Elsevier Editorial System(tm) for Biomass

and Bioenergy

Manuscript Draft

Manuscript Number:

Title: Valorization of apple pomaces for biofuel production: a biorefinery approach

Article Type: Research paper

Keywords: apple pomace, biobutanol, bioethanol, biogas

Corresponding Author: Dr. Beatriz Molinuevo-Salces, Ph.D

Corresponding Author's Institution: Agricultural Technological Institute of Castilla y León

First Author: Beatriz Molinuevo-Salces, Ph.D

Order of Authors: Beatriz Molinuevo-Salces, Ph.D; Berta Riaño; María Hijosa-Valsero; Ana Isabel Paniagua-García; Isabel González-García; Jerson Garita-Cambronero; Rebeca Díez-Antolínez; Mari Cruz García-González

Abstract: This study is aimed at assessing the potential of apple pomace (AP) as a substrate for biofuel production following a biorefinery approach. Two different APs, from juice and cider production were evaluated. First, bioethanol generation was performed and its fermentation residues, together with available biobutanol fermentation residues, were studied for biogas production. Moreover, co-digestion of AP and swine manure was investigated following a factorial design. Twelve different bacterial and yeast strains were compared for bioethanol production, obtaining bioethanol concentrations about 50 g L-1 by different strains of Kluyveromyces marxianus, K. lactis, Lachancea thermotolerans and Saccharomyces cerevisiae, with yields of 0.371 - 0.444 g g-1. Specific methane yields of the fermentation residues of bioethanol and biobutanol production were 463 and 290 mL CH4 g -1 VS added, respectively. Methane yield for the co-digestion of AP and swine manure was 596 mL CH4 g-1 VS added, with an AP percentage of 14.6 % and a substrate concentration of 9.38 g VS L-1.

Suggested Reviewers: Lucília Domingues Centro de Engenharia Biológica, Universidade do Minho, Braga, Portugal luciliad@deb.uminho.pt She works in lignocellulosic waste valorization to obtain different biofuels and bioproducts.

Anne-Belinda Bjerre Danish Technological Institute, Gregersensvej, DK-2630 Taastrup, Denmark anbj@teknologisk.dk She is an expert in the hydrolysis of waste biomass to obtain simple sugars. During the last years seh has been involved in the production of ethanol, butanol and proteins from surplus algae and agricultural wastes.

Antonio Morán

University of León amorp@unileon.es He is an expert in anaerobic digestion and co-digestion of different organic by-products. Giorgio Provolo

University of Milan giorgio.provolo@unimi.it He has a wide expereince in organic wastes treatment and valorization.

Michel Torrijos INRA michel.torrijos@inra.fr He works on biogas production from a variety of organic residues.

Opposed Reviewers:

Valladolid, July 12th 2019

Dear Editor:

Will you please consider the enclosed manuscript "Valorization of apple pomaces for biofuel production: a biorefinery approach" for publication in Biomass and Bioenergy.

(1) Authors: Beatriz Molinuevo-Salces, Berta Riaño, María Hijosa-Valsero, Isabel González- García, Ana I. Paniagua-García, David Hernández, Jerson Garita-Cambronero, Rebeca Díez-Antolínez and María Cruz García-González, mutually agree that the article should be submitted to Biosystems Engineering.

(3) Authors state that the present article is an original work.

(4) Authors state that the present manuscript has not been previously submitted to Biomass and Bioenergy.

(5) Novelty in results/findings, or significance of results.

The production of apples in the world generates large quantities of apple pomace (AP). Most of this AP is currently incinerated or used for compost production, resulting in a potential source of GHG emissions. Biofuel production from AP could be a sustainable alternative for the valorization of this by-product. In this way, the present work evaluates two valorization ways for AP, namely a biorefinery approach for biofuel production and the co-digestion of AP and swine manure.

