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Abstract

Political Districting (PD) is a wide studied topic in the literature since the 60’s. 
It typically requires a multi-criteria formulation, and mathematical programs are 
frequently suggested to model the many aspects of this difficult problem. This im-
plies that exact models cannot be solved to optimality when the size of the territory 
is too large. In spite of this, an exact formulation can also be exploited in a heuristic 
framework to find at least a sub-optimal solution for large size problem instances.

We study the design of electoral districts in Mexico, where the population is 
characterized by the presence of minority groups (indigenous community) who have 
a special right to be represented in the Parliament. Actually, the Mexican electoral 
law prescribes explicitly that a fixed number of districts should be designed with 
the precise aim of supporting their representation. The Mexican states are divided 
into elementary units corresponding to municipalities, which are distinguished as 
indigenous and non-indigenous according to the percentage of indigenous people 
living there. This implies the peculiarity of the PD problem in Mexico which, 
besides the classical PD criteria, must include and satisfy also `respect of indigenous 
communities’. In view of this, two principles must be guaranteed: i) indigenous 
municipalities must be collected together in the indigenous districts; ii) indigenous 
municipalities should not be divided into pieces assigned to different districts. These 
two principles are at the basis of the approach proposed in this paper. We suggest 
a PD method specifically tailored for Mexico, but however applicable also to PD 
of any country in which respect of minority groups is a main issue. We focus our 
attention on minorities and follow a procedure which collects as much as possible 
indigenous municipalities together in indigenous districts. We also impose `respect 
of municipality boundaries’ as a strict constraint. This is done in order to avoid 
the division of already existing administrative zones, which is a desired aspect in 
general PD problems, but we note that, in presence of the indigenous minorities, this 
is also and additional tool for avoiding their splitting. We formulate Mixed Integer
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Linear Programs (MILP) which also include the basic PD criteria of contiguity and
population balance.

The district map is obtained in two stages: first we produce the fixed number of
indigenous districts established by the Mexican Law; then we complete the district
map by forming the non-indigenous districts. This two-phase approach has two
advantages: a dedicated objective function can be formulated in Phase 1 to form
indigenous districts; in the second phase the instance size is reduced (both in the
number of territorial units and in the number of districts) so that the computational
effort to solve the problem is reduced as well.

We test our procedure on the territory of Chiapas in Mexico and compare the
obtained district map with the Institutional one currently adopted in Chiapas.

We also produce some fictitious problem instances in which the territory is rep-
resented by a grid graph. We test our procedure on problems with this structure
and with size similar to Chiapas. For larger size grids, as expected, we encountered
some problems with the solution time and it becomes impossible to get exact opti-
mal solutions for our MILP models. We then provide a heuristic procedure which
is based on the same approach of the exact method, but which can be applied when
the size of the territory is too large to obtain a suboptimal solution in reasonable
times.

Keywords: Political Districting, minorities’ representation, respect of adminis-
trative boundaries, Graph Partitioning, Mixed Integer Linear Programming.

1 Introduction

Designing electoral districts has been a wide studied subject of research in the literature of
the last 60 years. Since the first Multi-Kernel Growth procedure introduced by (Vickrey
1961), and the location-allocation model provided by (Hess et al. 1965), the challenging
task of obtaining a fair division of the territory, with respect to specific electoral criteria,
has motivated the production of a variety of Political Districting (PD) models and methods
which follow different, exact and heuristic, optimization approaches. A general picture
of the state-of-the-art on this subject is provided in (Ricca et al 2013, 2019) were the
main models and criteria for PD are surveyed and discussed. Other interesting survey
papers on the topic are by (Duque et al. 2007) and (Kalcsics et al. 2005). The very
recent volume (Rios-Mercado (Ed.) 2020) provides a review of methods and models for
the general Territory Design problem.

Typically PD models are integer or mixed integer mathematical programs. Differences
among models depend on which objective function is minimized (or maximized) and on
the number and type of restrictions imposed in each formulation. They follow from the
particular features deemed relevant in each specific model, according to the principles
established in the electoral law of each country. The complexity of the solution process
also derives from such elements, according to which of them are considered in the PD
problem and how they are actually formulated in the corresponding mathematical model.
The classical PD criteria are population equality (or balance), contiguity, compactness, and
conformity to administrative boundaries (Grilli di Cortona et al. 1999). All these criteria
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pursue desirable properties of the districts, but it is generally impossible to include all of
them in an algebraic model, since, due to the binary nature of the decision variables, this
may lead to PD models which cannot be solved in reasonable computational time.

Other criteria have been suggested in the literature on PD, referring to particular
aspects which may be considered valid only in very special cases. In this view, (George
et al. 1997) propose conformity to the natural configuration of the territory, that is,
a criterion which requires to avoid that electoral districts’ boundaries cross rivers, high
mountains, and all such natural barriers of the territory which may prevent reachability
between two sites located inside the same district. This criterion is generally well-accepted,
but frequently it is discarded in order to avoid to increase too much the model complexity.

A different issue is related to the idea of trying to avoid the split of communities of
common interests (also referred to as respect of minority groups, or communities repre-
sentation). This last criterion is widely discussed in the literature, since some authors
support it, while others strongly criticize its inclusion in a PD model. (Morril 1987) men-
tions the importance of considering respect of minority groups in PD; (Williams 1995)
discusses some examples where the lack of communities representation produces an unfair
solution.

In this sense (Cameron et al. 1996) suggest non linear estimation techniques and
simulate districting strategies trying to solve the under-representation of minority interests
in the political process. On the other side, using surveys that sampled minorities in the
U.S. and New Zealand, both these countries modified their electoral systems, so that the
minority groups could have sufficient power to elect their representatives. In (Banducci
et al. 2004) it is showed that giving this option to minorities in U.S. these groups also
improves their knowledge about representation and the contact with their representatives;
in the case of New Zeland this also increases the electoral participation.

In our opinion, the representation of minority groups must be included in the PD
model only when the electoral law of a country explicitly prescribes this kind of request,
and given that the minority under consideration is well defined and can be easily located
over the territory. This is in fact a way to pursue a better representation of the minorities
in the Parliament, with positive implications on public policies concerning socio-economic
problems. This is the case of our application to Mexico, where the resident population is
characterized by the presence of community of indigenous people having very well defined
cultural and social characteristics which allow to identify with a high level of precision
the community to represent. It must be pointed out here that in Mexico indigenous
communities correspond to the population of single municipalities, which, as we will
see, in our model are the elementary territorial units (the smallest possible portions of
territory) in which the territory of a country is partitioned to perform a discretization
of the territory. This helps in the identification of the indigenous and non-indigenous
communities that, in fact, correspond to indigenous and non-indigenous municipalities.

According to the Mexican law, seven criteria must be considered in the political dis-
tricting process. They are: 1. balancing districts’ populations, 2. guaranteeing a prefixed
number of indigenous districts in which the indigenous population is at least 40% of the
total (respect for the indigenous minorities), 3. guaranteeing integrity of municipalities
(respect to administrative boundaries), 4. optimize compactness, 5. minimizing travers-
ing time from one municipality to another within the same district, 6. contiguity, 7.
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respecting socio-economic factors and geographic features. To be more precise, the first
two criteria have a priority over the others, since they are acknowledged by the Constitu-
tion (the Constitución Poĺıtica de Mexico). Population balance is established in Articles
53 and 116, paragraph II of the Constitution, while the respect of indigenous minorities is
established in Article 2. Differently, the other five criteria are stated in the Mexican Elec-
toral Law (Article 214, paragraph 1 of the Ley General de Instituciones y Procedimientos
Electorales, Acuerdo INE/CG165/2016). For the two main principles stated above some
precise rules are given: for population balance the requirement is that each district has
a population which does not differ more than the 15% from the average one; for respect
for indigenous minorities, a prefixed number of districts must be formed by collecting
together as much as possible indigenous municipalities (i.e., those in which at least 40%
of the population is indigenous).

