
Vol:.(1234567890)

The Journal of Supercomputing (2022) 78:12310–12343
https://doi.org/10.1007/s11227-022-04365-y

1 3

Providing quality of service in omni‑path networks

Javier Cano‑Cano1  · Francisco J. Andújar2 · Francisco J. Alfaro‑Cortés1 ·
José L. Sánchez1 · Gaspar Mora3

Accepted: 5 February 2022 / Published online: 2 March 2022
© The Author(s) 2022

Abstract
New hierarchical crossbar switch architectures, such as Omni-Path (OPA) and Cray
X2, have appeared to improve packet latency, reduce overall cost and increase fault
tolerance of the high-performance interconnection networks in supercomputing
and data center systems. These and other interconnect technologies (Infiniband or
40/100 Gigabit Ethernet) include support to provide quality of service (QoS) to the
applications. In this paper, we show how this QoS support can be enabled to achieve
bandwidth and/or latency differentiation in Omni-Path interconnection networks, as
a representative case of hierarchical switches. To do that, three different table-based
schedulers are used. We include the description of these schedulers and a compara-
tive study by using the results obtained when we evaluate them with Hiperion, a
simulation tool that implements an OPA model.

Keywords  Quality of Service (QoS) · Scheduling algorithms · Interconnection
networks · Omni-Path (OPA) · Simulation · Hierarchical-crossbar-switch
architecture

1  Introduction

In the last decades, there has been a constant advancement in high-speed intercon-
nection network technologies. This development has been fueled by the growth of
the supercomputing and data center services, where the interconnection network
is usually the limiting factor (bottleneck), i.e., the central element upon which the
performance of the whole system relies. Therefore, it is critical to keep improving
the overall interconnection network performance. This is achieved by the introduc-
tion of continuous improvements in the physical elements of the network (links,

Javier Cano-Cano and Francisco J. Andújar authors contributed equally to this work.

 *	 Javier Cano‑Cano
	 javier.cano@uclm.es

Extended author information available on the last page of the article

http://orcid.org/0000-0003-3100-4824
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-022-04365-y&domain=pdf

12311

1 3

Providing quality of service in omni‑path networks﻿	

switches, NICs, etc.) and the techniques they implement (routing algorithms, con-
gestion avoidance mechanisms, etc.).

Moreover, the total bandwidth per switch has increased due to a combination
of higher pin density and faster signaling rates. As the total bandwidth increases,
switch designers face two possibilities to exploit this bandwidth: to build switches
with a high number of thin ports (high-radix switches) or to build switches with
a low number of fat ports (low-radix switches). The current trend is to use high-
radix switches [1–3] as they present advantages such as: the final packet latency
is reduced, the interconnection network overall cost is reduced, the wiring is also
reduced, the power dissipated by the network decreases, the network fault tolerance
is increased and a distributed packet arbitration process may be applied. However,
high-radix switches also face some problems: the cost and efficiency balance is not
easy to be maintained, increased buffer requirements drive cost up, the virtual chan-
nel allocation process becomes more complex, among others. To address some of
these issues, fully-buffered crossbar and hierarchical crossbar switch architectures
have been introduced. Fully-buffered crossbar switches require a huge silicon area
when the radix increases, making them unfeasible due to the associated costs. Hier-
archical crossbar switch architectures overcome that drawback while achieving a
very high port count. Some high performance devices such as YARC [1], Omni-
Path [4] and Slingshot’s Rosetta switches [5] use a hierarchical crossbar architecture
to achieve high-radix interconnection devices.

Omni-Path (OPA) emerged with the aim of occupying a space in the select group
of high-performance interconnection network technologies, such as InfiniBand (IB)
[6] or 40/100 Gigabit Ethernet (GE) [7]. These interconnection network technolo-
gies have been competing to achieve better performance and market share than oth-
ers. In terms of market share, since its introduction in the most powerful computers
list TOP500 [8], OPA has ranged from 1.6 to 10%. Considering the 100 most power-
ful computers on the list, OPA have reached up to 13%.

Current interconnection networks carry not only traffic of applications such as
backup or file transfer protocols, which does not require service differences, but also
traffic from others like real-time protocols [9], MPI communications or traffic from
users with different privilege levels in the system [10]. Therefore, QoS has become
the focus of much discussion and research during the last decades [11, 12]. A sign
of this interest is the inclusion of support aimed to provide QoS on interconnection
networks such as GE, IB and also OPA.

One of the most important QoS mechanisms is the scheduling algorithm [13, 14].
High performance interconnection networks usually use packet-switching as switch-
ing technique. This kind of networks can carry packets from different applications,
users and flows, interacting with each other in every interconnection network ele-
ment. Without any scheduling policy, packets from different traffic flows1 use as
many resources as they need and, in the worst scenario, a single flow may consume
all the system resources causing starvation on others. In such way, users may experi-
ence a poor system performance even if the system is not overloaded. Therefore, the
scheduling algorithm is a crucial element to provide QoS.
1  In this paper, we will use the term traffic flow, packet flow or just flow for referring to a sequence of
packets with similar characteristics (delay and/or bandwidth requirements).

12312	 J. Cano‑Cano et al.

1 3

Scheduling algorithms orchestrate when packets from different flows will be
delivered to satisfy the specified end-to-end delay and/or bandwidth requirements.
However, in the context of high performance interconnection networks, the sched-
uling algorithms have to be as simple as possible in terms of computational and
implementation complexity [15]. The scheduling algorithm latency must be smaller
than the average packet transmission time for the obvious reason that the system
will expend more time choosing packets to deliver than delivering packets, there-
fore degrading system performance. Also, low complexity is required because the
scheduling algorithm is typically implemented in hardware, and thus a very complex
scheduler will be more complex. Therefore, the scheduling algorithm design process
involves some trade-offs.

A well-known scheduling algorithm family is “sorted-priority” schedulers, which
use a global variable, called virtual time, that keeps track of the server’s progress
and it is updated when a packet is received or transmitted. Each packet has a time-
stamp tag, computed as a function of the virtual time. These schedulers offer very
good fairness and low latency [16], but they are computationally complex due to the
tag calculation and the sorting process.

Table-based schedulers are another well-known family of scheduling algorithms.
This approach has been used in high performance interconnection network technolo-
gies such as OPA [17] and IB [6]. Table-based schedulers offer good latency and
bandwidth performance with a low computational complexity.

Simulation is one of the most common approach to explore new techniques in
high-performance interconnection networks. As stated before, the interest of hierar-
chical switch architectures is growing. However, as far as we know, no hierarchical
switch simulation model is available. Therefore, we have decided to develop a hier-
archical switch simulation model based on OPA. Moreover, the QoS support of this
kind of networks is also important as explained before and it has not been addressed
in any study yet. For these reasons, we have decided to perform a comparative study
between some known output scheduling algorithms adapted to a popular hierarchi-
cal switch architecture such as OPA. This study led us to find out if known output
scheduling algorithms are suitable and to know the adaptation process for hierarchi-
cal switch architectures.

In this paper, we will focus on OPA because it is a good example of hierarchical
crossbar switch architectures and that has not been, as far as we know, largely stud-
ied in terms of QoS provision. We present a novel OPA simulation model, which is
the first hierarchical switch simulation model available. Three scheduling algorithms
adapted to the OPA technology are presented here. These algorithms have been
implemented in our Hiperion simulator [18], allowing us to compare the perfor-
mance and to find which scheduling algorithm is more adequate for full-scale OPA-
based systems. The first and simplest scheduling algorithm is a round-robin sched-
uler, which is the baseline schema used for comparison purposes. The second is a
table-based scheduling algorithm, which we have called Simple Bandwidth Table
(SBT). This scheduler offers bandwidth differences but is not able to provide latency
differences. Finally, for the third algorithm, we have adapted the Deficit Table
Scheduler (DTable) [19] to the OPA technology. This scheduler is more complex

12313

1 3

Providing quality of service in omni‑path networks﻿	

than the two previous ones although is able to provide bandwidth and latency differ-
ences with a reasonable computational and implementation complexity [20].

The structure of the paper is as follows: Sect. 2 reviews the OPA architecture and
our OPA-based simulation model. Section 3 explains the main output scheduling
algorithms proposed. Section 4 shows the results obtained evaluating bandwidth and
latency differentiation, and, finally, Sect. 5 presents some conclusions.

2 � The OPA architecture

As stated in Sect. 1, OPA rapidly grew in popularity after it was firstly introduced.
The OPA architecture has some elements such as a hierarchical internal crossbar and
multiple QoS tables that makes it different from the most popular high performance
interconnection network architectures like IB and GE. This allows enabling QoS
techniques that are simply not feasible in the rest of high performance interconnec-
tion network architectures. And in order to design, explore, and evaluate the perfor-
mance of these possibilities, testing tools are required such as simulation programs,
mathematical models, etc. OPA was initially developed by Intel until 2019, when all
the OPA technology IP was transferred to Cornelis Networks, a new company that is
continuing the support and development of OPA products [21, 22].

As described in Sect. 1, we have chosen OPA just as an example, but the findings
and conclusions could be adopted to other similar architectures such as YARC [1],
or Slingshot’s Rosetta [5] switches.

We have collected all relevant information about the OPA architecture and QoS
support, and we have developed the simulation tool Hiperion (HIgh PERformance
InterconnectiOn Network), which includes an OPA simulation model [18]. Hipe-
rion is an open-source simulation tool available for researchers and companies and
includes multiple useful mechanisms to perform many comparative studies. The
simulation model includes all the main features for simulating the movement of
packets between source and destination using several configurable QoS strategies.
These QoS strategies will be analyzed and compared.

2.1 � OPA support for QoS

The OPA architecture offers support to provide QoS to applications, flows, packets,
etc. According to [17], support is given through the following elements:

•	 Virtual Lanes (VLs) provide dedicated receive buffer space for incoming pack-
ets at switch ports. VLs are also used for avoiding routing deadlocks. The Intel
Omni-Path architecture supports up to 32 VLs.

•	 Service Channels (SCs) differentiate packets from different Service Levels. The
SC is the only QoS identifier stored in the packet header. Each SC is mapped to
a single VL, but a VL can be shared by multiple SCs. SCs are used for avoiding
topology deadlocks and avoiding head of line blocking between different traffic

12314	 J. Cano‑Cano et al.

1 3

classes. The Intel Omni-Path architecture supports up to 32 Service Channels,
however SC15 is dedicated to in-band fabric management.

