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Alfaro), jose.sgarcia@uclm.es (José L. Sánchez)
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Abstract

Quality of service (QoS) provision has become an important aspect of

high-performance computing interconnection networks. Proof of that is the

inclusion of mechanisms targeted to the provision of QoS by the main in-

terconnection technologies such as Gigabit Ethernet, Infiniband (IB) and

Omni-Path (OPA). A key component of QoS provision is the output schedul-

ing algorithm, which determines when a packet should be transmitted. An

ideal scheduling algorithm should satisfy two main properties: good end-

to-end latency and implementation simplicity. Table-based schedulers are

able to provide these two properties, and because of this, IB and OPA have

implemented this approach.

In this paper, we present a comparative study in terms of QoS provision

between these two dominating interconnection technologies. Those intercon-

nection technologies are also two examples of non-hierarchical and hierarchi-

cal switch architectures, respectively, which gives the results of this study

greater significance. In order to carry out the study, the Deficit Table sched-

uler (DTable) has been used. DTable is a table-based scheduling algorithm

which offers a good balance between end-to-end latency and implementation

cost.

Keywords: Quality of Service, Scheduling Algorithms, Interconnection

Networks, Omni-Path, Infiniband, Simulation, Hierarchical-crossbar-switch

Architecture, Modeling and simulation tool, Performance evaluation
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1. Introduction

In high performance computing (HPC) systems, composed of up to thou-

sands of nodes, several applications are executed concurrently, generating a

lot of messages in the network. Since each node can produce a lot of data at

a faster rate, network contention may appear, and applications performance

may be affected. To reduce the impact of contention, Quality of Service

(QoS) mechanisms can be used, providing applications with the necessary

resources to meet their requirements in the best possible way. For this rea-

son, the main interconnection networks technologies, InfiniBand (IB) and

Omni-Path (OPA) technologies, include QoS support.

QoS is still an active research topic in the two main environments where

high-speed interconnection networks are used: Internet datacenters and su-

percomputing platforms [1]. The increasing use of Internet has been one of

the most dominant contribution to the need of QoS. New application types

have appeared [2], such as on-demand video streaming, live video/voice com-

munications, interactive applications, etc. Providing QoS is necessary to

satisfy the application requirements and to provide a good user experience.

In the area of HPC, QoS provides differentiate services between traffic flows,

i.e. between users with different privilege levels in a cluster [3, 4], or between

users with different service level agreements in a cloud. For those reasons,

many studies have been carried out to provide QoS on the Internet using

wired or wireless networks [5, 6], and to provide QoS on HPC, such as new

output schedulers [7], techniques for meeting QoS requirements [8, 9], etc.

A key component for networks with QoS support is the output scheduling

algorithm, which determines when a packet should be transmitted, on the
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basis of some expected performance metrics [10, 11]. In an HPC intercon-

nection network, packets from different applications interact with each other

in every network element. Without any scheduling policy, packets from dif-

ferent traffic applications flows use as many resources as they need. In the

worst scenario, a single flow may consume all network resources, causing a

degradation of the performance of other flows or, even worst, starvation.

An ideal scheduling algorithm implemented in an HPC interconnection

network should provide fairness between the traffic flows (depending on their

required service level), should provide a good end-to-end latency and should

be simple in terms of computational and implementation complexity. How-

ever, designing an output scheduling algorithm involves inevitable trade-offs

among the stated properties. The simplicity is the most important property.

The fairness property only affects to the short-term distribution of the service

offered to the flows sharing the link. End-to-end latency implies burstiness

of the flow at the output of the scheduler, thus increasing the buffering re-

quirements in order to avoid packet contention.

A well-known scheduling algorithm family is sorted-priority schedulers,

which use a global variable, called virtual time, to keep track of the server’s

progress and is updated when a packet is received or transmitted. Each

packet has a time-stamp, computed as a function of the virtual time by

the specific scheduling algorithm. Two of the most common examples of this

family of schedulers are Weighted Fair Queuing (WFQ) [10] and Self-Clocked

Fair Queuing (SCFQ) [12]. They provide a good fairness and a low latency,

but they are not very efficient due to the complexity of computing the virtual

time and maintaining a time-sorted packet list. However, some works have
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shown how to reduce the complexity of WFQ and SCFQ maintaining decent

QoS provisioning [13, 14, 15].

Table-based scheduling algorithms are another well-known family. They

are based on a table with multiple entries assigned to one or more flows.

Each entry has a weight that determines the number of packets that may

be transmitted. This family of schedulers is able to provide good end-to-

end latency, controlling the maximum separation between any consecutive

pair of entries of the same flow [16], and presents a very low computational

and implementation complexity. Generally, the table only requires a pointer

indicating the last entry selected [17, 18] and a number of entries ranging from

64 to 128. Both IB and OPA have implemented this approach [19, 20, 21].

In this paper, we present a comparative study in terms of QoS provision of

two representative HPC interconnection technologies such as IB and OPA. In

the most powerful computer list TOP500 [22], they are well established. Up

to 9.8% of these supercomputer are using OPA and up to 30.6% are using IB

as their interconnection network. Looking at top 100, both technologies are

dominating, 20% of these systems use OPA and 40% use IB (June, 2020).

Moreover, these two interconnection technologies are also two examples of

different switch architecture, hierarchical and non-hierarchical, respectively.

Hierarchical switch architectures were designed to bring together the advan-

tages of high-radix [23, 24, 25, 26, 27] and low-radix switches [28, 29, 30].

Furthermore, in order to carry out the study we will use DTable [31], a

table-based scheduling algorithm which offers a good balance between perfor-

mance and hardware cost. To our knowledge, there are no studies which com-

pare the performance of non-hierarchical and hierarchical switches in terms
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of QoS provision being this issue important to compare both approaches.

The structure of the paper is as follows: Section 2 briefly reviews the

switch architecture of IB and OPA and describes their simulation models.

Section 3 reviews the QoS support in both technologies. Section 4 explains

the DTable scheduler operation, as well as how it could be adapted to IB and

OPA. Section 5 includes the experimental study design and Section 6 shows

and analyzes its results. Finally, Section 7 presents some conclusions.

