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Abstract
Schizophrenia has been associated with a reduced task-related modulation of cortical activity assessed through electroen-
cephalography (EEG). However, to the best of our knowledge, no study so far has assessed the underpinnings of this decreased 
EEG modulation in schizophrenia. A possible substrate of these findings could be a decreased inhibitory function, a replicated 
finding in the field. In this pilot study, our aim was to explore the association between EEG modulation during a cognitive 
task and the inhibitory system function in vivo in a sample including healthy controls and patients with schizophrenia. We 
hypothesized that the replicated decreased task-related activity modulation during a cognitive task in schizophrenia would be 
related to a hypofunction of the inhibitory system. For this purpose, 27 healthy controls and 22 patients with schizophrenia 
(including 13 first episodes) performed a 3-condition auditory oddball task from which the spectral entropy modulation was 
calculated. In addition, cortical reactivity—as an index of the inhibitory function—was assessed by the administration of 
75 monophasic transcranial magnetic stimulation single pulses over the left dorsolateral prefrontal cortex. Our results repli-
cated the task-related cortical activity modulation deficit in schizophrenia patients. Moreover, schizophrenia patients showed 
higher cortical reactivity following transcranial magnetic stimulation single pulses over the left dorsolateral prefrontal cortex 
compared to healthy controls. Cortical reactivity was inversely associated with EEG modulation, supporting the idea that a 
hypofunction of the inhibitory system could hamper the task-related modulation of EEG activity.
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Introduction

In the search for physiological biomarkers of a disease, it 
has been often fruitful to investigate parameters that are 
related to its corresponding altered function. Namely, to 
use the knowledge about the mechanisms underlying the 
normal function to define biomarkers for the correspond-
ing disease where that function is known to be altered. One 
of the problems of applying such approach in schizophre-
nia and other psychiatric disorders is that the substrates 
of the altered function (i.e., the mental function) are still 
poorly understood.

Nevertheless, a few facts acknowledged on those sub-
strates may help in the search for biomarkers for schiz-
ophrenia or, at least, some of the subtypes that may be 
included in that syndrome. One of the most important facts 
in this direction is that complex mental contents, such as 
those altered in many schizophrenia patients, involve the 
coordinated and reentrant activity of most cortical regions 
that takes the form of constantly evolving synaptic assem-
blies [1, 2], characterized by the synchronous (i.e., phase-
locked) firing during a short time. This principle also 
underlies the neuronal group selection theory proposed 
by Edelman for higher order consciousness, involving per-
ception, memories, planning, and constitution of self [3]. 
Similarly, when a mental content reaches the conscious-
ness, the corresponding synchronous firing becomes much 
more widespread, i.e., the firing extends to the so called 
“global workspace” [4–6]. Thus, the synthesis of neural 
assemblies and their permanent evolution seem a good 
starting point to assess the pathophysiology of, at least, a 
significant group of patients with schizophrenia.

Considering that a large majority of synapses in the 
cortex are excitatory, proper neural assemblies evolution, 
involving their synthesis and cancelation, would only 
be possible with an adequate inhibitory function, based 
on gamma-aminobutyric acid (GABA) interneurons [7]. 
This prevents a global indiscriminate hyperactivation 
and makes the selection of the adequate synapsis in an 
assembly possible. The GABA inhibitory system has been 
consistently reported to be functionally altered in schizo-
phrenia [8, 9] and mood disorders [10]. This suggests that 
the synthesis of synaptic assemblies underlying mental 
contents may be hampered in schizophrenia due to an 
excitatory/inhibitory imbalance. To demonstrate this, it 
would be necessary to assess in vivo data related to both 
synaptic assemblies’ synthesis and inhibitory function.