•	 Service Levels (SLs) are a group of SCs. An SL may span multiple SCs, but an
SC is only assigned to one SL. SLs are used for separating high priority pack-
ets from lower priority packets belonging to the same application or Transport
Layer, avoiding protocol deadlocks, etc. The Intel Omni-Path architecture sup-
ports up to 32 SLs.

•	 Traffic Classes (TCs) represent a group of SLs aimed to distinguish applications’
traffic. A TC may span multiples SLs, but each SL is only assigned to one TC.
The Intel Omni-Path architecture supports up to 32 TCs.

•	 A vFabric is a set of ports and one or more application protocols. For each vFab-
ric, a set of QoS policies are applied. A given vFabric is associated with a TC for
QoS and associated with a partition for security.

SLs are mapped to SCs via the SL2SC tables and SCs are mapped to SLs via SC2SL
tables, depending on whatever the packets are sent or received, respectively. Each
SC carries traffic of a single SL in a single TC, and the Fabric Manager (FM) fulfills
SC2VL and VL2SC tables, determining how SCs are mapped onto VLs at each port
and vice-versa. The FM is also responsible of: discovering the fabric topology, pro-
visioning the fabric components with identifiers, formulating and provisioning rout-
ing tables, monitoring utilization, performance and error rates and fulfilling arbitra-
tion tables.

OPA includes also QoS mechanisms such as VLArbitration Algorithm and
preemption Tables. However, there is not much information about how these mecha-
nisms work.

Figure 1 shows an example of the use of TCs, SLs, and SCs across the paths fol-
lowed by three traffic flows (red, green and blue) in an OPA network. The different
links crossed by these packets are ordered from 1 to 7. In this example, we assume

Fig. 1   An example of usage of TCs, SLs and SCs [17]

12315

1 3

Providing quality of service in omni‑path networks﻿	

the use of two TCs (TC0 and TC1), three SLs (SL0, SL1 and SL2) and six SCs
(SC0, SC1, SC2, SC3, SC4 and SC5). Moreover, each SL is assigned with two SCs,
which, in turn, are mapped to two VLs. TC0 (i.e., traffic flows red and green) is used
for example for a request/response high level communication library such as Parti-
tioned Global Address Space protocol (PGAS)2. Let’s suppose TC0 is assigned with
SL0 (red traffic flow) and SL1 (green traffic flow), SL0 is mapped to SC0 and SC1,
and SL1 is mapped to SC2 and SC3. On the other hand, TC1 is used, for instance,
for storage communications. It is assigned with SL2, and SL2 is mapped to SC4 and
SC5. The main goal of assigning a pair of SCs for each SL is topology deadlock
avoidance, as it happens normally in torus topologies, while the SLs of TC0 are used
for avoiding protocol deadlocks. As we can see in the figure, packets can change of
SC link by link; however, the SL and TC are always consistent end-to-end [17].

2.2 � OPA simulation model

We have carried out the study presented in this work using simulation for being one
of the most popular technique to evaluate, verify and validate the behavior and per-
formance of high performance interconnection networks. There are multiple simula-
tion tools such as Garnet [23], xSim [24], etc. focused on on-chip networks. These
simulators allow full-systems simulations, feasible for on-chip networks, due to the
small network sizes. However, when the network grows to hundreds of elements,
the computational resources needed make full-systems simulation unapproach-
able. Moreover, the characteristics of the off-chip and on-chip traffic are disparate.
There are also multiple off-chip simulation tools such as CODES [25], SST [26],
etc. However, these simulation tools do not have support for any hierarchical cross-
bar switch architecture with QoS. Therefore, we have proposed an OPA-based simu-
lation model and a simulation tool called Hiperion based on the available public
information [4, 17]. It is based on previous tools that have been used for years in our
research group, and with multiple publications behind them [27, 28]. Our simulator
Hiperion gives us a deep knowledge of its operation and a wide flexibility regarding
the techniques that can be implemented and its interoperability.

Hiperion is a discrete-event based network simulator, which includes an OPA
simulation model that mimics the behavior of main OPA elements, such as switches,
links and network interfaces. The simulator main goal is to perform comparative
studies tuning a large range of parameters such as queue sizes, topology, routing,
packet sizes, scheduling algorithms, etc. The simulator is capable of running simu-
lations using a wide variety of synthetic traffic types such as random, uniform, bit-
reversal, bit-complement, etc., and MPI applications using the VEF trace framework
[29]. Performance and scalability of the interconnection network are evaluated using
several metrics: throughput, end-to-end latency, network latency, etc.

Figure 2 shows a detailed scheme of a 48-port OPA-based switch, which has been
implemented into Hiperion. The OPA switch model assumes that each port delivers
one flit per cycle. Hence, the bandwidth is defined based on the clock rate and the

2  Partitioned Global Address Space languages combine the programming convenience of shared mem-
ory with the locality and performance control of message passing.

12316	 J. Cano‑Cano et al.

1 3

flit size. However, the OPA hierarchical architecture has a large range of internal
links with different bandwidths [17]. The OPA model defines the input/output port
bandwidth (12.5 GB/s) as a reference, thereby an x3 internal link has a speed-up of
3 and so it may deliver 3 flits/cycle. The number of input and output links is rep-
resented as INPORTS:OUTPORTS in the crossbar elements, i.e. MPort xBars and
Central Crossbar. For instance, in Fig. 2, the MPort0 xBar has 4 input links and 6
output links (4:6), and the Central Crossbar has 24 input links and 48 output links
(24:48). The OPA model shown in this figure includes the following elements:

•	 Input buffers: They store the flits from the input ports. There is one input buffer
per input port.

•	 Routing unit: There is one routing unit per input buffer.
•	 MPort Xbar: This crossbar has 4 input links, one per input buffer; and 6 out-

put links: 4 links for the output buffers and 2 links for the Central Cross-
bar. Note that the 75 GB/s link to the Central Crossbar is represented in

Fig. 2   Diagram of the modeled OPA switch of 48 ports. For clarity, MPorts are unfolded in Input and
Output buffers

12317

1 3

Providing quality of service in omni‑path networks﻿	

this model as two x3 links, i.e, they may deliver 3 flits/cycle, resulting on
2 Links × 3 × 12.5 GB∕s = 75 GB∕s.

•	 Output buffers: They store the flits of the output ports. There is one output buffer
per output port.

•	 Input arbiter: Given an input buffer, it selects the virtual line (VL) that partici-
pates in the second allocator phase. The more VLs, the bigger the arbiter is.

•	 Output arbiter: Given an output buffer, it chooses which input port will transmit
flits. A flit can arrive at this output buffer coming from an input buffer or from
the Central Crossbar.

•	 Output scheduler: Given an output port, it chooses which VL will transmit flits to
the neighbor switch. It provides QoS to the OPA switch.

As stated before, Hiperion is a discrete-event based simulation tool for modeling
high-performance interconnection networks. Hiperion defines and implements the
following discrete events:

•	 IB (Input Buffering): A flit arrives at an input port and is stored in the corre-
sponding queue, depending on the VL. Each input buffer can receive 1 flit/cycle.
If that flit is a packet header flit, it is set as RT-ready, and the routing event is
called to determine the flit output port. In other case, the flit is set as X-ready,
it is stored on the input buffer and it waits to be moved to the appropriate buffer
in a Xbar event. When the output port is connected to the same Mport than the
input port, the flit is moved to an output buffer. In other case, the flit is moved
to a Central Crossbar buffer. For example, let’s suppose an OPA switch with 48
ports and 4 ports per MPort (Fig. 2). If a flit needs to travel from the input port 0
to the output port 5, the input port belongs to the MPort 0, which contains input
ports from 0 to 3, while the output port belongs to the MPort 1, which contains
output ports from 4 to 7. Therefore, the flit must cross the Central Crossbar to
arrive at MPort 1.

•	 RT (RouTing): Routes a packet and determines its output port when the packet
header flit is tagged as RT-ready. After that, the header flit is tagged as VA-SA-
ready and the input buffer storing this flit can be chosen in the first phase of
the allocation event. The RT event is only applied to header flits. Non-header
flits always follow the header flit, since OPA architecture implements virtual-
cut though as switching technique [17]. The routing function is configurable and
must be according to the simulated topology.

•	 VA-SA (Virtual Allocator and Switch Allocator): Performs the allocation using a
two-stage allocator:

–	 Virtual Allocator: Each input arbiter chooses a VL, only if its input buffer
contains at least one VA-SA-ready header flit. The winning VL will be allowed
to deliver a packet. Since the Central Crossbar links have VLs as well, the vir-
tual allocator is also performed on the input buffers of the Central Crossbar.

–	 Switch Allocator: Each output arbiter chooses an input buffer with a winning
VL. The winning input buffers will be allowed to move a packet to an output
buffer or to a Central Crossbar buffer, depending on the destination MPort.

12318	 J. Cano‑Cano et al.

1 3

Buffers allowed to transmit tag the top header flit as X-ready. A central buffer
has to arbitrate between the 4 input buffers which are connected to its MPort.
An output buffer has to arbitrate between the 24 Central Crossbar buffers and
its 4 MPort buffers.

	  Currently, both virtual and switch allocators implement round-robin arbiters.
However, we are developing more sophisticated arbiters able to provide applica-
tions with QoS.

•	 X (Xbar): Once the allocation is performed, the winning input and Central
Crossbar buffers transmit the first packet of their winning VLs to the appropri-
ate output buffer or Central Crossbar buffer. If a packet is moved from an input
buffer to a Central Crossbar buffer, the header flit is tagged again as VA-SA-ready
in order to perform a VA-SA event from Central Crossbar buffers to output buff-
ers. If the packet reaches an output buffer, their flits are tagged as OB-ready. The
bandwidth depends on the input/output pair. MPorts xbar can deliver 3 flits/cycle
regardless of the destination buffer, while the Central Crossbar xbar can deliver 4
flits/cycle.

•	 OB (Output Buffering): Each output scheduler chooses which VL will send flits
to the neighbor switch. The scheduler selects a VL with OB-ready packets and
enough credits to transmit at least one packet. When the last flit of the packet is
transmitted, (i.e., the tail flit), the output scheduler releases the winning VL and
selects a new VL. Each output port can send 1 flit/cycle. At this point, QoS and
packet preemption can be applied. Currently, three scheduling algorithms have
been implemented (Sect. 3), but packet preemption is not implemented yet.