In the paper we propose a methodology for the design of electoral districts in Mexico.
It is an automatic procedure which solves the PD problem in two successive stages, both
adopting integer mathematical models which can be equivalently formulated as Mixed
Integer Linear Programs (MILP) by applying ordinary optimization techniques. We con-
sider the classical, PD criteria, such as population balance and districts’ contiguity. To
follow the principles stated in the Mexican law, we also include respect of minority groups,
but, to give it a major importance, we model it as an objective, with the aim of collect-
ing together as much as possible indigenous municipalities in the established-by-the-law
indigenous districts. Besides this, also respect for municipal boundaries is considered,
which, together with the specific purpose for which it is conceived, is also useful to avoid
the splitting of indigenous municipalities. This was possible in our model since respect
of municipal boundaries was considered as a hard constraint. We point out that this is
an innovative aspect for PD in Mexico, since even if respect to municipal boundaries is
a criterion clearly stated by the law, it seems to be ignored in the institutional district
map.
The methodology proposed in this paper is motivated by the idea that automatic pro-
cedures are a valid decision support for lawmakers in the delicate process of designing
electoral districts. The automatic nature of the method is also a guarantee of `fairness’,
provided that decision makers agree on formulating the PD problem by a mathematical
model. Electoral districts satisfying many desirable criteria simultaneously can be ob-
tained efficiently by a super-partes automated tool, which can be easily implemented in
the computers of an electoral office. If, on the one hand, the solution procedures (which,
in any case, are a matter of the optimization solver) are not within everyone’s reach,
on the other hand, MILP models can be easily understood by everyone, also with the
possibility of evaluating the output solution and, possibly, modifying it, if this is deemed
necessary. In this view, basic principles of electoral problems, like simplicity, transparency,
and impartiality, can be pursued while providing useful tools to solve technically difficult
problems in an efficient way.

Since considering too many criteria in a MILP leads to the impossibility of solving it in
reasonable times, not all PD criteria can be included in the model, and, in our approach,
we chose to give a secondary role to compactness. There are different reasons supporting
this choice which we illustrate in the following. The first one is that unlikely a country
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can impose compactness explicitly in the electoral law. As in Mexico, it is generally
recommended that electoral districts have a regular shape, but it is well-known that
translating this into a formal constraint is difficult and it is generally impossible to model
the many facets of compactness, see (Horn et al. 1993) or (Grilli di Cortona et al. 1999)
and the references therein. A second problem is related to the fact that it is generally
not correct to judge the compactness of the districts looking directly at their geographical
shape on the map, since the actual compactness also depends from the distribution of the
population over the territory. Also the geographical orientation of the state may affect
the compactness level which can be actually reached in a district map. Therefore, even if
compactness is a deterrent for gerrymandering, when an automatic procedure is adopted,
fair district maps can be obtained also without imposing compactness, provided that the
procedure is not biased at priori.

Finally, in the particular case of our PD problem in Mexico, a priority is respecting
municipality boundaries, that is, municipalities must not be divided into more than one
district. Since the Mexican municipalities have highly non regular geographical shapes,
it is very hard to find districts with regular shapes without dividing them in smaller
parts. This means that geographical compactness and respect of municipal boundaries
are conflicting criteria and, between the two, we give priority to the second. This choice
also depends on an additional consideration which is very important when coping with
the delicate criterion of respect of minorities. Following the principle that indigenous
representation must be guaranteed in the Parliament, the idea of this criterion is that in-
digenous must be collected in the same districts to gain representation power. Depending
on where the indigenous are actually located in the country’s territory, this task may be-
come really hard. Imposing compactness in this framework produces some conflicts in the
model tasks, and imposing compactness may prevent the formation of suitable indigenous
districts. For this reason we do not consider compactness when designing the indigenous
districts in Phase 1 of our procedure.

In our second phase the situation is completely different, since we have just to produce
non-indigenous districts, and we do not care any more about the criterion related to the
minorities. Therefore, in this case, compactness could be considered even if, together with
population balance and contiguity, this may result in a very hard model. To manage this
aspect, in our second phase we included compactness and try to solve the model. As we
will see, the model becomes impossible to solve to optimality in short times. For this
reason we resorted to a successive divisions approach by applying the districting model
with compactness and dividing the territory into two parts in successive steps. This is a
classical approach in territory design and in PD literature (Forrest 1964).

In the paper we test our procedure on Chiapas and on some additional artificial data
sets with size ranging from 100 to 200 territorial units (municipalities). For Chiapas and
the other territories of similar size (100 units) we manage to solve the problem applying
our MILP models, while for the cases with 200 units the computational time for solution
becomes too high and an heuristic procedure is required.

The paper is organized as follows. Section 2 outlines the main characteristics of the
classical PD problem and the traditional PD criteria. Section 3 introduces the notation
and illustrates the mathematical programs used in our procedure to solve the problem
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exactly. On the other hand, Section 4 illustrates an alternative heuristic approach which
can be used when the exact solution becomes an hard task. Section 5 reports on the results
of the application to the Mexican state of Chiapas and to a set of fictitious territories
with size similar to Chiapas or larger. Finally, Section 6 draws some conclusions and final
thoughts, as well as, possible extensions of our approach.

2 Criteria

Classical criteria in political districting are population equality (or balance), conformity
to administrative boundaries, contiguity and compactness. In our model we also include
the respect of minority groups. We briefly recall each of them in the following.

Population equality Under the assumption that the electoral system is a plurality
one, all districts should have the same proportion of representation (according to the “one
person, one vote” principle); in particular, in case of single member districts, they should
have nearly the same population. This criterion could be implemented as a constraint
in the model, by fixing a maximum tolerance on the deviation of the population of each
district from the average district population, and imposing each district population to
be within the tolerance thresholds. The ideal situation would be having exactly the
same population in each district, but this is obviously impossible to get and typically the
maximum absolute deviation is fixed as a percentage of the average district population.
In this way, the model rigidly bounds the districts’ populations from above and below.

As for any other criteria, in a mathematical program, population balance can be
pursued also by means of the objective function. In this case, a measure of the total
deviation of population over all districts must be established (for example one can compute
the L1-norm or L2-norm of the districts’ populations), and the model tries to minimize
it. This leads to different mathematical models according to the algebraic form of the
objective function.

Conformity to administrative boundaries According to this criterion, one should
avoid as much as possible that already existing administrative or normative zones (such
as counties or municipalities) are split among two or more electoral districts. Actually,
splitting a municipality into two or more parts does not affect conformity to its adminis-
trative boundaries if each of these parts corresponds to a single district. In fact, even if in
this case the integrity of the municipality is broken, its separated parts are not included
in a district together with portions of other municipalities. This last situation must be
avoided instead.