The synthesis of the synaptic assemblies cannot be 
directly in vivo assessed without invasive techniques, but 
the electroencephalography (EEG) is a proxy for its evalu-
ation since it reflects the synchronous firing of neuronal 
groups, which transitorily form a synaptic assembly. Its 

modulation during a cognitive task corresponds to the 
rapid formation and cancelation of the assemblies under-
lying the mental contents related to such task. Thus, EEG, 
with its high temporal resolution, may be a marker of one 
of the mental contents’ underpinnings. Among the many 
metrics that can be derived from EEG activity, Shannon 
entropy (SE) is a global index of EEG signal irregularity 
that allows to quantify its changes between different condi-
tions and is, thus, useful as a measurement of task-related 
modulation [11]. Using this parameter, we have replicated 
in three different samples that task-related modulation of 
EEG activity is decreased in schizophrenia [12–14]. This 
lower modulation was associated with higher pre-stimulus 
connectivity strength, revealing a basal hypersynchrony 
[15, 16], and with an increased density of theta spectral 
power at baseline [17]. These findings are coherent with a 
decreased inhibitory function as a substrate contributing 
to that modulation deficit.

Decreased GABA levels have been diversely reported in 
schizophrenia [18, 19], but these levels might not necessarily 
reflect the in vivo inhibitory transmission status (e.g., GABA 
levels may increase for instance in response to a hampered 
inhibition). In recent years, the combination of transcra-
nial magnetic stimulation (TMS) and EEG has emerged 
as a powerful tool for assessing both inhibitory and excita-
tory functions of the cerebral cortex. When a TMS pulse is 
applied to the cortex, time-locked depolarization of under-
lying neurons is obtained, and this activity can be recorded 
by means of EEG electrodes placed on the scalp [20]. In 
this line, recent assessments of in vivo inhibitory status of 
the cortex have been published using both single- [21–23] 
and paired-pulse [24, 25] paradigms combined with EEG. 
More specifically, previous studies have reported altered 
GABAergic-mediated neurotransmission in the dorsolateral 
prefrontal cortex (DLPFC) in schizophrenia patients using 
TMS–EEG [24–27].

Based on the previous findings stated above, in this study, 
we aimed to explore the association between the EEG modu-
lation during a cognitive task (as a proxy of the synthesis 
and dissolution of synaptic assemblies) and the inhibitory 
system function in the DLPFC in schizophrenia patients 
using a combination of TMS–EEG. Since said function has 
been found to be altered in the DLPFC in schizophrenia [8, 
9], we chose this region to test our hypothesis, although this 
dysfunction is unlikely restricted to that region. We hypoth-
esized that the replicated decreased EEG modulation dur-
ing a cognitive task will be related to a hypofunction of the 
inhibitory system in the DLPFC in schizophrenia. Since dif-
ferences in cellular parameters related to inhibitory function, 
such as GABAA postsynaptic receptors, or GAD 67 enzyme 
mRNA of GABA transporter are relatively modest in schizo-
phrenia and its values overlap in patients and controls [8, 
9], we hypothesized that the association between EEG 
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modulation and the inhibitory system function would differ 
quantitatively rather than categorically between patients and 
controls. Patients would show decreased inhibitory function 
but not a lack of it, and such a decrease would translate into 
varying magnitudes of EEG modulation deficits. Therefore, 
in this first analysis, we assessed the relation between EEG 
and cortical inhibition together in patients and controls.

Methods

Participants

Our sample included 27 healthy controls (HC) and 22 
patients with schizophrenia, of whom 13 were first episodes 
(FE). Patients were diagnosed by one of the experienced 
psychiatrists in the group (VM) according to the criteria 
of the Diagnostic and Statistical Manual of Mental Disor-
ders 5th edition, considering current mental state, clini-
cal records, and relatives’ information. Exclusion criteria 
included (a) intelligence quotient under 70; (b) present or 
past substance dependence (excluding caffeine and nicotine); 
(c) head trauma with loss of consciousness; (d) neurological 
or mental diagnosis different to schizophrenia (patients); (e) 
any current neurological or psychiatric diagnosis (controls); 
(f) receiving any other treatment affecting central nervous 
system; and (g) not being safe to undergo TMS. All partici-
pants provided informed written consent after full written 
information before inclusion. The local ethics committee 
of the Clinical University Hospital of Valladolid endorsed 
the study (PI 22–263). This work complies with the ethical 
standards of the Helsinki Declaration of 1975, as revised 
in 2008.