VL buffer storage space is dynamically managed, i.e. the buffer space is shared by
all the VLs. The buffer storage space is divided according to the traffic requirements,
ensuring a minimum and a maximum amount of flits per VL. This prevents a single
VL from taking up all the flits in the buffer, causing starvation in the remaining VLs.
This dynamical buffer storage management strategy provides more flexibility than
static buffers [30].

The main QoS OPA support such as SCs, SLs, VLs, SL2SC and SC2VL tables,
etc., have also been implemented in Hiperion. There are some additional mecha-
nisms that have been implemented not directly related with QoS. However, they
elements are crucial in some cases. Some of them are: variable Maximum Transfer
Units (MTUs) per SL, message generation based on variable MTU sizes, variable
injection rate definition per SL, among others. The goal of these QoS mechanisms
and the simulation model implemented is to develop, test and compare different QoS
scheduling algorithms.

3 � Scheduling algorithms

The main goal of scheduling algorithms is to determine when packets from dif-
ferent SLs are delivered in order to satisfy the specified end-to-end latency and
bandwidth requirements. Not all scheduling algorithms are capable of satisfy both

12319

1 3

Providing quality of service in omni‑path networks﻿	

requirements, some are only able to fulfill bandwidth requirements. Moreover, in
the context of high-performance interconnection networks, scheduling algorithms
must meet two main characteristics: low computational complexity (the scheduler
latency must be smaller than the average packet latency) and low implementation
complexity (the scheduling algorithm is typically implemented in hardware and a
high implementation complexity implies a large silicon area).

In this section we detail three scheduling algorithm proposals adapted to the
context of hierarchical-crossbar-switch architectures, specifically, to the OPA
architecture.

3.1 � The round‑robin output scheduler

The round-robin output scheduler is the simplest output scheduler. The main goal of
a round-robin output scheduler is to distribute the total bandwidth among all SLs.
The bandwidth that each SL will obtain is 1

NumSLs
 , where numSLs is the total num-

ber of SLs. This scheduler could be based on an arbitration table or on an hardware
implemented algorithm. Although both approaches are feasible as long as the band-
width is properly distribute, we have chosen the arbitration table because the other
algorithms presented in this work are also based on arbitration tables, as we will
explain in Sects. 3.2 and 3.3. In fact, this scheduler can be implemented using the
SBT scheduler, equally distributing all the bandwidth among all the SLs. Table 1
shows an example of SBT scheduling table configured to work in a round-robin way.
The initial entry weights are not relevant as long as for a round-robin algorithm they
are equal on each table entry. For this reason, the details about how the round-robin
scheduler works can be found in Sect. 3.2. Note that the round-robin output sched-
uler does not provide any QoS differences. We have considered this scheduler in
order to establish a comparison baseline.

3.2 � The simple bandwidth table mechanism

Simple Bandwidth Table (SBT) is a table-based scheduler. It is one of the simplest
techniques to provide bandwidth differences in a high performance interconnection
network.

SBT scheduler is based on an arbitration table per output port with as many
entries as SLs are considered. Each table entry is assigned to one SL and the entries
store an entry weight. This weight represents how many packets an SL may deliver.
Every time that an SL delivers a packet, the entry weight is decremented until it
is equal to zero. Table 2 shows an example considering two SL, where SL0 has a
weight of 55 and SL1 has a weight of 45. If in a given output port, SL0 delivers 3

Table 1   Round-robin table QoS
algorithm sample

SL Weight

0 50
1 50

12320	 J. Cano‑Cano et al.

1 3

packets, the remaining weight will be 52. Therefore, the fraction of the total band-
width �i assigned to the SLi is

where N is the total number of SLs and weight is the entry weight assigned to each
SL. In the SBT arbitration table (Table 2), SL0 will get 55% of the total bandwidth
and SL1 will get 45% of the bandwidth. In our proposal, for the sake of simplicity,
∑N−1

j=0
weightj must be equal to 100. In this way, the bandwidth percentage of each

SL can be easily obtained.
The arbitration table is cycled through in a round-robin way when the entry

weight is equal to zero. The table is also cycled when the SL in transmission
becomes “inactive”, i.e. the SL has no packets to transmit3. When the sum of all
entry weights is zero, the initial entry weights are restored. Note that an SL can only
transmit when its weight is greater than zero. However, there is an exception: when
an active SL does not have enough weight left but it is the only active SL, the trans-
mission of packets is allowed. This exception avoids packet starvation and wasting
the link bandwidth.

Finally, realize that the bandwidth is distributed by SL, not VL. Otherwise, if
some SLs have a different number of VLs assigned than others, the total bandwidth
cannot be distributed correctly between the SLs. Let’s suppose two SLs and three
VLs in the network. SL0 can use two VLs and SL1 can use the remaining VL. We
want to distribute 50% of bandwidth to each SL and we assign the same weight to
each VL. Then, SL0 will get 2

3
 of the total bandwidth, while SL1 will only get 1

3
 . It

would also be possible to distribute traffic between SLs by VLs instead of SLs, but
this complicates the table configuration and offers no added benefit.

�i =
weighti

∑N−1

j=0
weightj

,

Table 2   Simple Bandwidth
Table QoS algorithm sample

SL Weight

0 55
1 45

3  From now on, we will refer as an inactive SL to that SL that has available weight in the arbitration
table but does not have packets to transmit.

12321

1 3

Providing quality of service in omni‑path networks﻿	

Algorithm 1 shows the generic mechanism of the SBT scheduler on every port.
Note that the first_flit() function allows to extract the first flit from a given VL queue
and the is_active() function determines if an SL is active (i.e. it has packets to trans-
mit) or not. Since OPA uses virtual cut-through as switching technique, these algo-
rithms are only applied to header flits, so that body and tail flits will always follow
the header flit at one flit distance. Furthermore, the SC identifier is the only QoS
identifier stored in packets [17]. For this reason, SC2SL tables are used to get the SL
identifier from the SC packet identifier.

The main advantages of SBT are its capacity to provide bandwidth differences
and to have a very low computational and implementation complexity (Sect. 3.2.1).
However, SBT is not able of providing latency differences, which could be crucial in
many scenarios.

3.2.1 � Complexity considerations

In terms of computational complexity, SBT is quite simple. In this case, arbitration
tables have as many table entries as SLs. OPA supports up to 32 SLs according to

12322	 J. Cano‑Cano et al.

1 3

[17]. Hence, in the worst case, if all table entries have to be looked over in order to
find the next active SL, just 32 table entries will be skipped.

One of the most computationally complex tasks in Algorithm 1 is the is_active()
function. However, the optimization strategy suggested in [20] may be used in order
to keep the complexity low. Regarding the implementation complexity, considering
an arbitration table per output port would require a large silicon area on hardware
implementations. Therefore, instead of keeping a table per output port, a single table
per switch with the structure shown in Table 3 may be used. The arbitration table
has as many columns as output ports (p) plus 2 extra columns ( p + 2 ) and as many
rows as SLs N. The first two columns show SLi identifiers and the associated weight
xi to the SLi . The other columns represent the remaining SL weights xi − �i,j for
each output port j. Every output port row is populated with the associated weight
to each SL. When

∑N−1

i=0
xi = 0 in a given column, the values from the Weight col-

umn are copied to the column of that port and thus the port will be allowed again to
deliver packets.

3.3 � The DTable scheduling mechanism

As explained in Sect. 3.2, SBT is not able to provide latency differences. Further-
more, SBT has other problems that we will discuss in Sect. 4. Therefore, we imple-
mented, adapted and tested the DTable scheduler [31] on our OPA-based simulation
model.

The DTable scheduler is based on an arbitration table with an structure similar
to SBT arbitration tables: a column for an SL identifier and another column for an
associated weight for each table entry and SL. However, there is an important dif-
ference between SBT and DTable arbitration tables: SBT arbitration tables have
as many table entries as SLs whilst DTable arbitration tables have a greater arbi-
trary number of table entries, e.g. 32, 64, 128, etc. This difference is used to provide
latency differences on SLs. The number of table entries and the maximum distance
between any pair of consecutive table entries assigned to the same SL allow to con-
trol the SL latency [32]. Note that now each SL can have multiple table entries, and
therefore, the bandwidth �i assigned to SLi is

Table 3   Arbitration table implementation with one table per switch

SL Weight Port 0 Port 1 . Port p - 1

0 x0 x0 − �0,0 x0 − �0,1 . x0 − �0,p−1

1 x1 x1 − �1,0 x1 − �1,1 . x1 − �1,p−1

2 x2 x2 − �2,0 x2 − �2,1 . x2 − �2,p−1

.
N − 1 xN−1 xN−1 − �N−1,0 xN−1 − �N−1,1 . xN−1,p−1 − �N−1,p−1

12323

1 3

Providing quality of service in omni‑path networks﻿	

where J is the set of table entries assigned to SLi and weight is the entry weight
assigned to the table entry. Moreover, each SL has assigned a deficit counter initially
set to 0. The deficit counters represent the weight that the scheduler owes to the SLs.
The purpose of this counter is explained further on.

When scheduling is needed, arbitration tables are cycled through sequentially in
a round-robin way until an active SL is found. The DTable scheduler has also an
accumulated weight counter which is equal to the sum of the selected table entry
weight and the SL deficit counter. The scheduler will deliver as many packets from
the selected SL as the accumulated weight allows. The accumulated weight is decre-
mented when packets are transmitted.

There are two possibilities that make the scheduler to select the next active table
entry:

1.	 The SL becomes inactive. In this case the remaining accumulated weight is dis-
carded and the deficit counter is set to zero.

2.	 The accumulated weight becomes smaller than the size of the packet at the head
of the queue. In this case the accumulated weight is saved in the deficit counter.