Compactness Compactness is a very intuitive concept, but, unfortunately, a rigorous
definition of compactness does not exist. A district may be considered compact if it
spans a round region, without straggling or rambling. Deviation from compactness has
been classified (Taylor 1973) according to the shape of the district in the following four
categories: elongation, indentation, separation, and puncturedness. Notice that Taylor’s
definition of compactness is very strong, since it implies both contiguity (non-separation)
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and absence of holes (non-puncturedness). Caution should be taken when dealing with
this criterion because every attempt to define a correct measure of compactness turns
out to be strongly related to only one of the above categories, and each indicator is
able to detect only some types of non-compactness. An idea could be to consider more
than one compactness measure at the same time. This implies a careful measurement of
compactness at the expense of a very complicated mathematical model which could turn
out to be unmanageable if there are also other criteria. This is why, in the end, the most
practical thing to do might be to measure compactness, as every other criterion, with a
single index.

Contiguity A district is contiguous if it is possible to reach any place in the district from
any other in the same district without leaving it. In any territorial districting problem,
contiguity is a crucial aspect, since it provides a structural feature aimed at guaranteeing
well defined responsibility areas (whichever the activity related to the district that could be
the electoral vote, or a commercial activity, or the distribution of a service). The difficulty
with this criterion is that it is hard to implement in an algebraic model. For these reasons,
the PD problem is frequently modeled via the use of a connected graph, called contiguity
graph, which represents the territory, and it is solved by applying algorithms on graphs,
see, for example (Ricca et al. 2008, Ricca and Simeone 2008). After a discretization of
the territory into a fixed number of elementary territorial units, in the contiguity graph,
nodes correspond to territorial units and an edge between node i and node j exists if i and
j are neighbors. In this context contiguity can be guaranteed by searching for a partition
of the graph into connected components. An organized presentation of the main issues
related to contiguity in territorial districting can be found in (Duque et al. 2007) and
(Ricca and Scozzari 2020).

In this paper we consider population balance, conformity to administrative boundaries,
contiguity and respect of the Mexican indigenous community.

We basically control population balance by imposing lower and upper thresholds for
the district populations.

Conformity to municipal boundaries is considered as a hard condition, and, in princi-
ple, our aim is to maintain integral the territory of all municipalities. Unfortunately, as
we will see in the application to Chiapas reported in Section 5, this is not always possible,
since some municipalities with population much larger than the average district popula-
tion may exist. This evidently prevents perfect respect of municipal boundaries, but, in
any case, our approach is to avoid as much as possible the division of a municipality into
a large number of pieces assigned to different districts.

Districts’ contiguity is a main issue in the methodology proposed in this paper. We
apply the approach provided by (Shirabe 2009) who introduces a set of flow constraints
able to enforce the contiguity of the districts. Even if this requires a polynomial number
of constraints, the mathematical models for PD have binary variables, so that the solving
the problem to optimality is computationally hard and only problems of medium size can
be solved in reasonable time.
We point out that there is a variety of approaches for managing contiguity when a graph
representation of the territory is adopted. There are three typical approaches based on
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the following three ideas, see, (Duke et al. 2007, Miyazawa et a. 2021): i) imposing
order constraints on the assigning variables related to nodes lying on specific paths; ii)
exploiting tree structures to guarantee the contiguity of each district; iii) using networks
flow formulations. All such methods for modeling contiguity have some drawbacks which
prevent the exact solution of the model for instances with more than 50-60 nodes. In fact,
flow constraints work well also for larger size instances, but only for the basic problem of
partitioning a graph into connected components (without other constraints). When, on
the contrary, some additional constraints are included in the model - such as, for example,
population balance - even small problems become difficult to solve to optimality. Attempts
to overcome this problem are present in the current literature on the subject, and some
interesting results are provided for example in (Validi et al. 2021, Rios et al. 2013, Oehlein
et al. 2017). Unfortunately, efficiency in the design of contiguous district maps can be
obtained at the price of using high sophisticated technical tools, such as cutting planes
strategies, or adding extra constraints to formulate separation problems. On the contrary,
a districting method has to be as simple as possible in order to be understood and used
by politicians, legislators, public administrators. This is a long-standing question in the
mathematics of electoral systems, which always leads to the evaluation of the compromise
between efficiency and user-friendlyness of the proposed procedures. In our approach we
model contiguity as a hard constraint since we believe that it is a fundamental aspect
not easily manageable by non technicians. Including it in the model guarantees that
lawmakers have a procedure which produces a balanced and contiguous district map,
without any need of additional intervention for fixing possible non-contiguity.

In addition to the above basic PD criteria, we consider the respect of minority groups
criterion which can be stated as follows.

Respect of minority groups Given a specific and recognizable type of community,
which can be reasonably considered a minority w.r.t. the rest of the population of a
country, when designing the electoral districts, one should collect as much as possible
people from the minority group in the same districts. In other words, electoral districts’
populations should be as much homogeneous as possible w.r.t. the group identity.

As already discussed, in the Mexican case, maintaining the identity and the representation
power of the indigenous community is a main issue. This is the reason why, in our
approach, we focus our attention on this aspect and try to design a model approach
aimed at guaranteeing respect of communities.

Finally, as we will see in Section 3, we consider the compactness criterion in our second
phase model by considering it in the objective function.

3 A Two-phase Districting Procedure for Political

Districting with Minority Groups

The methodology proposed in this paper is tailored for PD in Mexico, but can be applied
in general when the population of a given country is characterized by the presence of a
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well defined minority group and the law supports the representation of such minority.
The method is based on Mathematical Programming, and works in two successive stages:
in the first one, districts including the minority groups are designed; then the district
map is completed in the second stage with the formation of non-indigenous districts.
The method is tested on real-life data referring to the territory of Chiapas and on some
fictitious territories represented by grid graphs with size similar to Chiapas or larger. A
successive divisions approach is applied when the MILP cannot be solved to optimality.
In these cases, even if the solution of the models are not exact, we manage to obtain
a good solution w.r.t. to all the PD criteria considered in the model. This provides a
practical solution tool for political districting able to give automated decision support to
lawmakers and to electoral offices. A heuristic variant of the method is also develop to
solve problem instances of larger size.

The PD problem is the following. A division of the territory into municipalities is
given. Each municipality represents an elementary territorial unit and is characterized by
its resident population. Municipalities are classified into two types according to how large
is the number of residents belonging to the minority. A threshold τ (fixed in advance
by the Government) is used to obtain this classification. A municipality is classified as a
minority municipality if at least τ% of its population belongs to the minority. We also
consider a graph representation of the territory which is useful for visualizing the results
on a map and helpful to formulate and understand the contiguity constraints, which in our
model are implemented as network flow constraints (Ahuja et al. 1993, Shirabe, 2009).

The connection structure of the graph is also exploited in the heuristic procedure that
follows a constructive eating-up strategy of the districts and works by adding municipal-
ities one at a time.

In the contiguity graph G, nodes represent municipalities and there exists an edge
between nodes i and j if the corresponding municipalities share a common boundary
(different from a single point). As we will see, in order to implement the flow constraints
in the model, we have also to consider the network G which can be obtained from G in
the ordinary way, i.e., by maintaining the set of nodes and replacing each edge < i, j >
of G by a pair of arcs (i, j) and (j, i).

The PD problem is formulated as partitioning the set of the municipalities (nodes of
the graph G) into a prefixed number k of contiguous districts (connected components
of G), taking into account the basic PD criteria. Aggregating nodes of G, the municipal
boundaries are automatically respected by the fact that a municipality (node of G) is never
split among more than one district. No other administrative boundaries are considered.

The special situation given by the existence of the indigenous minority also requires
that only a part of the k districts contains the minority group population, so that a
number kI is given as an input parameter providing the number of minority districts to
design.

