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ABSTRACT 

The surge in electronic procurement is fostering the proliferation of electronic marketplaces and advanced 
auctions as primary coordination mechanisms. Among these, combinatorial and double auctions are gaining 
traction in the procurement sector. However, prevalent implementations often assume participants to be 
perfectly rational, adhering to predefined behaviors within the auction model. These centralized models, 
while prevalent, fail to capture the intricate dynamics of real auction environments adequately. 
Consequently, there is a growing recognition of the necessity for decentralized models within an agent-

based framework to simulate such auctions authentically. The contribution of this work is the application 
of the DEVS formalism to develop a decentralized model for a combinatorial iterative double auction to 
address the limitations of centralized implementations. The model is formally defined, and a case study is 
presented to verify it against its centralized version. This is the first step toward accommodating agents 
with varied behavioral patterns within auction simulations. 

1 INTRODUCTION 

The emergence of electronic platforms in the procurement sector has brought a new means of coordinating 
supply and demand. E-procurement systems are becoming popular in industrial sectors such as additive 
manufacturing, cloud computing or energy. Typically, these platforms employ auction-based mechanisms 
to coordinate the allocation of procurement requests from distributed customers to available resources from 
distributed suppliers.  

Auctions have proved very useful for handling decentralized scheduling problems (Gorbanzadeh et al. 

2000). In particular, auctions allowing combinatorial bids (i.e., combinatorial auctions) are gaining 
prominence as market mechanisms in the procurement sector (Palacios-Huerta et al. 2022). Most of the 
existing combinatorial auction designs for e-platforms assume a perfectly rational behavior of participants, 
which presumes that agents are perfect optimizers who always make correct bidding decisions to maximize 
their utilities. However, empirical studies on auctions have found that it is hardly realistic to expect all 
individuals to consistently act in a perfectly rational manner (Khalid et al. 2022; Jiang et al. 2013).  

Combinatorial auction proposals designed under the perfect rationality premise are frequently modeled 
and implemented using mixed-integer and linear programming solvers. For the case of multi-round 
combinatorial auctions, specific algorithms are commonly developed to implement the iterative procedure. 
In these solutions, the behavior of the agents is predefined, predictable and assumes perfect rationality 
because the algorithm is implemented as an iterative and centralized one. Thus, the simulation results do 
not represent the real-world case; they are just the solution of an optimization problem solved in an iterative 

way. However, auction proposals with agents showing bounded rationality entail a higher level of 
complexity due to the unpredictable nature of participant behavior. As a result, there is a growing need for 
more flexible methodologies in the modeling and simulation of decentralized systems that can capture the 
intricacies of bounded rationality. In this scenario, the Discrete Event System Specification (DEVS) 
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formalism (Zeigler and Muzy 2018) can provide a helpful framework for modeling and simulating the 
behavior of such a decentralized market structure.  

Most of the works proposing combinatorial auction mechanisms employ centralized models for the 

implementation of the auction. Only a few of the proposals employ agent-based modeling frameworks that 
enable decentralized simulations. However, these works either employ domain-specific frameworks that 
are not applicable to other problems, or they resort to methodologies that are neither backed by a robust 
formalism nor show a modular and incremental modeling protocol. In this paper, we address these 
limitations by using the DEVS formalism to develop a robust decentralized model for the simulation of the 
auction.  

The present work builds upon prior research in (De Antón et al 2024), where we defined a centralized 
model of a combinatorial double auction for the allocation of additively manufactured production orders to 
additive-manufacturing (AM) providers. In this work, the resulting allocation from the auction was obtained 
by solving a binary integer programming problem in the Visual Basic for Applications (VBA) environment, 
in which the involved agents (i.e., customers and providers) modified their bids following a perfectly 
rational pattern. Since we need to extend the auction formulation to reproduce a more realistic scenario by 

considering bounded rationality of agents, we need a more flexible simulation framework. This study aims 
to demonstrate the use of the DEVS formalism for developing a decentralized model of the combinatorial 
double auction defined in (De Antón et al 2024). We verify the developed decentralized DEVS model by 
comparing its behavior with that of the VBA model which we will refer to from now on as the centralized 
VBA model. The simulation results obtained from our DEVS model closely replicate those from the 
centralized VBA model, confirming the verification of our model. This work lays the groundwork for future 

research, paving the way for the development of a fully decentralized auction model within the DEVS 
framework that accommodates agents with bounded rationality and diverse behavioral patterns. 