First, bioethanol production from AP was successfully produced. Bioethanol concentrations about 50 g L⁻¹ were obtained by different strains of *K. marxianus*, *K. lactis*, *L. thermotolerants* and *S. cerevisiae* with yields of 0.371-0.444 g g⁻¹. Then, specific methane yields of the exhausted broths after bioethanol and biobutanol production were 463 and 290 mL CH₄ g⁻¹ VS added, respectively. Finally, co-digestion of AP and swine manure was investigated following a factorial design and the highest methane yield (596 mL CH₄ g⁻¹ VS added) was obtained with a substrate concentration of 9 g L⁻¹ SV and an AP content in the mixture of 15%.

Yours sincerely, Dr. Beatriz Molinuevo-Salces

Correspondence to: Beatriz Molinuevo-Salces, Agricultural Technological Institute of Castilla and Leon, Ctra. Burgos km. 119 47071 Valladolid, Spain E-mail: beatriz.molinuevo@itacyl.es; beatriz.molinuevo.salces@gmail.com

- Apple pomaces are valorized for biofuel production
- Bioethanol yield was up to 0.371-0.444 g g-1 from twelve different strains
- Methane yield of 463 mL $CH_4 g^{-1} VS added$ of the bioethanol fermentation residue
- Methane yield of 290 mL CH₄ g^{-1} _{VS added} of the biobutanol fermentation residue
- Co-digestion of AP and manure produced up to 596 mL $CH_4 g^{-1} VS added$

Valorization of apple pomaces for biofuel production: a

biorefinery approach.

Beatriz Molinuevo-Salces^{1*}, Berta Riaño¹, María Hijosa-Valsero², Isabel González-García¹, Ana I. Paniagua-García^{2,3}, David Hernández¹, Jerson Garita-Cambronero², Rebeca Díez-Antolínez^{2,3}, María Cruz García-González¹. ¹ Agricultural Technological Institute of Castilla y León, Ctra. Burgos, km 119, 47071 Valladolid, Spain. ²Centre of Biofuels and Bioproducts. Agricultural Technological Institute of Castilla y León, Villarejo de Órbigo, E-24358, León, Spain. ³ Chemical and Environmental Bioprocess Engineering Group. Natural Resources Institute (IRENA), Universidad de León, Avenida de Portugal 42, E-24071, León, Spain. *Corresponding author. Tel. +34 983 317 354 E-mail address: ita-molsalbe@itacyl.es Abstract This study is aimed at assessing the potential of apple pomace (AP) as a substrate for biofuel production following a biorefinery approach. Two different APs, from juice and cider production were evaluated. First, bioethanol generation was performed and its fermentation residues, together with available biobutanol fermentation residues, were studied for biogas production. Moreover, co-digestion of AP and swine manure was investigated following a factorial design. Twelve different bacterial and yeast strains were compared for bioethanol production, obtaining bioethanol concentrations about 50 g L^{-1} by different strains of *Kluyveromyces marxianus*, *K. lactis*, *Lachancea* thermotolerans and Saccharomyces cerevisiae, with yields of $0.371 - 0.444 \text{ g g}^{-1}$. Specific methane yields of the fermentation residues of bioethanol and biobutanol production were 463 and 290 mL CH₄ g⁻¹ _{VS added}, respectively. Methane yield for the co-digestion of AP and swine manure was 596 mL CH₄ g⁻¹ _{VS added}, with an AP percentage of 14.6 % and a substrate concentration of 9.38 g VS L^{-1} . Keywords: apple pomace, biobutanol, bioethanol, biogas

1. Introduction

The production of apples in the world is approximately 54.2 million tons per year. Around 26% of this production is processed in the apple industry for obtaining different products as juice, jelly or cider [1]. The solid waste produced after generating the different apple products is called apple pomace (AP) and it accounts for approximately 25% of the total processed biomass [2]. Regarding Spain, half a million ton of apples is produced every year and around 9 metric tons of apple pomace is generated from cider production in Asturias, the main cider producer region in Spain [3, 4]. Apple pomaces obtained from juice and cider production are similar in composition, containing 20-30% solids, with a high amount of lignocellulosic material. Currently, a fifth of the produced AP is used as animal or human feed. The rest is incinerated or either used for compost production, resulting in a potential source of GHG emissions [2]. Alternative uses such as production of biofuels, extraction of antioxidants and nutraceuticals, production of pectin or production of materials for the development of scaffolds for cell growth have been proposed in the last years for alleviating waste disposal [4, 5, 6].