3.1 Basic notation and parameters’ definitions

We introduce here all the notation necessary to formulate the mathematical programming
models presented in the next sections. Considering the Mexican case, minority groups are
indigenous and non-indigenous population.
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Sets

M municipalities
MI indigenous municipalities
MNI non-indigenous municipalities
K districts
KI indigenous districts
KNI non-indigenous districts

Parameters

pi population of municipality i
m number of municipalities
mI number of indigenous municipalities
mNI number of non-indigenous municipalities
k number of districts
kI number of indigenous districts
kNI number of non-indigenous districts;

P̄ =
∑
i∈M

pi/k average district population (target population)

Ph population of district h
α maximum absolute deviation for each district population to P̄ (%)
dij distance between municipality i and municipality j (in km)

Decision variables

xih: equals 1 if municipality i is assigned to district h, 0 otherwise
wih: equals 1 if municipality i is chosen as the center of district h, 0 otherwise
yijh: amount of flow from municipality i to municipality j for district h

3.2 Mathematical Programming Models

In this section we introduce the mathematical programming models which we apply to
build a PD map taking into account minority groups in Mexico. We propose Integer
Programming formulations with non linear objective functions which are then linearized
to obtain the corresponding Mixed Integer Linear Programs.

Our approach applies in two successive phases. The first one is dedicated to the design
of the kI indigenous districts, which should include all the indigenous municipalities. In
the second phase, the remaining municipalities are considered to form the rest of the
districts (kNI). Note that in the first phase all municipalities are considered, but the
model does not force those in MNI to be assigned to some districts. This is motivated
by the idea of giving flexibility to the model in the first phase, when population from the
minority group must be collected together as much as possible, but provided that all PD
constraints are satisfied.

minx

(
max
h∈KI

∑
i∈MNI

xih

)

s.t.
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∑
h∈KI

xih = 1 ∀i ∈MI (1)

∑
h∈KI

xih ≤ 1 ∀i ∈MNI (2)

∑
i∈M

wih = 1 ∀h ∈ KI (3)

wih ≤ xih ∀i ∈M,∀h ∈ KI (4)

∑
j|(i,j)∈A

yijh −
∑

j|(j,i)∈A

yjih ≥ xih − [ |M | − |KI |+ 1]wih ∀h ∈ KI ,∀i ∈M (5)

∑
j|(j,i)∈A

yjih ≤ [ |M | − |KI | ]xih ∀h ∈ KI ,∀i ∈M (6)

(1− α)P̄ ≤
∑
i∈M

pixih ≤ (1 + α)P̄ ∀h ∈ KI (7)

yijh ≥ 0 ∀h ∈ KI , ∀(i, j) ∈ A

xih, wih ∈ {0, 1}, ∀h ∈ KI , ∀i ∈M

The formation of the kI districts of the first phase is performed via restrictions (1) and
(2) in the model, according to which a municipality i ∈ MI should be assigned to some
districts in KI (the constraint is an equality), and a municipality i ∈ MNI could be as-
signed to one of them (the constraint is an inequality). Constraints (3) state that each
district in KI should have exactly one center, while constraints (4) model the dependency
between variables xih and wih. Restrictions (5) and (6) are the flow constraints proposed
by (Shirabe 2009) for districts’ contiguity and involve variables yijh representing the flow
from municipality i to municipality j related to contiguity for the hth district. Note that
the use of the flow constraints proposed by (Shirabe 2009) requires the model to identify
one center per district. The role of such centers is merely technical and in our application
it has no specific political, territorial, or demographic meaning. Constraints (7) limit the
population of the districts between two bounds whose level can be modulated by changing
the percentage α that establishes the maximum and minimum absolute population devia-
tions from the average district population P̄ . The respect of minority groups is considered
in the objective function which tries to minimize the maximum number of non-indigenous
municipalities belonging to the districts in KI . This objective function can be linearized
using some well-known techniques in order to obtain an equivalent MILP. A new variable
λ ≥ 0 is introduced representing the maximum number of non-indigenous municipalities
in an indigenous district. Therefore, the objective of the model is to minimize λ under
the following set of constraints which guarantees that λ is the above defined maximum:

λ ≥
∑

i∈MNI

xih ∀h ∈ KI
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Once the indigenous districts have been formed, a second mathematical model is applied
to complete the district map. At this stage only non-indigenous municipalities are involved
and, in particular, only those which were not assigned to any district in the first phase.
Even if they actually are a subset of MNI , for the sake of simplicity, in the following
models we refer to this subset (of only non-indigenous municipalities) as MNI .

max

(
min

h∈KNI

∑
i∈MNI

pixih

)

s.t.∑
h∈KNI

xih = 1 ∀i ∈MNI (1)

∑
i∈MNI

wih = 1 ∀h ∈ KNI (2)

wih ≤ xih ∀i ∈MNI ,∀h ∈ KNI (3)

∑
j|(i,j)∈A

yijh −
∑

j|(j,i)∈A

yjih ≥ xih − [ |MNI | − |KNI |+ 1]wih ∀h ∈ KNI ,∀i ∈MNI (4)

∑
j|(j,i)∈A

yjih ≤ [ |MNI | − |KNI | ]xih ∀h ∈ KNI ,∀i ∈MNI (5)

∑
i∈MNI

pixih ≤ (1 + α)P̄ ∀h ∈ KNI (6)

yijh ≥ 0 ∀h ∈ KNI , ∀(i, j) ∈ A

xih, wih ∈ {0, 1} ∀h ∈ KNI , ∀i ∈MNI

This second model has a structure similar to the previous one, but now the territorial units
are all of the same type (all non-indigenous), so that the objective function of the model
can be exploited in order to reduce the number of constraints in the model. Therefore,
now we bound districts’ populations only by above, and we control them by below with a
max-min objective that can be linearized as before, by introducing a new variable µ ≥ 0
representing the minimum district population, as well as the related set of constraints:

µ ≤
∑

i∈MNI

pixih ∀h ∈ KNI

In order to take into account also compactness, an alternative model was considered in
which both lower and upper bounds on population are included in the set of constraints,
while total inertia is minimized as objective function. This leads to a Phase II model
which corresponds to the one by (Hess et al. 1965), but including also the contiguity
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constraints. Using our model variables the inertia objective is formulated as a quadratic
function: ∑

h∈KNI

∑
i∈MNI

∑
j∈MNI

pid
2
ijxihwjh

and the Phase II model becomes a Quadratic Program. It is worth noting that, even if the
objective function is quadratic, the constraints remain all linear, and the model can be
solved with the standard optimization solver for this type of programs. In our application,
the computational effort for the solution shows to be the same as the previous linear model
for Phase II. In fact, by applying a successive division approach, we were able to solve
this quadratic program at each stage for the territories of smallest size.

To conclude this section, we point out that, after Phase I, some non-indigenous munici-
palities which were not assigned to a district may form enclaves, i.e., they can be isolated
from the rest of non-indigenous municipalities which will be processed altogether in Phase
II. This is a physiological consequence of the two-phase procedure which sometimes may
arise. As we will see in Section 5, if this happens, only few territorial units remain isolated,
requiring to assign them manually to some districts already formed in Phase I.

4 Heuristics for the two-phase PD approach

In the application of our exact procedure to Chiapas we encountered some problems of
different nature. On the one hand, we detected some irregularities in the structure of the
territory which prevented the possibility of exploiting the contiguity graph in the best
way. On the other hand, some difficulties arose in the solution of some MILP due to the
excessive computational effort required by the procedure, especially when solving Phase
II on real territories.

