
Vol:.(1234567890)

The Journal of Supercomputing (2021) 77:9934–9946
https://doi.org/10.1007/s11227-021-03667-x

1 3

A methodology to enable QoS provision on InfiniBand
hardware

Javier Cano‑Cano1 · Francisco J. Andújar2 · Jesús Escudero‑Sahuquillo1 ·
Francisco J. Alfaro‑Cortés1 · José L. Sánchez1

Accepted: 2 February 2021 / Published online: 22 February 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021

Abstract
Modern high-speed interconnection networks include support for the provision of
quality of service (QoS) to the applications. The output scheduling algorithm plays
an important role in the QoS provision, choosing the packets to be delivered from
the output buffers. InfiniBand, one of the most used interconnection technologies,
includes a table-based scheduler composed of a high- and a low-priority tables, and
a counter limiting the number of high priority traffic flows that may be delivered
before giving the opportunity to low priority ones. Therefore, the performance of
the traffic flows in the network largely depends on the table configuration since
the switch scheduler uses this information to allow/deny packets being forwarded,
according to the QoS provision scheme. As far as we know, there is no study on
the influence of these configurations to the traffic flows performance. In this paper,
we present an offline analysis tool to accurately determine the expected end-to-end
latency and bandwidth of the traffic flows in an InfiniBand-based network using the
information contained in the high- and low-priority tables. Moreover, we present a
methodology to aid network administrators in configuring the QoS provision in a
real InfiniBand cluster. Finally, we evaluate the analysis tool, comparing its results
with those obtained from a real cluster and from simulation.

Keywords Analysis tool · High-performance networks · Quality of service ·
InfiniBand · Performance evaluation · Scheduling algorithms

 * Javier Cano-Cano
 javier.cano@uclm.es

1 Computing System Department, Universidad de Castilla-La Mancha, Albacete, Spain
2 Computing System Department, Universidad de Valladolid, Valladolid, Spain

http://orcid.org/0000-0003-3100-4824
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-021-03667-x&domain=pdf

9935

1 3

A methodology to enable QoS provision on InfiniBand hardware

1 Introduction

High-performance computing (HPC) is expected to break the exascale barrier
soon [11]. In HPC systems, the interconnection network is a crucial element, as
it needs to process communications generated by HPC applications and, there-
fore, it may become the entire system bottleneck. In order to overcome this poten-
tial problem, many improvements have been devised in the last years, focused on
routing algorithms, congestion avoidance mechanisms, switch architectures, etc.
[1, 25].

There are multiple HPC interconnection network technologies that have been
competing to achieve better performance and market share. Some of the most
popular interconnection network technologies are Gigabit Ethernet (GE) [20],
InfiniBand (IB) [16] and Omni-Path (OPA) [4]. In the most powerful computer
list TOP500 [23], GE has 50.8%, IB has 31% and OPA has 9.4% of market share
(November, 2020). But in the top 100, the amount of IB-based supercomputers
grows to 61%. As can be seen, IB is one of the most used interconnection tech-
nologies by the most powerful HPC systems in the world.

One crucial feature in HPC interconnection networks is the quality of service
(QoS) provision. QoS allows to differentiate traffic flows from different applica-
tions according to their specific requirements (e.g., latency or throughput). If this
functionality is available, network administrators need to configure the QoS pro-
vision a priori, avoiding that one or a few traffic flows consume all the network
resources, or that the end, users may experience a poor system performance, even
if the system is not overloaded. Note that the most popular interconnection net-
work technologies include support for providing QoS, being nowadays an active
research topic in HPC environments [18, 19, 22].