�i =

∑J−1

j=0
weightj

∑N−1

k=0
weightk

,

12324	 J. Cano‑Cano et al.

1 3

Algorithm 2 shows a generic DTable scheduler. When the scheduler gets the
“Next table entry assigned to an active SL” (line 19) the arbitration table is cycled
through in a round-robin way until an active SL is found. The function returns the
entry identifier and a VL associated to the selected SL. As stated in Sect. 2.1, an SL
may span multiple SCs. In that case, the function arbiters between the SCs belong-
ing to the same SL in a round-robin way, and it selects the VL through the SC2SL
tables. For instance, in a given configuration SC0, SC1 and SC2 have been associ-
ated to SL0 as well as VL0, VL1 and VL2 to SC0, SC1 and SC2, respectively. The
first time that SL0 is allowed to deliver packets, it will deliver packets from SC0 and
VL0, the second time SL0 will deliver packets from SC1 and VL1, etc. Obviously,
other SC selection strategy can be applied, such as dividing the accumulated weight
among SCs of the same SL.

12325

1 3

Providing quality of service in omni‑path networks﻿	

3.3.1 � The DTable scheduler and variable OPA MTUs

In our original OPA-based simulation model exposed in Sect. 2.2, the global MTU
is one packet of 128 bytes (i.e. 16 flits of 64 bits).

However, if the MTU is one packet sized in all SLs, and minimum entry weight
is also one packet sized, the deficit counter will never be used. Moreover, the main
advantage of the DTable scheduler is the use of different MTUs for different SLs
[33] which allows to decouple the bandwidth assignments from the latency require-
ments (see Sect. 3.3.2 for further details).

To achieve this, we have modified the delivery message system. Before sending
the message to the next network element, the DTable scheduler has to ensure that:
i) the entire message fits onto the neighbour receiving buffer and ii) there is enough
remaining weight for the selected VL. Therefore, SL_MTU tables are used, which
have as many entries as SLs and each entry stores the associated MTU of each SL.
The message generation is also based on those tables. For instance, if a given SL has
an MTU of three packets, the SL will always generate messages of three packets.
Moreover, when a transmission is performed, the SL will deliver three consecutive
packets. Note that because of the switching technique used (i.e. virtual-cut through)
and the atomic delivering message system, all flits of the same message are stored,
sent and received consecutively. Then, VL buffers must have enough space (i.e. flow
control credits) for storing at least the biggest MTU in the system.

3.3.2 � DTable configuration methodology

In order to provide applications, flows or SLs specific QoS differences, DTable arbi-
tration tables must be configured in a proper way. DTable scheduling mechanisms
themselves do not provide QoS without applying a proper configuration methodol-
ogy [19].

As stated in Sect. 3.3, the maximum distance between any pair of consecutive
table entries assigned to the same SL allows to control the latency distribution
among SLs [32]. In a given arbitration table configured to meet their latency require-
ments, we would like to be able to assign the SLi a certain bandwidth �i in a flexible
way. In other words, this means to keep the minimum bandwidth min�i that can be
assigned to the SLi as small as possible, and the maximum bandwidth max�i assign-
able to the SLi as large as possible. Table 4 shows the definition of all parameters
involved in the configuration methodology.

The maximum total weight that can be divided among the table entries is M × N .
However, we have fixed it to a lower value called pool, which is determined by the
k configuration parameter. Sect. 3.3.1 explains that a specific MTU value can be
assigned for each SL. Then, the bandwidth �i assigned to the SLi is:

�i =

∑J−1

j=0
weightj

pool
,

12326	 J. Cano‑Cano et al.

1 3

where J is the number of table entries assigned to the SLi and weightj is the weight
assigned to the table entry j. Therefore, min�i and max�i assignable bandwidth val-
ues to the SLi are:

Let’s define M and pool using the GMTU parameter and the decoupling parameters
w and k:

where k ≤ w because the bandwidth pool has to be smaller than N ×M . Hence,
the maximum and minimum bandwidth depend not only on the proportion of table
entries ni , but also on the w and k parameters and the proportion between their spe-
cific MTUi and GMTU:

Therefore, parameters w, k and the specific MTUi assigned to each SL allow to vary
the maximum and minimum bandwidth assignable to SLs without affecting the final
latency [19].

3.3.3 � DTable bandwidth correction algorithm

Once the configuration methodology has been applied, we can choose a bandwidth
�i for each SL between the given min�i and max�i range. Then, the total entry
weight Tweighti has to be computed as pool × �i . After that, we have to obtain the
entry weight as Tweighti

ni
 for each SL and fill in arbitration tables with these values. As

min�i =
ni ×MTUi

pool
, max�i =

ni ×M

pool
.

M = GMTU × w, pool = N × GMTU × k,

min�i =
ni ×MTUi

N × GMTU × k
,

max�i =
ni × GMTU × w

N × GMTU × k
=

ni × w

N × k
.

Table 4   Arbitration table parameters

max�i, min�i Maximum/Minimum bandwidth assignable to the ith SL

�i Bandwidth assigned to the ith SL
N Number of entries of the arbitration table
n
i Number of entries assigned to the ith SL

GMTU General maximum transfer unit
MTUi Specific maximum transfer unit of the ith SL
M Maximum weight per table entry
pool Bandwidth pool
k Bandwidth pool decoupling parameter
w Maximum weight decoupling parameter

12327

1 3

Providing quality of service in omni‑path networks﻿	

stated in Sect. 3.3, the entry weight represents how many packets can be delivered
from an active SL, so it must have at least enough weight to deliver one packet/
MTU. Moreover, it must be an integer value because float numbers will produce
some issues:

•	 The fractional part will only be useful once it is accumulated in the deficit coun-
ter and the sum is equal to one packet/MTU.

•	 The final hardware implementation will require more silicon area due to IEEE
754 floating point representation [34].

•	 The final entry weight may not be enough for delivering a packet/MTU from an
active SL without cycling through arbitration tables several times.

To put this right, the entry weight obtained as Tweighti
ni

 will always be rounded up.
However, this could produce some bandwidth imprecisions. Table 5 shows an exam-
ple about this issue. In this example, each SL will get �

i
=

1

pool
 . However, as seen in

the R�i column, the real SLi bandwidth is �i ≠
1

pool
 . Specifically R�0 =

448

1216
 ,

R�1 =
384

1216
 and R�2 =

384

1216
.

To solve this issue, the DTable bandwidth correction algorithm is applied. First,
the bandwidth difference between �i and R�i is obtained. The column �i − R�i on
Table 5 shows the bandwidth differences. Secondly, the amount of extra weight that
SLi table entries require, called Dweighti , is calculated:

For instance, in Table 5 we have Dweight0 = −(0.03502 × 1216) = −43 ,
Dweight1 = − − (0.01751 × 1216) = 21 , etc. Finally, the Dweighti value is added to
∑ni−1

j=0
weightj getting Fweighti . As can be seen in Table 5, in the column F�i , final

bandwidths are very close to the desired ones.
Another important aspect is how and when Dweighti is added to arbitration tables.

Assuming that the DTable configuration and adjustment are done by the FM during
the starting up process, the simplest strategy is: (i) to populate a pre-arbitration table
with the bandwidth imperfections discussed here; (ii) to perform the DTable cor-
rection algorithm and (iii) to send the final arbitration table to network elements.
However, there is a large range of possible ways to add Dweighti . In our OPA-based
simulation model, the algorithm always starts from the end of the arbitration table
incrementing weight to each entry weight in a round-robin way. Table 6 shows an
arbitration table where SLs have a Dweighti of -3, 1 and 2 for SL0, SL1 and SL2
respectively.

The first three rows show the arbitration table before running the DTable band-
width correction algorithm and the last three rows after running it. The first and
fourth rows show the table entry identifiers and the third and sixth rows the SL
identifier and the associated weight respectively. The algorithm starts with SL0 and
the entry 6 performing 4 + (−1) = 3 , moves to the entry 4 performing 4 + (−1) = 3
and then finishes with the entry 2 performing 4 + (−1) = 3 . Then, the algorithm

Dweighti = −1 × Round((R�i − �i) ×

N−1
∑

j=0

weightj)

12328	 J. Cano‑Cano et al.

1 3

Ta
bl

e 
5  

D
Ta

bl
e

co
nfi

gu
ra

tio
n

ex
am

pl
e

w
ith

 a
dj

us
tm

en
t e

rr
or

s

N
 =

 1
28

, G
M

TU
=

 3
, w

 =
 4

, k
 =

 3

SL
n
i

M
T
U

i
m
in
�
i

m
ax
�
i

�
i

p
o
o
l

E.
W

.
T
w
ei
g
h
t i

n
i−
1

∑

j=
0

w
ei
g
h
t j

R
�
i

R
�
i
−
�
i

D
w
ei
g
h
t i

F
w
ei
g
h
t i

F
�
i

0
64

1
0.

05
55

6
0.

66
66

7
0.

33
33

4
11

52
7

38
4.

07
68

44
8

0.
36

84
2

0.
03

50
2

−
4
3

40
5

0.
33

33
3

1
32

2
0.

05
55

6
0.

33
33

3
0.

33
33

3
11

52
12

38
3.

96
16

38
4

0.
31

57
9

−
0
.0
1
7
5
1

21
40

5
0.

33
33

3
2

32
3

0.
08

33
3

0.
33

33
3

0.
33

33
3

11
52

12
38

3.
96

16
38

4
0.

31
57

8
−
0
.0
1
7
5
1

21
40

5
0.

33
33

3
To

ta
l

12
8

1
11

52
12

16
12

15

12329

1 3

Providing quality of service in omni‑path networks﻿	

continues with SL1 and the entry 5 performing 3 + 1 = 4 . Finally, the algorithm
moves to SL2, it starts with the entry 7 performing 3 + 1 = 4 and moves to the entry
3 performing 3 + 1 = 4 . Once all Dweighti are zero for each SL, the algorithm stops.
On the other hand, it could be interesting to study a different approach to find out if
there are differences among start from the button and the top of the table. However,
it is essential that the system checks during the increasing process if the weight on
the entries is enough to deliver a packet/MTU.

4 � Performance evaluation

In this section, we evaluate the performance of DTable and SBT proposals against a
round-robin scheduler as the baseline reference. We have used our simulator Hipe-
rion which implements the simulation model explained in Sect. 2.2, as well as the
QoS mechanisms detailed in Sect. 2.1. Note that although we use OPA for configur-
ing the network parameters, our proposal can be applied to any hierarchical-cross-
bar-switch based interconnection network.