The first problem is due to the preexisting territory subdivision into municipalities
which in our model correspond to the elementary territorial units (nodes of the contiguity
graph) As already discussed, the model input should be given by elementary units having
more or less similar populations. The huge populations of Tuxtla in Chiapas show that this
condition is not satisfied in our real case. Since Tuxtla population is not enough to form
two districts, we were forced to operate some manual preprocessing on this municipality.
This kind of situations does not generally arise if the given administrative division of
the territory into municipalities is population balanced. For this reason, we decided to
extend our experimental analysis and test our procedure also on fictitious territories with
balanced municipalities’ populations.

A second problem was detected during the solution of our programs, especially in
Phase II, when considering the large-size problems for which the exact approach required
too much computational time. This was probably due to the presence of connectivity
constrains combined with those on population bounds. To overcome these problems ef-
ficiently we developed an heuristic procedure in which we tried to maintain the same
two-phase approach as the exact one. It is a constructive procedure which aggregates
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municipalities one at a time to form the non-indigenous districts. The basic principles of
the two-phase approach are still satisfied, but the heuristic procedure allows to solve the
second phase faster than before.

As we will see in the section dedicated to the experiments, there is also an additional
problem that may require a particular computational effort. It is related to the spatial
distribution of the indigenous population on the territory. In fact, even if in most cases
the minority groups are all located in a specific well defined part of the state, it may also
happen that different communities are found far from each other. In our experiments on
fictitious data we generated different configurations in which indigenous municipalities
are located very close, or they spread all over the territory. It is natural to expect that,
when the communities are sparse, the districting problem becomes harder, but we will
see that some difficulties arise also when they are concentrated in the same zone, but
geographically located in the center of the territory.

In all cases in which the computational effort to solve the problem optimally becomes
too heavy, we resort to the heuristic method. The empirical study of these cases permitted
us to better understand the PD problem with minorities, and also to provide a reference
scheme about which cases, for size and territory configuration, can be solved optimally
and which necessarily require a heuristic approach.

4.1 The heuristic procedure

The procedure works on the contiguity graph by forming one district at a time. For
each district a heavy node (in terms of population) is selected and the algorithm follows
a sequential kernel-growth strategy. In order to avoid premature arrests and to satisfy
district population bounds, a parameter Plow is introduced to control the amount of
population of the districts under construction. The idea is to obtain first the kernels of the
districts with a population which is smaller than the imposed lower bound. Next, in the
growth step, these partial districts are completed by adding the unassigned municipalities
to the partial districts with smallest population and taking into account contiguity.

At the end, all the municipalities are assigned to some districts. Thanks to the use
of parameter Plow, which must be carefully calibrated, in our experiments we are able
to obtain districts whose population is either in the range of the bounds imposed at the
beginning (15%), or it is not too far from such bounds. Therefore, if some districts exceed
the maximum possible population, the municipality in the district with the smallest pop-
ulation is removed and it is assigned to an adjacent district with the smallest population.
Similarly, a district h may have a population size smaller than the minimum allowed,
so that the district adjacent to h with the largest population is selected and, among its
municipality adjacent to h, the one with the smallest population is removed from it and
assigned to h. In our experiments this kind of situations arises, but, in all cases, they are
solved by performing just few of these steps. This is due to the fact that districts with
population outside the imposed bounds are, in fact, not too far from such limits, and also
thanks to the fact that elementary territorial units are population balanced.

The heuristic algorithm was implemented by using the software Mathematica 1. The main

1https://www.wolfram.com/mathematica/
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steps of the procedure are illustrated in the following.

——————————————————————————————————

algorithm HEURISTIC ALGORITHM

——————————————————————————————————
Set Plow equal to a percentage of P̄ and Ndistr equal to the number of districts to form
repeat:

(CONSTRUCTION OF DISTRICT h)
Ph := 0
select the non assigned municipality with the largest population, say pi
set Ph := Ph + pi
while Ph < Plow do:

among all the municipalities adjacent to those already included in district h
select the one with the largest population, say j, and add it to district h
update Ph := Ph + pj

end while
Ndistr = Ndistr − 1

until Ndistr = 0
for each non assigned municipality i

assign i to the the district with the smallest population among those adjacent to i
end for

——————————————————————————————————

The above heuristic procedure is mainly thought for solving the second phase problem,
since this is typically the computationally hardest. However, in the larger data sets we
encountered computational problems also in solving the MILP model of Phase I, so that
the heuristic was exploited also in this phase for the most hard problems.

In particular, we resorted to the heuristic for solving the PD problem on fictitious
territories when indigenous municipalities have the configuration of being spread over the
territory. In this case, the task of collecting all indigenous municipalities in the indigenous
districts becomes, in fact, too challenging, and imposing this as an hard constraint may
lead to an unfeasible model. This problem arises for all data sets when indigenous are
spread- located and, in order to find the indigenous districts, in our Phase I model we
have to relax into inequalities the assignment constraints for indigenous municipalities
(which before were formulated as equalities) as follows:∑

h∈KI

xih ≤ 1 ∀i ∈MI (1)

The MILP is then solved with these relaxed constraints and lowering the average district
population to a value equal to Plow < P̄ . This implies that in Phase I only partial
districts are produced, for which the population is maintained smaller than the final
district population (typically, it is under the lower bound imposed in the model). The
partial districts are then completed heuristically by adding adjacent municipalities in
order to bring districts’ populations within the prefixed bounds.
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A natural consequence of this procedure is that not necessarily all indigenous mu-
nicipalities are assigned to some indigenous districts in Phase I. With indigenous spread
over the territory this is unavoidable, but thanks to the objective function of our Phase
I MILP, we are still able to assign as many indigenous municipalities as possible in such
districts.

The above illustrated strategies showed to be effective, since for all our grids we were
able to obtain a final contiguous district map with all district populations within the im-
posed bounds. For spread indigenous configurations, it happened that a single indigenous
municipality (or just few) is assigned to a non-indigenous district.

5 Application and experiments

The Mexican Chamber of Deputies is elected by a mixed electoral system. The Chamber
of Deputies, is composed by 500 representatives: 300 are elected by a first-past-the-
post method in single-member districts; the other 200 are elected through a proportional
method in five electoral constituencies with 40 representatives each. The Mexican Elec-
toral Institute recognizes the peculiarity of the Mexican population to have indigenous
communities and a municipality is considered indigenous if at least 40% of its popula-
tion is indigenous, according to INEGI (National Institute of Statistics and Geography,
Mexico). We applied our model to design single-member districts in real territory of the
municipality of Chiapas, but also to solve the same PD problem on a set of fictitious ter-
ritories. It is worth mentioning that in the Mexican mixed electoral system the allocation
of proportional seats depends on the results of the election by the plurality system. In
fact, the votes obtained by a party in a single member district are also used to get seats
in the electoral constituencies where the proportional method is applied.

We solved our models by using the AMPL modeling language2 and the available solver
CPLEX 12.6.1.0. All our runs could be solved within 15 minutes on a processor Intel(R)
Core(TM) i7-4810MQ CPU @ 2.80GHZ.

5.1 Application to the State of Chiapas

The state of Chiapas has a total population of 4.8 millions of persons, and a considerable
part of it is indigenous. The number of municipalities in Chiapas is 118 and the percentage
of indigenous municipalities is 39.8 (47 municipalities).