2. Hiperion simulator

As stated in Section 1, IB and OPA interconnection technologies are used

to carry out this study. This work has been carried out using simulation for

being one of the most popular methodology to evaluate different techniques

in HPC networks. It allows to test, compare and explore new techniques

in a cheap, flexible and reproducible way. There are multiple HPC network

simulators such as Garnet [32], Booksim2 [33], xSim [34], etc., focused on

on-chip networks. These simulators also allow full-system simulation, feasi-

ble for on-chip networks, due to the small network sizes (rarely more than

64 switches). However, when the network size grows to hundred of elements,

the computational resources needed makes the full-system simulation unap-

proachable. Moreover, the characteristics of the on-chip traffic and off-chip

traffic are totally disparate. On the other hand, there are no public sim-

ulators modeling the OPA switch architecture. For these reasons, we have

developed our IB and OPA models in a previous simulator, which has been

used for years in our research group, and with multiple publications behind

him [35, 36]. Our simulator Hiperion (HIgh PERformance InterconnectiOn
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Network) gives us a deep knowledge of its operation and a wide flexibility re-

garding the techniques that can be implemented and its interoperability [37].

Hiperion is a discrete-event based network simulator that models the behav-

ior of HPC network elements, such as switches, links and network interfaces.

The simulator main goal is to perform comparative studies and it has a large

range of configurable parameters, e.g. topology, routing, queue sizes, output

scheduling algorithms, etc. Hiperion is capable of running simulations using

synthetic traffic (e.g. random uniform, bit-reversal, bit-complement, etc.).

Multiple performance metrics have been implemented such as end-to-end

latency, throughput, etc.

2.1. Infiniband simulation model

This section details the main components of our IB-like simulation model

and its behavior. Figure 1a shows a generic scheme of a k port IB-based

switch where k is the total number of ports. The IB switch implements

virtual cut-through as switching technique and a credit-based flow control.

We have defined the input/output bandwidth to 12.5 GBps. The model

assumed in Figure 1a includes the following elements:

• Input/output buffers: They store the flits from the input/output ports.

There is one input/output buffer per input/output port. Buffer stor-

age space is dynamically shared by virtual lanes (VLs). The dynamic

buffers provides more flexibility than static buffers [38].

• Routing units: They add the routing information to header flits. There

is one routing unit per input port.

• Central crossbar: It interconnects input ports to required output ports.
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Figure 1: Diagram of IB architecture.

• Input arbiter: Given an input buffer, it selects the VL that participates

in the next allocator phase. The more VLs, the bigger the arbiter is.

• Output arbiter: Given an output port, it chooses which input port is

going to transmit flits on that output port.

As stated before, Hiperion is a discrete-event based simulation tool. We

have defined and implemented a collection of events. Those events are:

• IB (Input Buffering): Each input buffer may receive 1 flit/cycle. Flits

are stored in the corresponding VL queue, depending on the transmis-

sion VL. A header packet flits are labeled as RT-ready and triggers the

RT event. Otherwise, the flit is just stored and labeled as X-ready.

• RT (RouTing): Only applied to header packet flits labeled as RT-ready.

The routing unit determines in which output port will be placed on the

entire packet. After RT, the header flit is labeled as VA-SA-ready and

its input buffer/VL can be eligible for the VA-SA stage. Note that non-

header flits always follow the header flit path. The routing function is

configurable and must be according to the configured topology.
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• VA-SA (Virtual Allocator / Switch Allocator): A two-staged allocator:

− Virtual Allocator: Each input arbiter chooses a VL with at least

one VA-SA-ready header flit. The winning VL will be allowed to

deliver a packet. VLs are chosen in a round-robin order.

− Switch Allocator: Each output arbiter chooses an input buffer

with a winning VL whose packet is destined to its output port.

The winning buffer will be allowed to move a packet to an output

buffer. The top header flit at input buffer is tagged as X-ready.

• X (Xbar): Winning packets from the allocation process are moved from

the input buffer to the output buffer selected in the RT stage. Flits

that reach the requested output buffer are tagged as OB-ready.

• OB (Output Buffering): Each output buffer with OB-ready flits chooses

which VL will send flits to the neighbor network element (i.e. switch

or network interface). The VL selection process is performed by a

configurable output scheduling algorithm, being this event in charge of

the QoS provision. Each output scheduler selects a VL with OB-ready

packets and available credits. When the tail packet flit is transmitted,

the output scheduler releases the winning VL and selects a new VL.

2.2. Omni-Path simulation model

A generic diagram of a 48 ports OPA-like switch can be found in Figure

2, which is based in [21, 39]. As can be seen in Figure 2, it has a large

range of internal link with different bandwidths. The base bandwidth is 12.5

Gbps, thereby, an x3 port means that it may deliver 3 flits/cycle, which

allows us to reach those bandwidths. The number of input and output ports

is represented in the figure as INPORTS:OUTPORTS. For instance, the MPort0
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xBar has 4 input ports and 6 output ports (4:6). The model shown in this

figure includes the following elements:

RT
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Figure 2: Diagram of the modeled OPA switch of 48 ports. For clarity, MPorts are unfolded

in Input and Output buffers.

• MPort: It is a cluster of 4 input and 4 output ports and their in-

put/output buffers, there is one buffer per input and output port. Ports

belonging to the same MPort are directly connected each other through

an MPort crossbar (MPort Xbar). MPorts are also connected to the

rest of MPorts through the Central Crossbar.

• MPort Xbar: This crossbar has 4 input ports, one per input buffer; and

6 output ports: 4 connected to output buffers and 2 connected to the

Central Crossbar. Note that the 75 Gbps link to the Central Crossbar

is modelled with 2 links. Also, those links may deliver 3 flits/cycle,

resulting on 2Links× 3× (12.Gbps) = 75Gbps.
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• Central Crossbar: This is a buffered 24:48 crossbar. It provides con-

nectivity for all MPorts. Note that the Central Crossbar is used when

a packet requests an output port that does not belong its input MPort.

For instance, a new packet arrives to the port P0, which belongs to the

MPort0. The packet requests the output port P44, which belongs to

the MPort11. Then, the packet will need to cross the Central Crossbar.

Otherwise, if for example, the packet requests the port P2 (MPort0),

it will not need to cross the Central Crossbar, only the MPort Xbar 0.