In the last decades, many efforts have been made for biofuel production from food by-products. AP can be potentially converted into biobutanol [6] and bioethanol [7] in biorefineries by fermentation. In order to ferment AP, either by alcoholic or acetone-butanol-ethanol (ABE) fermentation, a pretreatment is necessary to release the simple sugars contained in cellulose and hemicellulose, thus obtaining a hydrolysate rich in hexose and pentose sugars. However, this pretreatment also generates toxic compounds that can inhibit fermentation. Not all microbial species are able to ferment the wide variety of sugars present in lignocellulosic hydrolysates and their tolerance to inhibitors is very variable. Therefore, it is essential to select an adequate strain to deal with

lignocellulosic hydrolysates. In the case of alcoholic fermentation, *Saccharomyces cerevisiae* has been preferentially employed for traditional substrates due to its
bioethanol production capacity and tolerance, but other microorganisms are emerging as
interesting alternatives for lignocellulosic biomasses like AP, such as *Kluyveromyces*sp., *Scheffersomyces stipitis* or *Zymomonas mobilis* [8, 9]. In the case of ABE
fermentation from AP, the species *Clostridium beijerinckii* has been successfully
employed [6, 10].

The most common residual streams generated during ethanol or ABE fermentation are exhausted fermentation broths, also known as stillage or spent wash (i.e. broths from which solvents have been recovered by distillation or similar techniques). They consist of aqueous suspensions with low concentrations of free sugars, containing AP solids, microorganisms and microbial debris. Currently, stillage from ethanol distilleries is used as soil fertiliser, although different authors have demonstrated it can cause pollution problems [11, 12]. It has been suggested that these ethanol distillation byproducts could also be employed as feedstock in various bioprocesses to obtain microbial biomass, proteins, ethanol, surfactants, bioplastics, fatty acids, edible fungi, enzymes or biogas by anaerobic digestion [11, 12, 13, 14].

Anaerobic digestion (AD) is a biological process by which organic matter is transformed into renewable energy. AD contributes to greenhouse gas mitigation, odor and pathogen reduction, and organic nitrogen mineralization into available nitrogen for plant growth [15]. Previous authors have investigated methane potential of AP, being in the range of 137-231 mL CH₄ g volatile solids (VS)⁻¹ [16, 17]. However, anaerobic digestion of the exhausted broths after biofuel production has been scarcely evaluated

and it would be interesting since AD could be a sustainable alternative to the current uses of this by-product. Moreover, it would result in a biorefinery approach, where the by-product obtained after biofuel production would be the substrate for AD. Anaerobic co-digestion of AP and livestock wastes has been also evaluated, resulting in positive synergetic effects on biogas production between both substrates, if compared to animal manure alone [18]. According to The European Biogas Association, the number of agricultural biogas plants in Spain was 139 at the end of 2015. This number is quite low, if compared to the number of biogas plants in other EU countries such as Germany or Italy. However, from 2014 to 2015 it has exponentially grown from 39 to 139 (EBA 2014, EBA 2015). These plants are co-digestion plants where the main substrate is manure and different carbon-rich co-substrates are fed during the year. Since AP is seasonally produced, there is a special interest in investigating the potential of AP as co-substrate for AD plants to valorize this substrate during the months where it is produced.

This work aims to study two valorization ways for AP, namely a biorefinery approach for biofuel production and the co-digestion of AP and swine manure. First, bioethanol production from AP was studied, paying special attention to the microbial strain selection. Then, the biochemical methane potential of different AP fermentation residues (exhausted broths from alcoholic and ABE processes) was determined. Finally, co-digestion of AP and swine manure was investigated following a factorial design in order to determine the optimal ratio AP/manure that would ensure a stable AD process for the existing biogas plants.