We have also evaluated the QoS mechanisms in two different scenarios. In the
first scenario, the network has been evaluated using a synthetic traffic model com-
posed of several traffic flows. These flows represent the network load generated by
applications commonly found in cluster and data centers. In the second scenario, the
synthetic HPC flow is replaced by the traffic of real MPI applications using the VEF
trace framework [29].

In Sect. 4.1 we present the network model used in the performance evaluation.
Section 4.2 presents the synthetic scenario and its results, while Sect. 4.3 includes
the evaluation and results obtained using the MPI traces.

4.1 � Network model

We have used two different interconnection topologies with two different layouts: a
2D Torus with 8x8 switches, a 3D Torus with 8x8x4 switches, a 8-ary 3-tree with
192 switches and a 24-ary 2-tree with 48 switches. The configuration of each sce-
nario is the following:

•	 The 2D Torus configuration has 512 endpoints (NICs). Each switch has 48 ports:
eight single links to endpoints and four 10x trunk links to neighboring switches.

Table 6   Arbitration table
example

0 1 2 3 4 5 6 7

SL, W SL, W SL, W SL, W SL, W SL, W SL, W SL, W
0, 4 1, 2 0, 4 2, 3 0, 4 1, 2 0, 4 2, 3
0 1 2 3 4 5 6 7
SL, W SL, W SL, W SL, W SL, W SL, W SL, W SL, W
0, 4 1, 2 0, 3 2, 4 0, 3 1, 3 0, 3 2, 4

12330	 J. Cano‑Cano et al.

1 3

•	 The 3D Torus configuration has 1024 endpoints connected, the switches have a
radix of 28 with 4x trunk links.

•	 The 8-ary 3-tree has been configured with 512 NICs and 16-port switches.
•	 The 24-ary 2-tree has a total of 576 endpoints and 48-ports switches.

We have chosen these topologies because they are very common and well known
solutions in high performance environments. The detailed explanation about the
switch architecture can be found in Sect. 2. The SL2SC and SC2VL tables configu-
ration is shown in Table 7. For instance, the SL VO has two SCs, SC0 and SC1, and
they have VL0 and VL1 associated respectively. Further details about SLs will be
provided in Sect. 4.2.1.

The switch model implements a credit-based flow control protocol. The pack-
ets will be only transmitted when there is enough buffer space in the next network
device. Therefore, packets are not dropped when congestion appears. Traffic with
similar characteristics is aggregated via SLs, the packet scheduling is performed
with SLs and flow control via VCs. According to [17], the GMTU of OPA messages
may be up to 8KB, but we have used a GMTU of 1KB in this evaluation for the sake
of simplicity. Nevertheless, the evaluation may be performed with greater MTUs
using larger buffers. The credit-based flow control unit is 64 bytes, and thus, the
GMTU is up to 16 credits.

As stated before, we have used input, output and central buffer queuing architec-
ture. The buffer capacity is 65,536 bytes (64 × GMTU) per input and output ports
of switches and 32,768 bytes (32 × GMTU) at the network interfaces. The central
crossbar buffer capacity is 131,072 bytes (128 × GMTU) per MPort. If an applica-
tion wants to inject a packet into a network interface queue but the queue is full, we
assume that the packet is stored in the application layer queue.

4.2 � Performance evaluation using the synthetic traffic model

In this section we explain the details of the evaluation performed using synthetic
traffic. Section 4.2.1 presents the traffic model. The scheduler configurations for the
different QoS mechanisms are shown in Sect. 4.2.2. Finally, Sect. 4.2.3 shows and
analyzes the obtained results.

Table 7   SL2SC and SC2VL
tables configuration

SL2SC SC2VL

SL SC SC VL SC VL

VO 0 1 0 0 5 5
VI 2 3 1 1 6 6
CL 4 5 2 2 7 7
BE 6 7 3 3 8 6
BK 8 9 4 4 9 7

12331

1 3

Providing quality of service in omni‑path networks﻿	

4.2.1 � Traffic model

Table 8 shows each traffic type considered. There are five types of traffic flows, three
SLs with explicit QoS requirements such as latency and bandwidth, and two SLs for
best effort traffic with slight different levels of priority among them.

The packets from each SL have been simulated using different Constant-Bit-Rate
(CBR) distributions. We have selected the following packet payloads for each SL:

•	 Voice (VO) traffic is generated using a packet payload of 128 bytes. According to
[35], the payload value of voice packets ranges from 20 to 160 bytes.

•	 Video (VI) traffic is generated using a packet payload of 256 bytes. According to
[36], a payload ranging from 100 bytes to 64KB is feasible.

•	 Controlled Load (CL) traffic is generated using a packet payload of 512 bytes,
representing a possible average packet payload of many HPC application com-
munications.

•	 The traffic of the best effort SLs, Best-effort (BE) and Background (BK), is gen-
erated using a packet payload of 1024 bytes.

For all cases, the destination pattern is uniform in order to fully load the network.
Note that we have chosen a heterogeneous scenario where multiple types of traffic
are mixed. However, our proposal is aimed to any environment where flows with dif-
ferent QoS requirements coexist in a high performance network.

4.2.2 � Simulated scenario and scheduler configurations

We have supposed a scenario where the goal is to obtain 10% of the egress link
bandwidth and the lowest packet latency to the voice traffic; 30% of bandwidth and a
higher packet latency than the voice traffic to the video traffic; around 50% of band-
width and a higher packet latency than voice traffic to the controlled load traffic and
the remaining 10% of bandwidth and the highest latency to the best effort traffic.
The bandwidth percentages are intended to represent, as close as possible, a realistic
combination of traffic and QoS needs from applications with different requirements.
We have configured the schedulers according to these traffic requirements.

Table 8   Set of SCs considered

Type SL Description Traffic pattern Message size

QoS Voice (VO) Audio and online videogames
backend traffic

CBR connections 128B

QoS Video (VI) Video streaming traffic CBR connections 256B
QoS Controlled load (CL) High performance computing

traffic
CBR connections 512B

Best-effort Best-effort (BE) Backup protocols, email system,
etc.

CBR connections 1024B

Best-effort Background (BK) Rest of applications and services CBR connections 1024B

12332	 J. Cano‑Cano et al.

1 3

As mentioned in Sect. 3.2, SBT is the simplest QoS algorithm in terms of com-
plexity and configuration. We have filled in the SBT tables with a weight propor-
tional to the percentages mentioned before for each table row. That is, a weight of 10
for the first table row (VO traffic), a weight of 30 for the second table row (VI traf-
fic), etc. SBT does not require any more configurations. Note, however, that the total
table weight has to be 100.

In the case of the DTable scheduler, the configuration process is more complex.
We have applied the decoupling methodology explained in Sects. 3.3 and in [31],
distributing the table entries among SLs according to latency requirements. To do
that, we have established the maximum distance of two consecutive table entries of
the same SL as follows: a maximum distance of two entries for SL VO and a maxi-
mum distance of 16 to SL BE and SL BK. Table 9 also shows the total number of
table entries (#entr.) and the proportion of table entries given to each SL (%entr.).
For maximum flexibility, the MTU of each SL has been established as small as the
expected packet size of each traffic type. Specifically, we have set an MTU of 128
bytes for VO, an MTU of 256 bytes for VI, an MTU of 512 bytes for CL and an
MTU of 1024 bytes, which is the maximum, for BE and BK traffic.

Finally, we have configured proper values for w and k parameters. The main con-
dition that we have taken into account is that we want for SL CL a bandwidth several
times higher than the proportion of table entries assigned. Moreover, the SL VO has
assigned a high proportion of table entries, whilst it requires a small proportion of
bandwidth. However, it is important to keep the k parameter value as small as pos-
sible in order to obtain good latency performance. We have finally chosen a value of
8 for w and a value of 2 for k. This combination of values allows us to get a [ min�i ,
max�i ] range that fits within the bandwidth needed. Table 9 shows the minimum
and maximum bandwidth that may be assigned to each SL with this configuration.

Table 10 shows the total amount of traffic that each SL injects, expressed in flits/
cycle/NIC (Inj. column). This table also shows the total weight (T.W.) that we have
distributed among the table entries of each SL and the weight assigned to each
table entry (E.W.) of each SL. Note that the SL VO and the SL CL have an E.W.
of 6-7 and 130 respectively, due to the DTable bandwidth correction algorithm
(Sect. 3.3.3). On the one hand, the SL VO has a Dweight0 = −32 and therefore the
first 32 table entries have a weight of 7 and the next 32 table entries have a weight of
6. On the other hand, the SL CL has a Dweight2 = 32 and therefore each table entry

Table 9   Application of the
decoupling methodology

N = 128, GMTU= 16, w = 8, k = 2

SL Distance #entr. %entr. MTUi min�i max�i

VO 2 64 50 128 0.03125 2
VI 4 32 25 256 0.03125 1
CL 8 16 12.5 512 0.03125 0.5
BE 16 8 6.25 1024 0.03125 0.25
BK 16 8 6.25 1024 0.03125 0.25

Total 128 100 0.15625 4

12333

1 3

Providing quality of service in omni‑path networks﻿	

has a weight of 130. The rest of the SLs are not affected by the DTable bandwidth
correction algorithm due to the fact that the obtained bandwidth is equal to the con-
figured bandwidth. Columns R�i and F�i show the bandwidth percentage assigned
to each SL before and after applying the bandwidth correction algorithm, respec-
tively. Without the adjustment, SLs VO and CL would get 11% and 49% instead
of the desired 10% and 50%, respectively. In this specific example, the bandwidth
percentage difference is 1%. Nevertheless, in a scenario where link bandwidths are
up to 12.5 GB/s, those differences could have a significant impact in the application
execution over time. Besides, without the bandwidth correction algorithm, the sys-
tem administrators would be forced to find an appropriate combination of parame-
ters, i.e. a combination of MTU, k and w values, that would allow them to obtain the
required bandwidth distribution being, in some cases, not possible. Note that in the
case of SBT, the scheduler has only one entry for each SL, because entry weights
and the total weight are equal.

4.2.3 � Simulation results using the synthetic workload

In this section, simulation results are shown. The values shown for each injection
rate are the average of 30 different simulations varying the seed of the random num-
ber generation. We have used two metrics to evaluate the networks and the different
QoS mechanisms:

•	 End-to-end latency: Message latency from generation to delivery. It is the latency
that users will experience.