Transcranial magnetic stimulation

TMS stimulation was performed using a MagPro X100 stim-
ulator (MagVenture, Denmark) and a figure-of-8 coil. Par-
ticipants sat comfortably and were instructed to look directly 
ahead with their eyes open. An EEG cap was fitted to their 
head and electrodes were placed over the right abductor pol-
licis brevis (APB) muscle for electromyographic recordings. 
The resting motor threshold (RMT) was determined over 
the motor cortical region following the relative frequency 
method [28], defined as the minimum intensity required to 
elicit a motor evoked potential (MEP) of > 50 µV peak-to-
peak amplitude in at least five of ten subsequent trials. The 
optimal coil location to determine the RMT was identified 
as the position that consistently elicited the largest MEPs in 
the right APB muscle by slightly suprathreshold single-pulse 
TMS. Afterward, 75 monophasic TMS single pulses at an 
intensity of 120% RMT were applied over the left DLPFC 
with randomized jittered inter-stimulus interval from 5 to 

7 s to reduce anticipation of the next trial. The coil was 
positioned in the middle of a line between the F3 and F5 
electrodes with a 45º rotation relative to the midline, pro-
ducing a posterior–anterior current flow in the underlying 
cortex. This position provides the most accurate estimation 
of left DLPFC (border of BA9 and BA46) in the absence 
of neuronavigational equipment [29–31]. To assess poten-
tial auditory-evoked potentials that could confound genuine 
TMS cortical reactivity findings, 40 participants (of them 
20 HC) received sham TMS pulses. The sham condition 
was conducted by placing the coil perpendicular to the left 
DLPFC.

Auditory oddball task

During the same session, participants performed a 3-condi-
tion auditory oddball task in which 600 stimuli were ran-
domly presented: target (500 Hz tone, probability of 0.2), 
distractor (1000 Hz tone, probability of 0.2), and standard 
(2000 Hz tone, probability of 0.6). Each tone lasted 50 ms, 
with a rise and fall time of 5 ms and an intensity of 90 deci-
bels. The inter-stimulus interval between tones randomly 
jittered between 1.16 and 1.44 s. Participants were asked to 
keep their eyes closed and to press the mouse button upon 
hearing target tones. Target tones were considered attended 
when followed by a button press. Only attended target tones 
were considered for further analysis.

EEG data acquisition

EEG activity was collected using a 64-channel system [Brain 
Vision (Brain Products GmbH)] following the international 
10–10 system. Impedance for all electrodes was lowered 
to ≤ 5 kΩ. The channels were referenced over Cz during 
acquisition and re-referenced offline to the averaged activity 
of all sensors [11, 32]. During the auditory oddball task, the 
sampling rate was 500 Hz. TMS–EEG data were recorded 
with a sampling rate of 25 kHz.

EEG data pre‑processing

After recording EEG activity during the auditory oddball 
task, the following three-step artifact rejection algorithm was 
applied to minimize electrooculographic and electromyo-
graphic contamination [12]: (i) an independent component 
analysis (ICA) was performed to discard noisy ICA compo-
nents; (II) the signals were divided after ICA reconstruction 
into trials of 1 s (from 300 ms prior to the stimulus onset 
to 700 ms after); and (iii) the trials with amplitudes that 
exceeded an adaptative statistical-based threshold were auto-
matically rejected [33]. The signals were band-pass filtered 
between 1 and 70 Hz, and a 50-Hz notch filter was applied 
to remove the power line artifact.
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Spectral entropy

