However, as far as we know, no hierarchical 
switch simulation model is available. Therefore, we have decided to develop a hier-
archical switch simulation model based on OPA. Moreover, the QoS support of this 
kind of networks is also important as explained before and it has not been addressed 
in any study yet. For these reasons, we have decided to perform a comparative study 
between some known output scheduling algorithms adapted to a popular hierarchi-
cal switch architecture such as OPA. This study led us to find out if known output 
scheduling algorithms are suitable and to know the adaptation process for hierarchi-
cal switch architectures.

In this paper, we will focus on OPA because it is a good example of hierarchical 
crossbar switch architectures and that has not been, as far as we know, largely stud-
ied in terms of QoS provision. We present a novel OPA simulation model, which is 
the first hierarchical switch simulation model available. Three scheduling algorithms 
adapted to the OPA technology are presented here. These algorithms have been 
implemented in our Hiperion simulator [18], allowing us to compare the perfor-
mance and to find which scheduling algorithm is more adequate for full-scale OPA-
based systems. The first and simplest scheduling algorithm is a round-robin sched-
uler, which is the baseline schema used for comparison purposes. The second is a 
table-based scheduling algorithm, which we have called Simple Bandwidth Table 
(SBT). This scheduler offers bandwidth differences but is not able to provide latency 
differences. Finally, for the third algorithm, we have adapted the Deficit Table 
Scheduler (DTable) [19] to the OPA technology. This scheduler is more complex 
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than the two previous ones although is able to provide bandwidth and latency differ-
ences with a reasonable computational and implementation complexity [20].

The structure of the paper is as follows: Sect. 2 reviews the OPA architecture and 
our OPA-based simulation model. Section  3 explains the main output scheduling 
algorithms proposed. Section 4 shows the results obtained evaluating bandwidth and 
latency differentiation, and, finally, Sect. 5 presents some conclusions.

2 � The OPA architecture

As stated in Sect. 1, OPA rapidly grew in popularity after it was firstly introduced. 
The OPA architecture has some elements such as a hierarchical internal crossbar and 
multiple QoS tables that makes it different from the most popular high performance 
interconnection network architectures like IB and GE. This allows enabling QoS 
techniques that are simply not feasible in the rest of high performance interconnec-
tion network architectures. And in order to design, explore, and evaluate the perfor-
mance of these possibilities, testing tools are required such as simulation programs, 
mathematical models, etc. OPA was initially developed by Intel until 2019, when all 
the OPA technology IP was transferred to Cornelis Networks, a new company that is 
continuing the support and development of OPA products [21, 22].

As described in Sect. 1, we have chosen OPA just as an example, but the findings 
and conclusions could be adopted to other similar architectures such as YARC [1], 
or Slingshot’s Rosetta [5] switches.

We have collected all relevant information about the OPA architecture and QoS 
support, and we have developed the simulation tool Hiperion (HIgh PERformance 
InterconnectiOn Network), which includes an OPA simulation model [18]. Hipe-
rion is an open-source simulation tool available for researchers and companies and 
includes multiple useful mechanisms to perform many comparative studies. The 
simulation model includes all the main features for simulating the movement of 
packets between source and destination using several configurable QoS strategies. 
These QoS strategies will be analyzed and compared.

2.1 � OPA support for QoS

The OPA architecture offers support to provide QoS to applications, flows, packets, 
etc. According to [17], support is given through the following elements:

•	 Virtual Lanes (VLs) provide dedicated receive buffer space for incoming pack-
ets at switch ports. VLs are also used for avoiding routing deadlocks. The Intel 
Omni-Path architecture supports up to 32 VLs.

•	 Service Channels (SCs) differentiate packets from different Service Levels. The 
SC is the only QoS identifier stored in the packet header. Each SC is mapped to 
a single VL, but a VL can be shared by multiple SCs. SCs are used for avoiding 
topology deadlocks and avoiding head of line blocking between different traffic 
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classes. The Intel Omni-Path architecture supports up to 32 Service Channels, 
however SC15 is dedicated to in-band fabric management.

•	 Service Levels (SLs) are a group of SCs. An SL may span multiple SCs, but an 
SC is only assigned to one SL. SLs are used for separating high priority pack-
ets from lower priority packets belonging to the same application or Transport 
Layer, avoiding protocol deadlocks, etc. The Intel Omni-Path architecture sup-
ports up to 32 SLs.

•	 Traffic Classes (TCs) represent a group of SLs aimed to distinguish applications’ 
traffic. A TC may span multiples SLs, but each SL is only assigned to one TC. 
The Intel Omni-Path architecture supports up to 32 TCs.

•	 A vFabric is a set of ports and one or more application protocols. For each vFab-
ric, a set of QoS policies are applied. A given vFabric is associated with a TC for 
QoS and associated with a partition for security.

SLs are mapped to SCs via the SL2SC tables and SCs are mapped to SLs via SC2SL 
tables, depending on whatever the packets are sent or received, respectively. Each 
SC carries traffic of a single SL in a single TC, and the Fabric Manager (FM) fulfills 
SC2VL and VL2SC tables, determining how SCs are mapped onto VLs at each port 
and vice-versa. The FM is also responsible of: discovering the fabric topology, pro-
visioning the fabric components with identifiers, formulating and provisioning rout-
ing tables, monitoring utilization, performance and error rates and fulfilling arbitra-
tion tables.

OPA includes also QoS mechanisms such as VLArbitration Algorithm and 
preemption Tables. However, there is not much information about how these mecha-
nisms work.

Figure 1 shows an example of the use of TCs, SLs, and SCs across the paths fol-
lowed by three traffic flows (red, green and blue) in an OPA network. The different 
links crossed by these packets are ordered from 1 to 7. In this example, we assume 

Fig. 1   An example of usage of TCs, SLs and SCs [17]
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the use of two TCs (TC0 and TC1), three SLs (SL0, SL1 and SL2) and six SCs 
(SC0, SC1, SC2, SC3, SC4 and SC5). Moreover, each SL is assigned with two SCs, 
which, in turn, are mapped to two VLs. TC0 (i.e., traffic flows red and green) is used 
for example for a request/response high level communication library such as Parti-
tioned Global Address Space protocol (PGAS)2. Let’s suppose TC0 is assigned with 
SL0 (red traffic flow) and SL1 (green traffic flow), SL0 is mapped to SC0 and SC1, 
and SL1 is mapped to SC2 and SC3. On the other hand, TC1 is used, for instance, 
for storage communications. It is assigned with SL2, and SL2 is mapped to SC4 and 
SC5. The main goal of assigning a pair of SCs for each SL is topology deadlock 
avoidance, as it happens normally in torus topologies, while the SLs of TC0 are used 
for avoiding protocol deadlocks. As we can see in the figure, packets can change of 
SC link by link; however, the SL and TC are always consistent end-to-end [17].