•	 Normalized SL throughput: Total amount data expressed in flits/cycle/NIC trans-
mitted through the interconnection network. This metric has been divided by SL
and normalized to the total throughput.

Figures 3a, c, 4a and c show the end-to-end latency in the 2D Torus, 3D Torus,
8-ary 3-tree and 24-ary 2-tree topologies, respectively. Note that we have repre-
sented each SL in different QoS algorithms with the same color and line pattern, and
each SL is represented always with the same point style, e.g. SLs when DTable (DT)

Table 10   Bandwidth
configuration of DTable and
SBT schedulers

SL Inj. Scheduler configuration

DTable SBT

#entr. E.W T.W. R�i F�i #entr. E.W. T.W.

VO 0.1 64 6–7 416 0.11 0.1 1 10 10
VI 0.3 32 39 1248 0.3 0.3 1 10 10
CL 0.5 16 130 2080 0.49 0.5 1 50 50
BE 0.05 8 26 208 0.05 0.05 1 5 5
BK 0.05 8 26 208 0.05 0.05 1 5 5
Total 1 128 4160 5 100

12334	 J. Cano‑Cano et al.

1 3

is used are represented with a circle and the SL VO is plotted with a line-dot pattern
and a blue colour, SLs when SBT is used are represented with a square, SLs when
round-robin baseline (RR) is used are represented with the cross symbol.

As explained in Sect. 3.2, SBT and RR algorithms do not provide latency differ-
ences, which can be seen in end-to-end latency figures: the more generation ratio is
assigned to SLs, the more latency they have. The only exception is in the case of SLs
BE and BK, which achieve a slightly higher latency because of sharing the VLs. For
instance, the SL VO has the same injection rate as SLs BE and BK combined and
the best-effort SLs achieve higher latency values when SBT or RR are used. Refer-
ring DTable end-to-end latency, in some cases SLs get more latency than SBT or
RR. This is because DTable does not reduce the overall latency to ensure the latency
requirements, but it splits the total latency between SLs based on table entries dis-
tance. Given that, for example, SL VO using DTable gets a higher latency than the

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

En
d

to
 e

nd
 L

at
en

cy
 (n

s)

Injec�on rate (Flits/Cycle/NIC)

VO-DT
VI-DT

CL-DT
BE-DT
BK-DT

VO-RR
VI-RR

CL-RR

BE-RR
BK-RR

VO-SBT
VI-SBT

CL-SBT
BE-SBT
BK-SBT

(a) 2D Torus

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

N
or

m
al

ize
d

Th
ro

ug
hp

ut
 (%

)

Injec�on rate (Flits/Cycle/NIC)

(b) 2D Torus

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

En
d

to
 e

nd
 L

at
en

cy
 (n

s)

Injec�on rate (Flits/Cycle/NIC)

(c) 3D Torus

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

N
or

m
al

ize
d

Th
ro

ug
hp

ut
 (%

)

Injec�on rate (Flits/Cycle/NIC)

(d) 3D Torus

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

En
d

to
 e

nd
 L

at
en

cy
 (n

s)

Injec�on rate (Flits/Cycle/NIC)

(e) 2D Torus

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

En
d

to
 e

nd
 L

at
en

cy
 (n

s)

Injec�on rate (Flits/Cycle/NIC)

(f) 3D Torus

Fig. 3   Performance comparison of each SL using a 2D Torus topology (3a, b and e) and a 3D Torus
topology (3c, d and f). Results in Fig. 3a and c refer to end-to-end latency, results in Fig. 3b and d refer to
normalized throughput and results in Fig. 3e and f refer to end-to-end DTable latency

12335

1 3

Providing quality of service in omni‑path networks﻿	

same SL when SBT or RR are used, but SL CL with DTable gets lower latency than
this SL with SBT or RR. Note that in Fig. 4a and c the SL CL in the SBT and RR
tests is off the chart. We have decided to leave them outside for the sake of clarity,
otherwise, the rest of the lines would be too close to each other. The end-to-end
latency for the injection rates of 1 flit/cycle/NIC is over 4,500 ns in both cases.

Figures 3b, d, 4b and d show the normalized throughput achieved on each topol-
ogy configuration. DTable obtains a normalized throughput very close to the desired
one with an error of ± 2%. In the case of SBT, it gets an error greater than DTable,
specifically, it gets almost the same bandwidth division as the RR scheduler. These
results suggest that SBT is not suitable for high-performance interconnection net-
works. The maximum throughput performance for each configuration is: 0.94 flits/
cycle/NIC with DTable and 0.8 flits/cycle/NIC with SBT or RR for 2D Torus; 0.78
flits/cycle/NIC with DTable and 0.68 flits/cycle/NIC with SBT or RR for 3D Torus;

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

En
d

to
 e

nd
 L

at
en

cy
 (n

s)

Injec�on rate (Flits/Cycle/NIC)

VO-DT
VI-DT

CL-DT
BE-DT
BK-DT

VO-RR
VI-RR

CL-RR

BE-RR
BK-RR

VO-SBT
VI-SBT

CL-SBT
BE-SBT
BK-SBT

(a) 8-ary 3-tree

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

N
or

m
al

ize
d

Th
ro

ug
hp

ut
 (%

)

Injec�on rate (Flits/Cycle/NIC)

(b) 8-ary 3-tree

 500

 1000

 1500

 2000

 2500

 3000

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

En
d

to
 e

nd
 L

at
en

cy
 (n

s)

Injec�on rate (Flits/Cycle/NIC)

(c) 24-ary 2-tree

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

N
or

m
al

ize
d

Th
ro

ug
hp

ut
 (%

)

Injec�on rate (Flits/Cycle/NIC)

(d) 24-ary 2-tree

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

En
d

to
 e

nd
 L

at
en

cy
 (n

s)

Injec�on rate (Flits/Cycle/NIC)

(e) 8-ary 3-tree

 0

 500

 1000

 1500

 2000

 2500

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

En
d

to
 e

nd
 L

at
en

cy
 (n

s)

Injec�on rate (Flits/Cycle/NIC)

(f) 24-ary 2-tree

Fig. 4   Performance comparison of each SL using a 8-ary 3-tree topology (4a, b and e) and a 24-ary
2-tree topology (4c, d and f). Results in Fig. 4a and c refer to end-to-end latency, in Fig. 4b and d refer to
normalized throughput and in Fig. 4e and f refer to end-to-end DTable latency

12336	 J. Cano‑Cano et al.

1 3

0.95 flits/cycle/NIC with DTable and 0.85 flits/cycle/NIC with SBT or RR for 8-ary
3-tree; and 0.95 flits/cycle/NIC with DTable and 0.8 flits/cycle/NIC with SBT or RR
24-ary 2-tree.

DTable achieves more throughput because the scheduler has a hit rate higher than
SBT or RR, and the fact that the scheduler does not try to inject long bursts of pack-
ets helps to significantly reduce the head-on-line blocking.

Regarding the topology configurations, in terms of end-to-end latency, Torus sce-
narios show a higher latency values in all SLs before and after the network reaches
saturation point (Fig. 3a, c, e and f). Also, Torus topologies penalize less the best-
effort SLs after the saturation point than k-ary n-tree configurations, i.e. the latency
of all SLs increases progressively as the injection rate increases. The expected
behavior is that the best-effort SLs increase its latency as much as possible before
increasing the latency of high priority SLs. This fact is very obvious in the 3D Torus
Fig. 3d. The k-ary n-tree configurations keep the high priority latencies closer to
each other than nD Torus topologies, which means that k-ary n-tree topologies seg-
regate the traffic better than the nD Torus scenarios. Results do not show significant
differences in terms of achieved throughput per SL. Only the 3D Torus topology in
Fig. 3b shows a slight throughput reduction in SLs using DTable scheduler and the
network gets congested earlier than others. This happens because the head-of-line
blocking on the 3D Torus topology is stronger than on the other networks, due to
this topology has more endpoints and thinner trunk links than the 2D Torus topol-
ogy. Nevertheless, the DTable scheduler is able to keep the bandwidth distribution
very close to the expected distribution.

Finally, Figs. 3e, f, 4e and f show the end-to-end latency of DTable SLs. The
main aim of these figures is to show the latency differentiation among SLs. We
have established that the SL VO must have the lowest latency, the SL VI must have
latency higher than the SL VO and so on. As can be seen, SLs get a latency propor-
tional to the desired ones. After the network gets saturated, i.e. the NICs inject more
packets per cycle that they are able to deliver, SLs entry distances are more clear and
the latency differentiation is more obvious.

SBT and RR achieve similar behaviors before the network gets saturated. Their
results are practically the same because both algorithms work in the same way and,
before saturation, each SL can inject as much flits as the NICs generate. However,
when saturation appears, there are differences because SBT will try to adjust the
throughput to the desired, while RR will try to give to each SL 1

NumSLs
 of the avail-

able bandwidth. Note that differences are more clear with higher injection rates.
Nevertheless, we have decided not to include these ratios because are just theoretical
injection rates.

4.3 � Scenario using application trace files

As stated in Sect. 2.2, Hiperion includes support for MPI application trace files
using the VEF trace framework [29]. The traces are a very representative way to
know how a real HPC application will behave in any interconnection network simu-
lator without requiring a complex system to run the applications. Therefore, we have

12337

1 3

Providing quality of service in omni‑path networks﻿	

also used trace files for performing more representative experiments. We expect to
see how a poor QoS assignment or the absence of QoS degrades the system perfor-
mance in terms of application runtime. Hence, those experiments will give us a bet-
ter perspective on how OPA behaves using traffic from real MPI applications.

We have carried out experiments using multiple trace files obtained from dif-
ferent MPI applications: NAMD (NAMD) [37], a parallel application for simulat-
ing large biomolecular systems; GROMACS (gro) [38], a scientific application to
perform molecular dynamics; and LINPACK (HPL) and MPIRandomAccess appli-
cations from of the HPCC Benchmark Suite [39], which is one of the most used
benchmark for evaluating supercomputers. These applications have run considering
512 tasks. On each experiment, we have used the SLs CL and BE, one carrying
all the trace file traffic and the other with CBR connections detailed in Sect. 4.2.1
and vice-versa. The purpose of the CBR traffic is to introduce background network
workload in order to see how the output scheduling algorithm distinguishes between
traffic classes. Otherwise, there would be no competition for resources and the trace
would occupy them all, making no difference between using QoS or not.