The cornerstone of QoS provision is the output scheduling algorithm [7, 8],
which determines when a packet should be delivered to the next network device
(i.e., network interface, switch, etc.). The decision is based on performance met-
rics such as end-to-end delay and/or bandwidth requirements. In the context of
HPC interconnection networks, this scheduler has to be as simple as possible
in terms of computational and implementation complexity [21]. The algorithm
latency must be smaller than the transmission time. Otherwise, the system will
expend more time choosing the next packet to be delivered than transmitting
packets. Also, the implementation complexity must be low because these sched-
ulers are typically implemented in hardware.

A well-known family of scheduling algorithms is table-based schedulers. In
fact, both IB and OPA HPC interconnection networks include table-based sched-
ulers [4, 10]. This family of schedulers offers a good latency and bandwidth
performance with a low computational complexity. These schedulers have been
widely studied over the last few decades [2, 12, 13], especially on IB.

The IB scheduler is based on two arbitration tables: high-priority table and
low-priority table. The scheduler also includes a high-priority counter which
determines the maximum amount of data that may be transmitted using the
high-priority table before giving an opportunity to the low-priority table. The

9936 J. Cano-Cano et al.

1 3

high-priority table has been widely studied [2, 3, 6]. However, how the low-pri-
ority table and the high-priority counter influence the final traffic flows perfor-
mance, as far as we know, has not yet been analyzed.

In this paper, we present an offline analysis tool that allows users to extract the
expected end-to-end latency and bandwidth values of the traffic flows from a given
IB scheduler configuration. We also present a methodology to test these QoS config-
urations in a real IB testbed, and a comparison between the expected values obtained
from our offline analysis tool and the achieved results from the testbed.

The structure of the paper is as follows: Sect. 2 describes the QoS support on
IB. Section 3 introduces the offline InfiniBand analysis tool and Sect. 4 presents
the methodology to test the scheduler configurations in a real IB testbed. Section 5
shows the experimental results. Finally, in Sect. 6, some conclusions are drawn.

2 InfiniBand QoS support

This section reviews the mechanisms provided by the IB architecture to provide QoS
to applications. These mechanisms are the virtual lanes (VLs), service levels (SLs),
output scheduler and SL2VL tables [6, 10, 16].

VLs provide dedicated buffer space for packets at the input/output ports. Moreo-
ver, IB implements a credit-based flow control at VL-level. IB supports up to 16
VLs being the last VL (VL15) reserved for network control traffic.

SLs are the only QoS information stored in packets. SLs provide QoS to the
applications aggregating traffic flows with similar characteristics through the net-
work. The packet SL is set by the network interfaces (NICs) before their injection in
the network and cannot be modified later.

Moreover, in order to provide QoS, IB switches also require in each output port,
the SL-to-VL mapping tables (SL2VL), as shown in Fig. 1a. Through these tables,
the packets are assigned to a VL based on their SL, output port and input port. Note
that as each output port has its own SL2VL table, packets may be assigned to differ-
ent VLs along their route.

Fig. 1 Diagram of IB architecture

9937

1 3

A methodology to enable QoS provision on InfiniBand hardware

Figure 1a also shows an output scheduler per output port. This scheduler is a
table-based scheduler with two tables, as shown in Fig. 1b. The first table (High-
priority table) is aimed to schedule high-priority VLs, while the second table (Low-
priority table) is devoted to low-priority VLs. Both arbitration tables have up to 64
entries. Each entry has a VL identifier and a weight ranging from 0 to 255. The
weight indicates how many 64-byte units may be delivered from that VL. Entry
weights are always rounded up in order to allow the transmission of an entire packet.

IB output scheduler also defines the LimitOfHighPriority counter. It repre-
sents the maximum amount of information that may be delivered from the high-
priority VLs before selecting the low-priority ones. A byte counter accumulates
the amount of information sent by high-priority VLs. When this counter reaches
LimitOfHighPriority × 4096 bytes, the scheduler can choose a low-priority VL.
If there are no packets in high-priority VLs, the scheduler can also choose a low-
priority entry. There are two special values for LimitOfHighPriority: 255 indicates
that there is no byte limit for high-priority VLs, while 0 indicates that only one
high-priority packet can be transmitted, allowing to send packets from both tables
alternately.