Note that the remaining elements work in the same way that the ones

explained in Section 2.1. The simulation events defined in this OPA-like

simulation model are the same explained in Section 2.1. However, when

a packet is stored in the Central Crossbar buffers, this packet is tagged

again as VA-SA-ready being forced to face the allocation process. After

the arbitration process, the packet is tagged as X-ready and it can be moved

to the corresponding output port at X event execution. After reaching the

output buffer, the packet is tagged as OB-ready. Finally, the OB event

explained in Section 2.1 is triggered and executed as stated. Further details

about the OPA simulation model can be found at [40, 41].

3. Interconnection network QoS support

In this section we review the QoS mechanisms offered by IB and OPA to

provide QoS to applications, flows, packets, etc. All the mechanisms detailed

in Sections 3.1 and 3.2 have been implemented into Hiperion.

3.1. Infiniband

The IB architecture has mechanisms enabling QoS support. According

to [19, 20, 42], these mechanisms are:
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• Virtual lines (VLs) provide dedicated buffer space for packets. IB im-

plements a credit-based flow control at VL-level. IB supports up to 16

VLs being the last VL reserved for management purposes.

• Service Levels (SLs) are the only QoS identifier stored in packets. SLs

are used to aggregate flows with similar characteristics in order to pro-

vide applications with QoS in the network. The packet SL is set by the

network interface (NIC) before its injection, and cannot be modified.

Every switch has an SL-to-VL mapping table (SL2VL) per output port,

as can be seen in Figure 1a. Through these tables, the packets are assigned

to a VL based on their SL, output port and input port. Note that SL2VL

tables are placed in the output ports and each switch has its own tables, so

that, packets may be assigned to different VLs along their route depending

on the SL2VL tables at each output port.

As shown in Figure 1a, IB defines an output scheduling algorithm per

output port. This scheduler is a table-based scheduler which uses two tables,

as can be seen in Figure 1b. The first table schedules packets from high

priority VLs while the second one schedules packets from low priority VLs.

Each table has up to 64 entries and each table entry has a VL identifier

and a weight in the range of 0 to 255. The weight indicates the number of

units of 64 bytes to be transmitted from that VL. Entry weights are always

rounded up in order to allow the transmission of an entire packet. IB output

scheduling algorithm also defines a value (LimitOfHighPriority×4096) repre-

senting the maximum amount of information that may be delivered from the

high priority table before transmitting a packet from the low priority table.

The LimitOfHighPriority value is configurable by the network administrator.
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When arbitration is needed, the table is cycled through sequentially until a

table entry with an active VL is found, that is, a VL with stored packets and

enough credits. Then the VL can transmit a maximum of as many packets

as the table entry weight states. Finally, the table is cycled through again.

Moreover, if there are no high priority packets stored in an output port,

the arbiter will allow to transmit low priority packets (if there is any) until

a high priority packet arrives. This mechanism avoids to waste bandwidth.

3.2. Omni-Path

The OPA architecture also has some mechanisms enabling QoS support

to packets, flows, applications, etc. According to [21], these mechanisms are:

• Virtual Lanes (VLs) provide dedicated receive buffer space for incom-

ing packets at switch ports. VLs are also used for avoiding routing

deadlocks. The Intel Omni-Path architecture supports up to 32 VLs.

• Service Channels (SCs) differentiate packets from different Service Lev-

els. The SC is the only QoS identifier stored in the packet header. Each

SC is mapped to a single VL, but a VL can be shared by multiple SCs.

SCs are used for avoiding topology deadlocks and avoiding head-of-line

blocking between different traffic classes. The Intel Omni-Path archi-

tecture supports up to 32 Service Channels, however SC15 is dedicated

to in-band fabric management.

• Service Levels (SLs) are a group of SCs. An SL may span multiple

SCs, but an SC is only assigned to one SL. SLs are used for separating

high priority packets from lower priority packets belonging to the same

application or Transport Layer, avoiding protocol deadlocks, etc. The

Intel Omni-Path architecture supports up to 32 SLs.
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• Traffic Classes (TCs) represent a group of SLs aimed to distinguish

applications’ traffic. A TC may span multiples SLs, but each SL is

only assigned to one TC. The Intel Omni-Path architecture supports

up to 32 TCs.

• A vFabric is a set of ports and one or more application protocols.

For each vFabric, a set of QoS policies are applied. A given vFabric

is associated with a TC for QoS and associated with a partition for

security.

In contrast to IB, this architecture requires three mapping tables, an SL-

to-SC table (SL2SC), an SC-to-VL table (SC2VL) and an SC-to-SL table

(SC2SL) per network device. Packets may change of VL and SC on their

route through the network, however, they cannot change of SL or TC. This

fact, added to the fact that the SC identifier is the only QoS identifier stored

in the packets, makes necessary to implement the SC2SL and SL2SC tables.

Note that is is necessary to know the SL associated to a given SC, and vice-

versa. The SC2VL table is also required to be able to store packets in the

proper VL buffer. Note that NICs also require the SL2SC and SC2VL tables

to assign the SC identifier and deliver packets to the proper VL.

Figure 2 shows a generic diagram of our OPA-based simulation model,

where SC2SL, SL2SC and SC2VL tables are connected to the routing units

and the output schedulers. Before packets can be moved from input buffers to

output buffers, a mechanism is required to decide if a packet needs to change

the SC. In our simulation model the SC change is performed when the packet

is routed, avoiding deadlocks and/or distributing the traffic among the SCs

belonging to the same SL.
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OPA also includes QoS mechanisms such as VLArbitration algorithm and

preemption Tables. However, there is not much information about how these

mechanisms work. In our simulation model we have implemented DTable as

the output scheduler as we will detail in Section 4. Note that, as far as we

know, some elements of the OPA architecture are not detailed in the available

public information [40, 21]. Given that, some assumptions have been done.