The rest of the paper is structured as follows. The related literature about auctions in electronic 
platforms and an introduction to the DEVS formalism are presented in Section 2. The DEVS model for the 
auction mechanism is detailed in Section 3. In Section 4, the implementation of the model in the Cadmium 
simulator is shown with a case study. Lastly, Section 5 draws the main conclusions and proposes further 

research. 

2 BACKGROUND 

2.1 Auctions in E-procurement Platforms 

Auctions have become one of the preferred market mechanisms in online markets because they allow to 
effectively coordinate supply and demand while drastically reducing transaction costs (Abedrabboh and Al-
Fagih 2023; Yang et al. 2021).  

 Different auction mechanisms have been designed to coordinate the market of AM subcomponents 
within an e-platform. The functioning of the auction mechanism developed by (De Antón et al 2024) is as 
follows: first, each buyer will request a production order and will place a purchase offer (i.e., a bid) showing 
the amount of money that they are willing to pay to have that order produced; second, each seller will place 
a sell offer (i.e., an ask) for some combination of the buyers’ orders showing the amount of money that they 
are willing to charge for the manufacturing of the whole bundle. After collecting bids and asks from buyers 

and sellers, respectively, the auctioneer will determine the temporary allocation of orders to sellers, thus 
ending the first round of the auction. The allocation maximizes the objective function for the current set of 
prices, for example, the social welfare. In moving to the next round, agents (either buyers or sellers) not 
winning their bids/asks will be allowed to update their prices so that they have a chance of winning the 
following round. This process will be repeated from one round to the next until the stopping criterion is 
met. The final allocation of orders to sellers will be obtained as a result. 

 Considering the above features, the auction mechanism is classified as a combinatorial iterative double 
auction according to auction theory (Abrache et al. 2004). However, this auction has three specific 
characteristics: (i) biddable items do not preexist but are created from the buyers’ demands; (ii) the 
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combinations of items are set in the first round and cannot be changed in future rounds; (iii) sellers and 
buyers know nothing about other agents’ bids and market situation. Besides, the auction will establish the 
minimum price steps that buyers and sellers must apply to update their bids/asks. 

 Combinatorial auctions determine the allocation of bundles of items to bidders by addressing the winner 
determination problem (WDP). This problem solves the allocation of bundles to the bidders that value them 
the most according to a specific optimization criterion, and it is generally formulated as a maximization 
problem of the social welfare, the buyers’ utility or the sellers’ revenue (De Vries and Vohra 2003). Since 
the WDP is NP-hard in its general formulation (Rothkopf et al. 1998), iterative procedures are employed to 
distribute the computation burden among agents (Parkes 2006). 

 In electronic procurement, combinatorial and double auctions are frequently used to coordinate the 
allocation of production orders to manufacturing resources. The main advantage of combinatorial auctions 
is that they allow participants to express preference over bundles of items as well as individual items. The 
features depicted by combinatorial and double auctions perfectly match the characteristics of the AM 
production environment ((De Antón et al 2024); Zehetner and Gansterer 2023). 

From the modeling and simulation perspective, the main problem faced by auction mechanisms is that 

they are frequently developed within theoretical environments that do not fully reproduce the complexity 
of real contexts (Evans and Prokopenko 2023). Consequently, centralized models that assume a rational 
behavior are built to implement those auction mechanisms. Notwithstanding, according to empirical studies, 
human agents cannot be assumed to behave perfectly rationally, but they can show nonstandard behaviors 
(Podwol and Schneider 2016). These behavioral phenomena are generally referred to as bounded rationality 
(Shen and Su 2007), and systems exhibiting this property require decentralized models for their simulation. 

Combinatorial auction mechanisms usually lack specialized simulation frameworks that allow a 
decentralized implementation. This situation is even worse in the case of combinatorial double auctions. 
Recent examples of combinatorial double auction proposals conducting centralized simulations can be 
found in (Jiang et al. 2022; Abedrabboh et al. 2023). Still, we can find some specific proposals for certain 
environments that execute a decentralized implementation, as in (Umer et al. 2022), where they use the 
CloudAuction extension within the CloudSim implementation tool (Calheiros et al. 2024) for the auction 

simulation. However, this is a modeling tool specifically designed for cloud computing services, and yet 
there is no formalization of a combinatorial double auction system. In this context, the DEVS formalism 
provides the necessary framework to develop a formal decentralized model for our auction that can be easily 
extended to analyze more realistic scenarios. In this paper, we will show how this can be achieved by 
defining and implementing the centralized centralized VBA model presented in (De Antón et al 2024). 