The number of districts in Chiapas is 13, 5 of which should be indigenous according
to the law ACTINE/CG59/2017 (total population data and indigenous population per
municipality was taken from INEGI’s website3). In order to visualize the solutions on the
map, we used the open-source software R.

In order to implement our model on these real data, it is necessary to perform a
preprocessing on some municipalities which show some structural features that do not fit

2https://ampl.com/
3www.INEGI.GOB.MX
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our modeling framework. In Chiapas we detected three situations which need in fact a
specific treatment. We illustrate them in the following.

Tuxtla municipality
This municipality is the capital of the state of Chiapas with a population size equal to
555, 374. The average district population in Chiapas is P̄ = 368, 969. Hence, depending
on the value fixed for the parameter α, this municipality alone may exceed the upper limit
imposed on the district population. Unfortunately, this already happens when considering
a maximum percentage of deviation about 15%, but it still happens if it is increased up
to 30%.

San Cristobal de las Casas municipality
This municipality is geographically divided into two separated parts. Therefore, it is
structurally non contiguous by itself.

Tapachula municipality
Tapachula has a population of 320, 450 inhabitants. Therefore, it alone could form a dis-
trict respecting the population bounds of a maximum deviation of 15% from the target
P̄ = 368, 969. In spite of this, municipality of Tapachula is geographically located in a
position that isolates a set of six municipalities (Suchiate, Frontera de Hidalgo, Metapa,
Tuxtla Chico, Cacahuatán and Unión Juárez). These municipalities can be connected
among them, but obtaining a total population about 148, 391 which alone is not enough
to produce a district. Alternatively, they can be connected to the rest of the Chiapas mu-
nicipalities, but only through Tapachula. In fact, for this set of municipalities Tapachula
represents a barrier of connection with the rest of the territory. Therefore, when it is left
alone, it provides a feasible district, but this prevents the formation of other contiguous
districts satisfying the population bounds.
The particular features of each of the three cases listed above (shown in Figure 1) do
not allow to satisfy the modeling prerequisites to apply our methodology. Therefore each
situation must be treated in some way before the application of the models.

Since respect of municipal boundaries is a hard constraint in this models, it is not possible
to split a municipality (elementary unit) between two or more electoral districts. If
a municipality alone exceeds the upper bound on the district population, it could be
divided in more than one part, provided that the exceeding population is sufficient to
form another district (i.e., it reaches at least the lower bound). Since this is not possible
for Tuxtla, perfect respect of municipal boundaries is not possible for Chiapas. Since
Tuxtla has a population greater than the average district one, but smaller than twice this
value, to cope with this problem without dividing Tuxtla into too many pieces, we split
it a priori into two parts. One, with population equal to the average district population,
forms a district completely included in Tuxtla; the other covers the rest of the territory
of this municipality and is assigned to another district. Given the structure of this big
municipality, which in any case requires to split Tuxtla, this is a simple way to optimize
respect of municipal boundaries since the municipality is divided only in two pieces rather
than in many.

For San Cristobal de las Casas, which is an indigenous municipality, we have a strange
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Figure 1: Chiapas municipalities not fitting basic data requirements for the application
of our models.

situation in which the territory of the municipality covers two separated portions of land.
These are in fact two elementary territorial units in our data set (obtained from the INEGI
data base), labeled by number 78 and 120, respectively. In order to avoid unexpected and
undesired districts configurations, in our data we maintained the two separated territorial
units, but we included in the model an additional constraint which forces these two
municipalities to be always in the same district. Therefore, given that x78k and x120k
are the assignment variables for district k and municipality 78 and 120 respectively, the
restrictions to impose are the following:

x78k = x120k ∀k ∈ KI (2)

Only districts in KI are involved in this set of constraints, since the two units belong to
an indigenous municipality. Combined with contiguity, these additional constraints act to
guarantee that in any output district map the two units are always included in the same
(connected) district.

Finally, for Tapachula municipality we have another technical problem, since this mu-
nicipality geographically configures as a physical barrier between a set of municipalities
and the rest of the territory. The set, which we denote by S, includes six municipalities,
i.e., Suchiate, Frontera de Hidalgo, Metapa, Tuxtla Chico, Cacahuatán and Unión Juárez,
which in total do not reach the minimum district population when the threshold of 15%
is adopted. On the other hand, by adding also Tapachula the district population upper
limit is exceeded. Therefore, it is impossible to form a set of districts all within the 15%
population limit without dividing Tapachula. Therefore we separated a priori a piece of
territory from Tapachula to get one district formed by this part and the 6 municipali-
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ties. After this, the rest of the territory of Tapachula forms a new territorial unit to be
included in some other districts. By this preprocessing of Tuxla and Tapachula, even
if perfect respect of municipal boundaries cannot be reached in Chiapas, we manage to
optimize it since only two municipalities are split, and in only two parts. Operating in
this way produces two advantages: i) the structural problems of Chiapas municipalities
is overcome; ii) two districts are formed a priori and the number of districts to be formed
by the MILP is reduced by 2.

The two districts formed a priori can be visualized in the map with all the other
non-indigenous districts in Figure 3. One part of Tapachula is included in District 13,
together with Suchiate, Frontera de Hidalgo, Metapa, Tuxtla Chico, Cacahuatán and
Unión Juárez, while the rest formed a territorial unit which was then included in District
6. On the other hand, one can easily visualize that District 12 is cut from the municipality
of Tuxtla, the rest of which is included in District 11.

Figure 2 shows the results obtained in the first phase of the proposed model. The green
dots indicate that the municipality is indigenous. It can be observed that the five in-
digenous districts are formed by the 47 indigenous municipalities. Therefore, in this first
phase all the indigenous municipalities in Chiapas were assigned to some districts. After
the application of the first phase, three non-indigenous municipalities remained non as-
signed. Since they formed enclaves completely enclosed in one of the indigenous districts,
they were included a posteriori to that district.

Figure 2: Map of the indigenous districts in Chiapas formed after Phase I.

Figure 3 shows the results of the application of Phase II model. In this phase 6 districts
were actually formed out of the total 8 non-indigenous districts, since, as already discussed,
a part Tuxtla forms one district on its own, while another is given by a part of Tapachula
and the 6 municipalities of the set S.

These 6 districts are the output of our successive division approach. We first divided
the territory into 2 districts, and, successively, we further divided each of the two parts
into 3 districts. Therefore we got in total 6 districts in which one can appreciate also the
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effect of considering compactness. In fact, 4 out of 6 districts have a quite compact shape,
the other two, namely district 7 and 10, have an elongated shape. We point out here that
also the institutional districts map shown in Figure 5 has elongated districts, although
with a different shape. In Chiapas this is an unavoidable output for some districts, since
some municipalities in the western part of the country have small population density, and
elongation derives from the effort of collecting together a sufficient amount of residents
to get a district. We point out in any case that, what is guaranteed by our approach is
that mathematical programs do not pursue gerrymandering on their own, so that lack of
shape compactness cannot be attributed to lack of fairness in the division.

Figure 3: Map of the non-indigenous districts in Chiapas formed after Phase II.

The final 13 districts obtained for Chiapas with our procedure are presented in Figure
4. The population of all the districts satisfies the imposed bounds which, according to
a maximum 15% absolute deviation from P̄ , correspond to Pmin = 313, 624 and Pmax =
424, 314. Figure 5 shows the institutional districts currently adopted in Chiapas.