4. The Deficit Table scheduling mechanism

The main goal of an scheduling algorithm is to determine when packets

from different SLs are delivered to satisfy the specified end-to-end latency and

bandwidth requirements. Moreover, as stated in Section 1, in the context of

HPC interconnection networks, output scheduling algorithms must meet two

main properties: low computational complexity (the scheduler latency should

be as low as possible) and low implementation complexity (the scheduler

algorithm is typically implemented in hardware and a high implementation

complexity implies a large silicon area). The complexity and silicon area

of DTable compared with output schedulers such as Deficit Round-Robin

(DRR) or SCFQ have been studied in [43]. This work has proven that in a

scenario of high traffic load (> 80%) and if VLs are used, DTable and SCFQ

provide better packet latency [44] than DRR. It also concludes that the silicon

area of DTable scheduler is twice the area of the DRR scheduler, while the

silicon area of SCFQ is 4.5 times bigger. In addition, the IB architecture

specification release 1.4, describes in Section 7.6.10 an enhanced QoS arbiter

using an DTable-like mechanism [19, 20]. For these reasons, we have decided

that DTable is a good option to perform this comparative study.
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The DTable scheduler is a table-based output scheduling algorithm [31].

It uses an arbitration table with an arbitrary number of table entries, e.g.

32, 64, 128, etc. Each table entry has two fields: an SL identification number

and an entry weight. The entry weight determines the maximum amount of

information, measured in flow control credits, to be transmitted by a given

SL each time that the entry is selected. When scheduling is required, the

table is cycled through until a table entry from an active SL is found. An SL

is considered active when it stores at least one packet and the flow control

allows that SL to transmit packets, i.e. the buffer of the associated VL has

enough flow control credits. Then, the DTable scheduler is composed of:

• Scheduling table: As stated before, it is a set of table entries, each one

having an SL identifier and an associated weight.

• Deficit counters: It represents the weight that the scheduler owns to

the SL. Every SL and output port have a counter. It means that there

are NumSLs × OutputPorts deficit counters per switch. Each deficit

counter is initialized to 0 at the system start-up.

• Accumulated weight counter: It is equal to the sum of the selected

entry weight and the SL deficit counter. There is one accumulated

weight counter per output port.

The selected SL may deliver as many packets as the accumulated weight

allows. When a packet is transmitted, the accumulated weight is reduced by

one packet size measured in flow control credits.

The next active table entry (i.e. a table entry associated to an active SL)

is selected when the accumulated weight is smaller than the packet size. For

instance, let us suppose an input/output port with 2 SLs and one buffer per
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SL. The SL 0 buffer stores 3 packets and requires 2 flow control credits per

packet. Hence, 2 weight units are required to deliver a packet. Figure 3 shows

this example. The scheduler selects the table entry SL 0, being its weight

of 3 units and its deficit counter of 0. Given that, the accumulated weight

counter is equal to 3 units (Round N Before delivery in the figure). The SL 0

transmits 1 packet and the accumulated weight counter is reduced in 2 units.

The final accumulated weight counter is 1 unit (Round N After delivery).

Since the minimum weight to send a packet is 2 units, the SL 0 cannot send

packets until the next arbitration round. The remaining accumulated weight

(1 unit) is stored in the SL 0 deficit counter and the scheduler selects the

next active table entry. Since the SL 1 has no packets, the SL 0 table entry

is selected again. Adding its associated weight and its deficit counter, the SL

0 has an accumulated weight of 4 units (Round N+1 Before delivery), and it

delivers its 2 remaining packets (Round N+1 After delivery).

Figure 3: Example of DTable behavior.

If a given SL becomes inactive in a given output port, the SL deficit
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counter is set to zero, the accumulated weight is discarded and the scheduler

goes through the table to find the next active entry. In short, there are two

possible scenarios: the accumulated weight becomes smaller than the packet

size (it is stored in the deficit counter) or the SL becomes inactive (both

counters are set to zero).

The bandwidth ϕi assigned to the SLi in an N -entry arbitration table is

ϕi =

J−1∑
j=0

weightj

N−1∑
k=0

weightk

,

where J is the set of table entries assigned to SLi and weight is the entry

weight assigned to a table entry. The number of table entries and the maxi-

mum distance between any pair of consecutive table entries assigned to the

same SL allow to control the SL latency [16]. Let us suppose a system with

a table-based output scheduling algorithm with 64 table entries. The SL 0

has 32 table entries with a distance of 2 between any pair of consecutive

table entries. The SL 1 has 16 table entries with a distance of 4 entries. The

weight of each SL 0 table entry is 2 units while the weight of each SL 1 entry

is 4 units. Hence, ϕ0 = ϕ1, in other words, both SLs have been assigned the

same bandwidth. However, SL 0 packets have lower end-to-end latency than

SL 1 packets since the distance between table entries is lower for SL 0. The

DTable configuration methodology can be found in Section 4.4 and at [31].

4.1. DTable implementation on IB-based interconnection network

In Section 3.1 we have detailed the QoS mechanisms of IB-based system

and in Section 4 we have established the basic DTable behavior. This section

details the implementation aspects of DTable in our IB-based simulation
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model. The DTable scheduler requires a set of table entries, deficit counters

and accumulated weight counters. IB-based architecture has a total of 128

table entries (64 high priority entries and 64 low priority entries) per output

port and it supports up to 16 SLs.

In order to implement DTable in IB-based architectures, we have estab-

lished that the high priority table entries will be the DTable set of table

entries. Thereby, these table entries store the SL identifiers and the associ-

ated entry weights. It is required a deficit counter per SL, switch and output

port. As stated above, IB provides an output scheduling table per output

port with 64 entries. Therefore, the deficit counters have been implemented

using the first 16 low priority table entries, as many entries as the maximum

number of possible SLs in the system. An accumulated weight counter per

output port is also required. The accumulated weight counter has been im-

plemented using the last low priority table entry on each output port, in a

similar way that we have stated for the accumulated weight counter. Note

that IB table entries are 8-bit wide, and therefore, the accumulated weight

could easily overflow. However, more unused adjacent entries could be used

to implement the counter. In our IB-based simulation model we have used

only one entry for the sake of simplicity. Figure 4 shows the arbitration table

and counters implementation using the high and low priority table entries.

Using this technique to implement DTable on IB-based architectures, 47

table entries are wasted. Nevertheless, these entries could be used as part of

the DTable scheduling table entries set, which gives us a total of 111 table

entries. In this work we have left those 47 entries unused for the sake of

simplicity. When scheduling is required, the high priority table entries will
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be cycled through until a table entry is found.