For instance, let us consider the output IB port shown in Fig. 2. The port has
four VLs and one buffer per VL. The high-priority VL 0 has three packets,
the low-priority VL 2 has two packets and packets are 64 bytes sized. Finally,
LimitOfHighPriority = 1 (i.e., 4096 bytes), and the byte counter is 3968.

When the scheduling is needed, the high-priority table is cycled through until
an active VL1 is found. Then the VL can transmit as many packets as defined in the
“weight” field of the selected table entry. In the example, the scheduler selects the
first table entry, allowing VL 0 (black arrow on the left) to deliver 196 bytes, i.e.,
three packets (Round N high-priority Before delivery). However, the byte counter

Fig. 2 Example of high-priority and low-priority tables

1 A VL is active when it stores packets and has credits to send at least one packet.

9938 J. Cano-Cano et al.

1 3

reaches 4096 after transmitting the second packet. Given that the VL 0 interrupts the
transmission, giving the opportunity to send packets to the low-priority VLs (Round
N high-priority After delivery). Then, the first low-priority table entry is selected,
allowing VL 2 to deliver its two packets (Round N+1 low-priority Before delivery).
Finally, the byte counter is reset, the delivery of high-priority VLs is resumed and
VL 0 sends its last packet.

In a table-based scheduler that only uses a single table, e.g., using the IB output
scheduler with only the high-priority table, using a proper table entry weights and
distances distribution, the total amount of bandwidth �i assigned to the VLi in an
N-entry arbitration table is

where J is the amount of table entries assigned to the VLi , weight is the entry weight
assigned to a table entry and N is the total number of entries of the arbitration table.
However, as far as we know, there is no tool or methodology that could be used by
system administrators and researchers to figure out the �i assigned to the VLi when
the two IB arbitration tables are used, apart from testing the configuration on a real
IB cluster or simulator with IB support. Furthermore, the maximum distance is very
complicated to know in advance, since it is not possible to know exactly when the
byte counter will exceed the LimitOfHighPriority and so to interleave a low-priority
table entry between two high-priority table entries.

3 Offline InfiniBand multi‑table analysis tool

Given a high priority arbitration table configuration, we can easily calculate the
bandwidth assigned to each traffic flow and the maximum entry distance between
any pair of table entries assigned to the same traffic flow. Intuitively, let’s consider
that the VL 0 has 32 entries assigned in the high priority table with a distance of 2
between any pair of consecutive entries, the VL 1 has 16 table entries with a dis-
tance of 4 entries, and the weight of each VL 0 entry is 2 units while the weight of
each VL 1 entry is 4 units. Hence, the total amount of bandwidth assigned is the
same (i.e., 50%) for each VL. However, with this configuration, the VL 0 packets
will show lower end-to-end latency than that of VL 1 packets, since the distance
between table entries is lower for VL 0. Note that, when the LimitOfHighPriority is
added to the arbitration process, these values become more complicated to obtain.
For instance, if a low priority entry and a LimitOfHighPriority counter are added to
the above example, the bandwidth portion assigned and entry distances cannot be
directly obtained. Therefore, predicting in advance the exact moment when the low
priority table has the opportunity to deliver packets is not a trivial task.

For this purpose, we have developed an offline analysis tool. The main goal of this
tool is to obtain, from a given IB output scheduler configuration, the VL effective band-
width and maximum distance between any pair of consecutive entries assigned to the

(1)�i =

(

J−1
∑

j=0

weightj

)

/

(

N−1
∑

k=0

weightk

)

9939

1 3

A methodology to enable QoS provision on InfiniBand hardware

same VL. The VL effective bandwidth is a valuable metric because different traffic
flows have bandwidth requirements that should be met. The maximum distance allows
to control the final latency achieved by each VL [2].