2.2 � OPA simulation model

We have carried out the study presented in this work using simulation for being one 
of the most popular technique to evaluate, verify and validate the behavior and per-
formance of high performance interconnection networks. There are multiple simula-
tion tools such as Garnet [23], xSim [24], etc. focused on on-chip networks. These 
simulators allow full-systems simulations, feasible for on-chip networks, due to the 
small network sizes. However, when the network grows to hundreds of elements, 
the computational resources needed make full-systems simulation unapproach-
able. Moreover, the characteristics of the off-chip and on-chip traffic are disparate. 
There are also multiple off-chip simulation tools such as CODES [25], SST [26], 
etc. However, these simulation tools do not have support for any hierarchical cross-
bar switch architecture with QoS. Therefore, we have proposed an OPA-based simu-
lation model and a simulation tool called Hiperion based on the available public 
information [4, 17]. It is based on previous tools that have been used for years in our 
research group, and with multiple publications behind them [27, 28]. Our simulator 
Hiperion gives us a deep knowledge of its operation and a wide flexibility regarding 
the techniques that can be implemented and its interoperability.

Hiperion is a discrete-event based network simulator, which includes an OPA 
simulation model that mimics the behavior of main OPA elements, such as switches, 
links and network interfaces. The simulator main goal is to perform comparative 
studies tuning a large range of parameters such as queue sizes, topology, routing, 
packet sizes, scheduling algorithms, etc. The simulator is capable of running simu-
lations using a wide variety of synthetic traffic types such as random, uniform, bit-
reversal, bit-complement, etc., and MPI applications using the VEF trace framework 
[29]. Performance and scalability of the interconnection network are evaluated using 
several metrics: throughput, end-to-end latency, network latency, etc.

Figure 2 shows a detailed scheme of a 48-port OPA-based switch, which has been 
implemented into Hiperion. The OPA switch model assumes that each port delivers 
one flit per cycle. Hence, the bandwidth is defined based on the clock rate and the 

2  Partitioned Global Address Space languages combine the programming convenience of shared mem-
ory with the locality and performance control of message passing.
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flit size. However, the OPA hierarchical architecture has a large range of internal 
links with different bandwidths [17]. The OPA model defines the input/output port 
bandwidth (12.5 GB/s) as a reference, thereby an x3 internal link has a speed-up of 
3 and so it may deliver 3 flits/cycle. The number of input and output links is rep-
resented as INPORTS:OUTPORTS in the crossbar elements, i.e. MPort xBars and 
Central Crossbar. For instance, in Fig. 2, the MPort0 xBar has 4 input links and 6 
output links (4:6), and the Central Crossbar has 24 input links and 48 output links 
(24:48). The OPA model shown in this figure includes the following elements:

•	 Input buffers: They store the flits from the input ports. There is one input buffer 
per input port.

•	 Routing unit: There is one routing unit per input buffer.
•	 MPort Xbar: This crossbar has 4 input links, one per input buffer; and 6 out-

put links: 4 links for the output buffers and 2 links for the Central Cross-
bar. Note that the 75 GB/s link to the Central Crossbar is represented in 

Fig. 2   Diagram of the modeled OPA switch of 48 ports. For clarity, MPorts are unfolded in Input and 
Output buffers
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this model as two x3 links, i.e, they may deliver 3 flits/cycle, resulting on 
2 Links × 3 × 12.5 GB∕s = 75 GB∕s.

•	 Output buffers: They store the flits of the output ports. There is one output buffer 
per output port.

•	 Input arbiter: Given an input buffer, it selects the virtual line (VL) that partici-
pates in the second allocator phase. The more VLs, the bigger the arbiter is.

•	 Output arbiter: Given an output buffer, it chooses which input port will transmit 
flits. A flit can arrive at this output buffer coming from an input buffer or from 
the Central Crossbar.

•	 Output scheduler: Given an output port, it chooses which VL will transmit flits to 
the neighbor switch. It provides QoS to the OPA switch.

As stated before, Hiperion is a discrete-event based simulation tool for modeling 
high-performance interconnection networks. Hiperion defines and implements the 
following discrete events:

•	 IB (Input Buffering): A flit arrives at an input port and is stored in the corre-
sponding queue, depending on the VL. Each input buffer can receive 1 flit/cycle. 
If that flit is a packet header flit, it is set as RT-ready, and the routing event is 
called to determine the flit output port. In other case, the flit is set as X-ready, 
it is stored on the input buffer and it waits to be moved to the appropriate buffer 
in a Xbar event. When the output port is connected to the same Mport than the 
input port, the flit is moved to an output buffer. In other case, the flit is moved 
to a Central Crossbar buffer. For example, let’s suppose an OPA switch with 48 
ports and 4 ports per MPort (Fig. 2). If a flit needs to travel from the input port 0 
to the output port 5, the input port belongs to the MPort 0, which contains input 
ports from 0 to 3, while the output port belongs to the MPort 1, which contains 
output ports from 4 to 7. Therefore, the flit must cross the Central Crossbar to 
arrive at MPort 1.

•	 RT (RouTing): Routes a packet and determines its output port when the packet 
header flit is tagged as RT-ready. After that, the header flit is tagged as VA-SA-
ready and the input buffer storing this flit can be chosen in the first phase of 
the allocation event. The RT event is only applied to header flits. Non-header 
flits always follow the header flit, since OPA architecture implements virtual-
cut though as switching technique [17]. The routing function is configurable and 
must be according to the simulated topology.

•	 VA-SA (Virtual Allocator and Switch Allocator): Performs the allocation using a 
two-stage allocator:

–	 Virtual Allocator: Each input arbiter chooses a VL, only if its input buffer 
contains at least one VA-SA-ready header flit. The winning VL will be allowed 
to deliver a packet. Since the Central Crossbar links have VLs as well, the vir-
tual allocator is also performed on the input buffers of the Central Crossbar.

–	 Switch Allocator: Each output arbiter chooses an input buffer with a winning 
VL. The winning input buffers will be allowed to move a packet to an output 
buffer or to a Central Crossbar buffer, depending on the destination MPort. 
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Buffers allowed to transmit tag the top header flit as X-ready. A central buffer 
has to arbitrate between the 4 input buffers which are connected to its MPort. 
An output buffer has to arbitrate between the 24 Central Crossbar buffers and 
its 4 MPort buffers.

	    Currently, both virtual and switch allocators implement round-robin arbiters. 
However, we are developing more sophisticated arbiters able to provide applica-
tions with QoS.

•	 X (Xbar): Once the allocation is performed, the winning input and Central 
Crossbar buffers transmit the first packet of their winning VLs to the appropri-
ate output buffer or Central Crossbar buffer. If a packet is moved from an input 
buffer to a Central Crossbar buffer, the header flit is tagged again as VA-SA-ready 
in order to perform a VA-SA event from Central Crossbar buffers to output buff-
ers. If the packet reaches an output buffer, their flits are tagged as OB-ready. The 
bandwidth depends on the input/output pair. MPorts xbar can deliver 3 flits/cycle 
regardless of the destination buffer, while the Central Crossbar xbar can deliver 4 
flits/cycle.

•	 OB (Output Buffering): Each output scheduler chooses which VL will send flits 
to the neighbor switch. The scheduler selects a VL with OB-ready packets and 
enough credits to transmit at least one packet. When the last flit of the packet is 
transmitted, (i.e., the tail flit), the output scheduler releases the winning VL and 
selects a new VL. Each output port can send 1 flit/cycle. At this point, QoS and 
packet preemption can be applied. Currently, three scheduling algorithms have 
been implemented (Sect. 3), but packet preemption is not implemented yet.

VL buffer storage space is dynamically managed, i.e. the buffer space is shared by 
all the VLs. The buffer storage space is divided according to the traffic requirements, 
ensuring a minimum and a maximum amount of flits per VL. This prevents a single 
VL from taking up all the flits in the buffer, causing starvation in the remaining VLs. 
This dynamical buffer storage management strategy provides more flexibility than 
static buffers [30].