4.2. DTable implementation on OPA-based interconnection network

Section 3.2 details the QoS mechanisms provided by OPA and Section 4

explains how the DTable output scheduling algorithm works. In this section

we explain the DTable implementation details in OPA.

As mentioned in Section 3.2, there is no much details in the public avail-

able information about the output scheduler algorithm. Hence, we cannot

take advantage of any existent table as we have done in IB (Section 4.1). In

our OPA-based simulation model, he have implemented a scheduling table

for each network device, a deficit counter per output port and SL and an ac-

cumulated weight counter per output port. OPA supports up to 32 SLs and

the canonical switch has 48 ports, this means a total of 1536 deficit counters

and 48 accumulated weight counters per network device.

OPA architecture defines the QoS level of the traffic flows through the

SLs. Then, DTable must perform the arbitration process at SL level (i.e.

arbitration entries store SL identifiers). As mentioned in Section 3.2, SCs and

VLs are also involved in the QoS process, and therefore SL2SC, SC2SL and
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SC2VL tables are also required. When scheduling is required, the scheduler

selects the next table entry and reads the SL identifier of the entry. Using

SL2SC and SC2VL tables, the scheduler determines if some VL associated to

that SL stores packets and can transmit packets to the next network device

(i.e. it has enough flow control credits). Finally, if these conditions are

satisfied, the device delivers as many packets as the DTable scheduler allows.

4.3. The DTable scheduler and variable maximum transmission units

To fully exploit the DTable scheduler, variable maximum transmission

units (MTUs) per SL are required. The MTU is the size of the biggest

packet that may be delivered. A variable MTU per SL is necessary when

using DTable scheduler for two main reasons:

1. In a system with fixed MTU, the deficit counter will never be used.

2. Having different packet sizes allows to decouple the bandwidth assign-

ments from the latency requirements [31], which is very important.

Note that in the context of HPC interconnection networks, messages are

composed of one or more packets, which are divided into one or more flits

[45]. To that end, we have included in both architectures SL MTU tables.

These tables have as many entries as SLs in the system and only need one

SL MTU table per network device. MTU tables determine how many flits

compose the packets per SL and also permit us to have different maximum

packet sizes for different SLs, taking fully advantage of the DTable scheduler.

Nevertheless, neither IB nor OPA support variable packet sizes. To over-

take this limitation, SL MTU tables in our simulation model determine how

many fixed size packets compose the messages, and the message generation
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has been modified to always generate messages according to SL MTU packet

sizes. Moreover, before sending a message to the next network device, DTable

has to ensure: i) the entire message fits onto the neighbor receiving buffer

and ii) there is enough remaining weight for the selected SL.

Since the switching technique used is virtual-cut through and the men-

tioned delivery message system, all flits of the same message are stored, sent

and received consecutively. Given that, VL buffers must have enough space

(i.e. flow control credits) for storing at least the biggest MTU in the system.

4.4. DTable configuration methodology

In order to provide applications, flows, etc., specific QoS differences,

DTable arbitration tables must be configured in a proper way. Note that

DTable scheduling mechanisms themselves do not provide QoS without a

proper configuration methodology [31].

Table 1: Arbitration table parameters.

maxϕi,minϕi Maximum/Minimum bandwidth assignable to the SLi MTUi Specific Maximum Transfer Unit of the SLi

ϕi Bandwidth assigned to the SLi M Maximum weight per table entry

N Number of entries of the arbitration table pool Bandwidth pool

ni Number of entries assigned to the SLi k Bandwidth pool decoupling parameter

GMTU General Maximum Transfer Unit w Maximum weight decoupling parameter

In an arbitration table configuration with N entries, a certain GMTU

value and ni table entries for each SL (depending on their latency require-

ments), we would like to be able to assign the SLi with a certain bandwidth

ϕi in a flexible way. In other words, this means to keep the minimum band-

width minϕi that can be assigned to the SLi as small as possible and the

maximum bandwidth maxϕi assignable to the SLi as large as possible. Table

1 shows the definition of all the parameters of the configuration methodology.
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The maximum total weight that can be divided among the table entries

is M ×N . However, we are going to fix it to a lower value called pool, which

is determined by the k parameter. Section 4.3 explains that we can assign

an specific MTU value for each SL. Then, the bandwidth ϕi of the SLi is

ϕi =

J−1∑
j=0

weightj

pool
,

where J is the set of table entries assigned to the SLi and weight is the

weight assigned to the table entry. Therefore, minϕi and maxϕi assignable

bandwidth values to the SLi are

minϕi =
ni ×MTUi

pool
, maxϕi =

ni ×M

pool
.

Let us define M and pool using the GMTU parameter and the decoupling

parameters w and k:

M = GMTU × w, pool = N ×GMTU × k.

where k ≤ w because the bandwidth pool has to be smaller than N × M .

Hence, the maximum and minimum bandwidth depend not only on the pro-

portion of table entries ni, but also on the w and k parameters and the

proportion between their specific MTUi and GMTU :

minϕi =
ni ×MTUi

N ×GMTU × k
, maxϕi =

ni ×GMTU × w

N ×GMTU × k
=

ni × w

N × k
.

Therefore, parameters w, k and the specific MTUi assigned to each SL allow

to vary the maximum and minimum bandwidth assignable to SLs without

affecting the final latency [31].

5. Performance evaluation

In this section, we compare the QoS provision performance of IB and

OPA switch architectures using the DTable scheduler. We have used the

following metrics:

23



• End-to-end latency per SL: Average message latency of all the messages

labeled with the same SL measured from generation to reception. This

is the latency that users of each SL will experience.

• Throughput per SL: The total amount of delivered information per SL

expressed in flits/cycle/NIC transmitted through the network.

We have used Hiperion, which implements both IB and OPA simulation

models detailed in Sections 2.1 and 2.2, which mimic the architectural be-

havior of both switches, as well as the QoS mechanisms explained in Sections

3.1 and 3.2, the DTable scheduler adapted for each architecture as stated in

Sections 4.1 and 4.2, and SL MTU tables detailed in Section 4.3.