2.2 Discrete Event Systems Specification (DEVS) and Cadmium Simulation Tool 

DEVS is a hierarchical and modular formalism designed for modeling discrete event systems, enabling the 
modular coupling of models to construct intricate systems from simpler ones (Zeigler and Muzy 2018). 
This approach, rooted in general systems theory, employs a rigorous methodology for representing models, 
breaking down complex systems into two types of models: atomic and coupled models. In this framework, 
the atomic models define system behavior, while the coupled models articulate the overall structure. Atomic 
and coupled models have the capability to link their inputs and outputs, facilitating the construction of 

complex models from simpler components. 
The versatility of DEVS lies in its capacity to represent systems with finite possible states, where the 

transition to a new state after an event’s arrival is contingent on the continuous time elapsed in the preceding 
state, thereby allowing for a comprehensive representation of systems governed by sequences of events. An 
interesting feature of DEVS is its bottom-up methodology, which maintains incremental complexity 
bounded and enables stage-wise verification, as each constructed coupled model can undergo independent 

testing. Also, a main advantage of the DEVS paradigm is the independence of model specification from the 
simulation mechanism, which facilitates reliability, correctness, and verification and validation of the 
model.  
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In this work, the DEVS model will be implemented in the Cadmium simulation environment (Cárdenas 
and Wainer 2022; Belloli et al. 2019). Cadmium is a C++17 header-only DEVS simulator that is easy to 
integrate into different projects, and it is freely available on the SimulationEverywhere GitHub repository 

(https://github.com/SimulationEverywhere/Cadmium_v2/wiki). In Cadmium, a class needs to be defined 
for each type of atomic model and coupled model. Each class can be instantiated into an object and 
integrated into larger coupled models. Cadmium applies the abstract hierarchical simulation algorithm 
presented in (Belloli et al. 2019) for simulating DEVS models. 

3 DEVS MODEL FOR AN AUCTION PROBLEM 

In this section we will detail the structure and components of the DEVS model for a combinatorial 

double auction (De Antón et al 2024) and the implementation procedure using the Cadmium engine.  

3.1 DEVS Model 

The Combinatorial Iterative Double Auction (CIDA) model presented in this section is a coupled model 
that is composed of three basic components: Buyer (with multiple instances), Seller (with multiple 
instances), and Auctioneer (one instance), as shown in Figure 1. Buyer and Seller are analogous coupled 
models representing a single buyer and a single seller in the auction, respectively. Both models can be 

disaggregated into two atomic components: Buyer is composed of Filter and Bid; Seller is composed of 
Filter and Ask. Auctioneer is an atomic model that plays the coordinating role of the auctioneer in an 
auction. In the instantiation phase, the number of instances of Buyers and Sellers to be generated will be 
adjusted according to the number of buyers and sellers participating in the auction. In this auction model, 
we have assumed the rational and self-interested behavior of all the participants (both buyers and sellers). 

bid_in

Filter Bid

Auctioneer

bid_out

ask_out

Buyer

ask_in

Filter Ask

Seller

Auction

allocation

 

Figure 1: DEVS model of the auction. 

 The Buyer model reproduces the behavior of a buyer in an auction. Every buyer participating in an 
auction will have a maximum amount of money that they are willing to pay, called the reservation price. A 
rational and self-interested buyer will start bidding a quantity lower than their reservation price and, if they 

do not win the current auction round, they will increase their bid by the minimum amount required by the 
auction (i.e., the purchase price step). This purchase price update procedure will continue until the 
reservation price is reached, when the buyer will have no incentives to continue increasing the bid. 

The behavior described above is modeled in the Buyer coupled model. In each round, the Buyer sends 
a message showing the purchase price offered for the item (in this case, the message goes to the Auctioneer 
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based on the connections). At some point, after the allocation of the current round is determined, it receives 
a message reporting whether its bid is winning. 