The main QoS OPA support such as SCs, SLs, VLs, SL2SC and SC2VL tables, 
etc., have also been implemented in Hiperion. There are some additional mecha-
nisms that have been implemented not directly related with QoS. However, they 
elements are crucial in some cases. Some of them are: variable Maximum Transfer 
Units (MTUs) per SL, message generation based on variable MTU sizes, variable 
injection rate definition per SL, among others. The goal of these QoS mechanisms 
and the simulation model implemented is to develop, test and compare different QoS 
scheduling algorithms.

3 � Scheduling algorithms

The main goal of scheduling algorithms is to determine when packets from dif-
ferent SLs are delivered in order to satisfy the specified end-to-end latency and 
bandwidth requirements. Not all scheduling algorithms are capable of satisfy both 
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requirements, some are only able to fulfill bandwidth requirements. Moreover, in 
the context of high-performance interconnection networks, scheduling algorithms 
must meet two main characteristics: low computational complexity (the scheduler 
latency must be smaller than the average packet latency) and low implementation 
complexity (the scheduling algorithm is typically implemented in hardware and a 
high implementation complexity implies a large silicon area).

In this section we detail three scheduling algorithm proposals adapted to the 
context of hierarchical-crossbar-switch architectures, specifically, to the OPA 
architecture.

3.1 � The round‑robin output scheduler

The round-robin output scheduler is the simplest output scheduler. The main goal of 
a round-robin output scheduler is to distribute the total bandwidth among all SLs. 
The bandwidth that each SL will obtain is 1

NumSLs
 , where numSLs is the total num-

ber of SLs. This scheduler could be based on an arbitration table or on an hardware 
implemented algorithm. Although both approaches are feasible as long as the band-
width is properly distribute, we have chosen the arbitration table because the other 
algorithms presented in this work are also based on arbitration tables, as we will 
explain in Sects. 3.2 and 3.3. In fact, this scheduler can be implemented using the 
SBT scheduler, equally distributing all the bandwidth among all the SLs. Table 1 
shows an example of SBT scheduling table configured to work in a round-robin way. 
The initial entry weights are not relevant as long as for a round-robin algorithm they 
are equal on each table entry. For this reason, the details about how the round-robin 
scheduler works can be found in Sect. 3.2. Note that the round-robin output sched-
uler does not provide any QoS differences. We have considered this scheduler in 
order to establish a comparison baseline.

3.2 � The simple bandwidth table mechanism

Simple Bandwidth Table (SBT) is a table-based scheduler. It is one of the simplest 
techniques to provide bandwidth differences in a high performance interconnection 
network.

SBT scheduler is based on an arbitration table per output port with as many 
entries as SLs are considered. Each table entry is assigned to one SL and the entries 
store an entry weight. This weight represents how many packets an SL may deliver. 
Every time that an SL delivers a packet, the entry weight is decremented until it 
is equal to zero. Table 2 shows an example considering two SL, where SL0 has a 
weight of 55 and SL1 has a weight of 45. If in a given output port, SL0 delivers 3 

Table 1   Round-robin table QoS 
algorithm sample

SL Weight

0 50
1 50
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packets, the remaining weight will be 52. Therefore, the fraction of the total band-
width �i assigned to the SLi is

where N is the total number of SLs and weight is the entry weight assigned to each 
SL. In the SBT arbitration table (Table 2), SL0 will get 55% of the total bandwidth 
and SL1 will get 45% of the bandwidth. In our proposal, for the sake of simplicity, 
∑N−1

j=0
weightj must be equal to 100. In this way, the bandwidth percentage of each 

SL can be easily obtained.
The arbitration table is cycled through in a round-robin way when the entry 

weight is equal to zero. The table is also cycled when the SL in transmission 
becomes “inactive”, i.e. the SL has no packets to transmit3. When the sum of all 
entry weights is zero, the initial entry weights are restored. Note that an SL can only 
transmit when its weight is greater than zero. However, there is an exception: when 
an active SL does not have enough weight left but it is the only active SL, the trans-
mission of packets is allowed. This exception avoids packet starvation and wasting 
the link bandwidth.

Finally, realize that the bandwidth is distributed by SL, not VL. Otherwise, if 
some SLs have a different number of VLs assigned than others, the total bandwidth 
cannot be distributed correctly between the SLs. Let’s suppose two SLs and three 
VLs in the network. SL0 can use two VLs and SL1 can use the remaining VL. We 
want to distribute 50% of bandwidth to each SL and we assign the same weight to 
each VL. Then, SL0 will get 2

3
 of the total bandwidth, while SL1 will only get 1

3
 . It 

would also be possible to distribute traffic between SLs by VLs instead of SLs, but 
this complicates the table configuration and offers no added benefit.

�i =
weighti

∑N−1

j=0
weightj

,

Table 2   Simple Bandwidth 
Table QoS algorithm sample

SL Weight

0 55
1 45

3  From now on, we will refer as an inactive SL to that SL that has available weight in the arbitration 
table but does not have packets to transmit.
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Algorithm 1 shows the generic mechanism of the SBT scheduler on every port. 
Note that the first_flit() function allows to extract the first flit from a given VL queue 
and the is_active() function determines if an SL is active (i.e. it has packets to trans-
mit) or not. Since OPA uses virtual cut-through as switching technique, these algo-
rithms are only applied to header flits, so that body and tail flits will always follow 
the header flit at one flit distance. Furthermore, the SC identifier is the only QoS 
identifier stored in packets [17]. For this reason, SC2SL tables are used to get the SL 
identifier from the SC packet identifier.

The main advantages of SBT are its capacity to provide bandwidth differences 
and to have a very low computational and implementation complexity (Sect. 3.2.1). 
However, SBT is not able of providing latency differences, which could be crucial in 
many scenarios.

3.2.1 � Complexity considerations

In terms of computational complexity, SBT is quite simple. In this case, arbitration 
tables have as many table entries as SLs. OPA supports up to 32 SLs according to 
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[17]. Hence, in the worst case, if all table entries have to be looked over in order to 
find the next active SL, just 32 table entries will be skipped.

One of the most computationally complex tasks in Algorithm 1 is the is_active() 
function. However, the optimization strategy suggested in [20] may be used in order 
to keep the complexity low. Regarding the implementation complexity, considering 
an arbitration table per output port would require a large silicon area on hardware 
implementations. Therefore, instead of keeping a table per output port, a single table 
per switch with the structure shown in Table 3 may be used. The arbitration table 
has as many columns as output ports (p) plus 2 extra columns ( p + 2 ) and as many 
rows as SLs N. The first two columns show SLi identifiers and the associated weight 
xi to the SLi . The other columns represent the remaining SL weights xi − �i,j for 
each output port j. Every output port row is populated with the associated weight 
to each SL. When 

∑N−1

i=0
xi = 0 in a given column, the values from the Weight col-

umn are copied to the column of that port and thus the port will be allowed again to 
deliver packets.

3.3 � The DTable scheduling mechanism

As explained in Sect. 3.2, SBT is not able to provide latency differences. Further-
more, SBT has other problems that we will discuss in Sect. 4. Therefore, we imple-
mented, adapted and tested the DTable scheduler [31] on our OPA-based simulation 
model.