5.1. Traffic model

Table 2 shows the traffic types considered and if they have QoS require-

ment of they are best-effort traffic. There are seven types of traffic flows, five

of them with explicit QoS requirements such as latency and bandwidth, and

three of them are best-effort with slight different levels of priority. SLs in Ta-

ble 2 are sorted from the most latency sensitive to the least latency sensitive

SL. For instance, NC SL is the most latency sensitive, which means that it

must achieve the lowest latency of all SLs. The best-effort SLs are the least

sensitive SLs. In terms of the DTable configuration, all the explicit require-

ments for each SL have been defined, except the best-effort flows, which have

been assigned with the furthest arbitration table distances and the remaining

bandwidth percentages.

Packets from each SL have been simulated using the most appropriated

traffic pattern to emulate its behavior:
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Table 2: Set of SLs considered in the evaluation.

Type SL Description Traffic pattern Message size

QoS Network Control (NC) Supports the network infrastructure Random uniform 192B

QoS Voice (VO) Audio and online videogames backend traffic CBR connections 128B

QoS Video (VI) Video streaming traffic CBR connections 2048B

QoS Controlled load (CL) High performance computing traffic CBR connections 2048B

Best-effort Excellent-effort (EE) Preferential best-effort traffic. Bursts4 1024B

Best-effort Best-effort (BE) Backup protocols, email system, etc. Bursts4 1024B

Best-effort Background (BK) Rest of applications and services Bursts4 1024B

• Network Control (NC) traffic is generated using a random uniform

traffic distribution. In an HPC network we can expect fabric managers

deliver to all network devices control packets in an uniform way. We

have chosen a payload of 192 bytes in order to represent the worst case

scenario. We have assumed that this SL will use nearly 1% of the total

network bandwidth.

• Voice (VO) traffic is generated using a Constant Bit Rate (CBR) dis-

tribution. VO is composed of multiple point-to-point connections. We

have defined that these connections will be selected at the simulation

beginning and they will be up until the simulation ends. In [46], sev-

eral payload values for voice codecs algorithms are shown. These values

range from 20 to 160 bytes. We have selected a payload of 128 for be-

ing the closest one with a packet size of 64 bytes due to the limitations

explained in Section 4.3. We have assumed that this SL will use nearly

2% of the total network bandwidth.

• Video (VI) traffic is generated using a CBR distribution. VI traffic is

generated in the same way as in the VO traffic. According with [47],

payload values ranging from 100 bytes to 64 kilobytes are feasible. We
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have chosen a payload value of 2048 bytes. We have assumed that this

SL will use nearly 30% of the total network bandwidth.

• Controlled Load (CL) traffic is generated using a CBR distribution

with payload of 2048 bytes, representing a possible average payload of

many HPC application communications. We have assumed that this

SL will use nearly 35% of the total network bandwidth.

• Best-effort traffic: Excellent-effort (EE), Best-effort (BE) and Back-

ground (BK), are generated using a Bursts4 distribution. This traffic

is composed of bursts of 4 messages generated at the same time head-

ing to the same destination. Note that each message is composed of

multiple packets according with SL MTU tables. The packet payload

of these SLs is 1028 bytes. We have assumed that those SLs will use

nearly 12% of the total network bandwidth.

For all cases, except VI and VO traffic patterns, the destination distribu-

tion is uniform in order to fully load the network. Note that we have chosen

a heterogeneous scenario where multiple traffics are mixed using the above

mentioned bandwidth percentages. However, our proposal is aimed to any

environment where flows with different QoS requirements coexist. Neverthe-

less, the multimedia environment is the most straightforward one.

5.2. Network topology

We have chosen the k-ary n-tree and nD Torus interconnection topologies

for being very common and well known solutions in high performance envi-

ronments. We have used these topologies with two different layouts: 4-ary

3-tree, 24-ary 2-tree, 8x8 2D Torus and 8x8x8 3D Torus. The configuration

on each layout is the following:
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• The 4-ary 3-tree configuration has 64 end points connected or NICs.

Each switch, either IB or OPA, has 8 ports.

• The 24-ary 2-tree has been configured with 576 NICs and switches with

48 ports.

• The 2D Torus configuration has 512 end points and 64 switches with

48 ports: the ports have been aggregated to create trunk links of 10x

(4 × 10 = 40 ports) and there are 8 NICs attached by one link per

switch. Note that the trunk links are used to increase the bandwidth

in each torus direction, but the ports belonging to the same trunk link

works independently, i.e. the ports transmit different packets traveling

in the same torus direction.

• The 3D Torus configuration has 2048 NICs and 512 switches with 28

ports: 6 trunk links of 4x and 4 NICs connected by one link.

The k-ary n-tree topology implements the valiant routing algorithm for

being able to mitigate congestion and Head-on-Line contention [48]. The nD

torus implements DOR for being the most common in those topologies [49].

The SL2SC and SC2VL tables configuration used in the OPA architecture

scenario are shown in Table 3. In short, each SL has one SC associated and

each SC has one VL assigned. For instance, the NC SL has the SC 0 and the

VL 0 associated. SLs description can be found in Section 5.1. The SL2VL

table configuration used in the IB architecture scenario is shown in Table 3.

As in the OPA scenario, each SL has a single VL associated.

In both architectures, switches implement a credit-based flow control pro-

tocol. Given that, packets are not dropped when congestion appears and they

are only transmitted if there is enough space in reception buffers. Flows from
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Table 3: Configuration of IB SL2VL, OPA SL2SC and OPA SC2VL tables.

IB SL2VL OPA SL2SC OPA SC2VL

SL VL SL SC SC VL

NC 0 NC 0 0 0

VO 1 VO 1 1 1

VI 2 VI 2 2 2

CL 3 CL 3 3 3

EE 4 EE 4 4 4

BE 5 BE 5 5 5

BK 6 BK 6 6 6

different applications and similar characteristics are aggregated via SLs. The

packet scheduling is performed through SLs and flow control via VLs. For the

sake of comparison, we have established the flit size in 64 bytes, the packet

size in 1 flit and the flow control credit unit in 64 bytes. Therefore, the final

packet size is 64 bytes and each packet is 1 flow control credit sized. We have

stated the GMTU in both architectures to 32 (i.e. 2048 bytes). Nevertheless,

the evaluation may be performed with smaller or larger MTUs.