Buyer is subdivided into two atomic models: Filter and Bid. Each buyer has a unique identifier 

represented as a parameter of both the Filter and the Bid atomic models. Every message received by the 
Buyer will contain an identifier to indicate the buyer to whom it is addressed. Filter is thus used to identify 
among all the messages received by the model, the one/s corresponding to its related Buyer. Bid is in charge 
of determining the initial purchase price for the bid and updating that price according to the feedback 
message received at the end of each round. Subsequently, we detail the formal definition of the two atomic 
models Filter and Bid. 

Filter model only activates when it receives a message. Its function is to read the message received and 
evaluate if the identifier of the message matches its own identifier. If the test succeeds, it forwards the 
message through its output port (in this case, to Bid based on the connections) and passivates again; 
otherwise, it just passivates without sending anything. 

 

Filter = < S, X, Y, δint, δext, λ, ta > 
Parameters: ID_f 
S = {s1 ∊ {active, passive}, sGotIt ∊ {True, False}} 
Initialization: s1 = passive, sGotIt = False 
X = {[Id, GotIt]; Id ∊ N, GotIt ∊ {True, False}} 
Y = {[Id, GotIt]; Id ∊ N, GotIt ∊ {True, False}} 

δint (s) = {if s1 = active, then s1 = passive} 
δext (s,e,x) = { 
 if ID_f = Id, then 
  sGotIt = GotIt 
  s1 = active } 
λ (s1 = active) {send [ID_f, sGotIt]} 

ta (s1 = active) = 1 
ta (s1 = passive) = INFINITY 

 
The Bid model represents a bid placed by a buyer over an item in the auction. The following parameters 

are given to each Bid in the definition of the instance: identifier (ID_b), reservation price (RPr), initial 
purchase price (InitialPPr), and purchase price step (PPrStep). Bid starts in active mode to submit the initial 

bid once the auction begins, then passivates until the next message arrives. After receiving a message with 
feedback about the result of the bid, three things can happen: (i) the buyer is winning their bid; (ii) the buyer 
is losing their bid, but the reservation price has already been reached; (iii) the buyer is losing their bid, and 
the reservation price has not yet been reached. In the first two cases, Bid does nothing (it stays passivated), 
whereas in the last case, Bid raises the price by an amount equal to the purchase price step. 

 

Bid = < S, X, Y, δint, δext, λ, ta > 
Parameters: ID_b, RPr, InitialPPr, PPrStep 
S = {PurPr ∊ R0+, Notify ∊ {True, False}} 
Initialization: PurPr = InitialPPr, Notify = True 

X = {[Id, GotIt]; Id ∊ N, GotIt ∊ {True, False}} 
Y = {[Id, PurPr]; Id ∊ N, PurPr ∊ R0+} 
δint (s) = {if Notify = True, then Notify = False} 
δext (s,e,x) { 
 if GotIt = False and PurPr + PPrStep <= RPr, then 
  PurPr += PPrStep 

  Notify = True  
} 
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λ (Notify = True) {send [ID_b, PurPr]} 
ta (Notify = True) = 1 
ta (Notify = False) = INFINITY 

 
The Seller model is analogous to the Buyer model in terms of its architecture, but it represents the 

behavior of a seller. Every seller participating in an auction will have a minimum amount of money that 
they are willing to charge, called the production cost. A rational and self-interested seller will start asking 
for a quantity higher than their production cost, and if they do not win the current auction round, they will 
decrease their ask by the minimum amount required by the auction (i.e., the ask price step). This ask price 

update procedure will continue until the production cost is reached. To implement this behavior, Seller is 
subdivided into Filter and Ask atomic models. The Filter component has the same behavior as the Filter in 
Buyer; the Ask model is analogous to the Bid model, but, in this case, the price update procedure follows 
the seller’s logic explained above (i.e., it is decreased instead of increased). 

The Auctioneer model is the auction coordinator. At the beginning of the auction, it sets the length of 
the requesting period according to the round_timer parameter. During that period, the Auctioneer receives 

bids and asks (in this case, from the Buyer instances through the bid_in port and from the Seller instances 
through the ask_in port). The Auctioneer retrieves the bidding and asking information from these messages 
and determines the allocation of the current round (i.e., temporary allocation) by solving the WDP. 
Subsequently, the Auctioneer sends individual messages through the bid_out and ask_out ports informing 
each participant whether they are winning their corresponding bids/asks in the current round. In this case, 
the ports are connected to Buyers and Sellers models, respectively. Once the messages have been sent, the 