The DTable scheduler is based on an arbitration table with an structure similar 
to SBT arbitration tables: a column for an SL identifier and another column for an 
associated weight for each table entry and SL. However, there is an important dif-
ference between SBT and DTable arbitration tables: SBT arbitration tables have 
as many table entries as SLs whilst DTable arbitration tables have a greater arbi-
trary number of table entries, e.g. 32, 64, 128, etc. This difference is used to provide 
latency differences on SLs. The number of table entries and the maximum distance 
between any pair of consecutive table entries assigned to the same SL allow to con-
trol the SL latency [32]. Note that now each SL can have multiple table entries, and 
therefore, the bandwidth �i assigned to SLi is

Table 3   Arbitration table implementation with one table per switch

SL Weight  Port 0 Port 1 . Port p - 1

0 x0 x0 − �0,0 x0 − �0,1 . x0 − �0,p−1

1 x1 x1 − �1,0 x1 − �1,1 . x1 − �1,p−1

2 x2 x2 − �2,0 x2 − �2,1 . x2 − �2,p−1

. . . . . .
N − 1 xN−1 xN−1 − �N−1,0 xN−1 − �N−1,1 . xN−1,p−1 − �N−1,p−1
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where J is the set of table entries assigned to SLi and weight is the entry weight 
assigned to the table entry. Moreover, each SL has assigned a deficit counter initially 
set to 0. The deficit counters represent the weight that the scheduler owes to the SLs. 
The purpose of this counter is explained further on.

When scheduling is needed, arbitration tables are cycled through sequentially in 
a round-robin way until an active SL is found. The DTable scheduler has also an 
accumulated weight counter which is equal to the sum of the selected table entry 
weight and the SL deficit counter. The scheduler will deliver as many packets from 
the selected SL as the accumulated weight allows. The accumulated weight is decre-
mented when packets are transmitted.

There are two possibilities that make the scheduler to select the next active table 
entry: 

1.	 The SL becomes inactive. In this case the remaining accumulated weight is dis-
carded and the deficit counter is set to zero.

2.	 The accumulated weight becomes smaller than the size of the packet at the head 
of the queue. In this case the accumulated weight is saved in the deficit counter.

�i =

∑J−1

j=0
weightj

∑N−1

k=0
weightk

,
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Algorithm  2 shows a generic DTable scheduler. When the scheduler gets the 
“Next table entry assigned to an active SL” (line 19) the arbitration table is cycled 
through in a round-robin way until an active SL is found. The function returns the 
entry identifier and a VL associated to the selected SL. As stated in Sect. 2.1, an SL 
may span multiple SCs. In that case, the function arbiters between the SCs belong-
ing to the same SL in a round-robin way, and it selects the VL through the SC2SL 
tables. For instance, in a given configuration SC0, SC1 and SC2 have been associ-
ated to SL0 as well as VL0, VL1 and VL2 to SC0, SC1 and SC2, respectively. The 
first time that SL0 is allowed to deliver packets, it will deliver packets from SC0 and 
VL0, the second time SL0 will deliver packets from SC1 and VL1, etc. Obviously, 
other SC selection strategy can be applied, such as dividing the accumulated weight 
among SCs of the same SL.
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3.3.1 � The DTable scheduler and variable OPA MTUs

In our original OPA-based simulation model exposed in Sect. 2.2, the global MTU 
is one packet of 128 bytes (i.e. 16 flits of 64 bits).

However, if the MTU is one packet sized in all SLs, and minimum entry weight 
is also one packet sized, the deficit counter will never be used. Moreover, the main 
advantage of the DTable scheduler is the use of different MTUs for different SLs 
[33] which allows to decouple the bandwidth assignments from the latency require-
ments (see Sect. 3.3.2 for further details).

To achieve this, we have modified the delivery message system. Before sending 
the message to the next network element, the DTable scheduler has to ensure that: 
i) the entire message fits onto the neighbour receiving buffer and ii) there is enough 
remaining weight for the selected VL. Therefore, SL_MTU tables are used, which 
have as many entries as SLs and each entry stores the associated MTU of each SL. 
The message generation is also based on those tables. For instance, if a given SL has 
an MTU of three packets, the SL will always generate messages of three packets. 
Moreover, when a transmission is performed, the SL will deliver three consecutive 
packets. Note that because of the switching technique used (i.e. virtual-cut through) 
and the atomic delivering message system, all flits of the same message are stored, 
sent and received consecutively. Then, VL buffers must have enough space (i.e. flow 
control credits) for storing at least the biggest MTU in the system.

3.3.2 � DTable configuration methodology

In order to provide applications, flows or SLs specific QoS differences, DTable arbi-
tration tables must be configured in a proper way. DTable scheduling mechanisms 
themselves do not provide QoS without applying a proper configuration methodol-
ogy [19].

As stated in Sect.  3.3, the maximum distance between any pair of consecutive 
table entries assigned to the same SL allows to control the latency distribution 
among SLs [32]. In a given arbitration table configured to meet their latency require-
ments, we would like to be able to assign the SLi a certain bandwidth �i in a flexible 
way. In other words, this means to keep the minimum bandwidth min�i that can be 
assigned to the SLi as small as possible, and the maximum bandwidth max�i assign-
able to the SLi as large as possible. Table 4 shows the definition of all parameters 
involved in the configuration methodology.

The maximum total weight that can be divided among the table entries is M × N . 
However, we have fixed it to a lower value called pool, which is determined by the 
k configuration parameter. Sect.  3.3.1 explains that a specific MTU value can be 
assigned for each SL. Then, the bandwidth �i assigned to the SLi is:

�i =

∑J−1

j=0
weightj

pool
,
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where J is the number of table entries assigned to the SLi and weightj is the weight 
assigned to the table entry j. Therefore, min�i and max�i assignable bandwidth val-
ues to the SLi are:

Let’s define M and pool using the GMTU parameter and the decoupling parameters 
w and k:

where k ≤ w because the bandwidth pool has to be smaller than N ×M . Hence, 
the maximum and minimum bandwidth depend not only on the proportion of table 
entries ni , but also on the w and k parameters and the proportion between their spe-
cific MTUi and GMTU:

Therefore, parameters w, k and the specific MTUi assigned to each SL allow to vary 
the maximum and minimum bandwidth assignable to SLs without affecting the final 
latency [19].

3.3.3 � DTable bandwidth correction algorithm

Once the configuration methodology has been applied, we can choose a bandwidth 
�i for each SL between the given min�i and max�i range. Then, the total entry 
weight Tweighti has to be computed as pool × �i . After that, we have to obtain the 
entry weight as Tweighti

ni
 for each SL and fill in arbitration tables with these values. As 

min�i =
ni ×MTUi

pool
, max�i =

ni ×M

pool
.

M = GMTU × w, pool = N × GMTU × k,

min�i =
ni ×MTUi

N × GMTU × k
,

max�i =
ni × GMTU × w

N × GMTU × k
=

ni × w

N × k
.

Table 4   Arbitration table parameters

max�i, min�i Maximum/Minimum bandwidth assignable to the ith SL

�i Bandwidth assigned to the ith SL
N Number of entries of the arbitration table
n
i Number of entries assigned to the ith SL

GMTU General maximum transfer unit
MTUi Specific maximum transfer unit of the ith SL
M Maximum weight per table entry
pool Bandwidth pool
k Bandwidth pool decoupling parameter
w Maximum weight decoupling parameter
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stated in Sect. 3.3, the entry weight represents how many packets can be delivered 
from an active SL, so it must have at least enough weight to deliver one packet/
MTU. Moreover, it must be an integer value because float numbers will produce 
some issues:

•	 The fractional part will only be useful once it is accumulated in the deficit coun-
ter and the sum is equal to one packet/MTU.