We have performed several experiments for each trace file varying the injection
rate of the background traffic (1%, 5%, 10% and 20%) and the SL at which the trace
file is injected (SL CL and SL BE). This combination reveals us the scheduler and
architecture behavior when the application could use more or less network resources
and when the application has to compete harder for resources, because the increase
of the background traffic will try to use them. Those injection rate values have been
chosen because they allow us to complete the experiments in a reasonable amount
of time while significant results can be extracted. Also, we have run the trace file
without any background traffic and QoS support to get the execution time baseline.

We have used DTable as the output scheduling algorithm with the configuration
shown in Table 10. The results of RR are also included in order to compare the
application performance without QoS mechanism. From the results obtained with
the synthetic workload, we have considered DTable more interesting for this experi-
mentation than SBT. For this reason, and for the sake of clarity and not overloading
the figures with too much information, we have not included the SBT scheduler in
the results.

In those experiments, we have used the same network configuration than the
exposed in Sect. 4.1. We have only changed the interconnection topologies, since
the trace evaluation is limited by the number of tasks of the trace. Since we have
only available 512-task traces and this size is not enough to fulfill the systems pre-
sented on Sect. 4.1, we have chosen two different topologies: a 2D Torus with 4x4
switches and a 8-ary 2-tree with 16 switches. The configuration of each topology is
the following:

•	 The 2D Torus configuration has 128 NICs. Each switch has 48 ports: eight single
links to NICs and four 10x trunk links to neighboring switches.

•	 The 8-ary 2-tree has been configured with 64 NICs and switches with 16 ports.

To analyse the results of these experiments, we have used the normalized total exe-
cution time. It is expressed as the percentage of the execution time between the QoS

12338	 J. Cano‑Cano et al.

1 3

scenario with background traffic and the scenario without background traffic QoS
support.

4.3.1 � Simulation results

In this section, simulation results using the application traces are shown. Figures 5
and 6 show the bandwidth differences produced by DTable using trace files with
the 8-ary 2-tree and the 2D Torus configurations, respectively. Those topologies as
well as the experiment configurations are detailed in Sect. 4.3. Each bar in Figs. 5
and 6 represents the normalized execution time, expressed in percentage, between
the trace file with background traffic and QoS and the same trace file without QoS
enabled. Those percentages have been calculated for each SL. For example, in Fig. 5
NAMD-CL result within an injection rate of 0.01 flits/cycle/NIC is calculated run-
ning a simulation where: i) the QoS is enabled; ii) the NAMD trace file is injected
by the SL CL; and iii) the background traffic is generated in the SL BK at injection
rate of 0.01 flits/cycle/NIC. The execution time of this simulation is compared with
the obtained using the NAMD trace disabling the QoS and removing the background
traffic. This process has been performed to calculate each result.

Regarding the results shown in Figs. 5 and 6, the total execution time increases
with the injection rate, being the MPIRandomAccess trace file the most time-con-
suming in both topologies. On each experiment performed, the results of SLs CL
and BK using the same trace file, regardless of the background traffic injection
rate, is always lower in the case of the CL SL. This fact is more obvious as the
background traffic injection ratio increases. This means that the DTable scheduling

 100

 110

 120

 130

 140

 150

 160

0.01 0.05 0.1 0.2

N
or

m
al

ize
d

�m
e

(%
)

Injec�on rate (Flits/Cycle/NIC)

DT-CL
DT-BK
RR-CL
RR-BK

(a) HPL

 100

 110

 120

 130

 140

 150

 160

 170

 180

 190

0.01 0.1 0.2 0.2

N
or

m
al

ize
d

�m
e

(%
)

Injec�on rate (Flits/Cycle/NIC)

(b) NAMD

 100

 110

 120

 130

 140

 150

 160

 170

 180

0.01 0.05 0.1 0.2

N
or

m
al

ize
d

�m
e

(%
)

Injec�on rate (Flits/Cycle/NIC)

(c) Gro

 100

 120

 140

 160

 180

 200

 220

 240

 260

 280

0.01 0.05 0.1 0.2

N
or

m
al

ize
d

�m
e

(%
)

Injec�on rate (Flits/Cycle/NIC)

(d) MPIRandomAccess

Fig. 5   Performance comparison of 8-ary 2-tree topology using trace files and background traffic

12339

1 3

Providing quality of service in omni‑path networks﻿	

output algorithm is able to properly segregate the traffic flows because the SL CL
has much more resources assigned than the SL BK. Therefore, although the SL BK
is trying to progressively allocate more resources, DTable is properly limiting the
amount of resources it can use. As the injection rate of the background workload
increases, the differences between the SLs CL and BK are increased. This is due to
the fact that as the background workload increases, it tries to use more resources and
it is penalized by DTable increasing its execution time. At low background injec-
tion rates, the differences between SLs CL and BK are in the range of 1% to 5%
because they do not have to compete strongly for resources as the network has suf-
ficient capacity to serve both SLs.

For both topology configurations, in the scenarios where a RR output scheduler,
i.e. no QoS is provided, the application execution times are higher than in the sce-
narios where DTable scheduler is used. Those execution times are even higher at
low background traffic injection rates. Hence, the DTable improves the applications
performance by distributing the available network resources.

Comparing the results obtained in Figs. 5 and 6, the trend of the results is the
same. However, the applications trend to require more time to complete its execu-
tion in the 2D Torus topology. This variation is due to the 2D Torus topology has a
smaller radix and a larger number of connected NICs than the 8-ary 2-tree. The per-
centage differences between SLs using DTable in both topologies do not show sig-
nificant differences. Therefore, the topology configuration does not have any impact
on the DTable output scheduler resources distribution. Nevertheless, this is not true
in the case of RR were the percentage differences between SLs fluctuate depending
on the topology.

(a) HPL (b) NAMD

(c) Gro

Injec�on rate (Flits/Cycle/NIC)

 100

 110

 120

 130

 140

 150

 160

 170

0.01 0.05 0.1 0.2

N
or

m
al

ize
d

�m
e

(%
)

DT-CL
DT-BK
RR-CL
RR-BK

(a) HPL
Injec�on rate (Flits/Cycle/NIC)

 100

 110

 120

 130

 140

 150

 160

0.01 0.1 0.2 0.2

N
or

m
al

ize
d

�m
e

(%
)

(b) NAMD

Injec�on rate (Flits/Cycle/NIC)

 100

 110

 120

 130

 140

 150

 160

 170

0.01 0.05 0.1 0.2

N
or

m
al

ize
d

�m
e

(%
)

(c) Gro
Injec�on rate (Flits/Cycle/NIC)

 100

 120

 140

 160

 180

 200

 220

0.01 0.05 0.1 0.2

N
or

m
al

ize
d

�m
e

(%
)

(d) MPIRandomAccess(d) MPIRandomAccess

Fig. 6   Performance comparison of 2D Torus topology using trace files and background traffic

12340	 J. Cano‑Cano et al.

1 3

Summing up, DTable is able to distribute the resources according to its configu-
ration and outperforms the RR scheduler in terms of total execution time required by
the applications and resources distribution among SLs.

5 � Conclusion

To enable QoS support in high-performance interconnection networks, the most
critical architectural decision is the selection of an adequate output scheduling
algorithm, which is in charge of selecting the next packet to be transmitted at any
moment. This output scheduling algorithm has to keep the computational complex-
ity as low as possible so it can be realistically implemented. In this paper we have
addressed this issue in the context of hierarchical crossbar switch architectures,
specifically on OPA switches using SBT and DTable mechanisms. These two table-
based output scheduling algorithms keep the computational complexity low and
they are able to provide the required QoS differences. Moreover, we have proposed a
DTable bandwidth correction algorithm capable of adjusting the bandwidth impreci-
sions produced by the baseline DTable configuration methodology. This methodol-
ogy, in conjunction with the bandwidth correction algorithm, allows to set any band-
width proportion to SLs.

We have evaluated the performance of these scheduling algorithms using a heter-
ogeneous scenario where multiple traffic flows coexist. We have carried out different
experiments using several topology configurations and we have compared the results
against a round-robin output scheduler, which represents a scenario without QoS
provision. On the one hand, results show that SBT is capable of providing band-
width differences but it is not able to provide latency differences. Moreover, SBT
is not able to distribute the bandwidth according to its configuration. On the other
hand, DTable is capable of providing bandwidth and latency differences among SLs,
and we are able to establish which SL will experience higher and lower end-to-end
latency.

We have also carried out several experiments using multiple network topologies
with the aim of finding out differences in the behavior of schedulers in terms of QoS
provision. Results show that k-ary n-tree topologies are able to provide slightly bet-
ter end-to-end latency results than the nD Torus configurations. In terms of through-
put, there are not significant differences between configurations.

Moreover, we have carried out experiments with two different topologies using
communication trace files obtained from real MPI applications and background net-
work workload. These experiments have been performed with DTable as the output
scheduling algorithm. Results show that even with real MPI communications, DTa-
ble is able to properly segregate the traffic according with the predefined configura-
tion with independence of the network topology and the trace file.

As explained in Sect. 2.2, unlike non-hierarchical switches, sometimes packets
have to cross the central crossbar in order to reach the required output buffer. Hence,
we are currently evaluating the impact of including another DTable scheduler in
these central buffers. We also are planning to perform a deeper hardware study in

12341

1 3

Providing quality of service in omni‑path networks﻿	

order to offer estimates about the silicon area that this middle scheduling algorithm
would require.

Acknowledgements  This work has been supported by the Junta de Comunidades de Castilla-La Mancha,
European Commission (FEDER funds) and Ministerio de Ciencia, Innovación y Universidades under pro-
jects SBPLY/17/180501/000498 and RTI2018-098156-B-C52, respectively. It is also co-financed by the
University of Castilla-La Mancha and Fondo Europeo de Desarrollo Regional funds under project 2021-
GRIN-31042. Javier Cano-Cano is also funded by the MINECO under FPI grant BES-2016-078800.

Funding  Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​
ses/​by/4.​0/.