This tool has a range of configurable parameters aimed to cover almost all the pos-
sible configurations of the IB output scheduling algorithm. These parameters are:

– High-priority table: A comma-separated plain text file including on each line a
high-priority table entry. This parameter is mandatory.

– Low-priority table: A comma-separated plain text file including on each line a
low-priority table entry. This parameter is optional.

– Limit of high-priority: This value represents the LimitOfHighPriority counter,
which ranges from 0 to 255. Its default value is 1.

– Runs: It specifies the number of high-priority table cycles performed during the
analysis. A table cycle is considered completed when the last high-priority table
entry is reached and the scheduler returns to the first table entry. It is recommended
to set this parameter at least to 30, which is the default value. However, some con-
figurations may require more runs to converge.

– Packet size: The packet size in bytes. This value can be fixed to match the maxi-
mum transmission unit (MTU), which on IB networks by default is 4096. Also, the
packet size is 64, so that 64 × 64 = 4096 bytes. The default value is 4096 bytes.

The analysis tool simulates the delivery of packets in the output ports under the fol-
lowing assumptions: (1) There are always packets ready for delivery and (2) There is
always space in the next network device to store the transmitted packet. These assump-
tions give us an ideal scenario for obtaining the theoretical bandwidth divisions and
the maximum entry distances. The tool also includes a statistical module to collect and
compute the results. Algorithm 1 shows how the tool simulates the packet delivery and
collects statistics.

In Algorithm 1, there are several functions involved: len() extracts the number of
table entries from a given arbitration table, get_hp_entry() gets the next table entry and
cycles through the table in a round-robin order, get_weight_from_entry() returns the
associated weight to the given entry, deliver_all_lp_packets() simulates the delivery
of as many packets as the next low-priority table entry states, update_stats() refreshes
the current VL statistics and deliver_hp_packet() simulates the delivery of one high-
priority packet. Note that high-priority packets are sent out one at a time for the current
entry, while low-priority packets of the current entry are delivered at the same time.
Unlike high-priority packets, there is not a byte counter limiting the amount of informa-
tion sent by the low-priority table. The scheduler just delivers as many from the low-
priority table packets as the selected entry weight allows.

9940 J. Cano-Cano et al.

1 3

Algorithm 1 Delivery simulation and statistics collection.
1: procedure run(hp, lp, limit hp, runs)
2: num entries ← len(hp)
3: limit hp counter ← 0
4: for i ← num entries ∗ runs do
5: hp entry ← get hp entry(hp)
6: entry weight ← get weight from entry(hp entry)
7: for j ← entry weight do
8: if limit hp �= 255 and limit hp counter ≥ limit hp then
9: lp entry ← get lp entry(hp)
10: deliver all lp packets(lp entry)
11: vl stats ← update stats(lp entry)
12: limit hp counter ← 0
13: end if
14: deliver hp packet(hp entry)
15: limit hp counter ← limit hp counter + packet size
16: vl stats ← update stats(hp entry)
17: end for
18: end for
19: return vl stats
20: end procedure

Once Algorithm 1 has finished, the bandwidth �i and the maximum entry dis-
tance dsti are calculated as follows:

where packetsi is the total amount of packets delivered by the VLi and V is the total
number of VLs in the system. The accumDsti is the sum of distances between any
pair of consecutive entries assigned to VLi and timesSelectedi is the sum of times that
the entries associated to VLi have been selected.

4 InfiniBand QoS testing methodology

This section details a simple methodology to test and compare the performance of
different configurations of the IB output scheduler. As stated in Sect. 3, to know
in advance the bandwidth assigned to every VLi from a configuration is not possi-
ble, unless we use an analysis tool such as the one presented in Sect. 3, a simula-
tion tool or a real IB network.