•	 The final hardware implementation will require more silicon area due to IEEE 
754 floating point representation [34].

•	 The final entry weight may not be enough for delivering a packet/MTU from an 
active SL without cycling through arbitration tables several times.

To put this right, the entry weight obtained as Tweighti
ni

 will always be rounded up. 
However, this could produce some bandwidth imprecisions. Table 5 shows an exam-
ple about this issue. In this example, each SL will get �

i
=

1

pool
 . However, as seen in 

the R�i column, the real SLi bandwidth is �i ≠
1

pool
 . Specifically R�0 =

448

1216
 , 

R�1 =
384

1216
 and R�2 =

384

1216
.

To solve this issue, the DTable bandwidth correction algorithm is applied. First, 
the bandwidth difference between �i and R�i is obtained. The column �i − R�i on 
Table 5 shows the bandwidth differences. Secondly, the amount of extra weight that 
SLi table entries require, called Dweighti , is calculated:

For instance, in Table  5 we have Dweight0 = −(0.03502 × 1216) = −43 , 
Dweight1 = − − (0.01751 × 1216) = 21 , etc. Finally, the Dweighti value is added to 
∑ni−1

j=0
weightj getting Fweighti . As can be seen in Table 5, in the column F�i , final 

bandwidths are very close to the desired ones.
Another important aspect is how and when Dweighti is added to arbitration tables. 

Assuming that the DTable configuration and adjustment are done by the FM during 
the starting up process, the simplest strategy is: (i) to populate a pre-arbitration table 
with the bandwidth imperfections discussed here; (ii) to perform the DTable cor-
rection algorithm and (iii) to send the final arbitration table to network elements. 
However, there is a large range of possible ways to add Dweighti . In our OPA-based 
simulation model, the algorithm always starts from the end of the arbitration table 
incrementing weight to each entry weight in a round-robin way. Table 6 shows an 
arbitration table where SLs have a Dweighti of -3, 1 and 2 for SL0, SL1 and SL2 
respectively.

The first three rows show the arbitration table before running the DTable band-
width correction algorithm and the last three rows after running it. The first and 
fourth rows show the table entry identifiers and the third and sixth rows the SL 
identifier and the associated weight respectively. The algorithm starts with SL0 and 
the entry 6 performing 4 + (−1) = 3 , moves to the entry 4 performing 4 + (−1) = 3 
and then finishes with the entry 2 performing 4 + (−1) = 3 . Then, the algorithm 

Dweighti = −1 × Round((R�i − �i) ×

N−1
∑

j=0

weightj)
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continues with SL1 and the entry 5 performing 3 + 1 = 4 . Finally, the algorithm 
moves to SL2, it starts with the entry 7 performing 3 + 1 = 4 and moves to the entry 
3 performing 3 + 1 = 4 . Once all Dweighti are zero for each SL, the algorithm stops. 
On the other hand, it could be interesting to study a different approach to find out if 
there are differences among start from the button and the top of the table. However, 
it is essential that the system checks during the increasing process if the weight on 
the entries is enough to deliver a packet/MTU.

4 � Performance evaluation

In this section, we evaluate the performance of DTable and SBT proposals against a 
round-robin scheduler as the baseline reference. We have used our simulator Hipe-
rion which implements the simulation model explained in Sect. 2.2, as well as the 
QoS mechanisms detailed in Sect. 2.1. Note that although we use OPA for configur-
ing the network parameters, our proposal can be applied to any hierarchical-cross-
bar-switch based interconnection network.

We have also evaluated the QoS mechanisms in two different scenarios. In the 
first scenario, the network has been evaluated using a synthetic traffic model com-
posed of several traffic flows. These flows represent the network load generated by 
applications commonly found in cluster and data centers. In the second scenario, the 
synthetic HPC flow is replaced by the traffic of real MPI applications using the VEF 
trace framework [29].

In Sect. 4.1 we present the network model used in the performance evaluation. 
Section 4.2 presents the synthetic scenario and its results, while Sect. 4.3 includes 
the evaluation and results obtained using the MPI traces.

4.1 � Network model

We have used two different interconnection topologies with two different layouts: a 
2D Torus with 8x8 switches, a 3D Torus with 8x8x4 switches, a 8-ary 3-tree with 
192 switches and a 24-ary 2-tree with 48 switches. The configuration of each sce-
nario is the following:

•	 The 2D Torus configuration has 512 endpoints (NICs). Each switch has 48 ports: 
eight single links to endpoints and four 10x trunk links to neighboring switches.

Table 6   Arbitration table 
example

0 1 2 3 4 5 6 7

SL, W SL, W SL, W SL, W SL, W SL, W SL, W SL, W
0, 4 1, 2 0, 4 2, 3 0, 4 1, 2 0, 4 2, 3
0 1 2 3 4 5 6 7
SL, W SL, W SL, W SL, W SL, W SL, W SL, W SL, W
0, 4 1, 2 0, 3 2, 4 0, 3 1, 3 0, 3 2, 4
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•	 The 3D Torus configuration has 1024 endpoints connected, the switches have a 
radix of 28 with 4x trunk links.

•	 The 8-ary 3-tree has been configured with 512 NICs and 16-port switches.
•	 The 24-ary 2-tree has a total of 576 endpoints and 48-ports switches.

We have chosen these topologies because they are very common and well known 
solutions in high performance environments. The detailed explanation about the 
switch architecture can be found in Sect. 2. The SL2SC and SC2VL tables configu-
ration is shown in Table 7. For instance, the SL VO has two SCs, SC0 and SC1, and 
they have VL0 and VL1 associated respectively. Further details about SLs will be 
provided in Sect. 4.2.1.

The switch model implements a credit-based flow control protocol. The pack-
ets will be only transmitted when there is enough buffer space in the next network 
device. Therefore, packets are not dropped when congestion appears. Traffic with 
similar characteristics is aggregated via SLs, the packet scheduling is performed 
with SLs and flow control via VCs. According to [17], the GMTU of OPA messages 
may be up to 8KB, but we have used a GMTU of 1KB in this evaluation for the sake 
of simplicity. Nevertheless, the evaluation may be performed with greater MTUs 
using larger buffers. The credit-based flow control unit is 64 bytes, and thus, the 
GMTU is up to 16 credits.

As stated before, we have used input, output and central buffer queuing architec-
ture. The buffer capacity is 65,536 bytes (64 × GMTU) per input and output ports 
of switches and 32,768 bytes (32 × GMTU) at the network interfaces. The central 
crossbar buffer capacity is 131,072 bytes (128 × GMTU) per MPort. If an applica-
tion wants to inject a packet into a network interface queue but the queue is full, we 
assume that the packet is stored in the application layer queue.

4.2 � Performance evaluation using the synthetic traffic model

In this section we explain the details of the evaluation performed using synthetic 
traffic. Section 4.2.1 presents the traffic model. The scheduler configurations for the 
different QoS mechanisms are shown in Sect. 4.2.2. Finally, Sect. 4.2.3 shows and 
analyzes the obtained results.