Spectral entropy modulation was calculated in the audi-
tory oddball task and computed from the normalized 
continuous wavelet transform (CWT), which is a form of 
time–frequency representation of a signal that is conceptu-
ally related to the short-term Fourier transform [33]. The 
CWT allows for better detection of dynamic EEG com-
ponents due to its balance between frequency and time 
resolution [33]. The time-dependent wavelet-based SE can 
be defined as follows:

where SE is the spectral entropy (as a function of time) and 
WS is the normalized wavelet scalogram. Specifically, SE 
was computed in two windows: pre-stimulus (300 ms before 
stimulus to stimulus onset) and response (150 ms to 450 ms 
from the stimulus onset, centered around the P300 peak). 
Afterward, it was averaged in each of the two windows. As 
in our previous studies, SE modulation was calculated as the 
difference in SE between response and pre-stimulus win-
dows (Gomez-Pilar et al., 2018b), providing a measure of 
the degree of the change of signal irregularity across time. 
Since a decrease in SE in the response window has been 
robustly observed in healthy controls, normal SE modulation 
is expected to be expressed in negative values [12, 13, 16]. 
Complete details of spectral entropy calculation are found 
in the Supplementary material.

TMS–EEG signal pre‑processing

TMS–EEG signal pre-processing was performed using 
Fieldtrip [34] and MATLAB (R2021b; The Mathworks 
Inc., Natick, MA). Signals were epoched from − 1000 ms 
to 1000 ms relative to the TMS pulse. As the data samples 
where the TMS pulse appears are irretrievable, they were 
deleted (from − 1 ms to 10 ms related to TMS-pulse onset) 
and cubic interpolated [35]. To remove artifacts present in 
the signals, which encompassed TMS-induced, muscle, 
ocular, auditory, and noise-related artifacts, independent 
component analysis (ICA) was applied. The independent 
components (ICs) that represented the aforementioned arti-
facts were manually selected by three experts. The criteria to 
remove the ICs were based on their trial-averaged amplitude, 
spatial distribution, and activation and time–frequency maps 
[31, 35, 36]. Subsequently, bad channel interpolation and 
bad trial rejection were automatically performed. Finally, a 
baseline correction was applied using an interval of 800 ms 
before the TMS pulse onset. Data were resampled to 5 kHz 
and band-pass filtered between 0.5 Hz and 70 Hz.

SE(t) = −
1

log(M)
⋅

∑

f
WS(t, f ) ̇log

[

WS(t, f )
]

,

TMS–EEG signal processing/LMFP‑AUC computation

Artifact-free TMS–EEG data processing was performed in 
a region of interest (ROI) composed of the channels cover-
ing the DLPFC, i.e., Fp1, Af3, Af7, F1, F3, F5, F7, FC1, 
FC3, and FC5 [37]. To measure the activity induced by the 
TMS pulse on this ROI, the area under the curve (AUC) of 
the local mean field power (LMFP; in combination LMFP-
AUC) was computed for each subject. First, the LMFP was 
calculated following the formula below:

where K is the number of channels, Vi (t) is the amplitude of 
the signal in channel i at instant t, and Vmean (t) is the mean 
amplitude of all channels of the ROI at instant t. Finally, the 
AUC was computed by integrating the LMFP signal from 
30 to 250 ms after the TMS pulse.

The LMFP-AUC is a widely used neurophysiological 
measure that represents activity induced by TMS pulses 
across a specific subset of electrodes of interest [20]. There-
fore, it might be interpreted as an index of the cortical reac-
tivity of the area covered by those electrodes. Sham stimula-
tion signals were pre-processed and processed analogously 
to the active stimulation signals.