References

	 1.	 Scott S, Abts D, Kim J, Dally WJ (2006) The blackwidow high-radix clos network. ACM SIGARCH
Computer Archit News 34(2):16–28

	 2.	 Abts D, Kim J (2011) High performance datacenter networks: architectures, algorithms, and oppor-
tunities. Synth Lect Computer Archit 6(1):1–115

	 3.	 Ahn JH, Son YH, Kim J (2013) Scalable high-radix router microarchitecture using a network switch
organization. ACM Trans Archit Code Optim (TACO) 10(3):17

	 4.	 Birrittella MS, Debbage M, Huggahalli R, Kunz J, Lovett T, Rimmer T, Underwood KD, Zak RC
(2016) Enabling scalable high-performance systems with the intel omni-path architecture. IEEE
Micro 36(4):38–47

	 5.	 Scott S (2019) Rossetta: A 64-port switch for Cray’s Slingshot Interconnect. In: Proceedings of the
26th Annual Symposium on High-Performance Interconnects (HOTI)

	 6.	 Pfister GF (2001) An introduction to the InfiniBand architecture. High Perform Mass Storage Paral-
lel I/O 42:617–632

	 7.	 D’Ambrosia J, Law D, Nowell M (2008) 40 Gigabit ethernet and 100 gigabit ethernet technology
overview. Nov

	 8.	 TOP500 homepage. https://​www.​top500.​org. (Accessed July 18, 2019)
	 9.	 Montessoro PL, Pierattoni D (2001) Advanced research issues for tomorrow’s multimedia networks.

In: Proceedings International Conference on Information Technology: Coding and Computing, pp.
336–340. IEEE

	10.	 Nandy B, Seddigh N, Pieda P, Ethridge J (2000) Intelligent traffic conditioners for assured forward-
ing based differentiated services networks. networking 2000 broadband communications. high per-
formance networking, and performance of communication networks. Springer, Berlin, Heidelberg,
pp 540–554

	11.	 Wilke JJ, Kenny JP (2020) Opportunities and limitations of quality-of-service in message passing
applications on adaptively routed dragonfly and fat tree networks. In: 2020 IEEE International Con-
ference on Cluster Computing (CLUSTER), pp. 109–118. IEEE

	12.	 Mubarak M, McGlohon N, Musleh M, Borch E, Ross RB, Huggahalli R, Chunduri S, Parker S,
Carothers CD, Kumaran K (2019) Evaluating quality of service traffic classes on the megafly net-
work. In: International Conference on High Performance Computing, pp. 3–20. Springer

	13.	 Demers A, Keshav S, Shenker S (1989) Analysis and simulation of a fair queueing algorithm. In:
ACM SIGCOMM Computer communication review, vol. 19, pp. 1–12. ACM

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.top500.org

12342	 J. Cano‑Cano et al.

1 3

	14.	 Greenberg AG, Madras N (1992) How fair is fair queuing. J ACM (JACM) 39(3):568–598
	15.	 Sivaraman V (2000) End-to-end delay service in high-speed packet networks using earliest deadline

first scheduling. University of California, Los Angeles, ???
	16.	 Stiliadis D, Varma A (1998) Latency-rate servers: a general model for analysis of traffic scheduling

algorithms. IEEE/ACM Trans Netw 6(5):611–624
	17.	 Birrittella MS, Debbage M, Huggahalli R, Kunz J, Lovett T, Rimmer T, Underwood KD, Zak RC

(2015) Intel® Omni-Path Architecture: Enabling scalable, high performance fabrics. In: high-per-
formance interconnects (HOTI), 2015 IEEE 23rd Annual Symposium On, pp. 1–9. IEEE

	18.	 Hiperion repository homepage. https://gitraap.i3a.info/fandujar/∖hiperion. (Accessed July 8, 2021)
	19.	 Martinez-Morais R, Alfaro-Cortes FJ, Sanchez JL (2009) Providing QoS with the deficit table

scheduler. IEEE Trans Parallel Distrib Syst 21(3):327–341
	20.	 Martínez R, Claver JM, Alfaro FJ, Sánchez JL (2012) Hardware implementation study of several

new egress link scheduling algorithms. J Parallel Distrib Comput 72(8):975–989
	21.	 Cornelis Networks homepage. https://​corne​lisne​tworks.​com. (Accessed December 14, 2020)
	22.	 CRN Intel Spins Out Omni-Path Interconnect Business Into Stand-Alone Company. https://​www.​

crn.​com/​news/​compo​nents-​perip​herals/​intel-​spins-​out-​omni-​path-​inter​conne​ct-​busin​ess-​into-​stand-​
alone-​compa​ny. (Accessed December 14, 2020)

	23.	 Agarwal N, Krishna T, Peh L-S, Jha NK (2009) Garnet: A detailed on-chip network model inside a
full-system simulator. In: 2009 IEEE International Symposium on Performance Analysis of Systems
and Software, pp. 33–42. IEEE

	24.	 Böhm S, Engelmann C (2011) xsim: The extreme-scale simulator. In: 2011 International Confer-
ence on High Performance Computing & Simulation, pp. 280–286. IEEE

	25.	 Cope J, Liu N, Lang S, Carns P, Carothers C, Ross R (2011) Codes: Enabling co-design of multi-
layer exascale storage architectures. In: proceedings of the workshop on emerging supercomputing
technologies, vol. 2011. ACM

	26.	 Rodrigues AF, Voskuilen GR, Hammond SD, Hemmert KS (2016) Structural simulation toolkit
(SST). Technical report, Sandia National Lab.(SNL-NM), Albuquerque, NM (United States)

	27.	 Andújar FJ, Coll S, Alonso M, López P, Martínez J-M (2019) Powar: power-aware routing in hpc
networks with on/off links. ACM Trans Archit Code Optim (TACO) 15(4):1–22

	28.	 Andújar FJ, Villar JA, Sánchez JL, Alfaro FJ, Duato J (2013) Building 3d torus using low-profile
expansion cards. IEEE Trans Computers 63(11):2701–2715

	29.	 Andújar FJ, Villar JA, Sánchez JL, Alfaro FJ, Escudero-Sahuquillo J (2016) An open-source family
of tools to reproduce MPI-based workloads in interconnection network simulators. J Supercomput
72(12):4601–4628

	30.	 Tamir Y, Frazier GL (1992) Dynamically-allocated multi-queue buffers for VLSI communication
switches. IEEE Trans Computers 41(6):725–737

	31.	 Martinez R, Alfaro FJ, Sanchez JL (2006) Decoupling the bandwidth and latency bounding for
table-based schedulers. In: 2006 International Conference on Parallel Processing (ICPP’06), pp.
155–163. IEEE

	32.	 Alfaro FJ, Sánchez JL, Duato J (2004) Qos in infiniBand subnetworks. IEEE Trans Parallel Distrib
Syst 15(9):810–823

	33.	 Martínez R, Alfaro FJ, Sánchez JL (2006) Improving the flexibility of the deficit table scheduler. In:
International Conference on High-Performance Computing, pp. 84–97. Springer

	34.	 Kahan W (1996) IEEE standard 754 for binary floating-point arithmetic. Lect Notes Status IEEE
754(94720–1776):11

	35.	 Tyagi A, Muppala JK, De Meer H (2000) VoIP support on differentiated services using expedited
forwarding. In: Conference Proceedings of the 2000 IEEE International Performance, Computing,
and Communications Conference (Cat. No. 00CH37086), pp. 574–580. IEEE

	36.	 Wenger S (2003) H. 264/avc over IP. IEEE transactions on circuits and systems for video technology
13(7), 645–656

	37.	 NAMD Homepage. https://​www.​ks.​uiuc.​edu/​Resea​rch/​namd/​utili​ties/. (Accessed July 6, 2021)
	38.	 Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ (2005) Gromacs: fast,

flexible, and free. J Comput Chem 26(16):1701–1718
	39.	 Luszczek PR, Bailey DH, Dongarra JJ, Kepner J, Lucas, RF, Rabenseifner R, Takahashi D (2006)

The hpc challenge (hpcc) benchmark suite. In: Proceedings of the 2006 ACM/IEEE Conference on
Supercomputing, vol. 213, pp. 1188455–1188677

https://cornelisnetworks.com
https://www.crn.com/news/components-peripherals/intel-spins-out-omni-path-interconnect-business-into-stand-alone-company
https://www.crn.com/news/components-peripherals/intel-spins-out-omni-path-interconnect-business-into-stand-alone-company
https://www.crn.com/news/components-peripherals/intel-spins-out-omni-path-interconnect-business-into-stand-alone-company
https://www.ks.uiuc.edu/Research/namd/utilities/

12343

1 3

Providing quality of service in omni‑path networks﻿	

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Authors and Affiliations

Javier Cano‑Cano1  · Francisco J. Andújar2 · Francisco J. Alfaro‑Cortés1 ·
José L. Sánchez1 · Gaspar Mora3

	 Francisco J. Andújar
	 fandujarm@infor.uva.es

	 Francisco J. Alfaro‑Cortés
	 Fco.Alfaro@uclm.es

	 José L. Sánchez
	 Jose.SGarcia@uclm.es

	 Gaspar Mora
	 gaspar.mora.porta@intel.com

1	 Computing System Department, Universidad de Castilla-La Mancha, Campus Universitario s/n,
02071 Albacete, Spain

2	 Computing System Department, Universidad de Valladolid, Campus Miguel Delibes, Paseo de
Belén, n 15, 47011 Valladolid, Castilla y León, Spain

3	 Computing System Department, Intel Corporation, Santa Clara, California, USA

http://orcid.org/0000-0003-3100-4824

	Providing quality of service in omni-path networks
	Abstract
	1 Introduction
	2 The OPA architecture
	2.1 OPA support for QoS
	2.2 OPA simulation model

	3 Scheduling algorithms
	3.1 The round-robin output scheduler
	3.2 The simple bandwidth table mechanism
	3.2.1 Complexity considerations

	3.3 The DTable scheduling mechanism
	3.3.1 The DTable scheduler and variable OPA MTUs
	3.3.2 DTable configuration methodology
	3.3.3 DTable bandwidth correction algorithm

	4 Performance evaluation
	4.1 Network model
	4.2 Performance evaluation using the synthetic traffic model
	4.2.1 Traffic model
	4.2.2 Simulated scenario and scheduler configurations
	4.2.3 Simulation results using the synthetic workload

	4.3 Scenario using application trace files
	4.3.1 Simulation results

	5 Conclusion
	Acknowledgements
	References