Table 7   SL2SC and SC2VL 
tables configuration

SL2SC SC2VL

SL SC SC VL SC VL

VO 0 1 0 0 5 5
VI 2 3 1 1 6 6
CL 4 5 2 2 7 7
BE 6 7 3 3 8 6
BK 8 9 4 4 9 7



12331

1 3

Providing quality of service in omni‑path networks﻿	

4.2.1 � Traffic model

Table 8 shows each traffic type considered. There are five types of traffic flows, three 
SLs with explicit QoS requirements such as latency and bandwidth, and two SLs for 
best effort traffic with slight different levels of priority among them.

The packets from each SL have been simulated using different Constant-Bit-Rate 
(CBR) distributions. We have selected the following packet payloads for each SL:

•	 Voice (VO) traffic is generated using a packet payload of 128 bytes. According to 
[35], the payload value of voice packets ranges from 20 to 160 bytes.

•	 Video (VI) traffic is generated using a packet payload of 256 bytes. According to 
[36], a payload ranging from 100 bytes to 64KB is feasible.

•	 Controlled Load (CL) traffic is generated using a packet payload of 512 bytes, 
representing a possible average packet payload of many HPC application com-
munications.

•	 The traffic of the best effort SLs, Best-effort (BE) and Background (BK), is gen-
erated using a packet payload of 1024 bytes.

For all cases, the destination pattern is uniform in order to fully load the network. 
Note that we have chosen a heterogeneous scenario where multiple types of traffic 
are mixed. However, our proposal is aimed to any environment where flows with dif-
ferent QoS requirements coexist in a high performance network.

4.2.2 � Simulated scenario and scheduler configurations

We have supposed a scenario where the goal is to obtain 10% of the egress link 
bandwidth and the lowest packet latency to the voice traffic; 30% of bandwidth and a 
higher packet latency than the voice traffic to the video traffic; around 50% of band-
width and a higher packet latency than voice traffic to the controlled load traffic and 
the remaining 10% of bandwidth and the highest latency to the best effort traffic. 
The bandwidth percentages are intended to represent, as close as possible, a realistic 
combination of traffic and QoS needs from applications with different requirements. 
We have configured the schedulers according to these traffic requirements.

Table 8   Set of SCs considered

Type SL Description Traffic pattern Message size

QoS Voice (VO) Audio and online videogames 
backend traffic

CBR connections 128B

QoS Video (VI) Video streaming traffic CBR connections 256B
QoS Controlled load (CL) High performance computing 

traffic
CBR connections 512B

Best-effort Best-effort (BE) Backup protocols, email system, 
etc.

CBR connections 1024B

Best-effort Background (BK) Rest of applications and services CBR connections 1024B
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As mentioned in Sect. 3.2, SBT is the simplest QoS algorithm in terms of com-
plexity and configuration. We have filled in the SBT tables with a weight propor-
tional to the percentages mentioned before for each table row. That is, a weight of 10 
for the first table row (VO traffic), a weight of 30 for the second table row (VI traf-
fic), etc. SBT does not require any more configurations. Note, however, that the total 
table weight has to be 100.

In the case of the DTable scheduler, the configuration process is more complex. 
We have applied the decoupling methodology explained in Sects. 3.3 and in [31], 
distributing the table entries among SLs according to latency requirements. To do 
that, we have established the maximum distance of two consecutive table entries of 
the same SL as follows: a maximum distance of two entries for SL VO and a maxi-
mum distance of 16 to SL BE and SL BK. Table 9 also shows the total number of 
table entries (#entr.) and the proportion of table entries given to each SL (%entr.). 
For maximum flexibility, the MTU of each SL has been established as small as the 
expected packet size of each traffic type. Specifically, we have set an MTU of 128 
bytes for VO, an MTU of 256 bytes for VI, an MTU of 512 bytes for CL and an 
MTU of 1024 bytes, which is the maximum, for BE and BK traffic.

Finally, we have configured proper values for w and k parameters. The main con-
dition that we have taken into account is that we want for SL CL a bandwidth several 
times higher than the proportion of table entries assigned. Moreover, the SL VO has 
assigned a high proportion of table entries, whilst it requires a small proportion of 
bandwidth. However, it is important to keep the k parameter value as small as pos-
sible in order to obtain good latency performance. We have finally chosen a value of 
8 for w and a value of 2 for k. This combination of values allows us to get a [ min�i , 
max�i ] range that fits within the bandwidth needed. Table  9 shows the minimum 
and maximum bandwidth that may be assigned to each SL with this configuration.

Table 10 shows the total amount of traffic that each SL injects, expressed in flits/
cycle/NIC (Inj. column). This table also shows the total weight (T.W.) that we have 
distributed among the table entries of each SL and the weight assigned to each 
table entry (E.W.) of each SL. Note that the SL VO and the SL CL have an E.W. 
of 6-7 and 130 respectively, due to the DTable bandwidth correction algorithm 
(Sect. 3.3.3). On the one hand, the SL VO has a Dweight0 = −32 and therefore the 
first 32 table entries have a weight of 7 and the next 32 table entries have a weight of 
6. On the other hand, the SL CL has a Dweight2 = 32 and therefore each table entry 

Table 9   Application of the 
decoupling methodology

N = 128, GMTU= 16, w = 8, k = 2

SL Distance #entr. %entr. MTUi min�i max�i

VO 2 64 50 128 0.03125 2
VI 4 32 25 256 0.03125 1
CL 8 16 12.5 512 0.03125 0.5
BE 16 8 6.25 1024 0.03125 0.25
BK 16 8 6.25 1024 0.03125 0.25

Total 128 100 0.15625 4
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has a weight of 130. The rest of the SLs are not affected by the DTable bandwidth 
correction algorithm due to the fact that the obtained bandwidth is equal to the con-
figured bandwidth. Columns R�i and F�i show the bandwidth percentage assigned 
to each SL before and after applying the bandwidth correction algorithm, respec-
tively. Without the adjustment, SLs VO and CL would get 11% and 49% instead 
of the desired 10% and 50%, respectively. In this specific example, the bandwidth 
percentage difference is 1%. Nevertheless, in a scenario where link bandwidths are 
up to 12.5 GB/s, those differences could have a significant impact in the application 
execution over time. Besides, without the bandwidth correction algorithm, the sys-
tem administrators would be forced to find an appropriate combination of parame-
ters, i.e. a combination of MTU, k and w values, that would allow them to obtain the 
required bandwidth distribution being, in some cases, not possible. Note that in the 
case of SBT, the scheduler has only one entry for each SL, because entry weights 
and the total weight are equal.

4.2.3 � Simulation results using the synthetic workload

In this section, simulation results are shown. The values shown for each injection 
rate are the average of 30 different simulations varying the seed of the random num-
ber generation. We have used two metrics to evaluate the networks and the different 
QoS mechanisms:

•	 End-to-end latency: Message latency from generation to delivery. It is the latency 
that users will experience.

•	 Normalized SL throughput: Total amount data expressed in flits/cycle/NIC trans-
mitted through the interconnection network. This metric has been divided by SL 
and normalized to the total throughput.