The main idea behind our methodology is to create multiple traffic flows which
will be sent between two nodes interconnected by means of an IB switch. Each
traffic flow will try to use the full bandwidth, and therefore, all the traffic flows
will be forced to compete for the switch resources. Thus, the output scheduler
will distribute the resources (i.e., buffering space, internal links, etc.) among the
traffic flows based on their QoS configuration. Figure 3 shows an example using
three traffic flows. The methodology defines the following steps for QoS testing:

(2)�i =
packetsi

∑V−1

j=0
packetsj

, dsti =
accumDsti

timesSelectedi
,

9941

1 3

A methodology to enable QoS provision on InfiniBand hardware

1. Define the output scheduler configuration that we want to test. That is, to define
the arbitration table configurations (high-priority is mandatory and the low-pri-
ority is optional), the LimitOfHighPriority counter value (if low-priority table is
used) and the SL2VL table configuration.

2. Define the traffic flows. One traffic flow is required for each VL defined on the
scheduler configuration in step 1. Each traffic flow is assigned with a different SL
at the computing node IB interface, prior to its injection in the network. Each SL
is associated with a different VL in the network setup stage through the SL2VL
tables, allowing to the output scheduler to segregate the traffic flows and allocate
different link bandwidth for each traffic flow.

3. Set up the scheduler configuration (step 1) and the SL2VL tables (step 2) using
the subnet manager (SM) [10]. The SM is in charge of multiple actions, such as
discovering the topology, configuring the SL2VL and arbitration tables, popu-
lating the routing tables, etc. We have used OpenSM [14] which is the common
open-source choice on IB networks.

4. Select the source and the destination nodes. The nodes must be interconnected
by switches.

5. Generate all the traffic flows simultaneously. Each traffic flow will be assigned to
a different SL, according to step 2.

6. Analyze the obtained results. The applications, generally show the benchmark
results, which can be stored in a plain text file and later analyzed.

5 Performance analysis

This section compares the results obtained from the offline analysis tool described in
Sect. 3 with those achieved from a real IB cluster using the methodology explained
in Sect. 4. The main goal of this analysis is to validate the analysis tool behavior.

Moreover, we have carried out experiments using the simulation tool Hiperion
[5, 9] to compare the results obtained from the analysis tool against multiple system
configurations. The main goal is to find out if the bandwidth obtained by the SLs in
the experiments remain accurate when the system size grows.

5.1 Testbed configuration

The IB testbed is composed of one switch Mellanox SB7800 Series 2 EDR 100Gb/s
with 36 ports and three computing nodes HPE ProLiant DL380 Gen10 Server. Each

Fig. 3 Traffic flow example
inside a IB cluster

9942 J. Cano-Cano et al.

1 3

node has two Intel Xeon Silver 4116 processors. The operating system is CentOS 8
running OpenSM 3.3.19. To generate the traffic flows, we have used the InfiniBand
Perftest package 4.4.0 [15], a collection of software tests written using the IB verbs
API [17], which are used as performance micro-benchmarks. Specifically, we have
used the ib_send_bw and the ib_send_lat applications. The ib_send_bw
is aimed to test the bandwidth sending packages from a sender to a receiver, while
ib_send_lat application measures the message latency.

We have carried out experiments using two different arbitration table configura-
tions. Table 1 shows both configurations A and B. SL 0, 1 and 2 are high-priority
SLs, while SL 3 is a low-priority SL. The SLEntries column shows the number of
table entries assigned to each SL. For instance, SL 0 has 32 high-priority entries
in both configurations and SL 3 has 1 low-priority entry. The EntryWeight is the
weight assigned to each table entry, while the SLTotalWeight column shows the total
weight accumulated per each SL. LimitOfHighPriority is set to 1 (1 × 4096 = 4096
bytes) in both cases. Note that in configuration A, there are two values in Entry-
Weight column, (e.g., SL 0 has an EntryWeight of 8-9). This means that some SL 0
table entries have been assigned with a weight of 8 and others with 9. We have used
the methodology proposed at [13] for configuring the high-priority table. However,
this methodology may produce that an SL gets more or less bandwidth than desired,
so we add or subtract weight from the entries until the bandwidth assigned to each
SL is equal or very close to the desired bandwidth. The offline analysis tool is con-
figured using these two configurations, 300 runs and a packet size of 4096 bytes.