As stated, we have used in both cases an input, output and central (in

the case of OPA) buffer queuing architecture. The same buffer capacities

have been used in both architectures. The buffer capacity is 114,688 bytes

at input and output ports of switches and 229,376 bytes at the network

interfaces. In OPA, the central crossbar buffer capacity is 229,376 bytes for

every 4 ports (MPort), e.g. in an OPA-based switch with just 8 ports, the

central buffer capacity is 458,752 bytes. This central crossbar buffer capacity

is available only for each Mport (i.e. each MPort may consume in total

229,376 bytes). These buffer capacities have been adjusted experimentally

in order to avoid flow contention before reaching the congestion point. Both

architectures dynamically manage the VL buffer storage space, i.e. there are
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no independent buffers per VL and the buffer space is divided according with

the traffic requirements, ensuring a minimum and a maximum space per VL.

The dynamic buffers provide more flexibility than static buffers [38]. Finally,

if an application wants to inject a packet into an interface network queue but

it is full, we assume that the packet is stored in the application layer queue.

5.3. Simulated scenario and scheduler configurations

We have assumed a scenario where the goal is to dedicate the following

egress link percentages to the SLs shown in Table 2: 1% to NC SL, 2% to VO

SL, 30% to VI SL, 35% to CL and the remaining percentage to be shared

among the best-effort SLs. Regarding maximum latency requirements, as

mentioned in Section 4 and in [16], maximum latency values can be handled

through the maximum distance between any pair of table entries assigned

to an SL. The bandwidth percentages are intended to represent, as close as

possible, a realistic combination of traffic and applications with QoS require-

ments. Distances assigned to each SL are shown in Table 4, in the Distance

column. As can be seen, we have stated that the maximum latencies, in

ascending order are: NC, VO, VI, CL and best-effort SL. Note that dis-

tances do not define an absolute end-to-end maximum value but an order.

For instance, the NC SL has lower latency requirements than the VO SL,

the VO SL has a lower latency requirements than the VI SL and so on. This

approach permits us to provide differentiated services to the applications.

The DTable configuration process requires a defined methodology. This

methodology is explained in Section 4.4 and at [31]. It allows to decouple

bandwidth assignments from latency assignments. As stated before, we have

established the maximum distances: a maximum distance of 2 entries for the
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Table 4: Application of the decoupling methodology and DTable bandwidth configuration.

DTable decoupling metodology Injection DTable scheduler configuration

SL Distance #entr. %entr MTUi minϕi maxϕi Min. Max. ϕi #entr. E.W. T.W.

NC 2 32 50 192 0.094 3 0.01 0.01 0.094 32 4-3 101

VO 4 16 25 128 0.047 1.5 0.016 0.016 0.164 16 11 176

VI 8 8 12.5 2048 0.25 0.75 0.23 0.23 0.3 8 40-41 322

CL 16 4 6.25 2048 0.125 0.375 0.28 0.28 0.35 4 93-94 375

EE 32 2 3.125 1024 0.0313 0.188 0.0125 0.1525 0.04 2 21-22 43

BE 64 1 1.563 1024 0.016 0.094 0.0125 0.1525 0.036 1 39 39

BK 64 1 1.563 1024 0.008 0.047 0.0125 0.1525 0.016 1 17 17

Total 64 100 0.57 5.95 0.5735 0.9935 1 64 1073

N = 64, GMTU = 32, w = 3, k = 0.5

NC SL and a maximum distance of 64 entries to the best-effort SLs. Table

4 shows the total number of entries (#entr.) and the proportion of table

entries (%entr.) for each SL. In order to achieve the maximum flexibility

possible, MTU values have been established as small as possible. Table 4

shows the specified MTUs for each SL in the MTUi column.

Finally, we have configured proper values for w and k parameters (Section

4.4). To that end, we have used a w and k adjustment methodology. This

methodology is based in a multipurpose backtracking algorithm [50]. The

main condition taken into account is we want for the CL SL a bandwidth

higher than the actual proportion of table entries assigned. Moreover, we

want to assign the NC SL, which has a high proportion of table entries

assigned, a small proportion of bandwidth. Nevertheless, it is important

to keep the k parameter value as small as possible in order to obtain good

latency performance. For that reason, the backtracking algorithm always

tries first to adjust the k parameter, starting from the lowest value possible

0.1 being w = k and increasing k in steps of 0.1 until minϕi is lower than the
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desired ϕi for all SLs. Finally, the algorithm starting from w = k increases w

in steps of 0.1 until maxϕi is higher than the desired ϕi for all SLs. We have

finally chosen a value of 3 for w and a value of 0.5 for k. This combination

of values allows us to get an assignable bandwidth range [minϕi, maxϕi] for

each SL, which fits with the bandwidth requirements. Table 4 shows the

minimum and maximum bandwidth that may be assigned to each SL using

this configuration.

Table 4 shows in the column ϕi the final assigned bandwidth values.

These bandwidth values have been selected taking into account the expected

SL bandwidth usages stated in Section 5.1. Note that the high priority SLs

have more reserved bandwidth than the corresponding injection rates in order

to prevent flow congestion and HoL could affect these flows. Note also that

these values are within the defined ranges. The column injection shows the

total amount of traffic expressed in flits/cycle/NIC that each SL injects. In

this scenario, SLs NC, VO, VI and CL inject a fixed amount of traffic and

the best-effort SLs increase gradually the amount of traffic, Min. and Max.

columns show these increases. The column (T.W.) shows the total weight

distributed among the table entries of each SL and the weight associated to

each table entry (E.W ). Note that some SL entries may have been assigned

different E.W. values, e.g. some NC SL table entries have been assigned

with a weight of 4 and others with 3. The reason behind these table weight

deviations is the original DTable configuration methodology may produce

slightly bandwidth deviations, i.e. an SL gets more or less bandwidth than

desired. We have developed a system able to correct these deviations.
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6. Simulation results

Performance metrics are described in Section 5 and the values shown for

each injection rate are the average of 30 different simulations varying the

seed of the random number generation.