Figures 3a, c, 4a and c show the end-to-end latency in the 2D Torus, 3D Torus, 
8-ary 3-tree and 24-ary 2-tree topologies, respectively. Note that we have repre-
sented each SL in different QoS algorithms with the same color and line pattern, and 
each SL is represented always with the same point style, e.g. SLs when DTable (DT) 

Table 10   Bandwidth 
configuration of DTable and 
SBT schedulers

SL Inj. Scheduler configuration

DTable SBT

#entr. E.W T.W. R�i F�i #entr. E.W. T.W.

VO 0.1 64 6–7 416 0.11 0.1 1 10 10
VI 0.3 32 39 1248 0.3 0.3 1 10 10
CL 0.5 16 130 2080 0.49 0.5 1 50 50
BE 0.05 8 26 208 0.05 0.05 1 5 5
BK 0.05 8 26 208 0.05 0.05 1 5 5
Total 1 128 4160 5 100
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is used are represented with a circle and the SL VO is plotted with a line-dot pattern 
and a blue colour, SLs when SBT is used are represented with a square, SLs when 
round-robin baseline (RR) is used are represented with the cross symbol.

As explained in Sect. 3.2, SBT and RR algorithms do not provide latency differ-
ences, which can be seen in end-to-end latency figures: the more generation ratio is 
assigned to SLs, the more latency they have. The only exception is in the case of SLs 
BE and BK, which achieve a slightly higher latency because of sharing the VLs. For 
instance, the SL VO has the same injection rate as SLs BE and BK combined and 
the best-effort SLs achieve higher latency values when SBT or RR are used. Refer-
ring DTable end-to-end latency, in some cases SLs get more latency than SBT or 
RR. This is because DTable does not reduce the overall latency to ensure the latency 
requirements, but it splits the total latency between SLs based on table entries dis-
tance. Given that, for example, SL VO using DTable gets a higher latency than the 
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Fig. 3   Performance comparison of each SL using a 2D Torus topology (3a, b and e) and a 3D Torus 
topology (3c, d and f). Results in Fig. 3a and c refer to end-to-end latency, results in Fig. 3b and d refer to 
normalized throughput and results in Fig. 3e and f refer to end-to-end DTable latency
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same SL when SBT or RR are used, but SL CL with DTable gets lower latency than 
this SL with SBT or RR. Note that in Fig. 4a and c the SL CL in the SBT and RR 
tests is off the chart. We have decided to leave them outside for the sake of clarity, 
otherwise, the rest of the lines would be too close to each other. The end-to-end 
latency for the injection rates of 1 flit/cycle/NIC is over 4,500 ns in both cases.

Figures 3b, d, 4b and d show the normalized throughput achieved on each topol-
ogy configuration. DTable obtains a normalized throughput very close to the desired 
one with an error of ± 2%. In the case of SBT, it gets an error greater than DTable, 
specifically, it gets almost the same bandwidth division as the RR scheduler. These 
results suggest that SBT is not suitable for high-performance interconnection net-
works. The maximum throughput performance for each configuration is: 0.94 flits/
cycle/NIC with DTable and 0.8 flits/cycle/NIC with SBT or RR for 2D Torus; 0.78 
flits/cycle/NIC with DTable and 0.68 flits/cycle/NIC with SBT or RR for 3D Torus; 
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Fig. 4   Performance comparison of each SL using a 8-ary 3-tree topology (4a, b and e) and a 24-ary 
2-tree topology (4c, d and f). Results in Fig. 4a and c refer to end-to-end latency, in Fig. 4b and d refer to 
normalized throughput and in Fig. 4e and f refer to end-to-end DTable latency
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0.95 flits/cycle/NIC with DTable and 0.85 flits/cycle/NIC with SBT or RR for 8-ary 
3-tree; and 0.95 flits/cycle/NIC with DTable and 0.8 flits/cycle/NIC with SBT or RR 
24-ary 2-tree.

DTable achieves more throughput because the scheduler has a hit rate higher than 
SBT or RR, and the fact that the scheduler does not try to inject long bursts of pack-
ets helps to significantly reduce the head-on-line blocking.

Regarding the topology configurations, in terms of end-to-end latency, Torus sce-
narios show a higher latency values in all SLs before and after the network reaches 
saturation point (Fig. 3a, c, e and f). Also, Torus topologies penalize less the best-
effort SLs after the saturation point than k-ary n-tree configurations, i.e. the latency 
of all SLs increases progressively as the injection rate increases. The expected 
behavior is that the best-effort SLs increase its latency as much as possible before 
increasing the latency of high priority SLs. This fact is very obvious in the 3D Torus 
Fig.  3d. The k-ary n-tree configurations keep the high priority latencies closer to 
each other than nD Torus topologies, which means that k-ary n-tree topologies seg-
regate the traffic better than the nD Torus scenarios. Results do not show significant 
differences in terms of achieved throughput per SL. Only the 3D Torus topology in 
Fig. 3b shows a slight throughput reduction in SLs using DTable scheduler and the 
network gets congested earlier than others. This happens because the head-of-line 
blocking on the 3D Torus topology is stronger than on the other networks, due to 
this topology has more endpoints and thinner trunk links than the 2D Torus topol-
ogy. Nevertheless, the DTable scheduler is able to keep the bandwidth distribution 
very close to the expected distribution.

Finally, Figs.  3e, f, 4e and f show the end-to-end latency of DTable SLs. The 
main aim of these figures is to show the latency differentiation among SLs. We 
have established that the SL VO must have the lowest latency, the SL VI must have 
latency higher than the SL VO and so on. As can be seen, SLs get a latency propor-
tional to the desired ones. After the network gets saturated, i.e. the NICs inject more 
packets per cycle that they are able to deliver, SLs entry distances are more clear and 
the latency differentiation is more obvious.

SBT and RR achieve similar behaviors before the network gets saturated. Their 
results are practically the same because both algorithms work in the same way and, 
before saturation, each SL can inject as much flits as the NICs generate. However, 
when saturation appears, there are differences because SBT will try to adjust the 
throughput to the desired, while RR will try to give to each SL 1

NumSLs
 of the avail-

able bandwidth. Note that differences are more clear with higher injection rates. 
Nevertheless, we have decided not to include these ratios because are just theoretical 
injection rates.

4.3 � Scenario using application trace files

As stated in Sect.  2.2, Hiperion includes support for MPI application trace files 
using the VEF trace framework [29]. The traces are a very representative way to 
know how a real HPC application will behave in any interconnection network simu-
lator without requiring a complex system to run the applications. Therefore, we have 
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also used trace files for performing more representative experiments. We expect to 
see how a poor QoS assignment or the absence of QoS degrades the system perfor-
mance in terms of application runtime. Hence, those experiments will give us a bet-
ter perspective on how OPA behaves using traffic from real MPI applications.

We have carried out experiments using multiple trace files obtained from dif-
ferent MPI applications: NAMD (NAMD) [37], a parallel application for simulat-
ing large biomolecular systems; GROMACS (gro) [38], a scientific application to 
perform molecular dynamics; and LINPACK (HPL) and MPIRandomAccess appli-
cations from of the HPCC Benchmark Suite [39], which is one of the most used 
benchmark for evaluating supercomputers. These applications have run considering 
512 tasks. On each experiment, we have used the SLs CL and BE, one carrying 
all the trace file traffic and the other with CBR connections detailed in Sect. 4.2.1 
and vice-versa. The purpose of the CBR traffic is to introduce background network 
workload in order to see how the output scheduling algorithm distinguishes between 
traffic classes. Otherwise, there would be no competition for resources and the trace 
would occupy them all, making no difference between using QoS or not.