Statistical analysis

Demographic characteristics were compared between 
healthy controls and patients using independent samples t 
test or Chi-square test wherever appropriate. Similarly, RMT 
was compared using independent samples t test to ensure 
that stimulation intensities did not differ between groups. 
Since SE modulation included many different potentially 
collinear variables, it was reduced to principal components 
using PCA, following our previous studies [16]. The number 
of factors retained was determined by scree plot examina-
tion. To obtain a stable solution, the PCA was carried out 
on a larger sample (n = 440) containing the participants of 
this study and reducing the number of electrodes to 32. The 
auditory oddball task was performed under the same condi-
tions in that sample. Independent t tests were performed to 
compare SE modulation and LMFP-AUC values between 
groups and to compare active and sham stimulation signals.

The main hypothesis of the study was tested using 
Pearson correlation analyses between LMFP-AUC and 
SE modulation values, including patients and HC, and 
then repeating this analysis separately for each group. 
Finally, to rule out a major effect of treatment, corre-
lation coefficients between LMFP-AUC and medication 
dose (based on chlorpromazine equivalents) were also 

LMFP(t) =

�

[
∑K

i

�

Vi(t) − Vmean(t))
2
�

K
,
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calculated. Data analyses were performed using SPSS 
statistical software, version 23 for Windows (IBM).

Results

Demographic and clinical characteristics

Demographic and clinical characteristics are presented in 
Table 1. There were no significant differences between 
patients and HC in age, sex distribution, or educational 
level.

Spectral entropy modulation

In line with our previous studies, the first principal com-
ponent for SE modulation summarized most of the vari-
ance, accounting for 53.94% of the variance (eigenvalue 
15.64). All sensors contributed positively to this factor. 
Thus, higher factor scores represent lower decrease in SE 
from pre-stimulus to response windows, i.e., lower modu-
lation. Patients showed significantly lower SE modulation 
than HC (Table 2, Figs. 1 and 2).

Resting motor threshold

There were no significant differences between patients and 
HC in resting motor threshold mean values (Table 2).

LMFP‑AUC active stimulation

Schizophrenia patients showed significantly higher LMFP-
AUC for active stimulation than healthy controls (Table 2, 
Figs. 3 and 4). To rule out a potential pre-TMS excitability 
effect on these results, we decided to compute the LMFP-
AUC pre-TMS, specifically between – 230 and – 10 ms rela-
tive to the TMS-pulse onset (i.e., so that the time window 
has the same length as the one used for the LMFP-AUC 
calculation) for each subject. On average, schizophrenia 
patients do have a greater LMFP-AUC value compared to 
healthy controls in this pre-TMS window. However, no sta-
tistically significant differences were found between both 
groups (p value of a Wilcoxon text = 0.231).

Differences between active and sham stimulation

Active stimulation resulted in significantly higher LMFP-
AUC compared with sham stimulation when considering 
the whole sample (t = 10.21, p < 0.001), and schizophre-
nia patients (t = 8.64, p < 0.001) and healthy controls 

Table 1   Demographic and 
clinical characteristics

Data are given as mean (standard deviation)

Healthy controls Patients Test statistic p value

Sample size, no 27 22 NA NA
Age, years 27.56 (11.27) 33.77 (12.25) t = 1.85 0.071
Sex, M/F 14/13 12/10 χ2 = 0.184 (1) 0.668
Education level, years 15.04 (2.07) 13.50 (3.08) t = − 2.00 0.053
Illness duration, months NA 74.57 (134.57) NA NA
Lifetime hospitalizations NA 1.48 (1.03) NA NA
CPZ equivalents NA 336.48 (184.31) NA NA
PANSS positive NA 13.55 (5.23) NA NA
PANSS negative NA 14.70 (6.16) NA NA
PANSS total NA 52.05 (19.05) NA NA
BNSS total NA 23.35 (18.98) NA NA

Table 2   EEG and TMS–EEG 
characteristics

SE modulation expressed as first principal component values
RMT, resting motor threshold
*p < 0.01