Figures 5 and 6 show the end-to-end latency and throughput results using

the k-ary n-tree and nD Torus topologies, respectively. Note that in some

figures the BK SL is off the chart. We have decided to leave it outside for the

sake of clarity, otherwise, the rest of lines would be too close to each other.

Total end-to-end latency using OPA switches is lower than using IB

switches. For instance, the NC SL at the 0.7 injection rate is 780.41 on

IB, 647.1 ns in OPA, 604.01 on IB, 446.87 ns in OPA for the 4-ary 3-tree

and the 24-ary 2-tree topologies, respectively. In the same injection rate, the

latency achieved by the NC SL in the nD Torus scenarios is 840.95 ns on IB,

758.1 ns in OPA, 1330.24 ns on IB and 1115.85 ns in OPA for the 2D and

3D Torus topologies, respectively.

High priority SLs in OPA are less degraded than on IB. For instance,

the NC SL latency difference in OPA between the first and the last injection

rate shown in Figure 5c is 44.6 ns while on IB the latency difference between

the first and last injection rate shown in Figure 5a for the same SL is 55.78

ns. Comparing latency increases with Figures 5e and 5g, the differences are

35.95 and 144.95 ns for OPA and IB, respectively. Regarding the nD Torus

topologies, the NC SL latency difference in OPA shown in Figures 6a and 6c

is 69.45 ns compared with 267.66 ns on IB. Differences in Figures 6e and 6g

are 229.89 and 80.36 ns for IB and OPA, respectively.

In the OPA scenario, in terms of latency, point-to-point connections (VO,
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Figure 5: Performance of each SL using a 4-ary 3-tree (5a, 5b, 5c and 5d) and 24-ary 2-tree (5e, 5f, 5g and

5h) topologies with IB switch (5a, 5b, 5e and 5f) and OPA switch (5c, 5d, 5g and 5h). Results in Figures

5a, 5c, 5e and 5g refer to end-to-end latency and results in Figures 5b, 5d, 5f and 5h refer to throughput.
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Figure 6: Performance of each SL using a 2D Torus (6a, 6b, 6c and 6d) and 3D Torus (6e, 6f, 6g and 6h)

topologies with IB switch (6a, 6b, 6e and 6f) and OPA switch (6c, 6d, 6g and 6h). Results in Figures 6a,

6c, 6e and 6g refer to end-to-end latency and results in Figures 6b, 6d, 6f and 6h refer to throughput.
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VI and CL SLs) are also less penalized, while on IB the point-to-point con-

nections are more penalized than the low priority SLs. Moreover, as can be

seen in Figure 5a, VO and VI latencies increase drastically when the network

congestion point is reached. However, on IB the best-effort SLs increase their

end-to-end latency more quickly than in OPA, when the injection ratio in-

creases. This means that in order to meet the latency requirements on the

high priority SLs, IB switches are forced to increase the low priority laten-

cies. Whilst, this behavior can also be seen in OPA, although it is more

widespread. This means OPA switches are able to provide better latency

values than IB switches. Note that in Figures 5a, 5e, 5c and 5g BK SL la-

tencies suffer from a large increase, the reason behind this fact is because

the BK SL is generating packets at a higher rate than packets are injected,

therefore, they are accumulated in the injection queues increasing drastically

their final latency.

Referring throughput results shown in Figures 5b, 5d, 5f, 5h, 6b, 6d, 6f

and 6h, achieved by each SL on each configuration. Throughput results are

very close to the desired ones, even after the saturation point. The BK SL

suffers of a slight throughput reduction because the BK SL is trying to use

more bandwidth than the scheduler allows. Hence, the final throughput for

the BK SL is slightly reduced. In both architectures, results show the sched-

uler using the proposed configuration is almost able to meet the bandwidth

requirements in all cases. However, results of IB in Figure 5b, show the VI

and VO throughput is reduced behind of the expected. Also, in the results

shown by Figures 6f and 6h, the achieved throughput by the VO an VI SLs,

is a bit lower than the expected. Note that in the case of OPA, the CL SL
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is the only one affected. In our opinion, this is due to the fact that the IB

pipeline is shorter than the OPA pipeline which encourages point-to-point

SLs to suffer from increased congestion and HoL. Generally, in extreme cases,

e.g. when an SL is heavily saturated, OPA is able to provide better QoS pro-

vision than IB. As commented above, in all proposed scenarios, OPA achieve

better result than IB. The reason for this is that the OPA hierarchical cross-

bar architecture makes it possible to achieve higher throughput ratios and to

maintain lower end-to-end latency values than IB, although in OPA packet

could takes more time to cross the switch than on IB because some packets

have to go through the central crossbar. Therefore, it seems more interesting

to have high-radix switches even using more complex design to improve the

achieved throughput than a more simple design providing lower latencies to

all packets that cross the switch.

7. Conclusions

QoS provision is a relevant aspect of HPC interconnection networks. A

key component for networks with QoS support is the scheduling algorithm,

which is in charge of determining when the next packet should be transmitted.

An ideal scheduling algorithm implemented in HPC networks should satisfy

two main properties: good end-to-end latency and simplicity.

In this paper we have designed an IB-based and an OPA-based simulation

models. They are two of the dominating technologies in the list TOP500 of

the most powerful computers. Both architectures are also an example of

non-hierarchical and hierarchical switch architectures, respectively. We have

adapted to these architectures the DTable output scheduler which offers a
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good balance between performance and hardware cost

We have evaluated the performance of the DTable scheduling algorithm

in both architectures using an heterogeneous scenario where multiple traffic

types coexist. We have carried out different experiments using several topol-

ogy configurations and we have compared results against both architectures.

End-to-end latency per SL results show that the OPA architecture is able

to meet latency requirements better than the IB architecture, it is able to

achieve lower latency values than IB. Also, high priority and point-to-point

SLs in OPA are less degraded than on IB. Moreover, IB is forced earlier to

drastically increase the latency of low priority SLs in order to keep the latency

of high priority SLs. Throughput per SL results show that either IB or OPA

can provide bandwidth desired values. However, on IB, in some scenarios,

point-to-point SLs achieve throughput results a bit lower than expected.

Currently, we are developing a strategy to reduce the congestion, specially

on IB for being the architecture most affected. We are also adapting sorted-

priority scheduling algorithms.
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