5.2 Simulation configurations

We have chosen the k-ary n-tree topology or fat-tree for being very common and
well known solution in high performance environments. We have tested this topol-
ogy with multiple layouts, varying the number of stages (n ∈ {2, 3}) and the k-arity
(k ∈ {2, 4, 6, 8, 10, 12, 14}).

The k-ary n-tree topology implements the valiant routing algorithm, which lever-
ages the available routes in the topology, balancing in a fair manner the traffic flows
among them [24]. In these experiments, we have used the Configuration A shown in
Table 1. The flit size is 16 bytes and the packet size is 4 flits, resulting in a 64-byte
credit unit. The buffer capacity is 7,168 flits at switch input/output ports and 14,336

Table 1 Arbitration table configurations

SL Configuration A Configuration B

SLentries EntryWeight SLTotalWeight SLEntries EntryWeight SLTotalWeight

0 32 8–9 264 32 22 704
1 16 9–10 158 16 27 432
2 16 6–7 106 16 18 288
3 1 6 6 1 2 2
Total 65 534 65 1426

9943

1 3

A methodology to enable QoS provision on InfiniBand hardware

flits at the NICs. Finally, if an application wants to inject a packet into a full NIC
queue, we assume that the packet is stored in the application layer queue.

Regarding the traffic, in this study, we have used synthetic traffic. Specifically, we
have modeled a random uniform traffic distribution using a fixed generation rate of
1 flit/cycle/NIC. This traffic pattern along with this injection ratio ensures that the
network is fully loaded.

5.3 Evaluation results

We have used three metrics in this study:

– Bandwidth difference: This is the link bandwidth percentage difference
obtained on each system for every SL. This is �tool

i
− �IB

i
 , where �tool

i
 is the band-

width percentage obtained by the SLi with the analysis tool, and �IB
i

 is the band-
width percentage obtained by the SLi on the real system.

– Maximum entry distance: It is the maximum distance between any pair of con-
secutive entries assigned to the same VL. It allows to know the expected VL
latency. This metric gives us the end-to-end packet latency.

– Average message latency: It measures the end-to-end message latency on the
real system.

Note that we have used the message latency instead of the packet latency. In HPC
environments, the clock signal of different computing nodes is not synchronized and,
there is no global time variable allowing us to know the exact deliver and reception
packet timestamps in different nodes. For the same reason, as it is also very compli-
cated the end-to-end message latency we use the ib_send_lat application to estimate
this metric.

Figure 4 shows the obtained results. Referring bandwidth percentage differ-
ences shown in Fig. 4a, d, the differences are always below 0.5%. For instance,

(a) (b) (c)

(d) (e) (f)

Fig. 4 Performance of each SL using configurations A (a, b, c) and B (d, e, f)

9944 J. Cano-Cano et al.

1 3

using the configuration A, the SL 3 gets 8.57% of the total link bandwidth using
the analysis tool and 9% in the real system. Hence, the bandwidth difference is
8.57 − 9 = −0.43 meaning that the SL has achieved 0.43% more than indicated by
the analysis tool. These differences are because the IB EDR specification uses an
encoding protocol 64b/66b, which means that 2 of 66 delivered bits are used for
error control. This may lead to situations where some SLs achieve less bandwidth
than specified in the arbitration tables and others allocate those free resources
obtaining more bandwidth than specified. Because of it is not possible in advance
to know which traffic flows are going to be affected, we have not considered the
encoding protocol in our simulation tool in order to obtain a theoretical band-
width value. Note that, in general, the bandwidth differences are negligible.