Healthy controls Patients Test statistic p value

SE modulation -0.56 (1.19) 0.27 (0.82) t = 2.87 0.006*
RMT 65.11 (9.04) 64.09 (7.46) t = -0.43 0.673
LMFP-AUC​ 1754.33 (1323.35) 3032.11 (1646.20) t = 3.01 0.004*
LMFP-AUC sham 367.70 (80.18) 363.93 (95.15) t = -0.136 0.893
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Fig. 1   First principal compo-
nent mean values of SE modula-
tion for healthy controls and 
schizophrenia patients. Higher 
mean factor scores represent 
lower SE modulation

Fig. 2   Spectral entropy modula-
tion in healthy controls (left) 
and schizophrenia patients 
(right)

Fig. 3   LMFP-AUC mean 
values for active stimulation for 
healthy controls and schizophre-
nia patients
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(t = 6.88, p < 0.001) alone. There were no significant dif-
ferences between patients and HC in LMFP-AUC sham 
mean values (Table 2).

Association between LMFP‑AUC and SE modulation

LMFP-AUC was significantly related to SE modulation 
(r = 0.336, p = 0.018) when considering both HC and 
patients (Fig. 5). This relationship was not significant 
when considering patients alone (r = 0.321, p = 0.145) or 
HC alone (r = 0.164, p = 0.412).

Association between LMFP‑AUC and medication 
dose

There was no significant correlation between LMFP-AUC 
values and medication dose (r = 0.299, p = 0.177).

Discussion

To the best of our knowledge, this is the first study assess-
ing the relationship between EEG modulation during a cog-
nitive task and the brain’s excitatory/inhibitory balance in 

Fig. 4   Averaged EEG signal of DLPFC channels (upper panel) and LMFP values (lower panel) after receiving active TMS stimulation for 
patients (orange line) and healthy controls (blue line)



844	 European Archives of Psychiatry and Clinical Neuroscience (2024) 274:837–847

DLPFC evaluated through TMS–EEG in healthy controls 
and schizophrenia patients. Compared to healthy controls, 
patients showed a deficit in EEG activity modulation dur-
ing a cognitive task and higher cortical reactivity following 
TMS single pulses. Our key finding implies that SE modula-
tion is associated with the amplitude of the evoked response 
to TMS single pulses in the left DLPFC.

In line with previous studies [12–14], our results repli-
cate a deficit in EEG activity modulation during a cognitive 
task in schizophrenia patients. This deficit has been shown 
to be unrelated to psychopharmacological treatment [14] 
and might reflect a deficit in the synchronization of neu-
ral assemblies that underlie cognitive activity. Moreover, 
patients showed higher cortical reactivity following TMS 
single pulses in the DLPFC compared to healthy controls. 
A possible neurophysiological underpinning of these find-
ings may be related to the decreased inhibitory function 
previously described in schizophrenia [8, 26, 27] that could 
lead to a baseline cortical hypersynchrony. Inhibitory altera-
tions are also coherent with other replicated alterations in 
schizophrenia patients, such as P50 gating deficits [38, 39]. 
Specifically, GABAB receptor-mediated cortical inhibition is 
thought to underlie sensory gating [40] and it has been also 
shown to be altered in schizophrenia patients in TMS stud-
ies using long interval cortical inhibition [41] and cortical 
silent period [42].

Our data revealed a positive relationship between SE 
modulation and the amplitude of the evoked response in 
the left DLPFC to TMS single pulses. In other words, the 
higher amplitude of the evoked response to TMS stimu-
lation was related to a decreased task-related modulatory 
capacity of the EEG. This association agrees with previous 

studies showing that higher baseline connectivity strength 
[15, 16] and theta power [17] are similarly associated with a 
decrease in the modulatory capacity of EEG during the same 
cognitive task as the one used in our study. These findings 
altogether could indicate that a larger excitatory activity at 
baseline is related to a decreased task-related modulatory 
capacity of the EEG.