Comparing the two maps, we see that both are contiguous and with balanced districts’
populations. On the contrary, we guarantee that municipal boundaries are respected by
the districts in Figure 4, while this is not true for those showed in Figure 5. Finally,
the main criterion related to respect of minority groups is fully satisfied by districts
in Figure 4, since here indigenous municipalities are all collected inside the prefixed 5
indigenous districts and are well separated from the non-indigenous ones. Differently, in
the institutional map in Figure 5 they spread outside such districts (see also Figure 6 and
Figure 7).

In fact, as expected, the main difference between the two solutions is in the formation
of indigenous districts. Both maps satisfy the requirement that at least 40% of the pop-
ulation of these districts is indigenous, but in our map this aspect is optimized since ie
concentrates in these districts as many indigenous municipalities as possible. Figure 6 for
our map and Figure 7 for the institutional one illustrate the composition of the districts
w.r.t. which municipalities they include, showing a clear distinction in our solution be-
tween indigenous and non-indigenous districts: indigenous municipalities are all collected
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Figure 4: Complete district map for Chiapas provided by our method.

Figure 5: Institutional district map for Chiapas.

inside the prefixed 5 indigenous districts and are well separated from the non-indigenous
ones. On the contrary, in the institutional solution they spread outside such districts and
district 11, which is non-indigenous, includes many indigenous municipalities.

The characteristics of the indigenous districts in the two maps can be further illustrated
by computing the actual percentage of indigenous inhabitants in each of the five districts
for both layouts, which, however may be a bit misleading. In fact, on the one hand,
we see that the percentage if indigenous people in indigenous districts are high in both
cases, for both maps there is a district with a clearly lower percentage: District 1 in our
solution (65.6%), and District 4 in the institutional one (58.8%). On the other hand,
one can realize that this is due to some indigenous municipalities (those labeled as 7, 38,
64,78, 94) which themselves have probably a low percentage of indigenous. It must then
be considered that, once these municipalities are recognized and classified as ’indigenous’,
they must be considered as a whole. This is the reason why in our optimization model

21



Figure 6: Indigenous and non-indigenous Chiapas municipalities distribution in the dis-
tricts provided by our method.

we maximize the number of indigenous municipality in an indigenous district and not
the corresponding indigenous population. The result is that the configuration in Figure
6 has indigenous districts with more homogeneous percentages of indigenous residents,
and no indigenous people in the non-indigenous districts. On the contrary in Figure 7 we
see a big difference between the lowest (58.8%) and the highest (87.5%) percentage, and,
most all, we have a number of indigenous included in a non-indigenous district (21.8% in
District 6). It is important to note here that, in view of the representation power which
the law wants to guarantee to the indigenous population, concentrating indigenous people
in the indigenous districts is meaningful not only at the moment of the vote expression,
when the representatives are elected, but also under a territorial representation point of
view when these representatives actually practice their administrative tasks.
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Figure 7: Indigenous and non-indigenous Chiapas municipalities distribution in the insti-
tutional districts.

5.2 Application to fictitious data

We test our exact and heuristic procedures also on fictitious territories. We choose ter-
ritories with a very regular structure for which the corresponding contiguity graph is
a rectangular grid. As known, and frequently exploited in the applications (Ricca et al.
2008), (Miyazawa et al. 2021), grids resemble real territories, since they are planar graphs
with node degree between 2 and 4. In the pictures shown in the rest of the paper, the
elementary units of the grids are represented as adjacent cells.

In our experimental plan we consider rectangular grids of different size m (number of
nodes/municipalities), and the corresponding subdivision into a number (mI) of indige-
nous municipalities and the rest (mNI) of non-indigenous ones. We also consider different
values for the number of districts (k, kI , kNI). Table 5.2 shows the numerical character-
istics of our test problems. It can be seen that we test first fictitious territories of size
similar to Chiapas, then we try to solve the problem on larger size data sets. Results
on larger graphs are not reported since, already with 210 nodes we had some difficulties
which forced us to switch from the exact procedure to the (partially) heuristic one. We
generate randomly the population of the municipalities of the test problems by choosing
populations with size ranging between 100 and 350.

m mI mNI k kI kNI

120 46 74 13 5 8
210 86 124 25 10 15

To take into account the existence of indigenous and non-indigenous municipalities, we
consider three different configurations for the indigenous distribution over the territory.
Thus, in each grid graph, for the location of the mI nodes corresponding to the indigenous
municipalities we have three situations: i) all indigenous nodes are inside a smaller subgrid
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located in the center of the original grid; ii) all are in a smaller subgrid located at a corner
of the original grid; iii) all indigenous nodes randomly spread all over the original grid.

In the pictures showing our fictitious territories the subgrids where indigenous are
located are visualized within a rectangle (in bold), and the indigenous municipalities are
labeled by white numbers (on the contrary, the black numbers refer to non-indigenous).
In each figure we also report a table showing the populations of indigenous and non-
indigenous districts.

First we illustrate the results obtained on the first three grids withM = 120 municipalities,
among which MNI = 46 are indigenous. In this data sets we have 13 districts, 5 indigenous
and 8 non-indigenous. With respect to population, we have P̄ = 1532 and, considering
a value α = 0.15, Pmin = 1302 and Pmax = 1762. Computational times required for
the solution of the optimization models of Phase I for the grid with 120 nodes and the
indigenous communities located in a corner were similar to those for Chiapas. As for
Chiapas, we were also able to consider compactness in Phase II and obtain a good map
in reasonable times by applying a successive division approach (see Figure 8).

Figure 8: Case 1: M = 120, indigenous located in a corner.
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Figure 9: Case 2: M = 120, indigenous located in the center.

Figure 10: Case 3: M = 120, indigenous spread.

Figures 8, 9 and 10 show the results on grids with 120 nodes. One can verify that the
bounds on the district population are fully satisfied in all cases. With respect to the
distribution of the indigenous municipalities in the territory, with the first two configura-
tions the procedure was able collect all of them within the indigenous districts. On the
contrary, when the indigenous municipalities are spread, as expected, in the final solution
some indigenous municipalities belong to non-indigenous districts (see Figure 10). When
indigenous are sparse over the territory, in Phase I we are forced to relax the assignment
constraint for indigenous and to use the MILP model only to find partial districts which
are then completed heuristically. The spread configuration produces some additional dif-
ficulties also for solving Phase II, since, after the formation of indigenous districts, in this
case the remaining municipalities to be still assigned are sparse as well. In our experi-
ments, this implied that only the heuristic procedure could be applied to complete the
district map.

A similar problem was encountered with the configuration in which the indigenous
municipalities are located in the center. In this case, for the 120 node grid we were
able to apply the exact approach in Phase I, and assign all indigenous municipalities to
indigenous districts, but, after this, the remaining non-indigenous municipalities had a
ring shape, and this again made hard the task of solving the MILP model of Phase II.

For the grid with 210 nodes we have P̄ = 1876, and, using α = 0.15, we have Pmin = 1594
and Pmax = 2157. The results for this case are shown in figures 11, 12, and 13. It
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can be seen that, when indigenous are spread, relaxing the assignment constraints in the
model of Phase I unavoidably implies that some indigenous municipalities are assigned to
a non-indigenous district (Figure 13).