Auctioneer resets the requesting period to round_timer, and the next round begins. This procedure is 
repeated for several rounds until all the agents stop updating their prices or the maximum number of rounds 
set in the auction is reached. After a requesting period in which the Auctioneer receives no messages, the 
last temporary allocation will be announced as the final allocation, and the auction will be closed (i.e., the 
Auctioneer passivates). When this occurs, the Auctioneer sends a message through the allocation port to 
indicate that the auction is finished. The formal definition of Auctioneer is as follows: 

 

Auctioneer = < S, X, Y, δint, δext, λ, ta > 
Parameters: matrix (SxB) ∊ {0,1}x{0,1}, round_timer ∊ R0+ 
S = {time_to_calculate ∊ R0+, new_value ∊ {True, False}, send_out ∊ {True, False}, seller [1, …, S] ∊ {id 
∊ N, price ∊ R0+, gotIt ∊ {True, False}}, buyer [1, …, B] ∊ {id ∊ N, price ∊ R0+, gotIt ∊ {True, False}} 

Initialization: new_value = False, send_out = False 
X = {bid_in: {[Id ∊ N, PurPr ∊ R0+]}; ask_in: {[Id ∊ N, AskPr ∊ R0+]}} 
Y = {bid_out: {[Id ∊ N, GotIt ∊ {True, False}]}; ask_out: {[Id ∊ N, GotIt ∊ {True, False}]}; allocation: 
{True, False}} 
δint (s) { 
 if send_out = false { 

  if new_value = false, then send_allocation = true 
  else { 
   solve WDP using seller & buyer state variables as defined in (De Antón et al 2024) 
   send_out = true 
   new_value = false } 
 else { 

  send_out = false 
  time_to_calculate = round_timer} } 
δext (s,e,x) { 
 for message in bid_in { 
  if buyer in B, then update buyer.price = PurPr 
  else add buyer to B } 
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 for message in ask_in { 
  if seller in S, then update seller.price = AskPr 
  else add seller to S } 

 new_value = true 
 time_to_calculate -= e } 
λ (send_out = True) { 
 for buyer in B { 
  send [buyer.id, buyer.gotIt] } 
 for seller in S {  

  send [seller.id, seller.gotIt] } 
 if send_allocation = True, then send True} 
ta (send_out = True) = 0 
ta (send_out = False and send_allocation = True) = INFINITY 
ta (send_out = False and send_allocation = False) = time_to_calculate 

 

The matrix parameter stores a two-dimensional matrix with binary values with S rows and B columns 
showing the bundles of items included in each seller’s asks (further detailed in Section 3.2). It will be used 
in the internal transition to solve the WDP. In our model, the WDP will select those bundles of items that 
maximize the difference between the prices paid by buyers and the prices received by sellers (i.e., the social 
welfare according to Xia et al. (2005)). 

3.2 Model Implementation in Cadmium 

Once the DEVS model of the auction has been formulated (i.e., our CIDA model), we implement the atomic 
and coupled models by using the class templates provided by Cadmium and generate the executable of the 
model (i.e., our CIDA simulator). When a DEVS model is simulated with Cadmium, a log file with the 
state transitions and the messages sent through the output ports is generated.  

To run an instance of the auction, we first need to initialize the input values and the parameters. We 
have streamlined the initialization process by extracting input data from a text file. This eliminates the need 

to recompile the model for each simulation run, as updating the text file is now sufficient. Thus, the program 
will read from the text file (see Figure 2) the following input data: reservation prices and initial purchase 
prices from buyers, production costs and initial ask prices from sellers, and a binary matrix showing the 
bundles on which each seller is bidding. In the matrix, each row represents an ask from a seller, and each 
column represents an item from a buyer. One (1) indicates that the corresponding item is included in that 
seller’s ask. From these data, the model will deduce the number of buyers and sellers participating in the 

current auction round so that it will instantiate the Buyer and Seller models accordingly.  
Three additional parameters need to be initialized before starting the auction: the purchase price step, 

the ask price step, and the round-timer. The first two values are also read from the text file and represent 
the minimum amount that losing buyers should increase their purchase prices and the minimum amount 
that losing sellers should decrease their ask prices for the next round, respectively. The third parameter (i.e., 
the round-timer) is passed as an argument when the model is executed.  