Regarding the maximum entry distances and the message latencies shown in
Fig. 4b, c, e and f, the final message latency corresponds to the entry distances
obtained by the analysis tool. There is an exception in SLs 1 and 2, which theoret-
ically have the same maximum entry distance and on the real system tests the SL
2 achieves more message latency than the SL 1. This is because despite having
the same maximum entry distance, the SL 1 has more bandwidth assigned than
the SL 2, which indirectly affects to the final message latency as well. However,
entry distances results obtained by the analysis tool are useful as a general idea of
the expected message latencies.

Figure 5 shows the obtained results for each SL, using the simulated system
configurations described in Sect. 5.2. In this case, the main goal is to compare the
results of the analysis tool when the system size grows. To carry out this com-
parison, we have analyzed the bandwidth differences. As shown in Fig. 5, the
bandwidth differences remains constant in all tested scenarios and these differ-
ences are always below ±0.045%, which is a negligible difference. Therefore, the

Fig. 5 Bandwidth differences in simulated scenarios (Configuration A)

9945

1 3

A methodology to enable QoS provision on InfiniBand hardware

analysis tool is able to predict the bandwidth division regardless of the system
size.

6 Conclusions

In this paper, we have presented an offline InfiniBand multi-table analysis tool capa-
ble of extracting from the possible configurations for high and low priority tables;
and a LimitOfHighPriority counter, the expected end-to-end latency and link band-
width division. We have also presented a simple methodology to test and validate
the same configurations on a real InfiniBand system. Moreover, we have carried out
experiments using the simulation tool Hiperion, in order to explore if the analysis
tool is accurate when the system size grows. Results show that the analysis tool is
able to achieve its objective, in a fast, accurate and simple way. Furthermore, the
accuracy of the result obtained does not decrease as the network is scaled. Results
show that the analysis tool is capable of extracting the bandwidth division and the
maximum entry distance, with negligible differences, in a fast, accurate and simple
way.

As future work, we are working on a mathematical approach to configure the IB
output scheduler. This approach can determine the optimal scheduler configuration,
given a bandwidth and latency requirements, instead of testing multiple configura-
tions looking for the one that meets our requirements.

Acknowledgements This work has been supported by the Junta de Comunidades de Castilla-La Mancha,
European Commission (FEDER funds) and Ministerio de Ciencia, Innovación y Universidades under pro-
jects SBPLY/17/180501/000498 and RTI2018-098156-B-C52, respectively. It is also co-financed by the
University of Castilla-La Mancha and Fondo Europeo de Desarrollo Regional funds under project 2019-
GRIN-27060. Javier Cano-Cano is also funded by the MINECO under FPI grant BES-2016-078800.

References

 1. Ahn JH, Son YH, Kim J (2013) Scalable high-radix router microarchitecture using a network switch
organization. ACM Trans Archit Code Optim (TACO) 10(3):17

 2. Alfaro FJ, Sánchez JL, Duato J (2004) QoS in InfiniBand subnetworks. IEEE Trans Paral Distrib
Syst 15(9):810–823

 3. Alfaro FJ, Sánchez JL, Orozco L, Duato J (2003) Providing QoS in InfiniBand for regular and irreg-
ular topologies. In: CCECE 2003-Canadian Conference on Electrical and Computer Engineering.
Toward a Caring and Humane Technology (Cat. No. 03CH37436), vol 2, pp 1079–1082. IEEE

 4. Birrittella MS et al (2015) Intel® Omni-Path Architecture: Enabling scalable, high performance
fabrics. In: IEEE 23rd Annual Symposium on High-Performance Interconnects (HOTI), 2015, pp
1–9. IEEE

 5. Cano-Cano J, Andújar FJ, Alfaro-Cortés FJ, Sánchez JL (2021) QoS provision in hierarchical and
non-hierarchical switch architectures. J Paral Distrib Comput 148:138–150