We have performed several experiments for each trace file varying the injection 
rate of the background traffic (1%, 5%, 10% and 20%) and the SL at which the trace 
file is injected (SL CL and SL BE). This combination reveals us the scheduler and 
architecture behavior when the application could use more or less network resources 
and when the application has to compete harder for resources, because the increase 
of the background traffic will try to use them. Those injection rate values have been 
chosen because they allow us to complete the experiments in a reasonable amount 
of time while significant results can be extracted. Also, we have run the trace file 
without any background traffic and QoS support to get the execution time baseline.

We have used DTable as the output scheduling algorithm with the configuration 
shown in Table  10. The results of RR are also included in order to compare the 
application performance without QoS mechanism. From the results obtained with 
the synthetic workload, we have considered DTable more interesting for this experi-
mentation than SBT. For this reason, and for the sake of clarity and not overloading 
the figures with too much information, we have not included the SBT scheduler in 
the results.

In those experiments, we have used the same network configuration than the 
exposed in Sect.  4.1. We have only changed the interconnection topologies, since 
the trace evaluation is limited by the number of tasks of the trace. Since we have 
only available 512-task traces and this size is not enough to fulfill the systems pre-
sented on Sect. 4.1, we have chosen two different topologies: a 2D Torus with 4x4 
switches and a 8-ary 2-tree with 16 switches. The configuration of each topology is 
the following:

•	 The 2D Torus configuration has 128 NICs. Each switch has 48 ports: eight single 
links to NICs and four 10x trunk links to neighboring switches.

•	 The 8-ary 2-tree has been configured with 64 NICs and switches with 16 ports.

To analyse the results of these experiments, we have used the normalized total exe-
cution time. It is expressed as the percentage of the execution time between the QoS 
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scenario with background traffic and the scenario without background traffic QoS 
support.

4.3.1 � Simulation results

In this section, simulation results using the application traces are shown. Figures 5 
and 6 show the bandwidth differences produced by DTable using trace files with 
the 8-ary 2-tree and the 2D Torus configurations, respectively. Those topologies as 
well as the experiment configurations are detailed in Sect. 4.3. Each bar in Figs. 5 
and 6 represents the normalized execution time, expressed in percentage, between 
the trace file with background traffic and QoS and the same trace file without QoS 
enabled. Those percentages have been calculated for each SL. For example, in Fig. 5 
NAMD-CL result within an injection rate of 0.01 flits/cycle/NIC is calculated run-
ning a simulation where: i) the QoS is enabled; ii) the NAMD trace file is injected 
by the SL CL; and iii) the background traffic is generated in the SL BK at injection 
rate of 0.01 flits/cycle/NIC. The execution time of this simulation is compared with 
the obtained using the NAMD trace disabling the QoS and removing the background 
traffic. This process has been performed to calculate each result.

Regarding the results shown in Figs. 5 and 6, the total execution time increases 
with the injection rate, being the MPIRandomAccess trace file the most time-con-
suming in both topologies. On each experiment performed, the results of SLs CL 
and BK using the same trace file, regardless of the background traffic injection 
rate, is always lower in the case of the CL SL. This fact is more obvious as the 
background traffic injection ratio increases. This means that the DTable scheduling 
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Fig. 5   Performance comparison of 8-ary 2-tree topology using trace files and background traffic
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output algorithm is able to properly segregate the traffic flows because the SL CL 
has much more resources assigned than the SL BK. Therefore, although the SL BK 
is trying to progressively allocate more resources, DTable is properly limiting the 
amount of resources it can use. As the injection rate of the background workload 
increases, the differences between the SLs CL and BK are increased. This is due to 
the fact that as the background workload increases, it tries to use more resources and 
it is penalized by DTable increasing its execution time. At low background injec-
tion rates, the differences between SLs CL and BK are in the range of 1% to 5% 
because they do not have to compete strongly for resources as the network has suf-
ficient capacity to serve both SLs.

For both topology configurations, in the scenarios where a RR output scheduler, 
i.e. no QoS is provided, the application execution times are higher than in the sce-
narios where DTable scheduler is used. Those execution times are even higher at 
low background traffic injection rates. Hence, the DTable improves the applications 
performance by distributing the available network resources.

Comparing the results obtained in Figs. 5 and 6, the trend of the results is the 
same. However, the applications trend to require more time to complete its execu-
tion in the 2D Torus topology. This variation is due to the 2D Torus topology has a 
smaller radix and a larger number of connected NICs than the 8-ary 2-tree. The per-
centage differences between SLs using DTable in both topologies do not show sig-
nificant differences. Therefore, the topology configuration does not have any impact 
on the DTable output scheduler resources distribution. Nevertheless, this is not true 
in the case of RR were the percentage differences between SLs fluctuate depending 
on the topology.
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Summing up, DTable is able to distribute the resources according to its configu-
ration and outperforms the RR scheduler in terms of total execution time required by 
the applications and resources distribution among SLs.

5 � Conclusion

To enable QoS support in high-performance interconnection networks, the most 
critical architectural decision is the selection of an adequate output scheduling 
algorithm, which is in charge of selecting the next packet to be transmitted at any 
moment. This output scheduling algorithm has to keep the computational complex-
ity as low as possible so it can be realistically implemented. In this paper we have 
addressed this issue in the context of hierarchical crossbar switch architectures, 
specifically on OPA switches using SBT and DTable mechanisms. These two table-
based output scheduling algorithms keep the computational complexity low and 
they are able to provide the required QoS differences. Moreover, we have proposed a 
DTable bandwidth correction algorithm capable of adjusting the bandwidth impreci-
sions produced by the baseline DTable configuration methodology. This methodol-
ogy, in conjunction with the bandwidth correction algorithm, allows to set any band-
width proportion to SLs.

We have evaluated the performance of these scheduling algorithms using a heter-
ogeneous scenario where multiple traffic flows coexist. We have carried out different 
experiments using several topology configurations and we have compared the results 
against a round-robin output scheduler, which represents a scenario without QoS 
provision. On the one hand, results show that SBT is capable of providing band-
width differences but it is not able to provide latency differences. Moreover, SBT 
is not able to distribute the bandwidth according to its configuration. On the other 
hand, DTable is capable of providing bandwidth and latency differences among SLs, 
and we are able to establish which SL will experience higher and lower end-to-end 
latency.

We have also carried out several experiments using multiple network topologies 
with the aim of finding out differences in the behavior of schedulers in terms of QoS 
provision. Results show that k-ary n-tree topologies are able to provide slightly bet-
ter end-to-end latency results than the nD Torus configurations. In terms of through-
put, there are not significant differences between configurations.

Moreover, we have carried out experiments with two different topologies using 
communication trace files obtained from real MPI applications and background net-
work workload. These experiments have been performed with DTable as the output 
scheduling algorithm. Results show that even with real MPI communications, DTa-
ble is able to properly segregate the traffic according with the predefined configura-
tion with independence of the network topology and the trace file.

As explained in Sect.  2.2, unlike non-hierarchical switches, sometimes packets 
have to cross the central crossbar in order to reach the required output buffer. Hence, 
we are currently evaluating the impact of including another DTable scheduler in 
these central buffers. We also are planning to perform a deeper hardware study in 
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order to offer estimates about the silicon area that this middle scheduling algorithm 
would require.
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