It is worth noting that the association between SE mod-
ulation and LMFP-AUC after TMS stimulation was only 
statistically significant when considering the entire sample. 
This may suggest the idea that this relation would be better 
considered dimensional rather than categorical. In this way, 
the excitatory/inhibitory imbalance may only apply to some 
subtypes within the schizophrenia syndrome, where LMFP-
AUC was clearly increased, and correspondingly with basal 
hypersynchrony and decreased modulatory capacity of the 
EEG. Accordingly, we have recently reported the existence 
of a biotype within psychosis primarily characterized by a 
large cognitive deficit and specific neurobiological altera-
tions, including increased baseline connectivity strength 
values [43]. This specific alteration was not shared with 
the other identified biotype which included more preserved 
patients. Consistently, one recent study reported a biotype 
with higher cognitive control deficits and associated with 
overactive neural responses, not present in the identified 
preserved cognitive biotypes [44]. We did not find statisti-
cally significant correlations between LMFP-AUC and SE 
modulation when considering patients alone, although cor-
relation coefficients in this group were similar to those of 
the whole sample. This suggest the interest of increasing the 
sample size and the possibility of finding different biotypes 
on this basis.

Fig. 5   Association between the 
first principal component mean 
values of SE modulation and 
LMFP-AUC mean values and 
the corresponding best-fitting 
line considering the whole 
sample of the study

LM
FP

-A
U
C

SE Modulation

SZ patients
Healthy Controls
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The specificity of the inhibitory dysfunction for schiz-
ophrenia may be questioned by studies showing higher 
LMFP-AUC following TMS single pulses over DLPFC in 
other clinical populations, such as major depressive disorder 
(MDD) [45, 46]. Like schizophrenia, MDD may involve, 
at least in some cases, the dysregulation of cortical inhibi-
tory and excitatory mechanisms [47, 48]. It may be explored 
whether a common underpinning involving a GABA dys-
function may help characterizing potential biotypes in these 
syndromes. Nevertheless, to the best of our knowledge, a 
decreased modulation of EEG activity during a cognitive 
task and a hypersynchronous basal state has not been shown 
in MDD, suggesting that the consequences of inhibitory dys-
function may differ in both syndromes.

Some limitations should be considered when interpret-
ing the findings of this study. First, the sample size was 
relatively small. A larger sample size may reveal signifi-
cant relationships in the patients studied alone and may 
help to address differences in inhibitory function in differ-
ent patients subgroups. Second, we did not use neuronavi-
gation. to localize the left DLPFC. However, in line with 
previous studies in the field, the coil was placed between 
the F3 and F5 electrodes, a position that provides the most 
accurate estimation of the left DLPFC [29–31]. Third, we 
cannot completely rule out the possible contamination of 
the TMS-EEG signal by TMS-induced somatosensory and 
auditory artifacts. However, we analyzed LMFP-AUC as a 
measure of cortical reactivity instead of looking at isolated 
potentials, where the potential contamination could have 
been more problematic. Fourth, this is a correlational study 
that describes association, but not causation. Finally, our 
study design cannot fully disentangle the contribution of 
excitatory vs. inhibitory mechanisms to the EEG activity 
modulation during a cognitive task. Future studies should 
include other measurements to try to solve this, such as spec-
troscopy or paired-pulse paradigms.

In conclusion, our study successfully replicated the fact 
that, compared to healthy controls, schizophrenia patients 
showed a deficit in EEG activity modulation during a cog-
nitive task. Moreover, it also revealed that patients display 
higher cortical reactivity following TMS single pulses 
applied over the left DLPFC. Furthermore, our data high-
light a potential relationship between SE modulation during 
a cognitive task and the amplitude of the evoked response to 
TMS single pulses in the left DLPFC in both healthy con-
trols and patients. These findings provide novel insight into 
the neurophysiological underpinnings of potentially different 
subgroups of schizophrenia patients.
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