 6. Crupnicoff D, Das S, Zahavi E (2005) Deploying quality of service and congestion control in Infini-
Band-based data center networks. Mellanox Technologies

 7. Demers A, Keshav S, Shenker S (1989) Analysis and simulation of a fair queueing algorithm. ACM
SIGCOMM Comput Commun Rev 19(4):1–12

 8. Greenberg AG, Madras N (1992) How fair is fair queuing. J ACM (JACM) 39(3):568–598
 9. Hiperion repository homepage. https:// gitra ap. i3a. info/ fandu jar/ hiper ion. Accessed 23 Oct 2020

https://gitraap.i3a.info/fandujar/hiperion

9946 J. Cano-Cano et al.

1 3

 10. InfiniBand Trade Association, et al (2020) InfiniBand architecture specification release 1.4. http://
www. infin iband ta. org

 11. Keyes DE (2011) Exaflop/s: the why and the how. Compt Rend Mécanique 339(2–3):70–77
 12. Martínez R, Alfaro FJ, Sánchez JL (2006) Decoupling the bandwidth and latency bounding for

table-based schedulers. In: Proceedings of the 2006 International Conference on Parallel Processing
(ICPP’06), pp 155–163. IEEE

 13. Martínez R, Alfaro FJ, Sánchez JL (2009) Providing QoS with the deficit table scheduler. IEEE
Trans Paral Distrib Syst 21(3):327–341

 14. OpenSM Mellanox homepage. https:// bit. ly/ 2ZC8E KD. Accessed 21 Aug 2020
 15. Perftest Package homepage. https:// commu nity. mella nox. com/s/ artic le/ perft est- packa ge. Accessed

21 Aug 2020
 16. Pfister GF (2001) An introduction to the InfiniBand architecture. High Perform Mass Storage Paral

I/O 42:617–632
 17. RDMA aware networks programming user manual. https:// bit. ly/ 2FDwv lX
 18. Savoie L (2019) Inter-job optimization in high performance computing
 19. Savoie L, Lowenthal DK, De Supinski BR, Mohror K, Jain N (2019) Mitigating inter-job interfer-

ence via process-level quality-of-service. In: Proceedings of the 2019 IEEE International Confer-
ence on Cluster Computing (CLUSTER), pp 1–5. IEEE

 20. Seifert R (1998) Gigabit ethernet: technology and applications for high speed LANs. Addison-Wes-
ley Reading, Massachusetts

 21. Sivaraman V (2000) End-to-end delay service in high-speed packet networks using earliest deadline
first scheduling. University of California, Los Angeles

 22. Souza A, Pelckmans K, Tordsson J (2020) A HPC Co-Scheduler with Reinforcement Learning
 23. TOP500 homepage. https:// www. top500. org. Accessed 20 Jan 2021
 24. Valiant LG (1982) A scheme for fast parallel communication. SIAM J Comput 11(2):350–361
 25. Yébenes P, Escudero-Sahuquillo J, Requena CG, García PJ, Alfaro FJ, Quiles FJ, Duato J (2014)

Combining HoL-blocking avoidance and differentiated services in high-speed interconnects. In:
Proceedings of the 21st International Conference on High Performance Computing, HiPC 2014,
Goa, India, December 17–20, 2014, pp 1–10. IEEE Computer Society

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

http://www.infinibandta.org
http://www.infinibandta.org
https://bit.ly/2ZC8EKD
https://community.mellanox.com/s/article/perftest-package
https://bit.ly/2FDwvlX
https://www.top500.org

	A methodology to enable QoS provision on InfiniBand hardware
	Abstract
	1 Introduction
	2 InfiniBand QoS support
	3 Offline InfiniBand multi-table analysis tool
	4 InfiniBand QoS testing methodology
	5 Performance analysis
	5.1 Testbed configuration
	5.2 Simulation configurations
	5.3 Evaluation results

	6 Conclusions
	Acknowledgements
	References