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
District	 Population	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
1	 I	 2057	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	
	

2	 I	 2111	
15	 16	 17	 18	 19	 20	 21	 22	 23	 24	 25	 26	 27	 28	

	
3	 I	 2069	

29	 30	 31	 32	 33	 34	 35	 36	 37	 38	 39	 40	 41	 42	
	

4	 I	 2146	
43	 44	 45	 46	 47	 48	 49	 50	 51	 52	 53	 54	 55	 56	

	
5	 I	 2128	

57	 58	 59	 60	 61	 62	 63	 64	 65	 66	 67	 68	 69	 70	
	

6	 I	 1972	
71	 72	 73	 74	 75	 76	 77	 78	 79	 80	 81	 82	 83	 84	

	
7	 I	 1968	

85	 86	 87	 88	 89	 90	 91	 92	 93	 94	 95	 96	 97	 98	
	

8	 I	 2149	
99	 100	 101	 102	 103	 104	 105	 106	 107	 108	 109	 110	 111	 112	

	
9	 I	 1936	

113	 114	 115	 116	 117	 118	 119	 120	 121	 122	 123	 124	 125	 126	
	

10	 I	 1919	
127	 128	 129	 130	 131	 132	 133	 134	 135	 136	 137	 138	 139	 140	

	
11	 NI	 1770	

141	 142	 143	 144	 145	 146	 147	 148	 149	 150	 151	 152	 153	 154	
	

12	 NI	 1741	
155	 156	 157	 158	 159	 160	 161	 162	 163	 164	 165	 166	 167	 168	

	
13	 NI	 1699	

169	 170	 171	 172	 173	 174	 175	 176	 177	 178	 179	 180	 181	 182	
	

14	 NI	 1978	
183	 184	 185	 186	 187	 188	 189	 190	 191	 192	 193	 194	 195	 196	

	
15	 NI	 1770	

197	 198	 199	 200	 201	 202	 203	 204	 205	 206	 207	 208	 209	 210	
	

16	 NI	 2097	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
17	 NI	 1737	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
18	 NI	 1614	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
19	 NI	 1682	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
20	 NI	 1867	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
21	 NI	 1603	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
22	 NI	 1810	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
23	 NI	 1600	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
24	 NI	 1670	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
25	 NI	 1803	

	

Figure 11: Case 4: M = 210, indigenous located in the corner.

For all cases with 210 nodes we had computational problems in solving the MILP models
exactly. Therefore, it was necessary to exploit the heuristic procedure to get solutions
in reasonable times by constructing partial (kernel) districts in Phase I and then using
the heuristic to complete them, and then also to produce the non-indigenous ones. In
any case, for all grids we were able to obtain a contiguous district map with all district
populations within the imposed bounds. In addition, thanks to the integral nature of the
municipalities, represented as nodes of the graph, perfect conformity is always guaranteed.

The increasing difficulties found in the solution of PD on territories when the number of
units becomes large suggests that it is not possible to apply our MILP models further.
Our experiments made us understand up to which size our MILP models can be exploited
at best. We also tried to solve the PD problem on territories with 500 municipalities, but,
as expected, in these cases only a heuristic approach can be applied.

The results in this section provide district maps which satisfy population equality, con-
tiguity, and guarantee perfect conformity to municipal boundaries. In addition, they
optimize the criterion of respecting minority groups. This goal is fully reached for the
small-size territories, for which all indigenous municipalities are assigned to indigenous
districts, while it is optimized in the larger data sets, or when indigenous are spread, by
collecting as much as possible indigenous in their districts.
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Figure 12: Case 5: M = 210, indigenous located in a center.

Figure 13: Case 6: M = 210, indigenous spread.

6 Conclusions

In this paper we propose an optimization approach for Political Districting in Mexico.
The aim is to obtain a procedure for designing electoral districts taking into account that
in this country there exist minority groups who, according to the law, have a special
right to be represented in the Parliament. The approach is tailored for the Mexican case,
but it is applicable to any PD problem in which respect of minority groups is a main
issue. It was motivated by the observation that in Mexico the law considers the existence
of the minority groups and prescribes explicitly that a fixed number of districts should
be designed with the precise aim of supporting their representation. For this reason,
we focus our attention on minorities and suggest a procedure which collects as much
as possible indigenous municipalities together in the prescribed number of indigenous
districts (established by the law). We also consider the basic PD criteria of contiguity,
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which is treated as a strict constraint, together with population equality and conformity
to municipal boundaries, which are satisfied at best. In particular, population equality
is satisfied according to the bounds on district populations imposed by the law, while,
by considering municipalities as elementary (indivisible) territorial units, conformity to
municipality boundaries is automatically satisfied by the districts. This is one aspect of
the more general conformity to administrative boundaries criterion which, in our opinion,
is fundamental in any territorial zoning problem with an institutional role.

The solution procedure is performed in two stages: the first is devoted to the design
of indigenous districts, the second is aimed at completing the map with the construction
of the non-indigenous districts. Our experimental experience showed the pros and cons
of the procedure, but the general performance is good, especially for the results w.r.t.
respect of indigenous minorities and conformity to municipal boundaries.

In particular, for the solution of the specific Mexican PD problem, we have the following
results:

1. The application of our method to Chiapas produces a district map which matches the
law requirements of balancing population and having a fixed number of indigenous
districts; under this point of view, our solutions outperforms the institutional district
map, since in such map indigenous municipalities are not concentrated only in the
indigenous districts, but they spread also in some non-indigenous ones. In our
solution they are all collected in the KI indigenous districts, providing a map in
which the separation between the two types of districts is clear.

2. The districts map provided by our procedure outperforms the institutional one also
w.r.t. conformity to municipal boundaries, which is one of the most important
criteria according to the Mexican Law (see, Ley General de Instituciones y Pro-
cedimientos Electorales, Acuerdo INE/CG59/2017). Actually, in the institutional
district map, several municipalities are split between more than one district, and
this is an evident consequence of pursuing population balance without caring of
municipalities’ borders. This splitting does not appear in our map, except for only
two cases in which the territory of a municipality is divided between only two dis-
tricts. This is, in fact, unavoidable for Chiapas, due to some structural problem
in the already existing administrative division of its territory into municipalities.
If population equality must be satisfied within the bounds imposed by the law on
district populations, this two splits are, in facts, unavoidable.

The good performance of the exact two-phase districting procedure is confirmed when
applied to our artificial data sets, but only if the size of the problem is within a maximum
which corresponds more or less to the size of Chiapas. For these problems, as for Chiapas,
we also managed to take into account the compactness criterion when designing the non-
indigenous districts, without loosing anything in conformity to municipalities boundaries.
On the contrary, we discarded compactness in the formation of the indigenous districts
since it is conflicting with respect of minority groups. These results suggest that the
method can be successfully used for practical application of PD problems.

On territories of larger size good district maps can be still obtained in reasonable times
by resorting to the heuristic procedure. The two-phase approach shows some difficulties
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when the distribution of the indigenous over the territory has a very particular (non-
concentrated) configuration. Unfortunately, in PD with minority groups, if this is the
case, the problem becomes harder for any procedure, and typically this requires ad hoc
intervention and additional computational effort. In our approach, we were able to cope
with this by applying our kernel-growth procedure.

We finally point out that our procedure is conceptually simple and easy to apply by the
electoral offices who have to implement the operations prescribed by the law. We think
that this is an important aspect when mathematical models and methods are applied in
the social science context and, in our opinion, this should be promoted also in view of
the principles of transparency and simplicity which are at the basis of the electoral law
in any country.

We conclude the paper by meditating on our heuristic which is clearly very simple
and straightforward, but this was mainly due to the fact that it was developed when
experiments demonstrated the impossibility of applying our MILP for large size problems.
We think that our future work may be headed towards developing a most sophisticated
heuristic procedure which is still able to exploit the two-phase approach proposed in this
work.
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