After reading the input data, the simulator creates all the corresponding model instances and initializes 
the values of their parameters. The simulation of the auction can now be run according to the behavior 
defined and explained in Section 3.1. 
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Figure 2: Input data for simulating an auction. 

4 CASE STUDY AND MODEL VERIFICATION 

In this section, we develop a case study to verify our CIDA DEVS model and simulator. We simulate the 

same instances of an auction using the previous centralized VBA model and the new decentralized DEVS 
model to verify that we obtain the same results. This will serve as verification of the DEVS model. 

The scenario considered is composed of 10 sellers and 10 buyers participating in the auction. Each 
buyer will place one bid over one item, whereas each seller will place an ask over a bundle of items. The 
input data is displayed in Figure 2: initial and reservation values for each participant, the binary matrix 
showing the bundles submitted by each seller, and the parameters of the auction (purchase price step is set 

to 5; ask price step is set to 10). This text file will be read by both the VBA program and the CIDA simulator 
to simulate the model. Additionally, we need to provide the CIDA simulator with the round-timer 
parameter, which is set to 4 in this case. The VBA program does not require this parameter because it is a 
centralized optimization model with no time dynamics; each auction round is run as soon as the previous 
one is finished in an iterative procedure. 

As previously mentioned, our CIDA simulator generates a log file with the state transitions and the 

messages sent through the output ports. Some excerpts from this log file are shown in the table displayed 
in Figure 3. In the data column, two types of data can be found: (i) the values of the state variables whenever 
the port_name value is empty; (ii) the message sent through the corresponding port whenever there is a 
value in port_name. In the upper part of the table, we can see how some of the atomic models are 
instantiated and initialized, with the auctioneer collecting all the bids and asks to determine the first 
temporary allocation (the data contains the id of the seller/buyer and the price they are willing to pay). In 

the central part, we observe the feedback messages sent by the auctioneer and the new submissions sent by 
the participants accordingly. At the bottom of the table, we see the allocation obtained in the final round. 
The auctioneer output displays four elements (time remaining until the next assignment; whether or not 
new bids have been received in the current round; whether or not a new assignment should be sent to buyers 
and sellers; whether or not to notify that the auction has ended) and a list with the agent’s ID, the buyer’s 
bid / seller’s ask, and a binary variable indicating whether the agent wins the auction (1) or not (0). 
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Figure 3: Excerpts from the output log file generated by the CIDA simulator. 

We have parsed the allocation values obtained from the log file into a table to generate a more user-
friendly visualization. As a result, we have built the table shown in Figure 4, where the allocation data of 

each auction round is summarized. The following data from each round is shown: the value of the objective 
function, in this case, the social welfare (Obj. F. column), purchase prices offered (Buyers columns), and 
ask prices offered (Sellers columns). The values highlighted in a darker color indicate the agents that are 
winning the corresponding auction round. We notice that, from the first successful allocation in round 3, 
the value of the objective function increases with each round. 

 

Figure 4: Temporary allocations at the end of each auction round for the CIDA model. 

The values exposed in this table match the values obtained with the VBA centralized model. In the 

VBA program, the only output data that we obtain at the end of each round is the temporary allocation and 
the value of the objective function. According to the allocation results, prices are automatically updated, 
and the solver is called again to solve the next round. A visualization of the simulation interface is shown 

Round Obj. F. b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

0 0 50 79 65 67 48 77 62 35 34 78 139 239 129 111 330 108 312 461 245 82

1 0 55 84 70 72 53 82 67 40 39 83 129 229 119 101 320 98 302 451 235 72

2 0 60 89 75 77 58 87 72 45 44 88 119 219 109 91 310 88 292 441 225 72

3 3 65 94 80 82 63 92 77 50 49 93 109 209 99 91 300 78 282 431 215 72

4 17 70 99 85 87 63 97 82 50 49 98 109 199 99 91 290 68 272 421 205 72

5 34 75 104 90 92 63 102 82 50 49 103 109 189 99 91 280 68 262 411 195 72

6 42 75 104 95 97 63 102 82 50 49 108 109 189 99 91 270 68 252 401 185 72

7 56 75 104 95 102 63 102 82 50 49 108 109 189 99 91 270 68 242 401 175 72

8 57 75 104 95 102 63 102 82 50 49 113 109 189 99 91 260 68 232 401 175 72

9 66 75 104 95 102 63 102 82 50 49 113 109 189 99 91 260 68 222 401 165 72

10 72 75 104 95 102 63 102 82 50 49 118 109 189 99 91 250 68 222 401 165 72

11 76 75 104 95 102 63 102 82 50 49 118 109 189 99 91 250 68 222 401 155 72

12 87 75 104 95 102 63 102 82 50 49 123 109 189 99 91 240 68 222 401 155 72

Buyers Sellers
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in Figure 5, where the final allocation of the auction instance is displayed. It can be observed that the final 
allocation results coincide with those of the CIDA simulator displayed in Figure 3. 

 

Figure 5: Visualization of the final allocation in the VBA simulator. 

Besides the auction instance detailed in the case study, several other auction scenarios were run to 
compare the results obtained with both models. We varied the number of agents participating in the auction 
to prove that the results obtained with the DEVS model also matched the ones obtained with the VBA 

centralized model with different auction configurations. 
The input data generation for all the auction instances run to test and verify the DEVS model has been 

derived from a preliminary tuning process aimed at designing feasible input values for each scenario. The 
initial and reservation prices are drawn at random from uniform distributions, while the binary matrix is 
randomly generated according to a density parameter. 

As these tests were successful, we can verify the CIDA model proposed in this work. The configurations 

of the auction scenarios analyzed are shown in Table 1. Both price step parameters were set to 5 for all the 
scenarios, while the round-timer was set to 4 for the CIDA simulator. In the last row, we show the value of 
the objective function (social welfare) in the last round of each scenario. This value was the same in the 
VBA and the CIDA simulator for all the scenarios. We can see that an increase in the total number of 
participants generally leads to higher social welfare, as more trades are closed. 

Table 1: Auction scenarios simulated and allocation results. 

Auction 

parameters 
Purchase price step = Ask price step = 5; Round-timer = 4 

Scenario I II III IV V VI VII 

Buyers 10 10 20 20 20 40 40 

Sellers 10 20 10 20 40 20 40 

Social welfare 
Final alloc. 

209 206 316 384 525 506 576 
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5 CONCLUSIONS AND FURTHER RESEARCH 

In this paper, a DEVS model for a combinatorial iterative double auction has been formulated and 
implemented in the Cadmium simulator. The formal definition presented in this work aims to address the 

scarcity of specialized simulation frameworks that enable decentralized implementation of combinatorial 
and double auction mechanisms. Besides, although initially designed with inspiration from the AM 
production context, the auction model can be easily adapted to simulate the dynamics of other e-
procurement markets. 

The DEVS formalism has allowed to develop a robust framework for our auction model that can be 
gradually extended to reproduce a more realistic auction system. This DEVS-based decentralized model 

has allowed to overcome some limitations of the previous VBA-based centralized model, such as the need 
to assume perfect rationality of agents and to define their price updating strategies, enabling a more flexible 
and realistic model within an agent-based framework. A case study where the output of the new DEVS 
model was tested against the output of the previous centralized VBA model has allowed verifying the CIDA 
model proposed. 

As mentioned above, the constructed model allows simulating the interaction of agents with different 

behaviors. For example, we can simulate that manufacturers/customers have perfectly rational behaviors 
that lead them to make optimal decisions or simulate cognitive or emotional limitations that lead them to 
make decisions that are not as optimal from a rational point of view. The model also allows combining 
agents with different behaviors (rational/non-rational) and analyzing the outcome of their interactions.  

Models of this nature can also be implemented using Agent-Based Modeling (ABM) languages. 

However, in these cases, the model definition and its implementation are typically mixed and tight to the 

language. Thus, there is no separation of concerns as it occurs in the DEVS formalism. Additionally, most 
ABM languages follow a time-step approach, and, in this case, given that agent decisions occur within well-
defined time windows and not at predefined time steps, the DEVS formalism is more suited.  

Further research could extend the model presented in this work to develop a more realistic auction 
scenario with agents not following standard behavior. New Buyer and Seller models with different 
behaviors that might be counterintuitive or, at least, not necessarily seek result optimization could be 

defined straightforwardly. Thanks to the modularity property of DEVS, these new buyer and seller models 
can be defined without modifying the Auctioneer model, thus allowing an incremental extension of the 
existing model. Also, some randomization could be introduced in the decision-making process of agents. 
A simulation of such auction scenarios can provide a better insight into the expected results in a real-world 
environment where agents can pursue unpredictable strategies. 
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