113 2. Material and Methods

2.1. Origin of the substrates (apple pomaces and exhausted fermentation broths), swine manure and inoculum.

Two apple pomaces were studied. The first one (AP1) was provided by Muns Agroindustrial S.L., located in Lleida, Spain. It was a dry AP obtained after juice extraction and drying for preservation. AP1 was ground and sieved. The final size ranged between 0.5 and 1.0 mm. Two fermentation by-products from AP1 (i.e. exhausted fermentation broths) were obtained, from bioethanol production (AP1-E) and biobutanol production (AP1-B), respectively. The stream AP1-E was obtained after removing the bioethanol from the broth corresponding to a 72-h fermentation of AP1 hydrolysate by *S. cerevisiae* Ethanol Red[®] (see section 2.2 for more details). Bioethanol was removed by gas stripping, with $T_{feed} = 70$ °C, $T_{refrigeration} = 0$ °C and gas flow 1.34 L min⁻¹ during 4 h. The stream AP1-B was prepared from a fermented hydrolysate of AP1 containing 1.42 g L⁻¹ acetone, 5.45 g L⁻¹ butanol, 0.16 g L⁻¹ ethanol, 4.28 g L⁻¹ acetic acid and 4.98 g L⁻¹ butyric acid, previously pretreated by autohydrolysis and fermented, with C. beijerinckii CECT 508, according to Hijosa-Valsero et al. [6]. Subsequently, the broth of the ABE fermentation was subjected to gas stripping according to the conditions described by Díez-Antolínez et al. [19] in order to remove ABE solvents. These exhausted broths were stored at 4 °C for further use.

The second AP (AP2) was provided by the Regional Research and Development
Service of Asturias (SERIDA), Asturias, Spain. In this case, the AP was a fresh product
obtained after apple pressing for cider production (AP2-fresh). The biomass was dried
at 60°C, obtaining AP2-dried. This biomass was then ground (AP2- dried powder) in a
SM100 Comfort rotary mill (Retsch GmbH, Haan, Germany) and sieved, with a size
range of 0.5–1.0 mm.

140 The chemical composition of both apple pomace samples (AP1 and AP2) is shown in141 Table 1.

Swine manure (SM) was obtained from a pig farm located in Guardo, Palencia, Spain.
The inoculum used for AD (AD inoculum) was a mesophilic anaerobic sludge that was
obtained from the municipal wastewater treatment plant (WWTP) in Valladolid, Spain
and subsequently stored at 4 °C for further use.

148 2.2. **Bioethanol production**

149 2.2.1. Hydrolysis of apple pomace

In order to perform bioethanol fermentation, it is necessary to release the simple sugars (glucose, xylose, galactose, etc.) that are contained within AP polysaccharides (cellulose and hemicellulose). Hence, AP was subjected to a physicochemical pretreatment and an enzymatic hydrolysis. In the first place, AP was autoclaved in an aqueous solution at 121 °C during 20 min, with a solid-to-solvent ratio of 30% (w/w). Then, the samples were cooled down, and citric acid and NaOH were added to obtain a citrate buffer of 50 mM and pH 5.0. Afterwards, 36 µL of the enzyme Cellic CTec 2 (activity 100 FPU mL⁻ ¹; Novozymes, Tianjin, China) and 10 μ L of the enzyme Viscozyme L (activity 41) CMC mL⁻¹: Novozymes, Bagsvaerd, Denmark) were added per each 1 g of dry AP. The enzymatic hydrolysis was performed in an orbital shaker (HT Minitron, Infors AG, Bottmingen, Switzerland) at 50 °C and 180 rpm during 48 h. This pretreatment was applied to AP1 and AP2. However, probably due to the high pectin content (quantified as galacturonic acid) or to other intrinsic characteristics of AP2 (Table 1), it was not possible to hydrolyse it. Therefore, bioethanol fermentation was only carried out with

hydrolysate of AP1. Sugar composition of these hydrolysates was analysed by HPLC according to section 2.5.

2.2.2. Strain cultivation and inocula preparation

Twelve different bacterial and yeast strains were compared for bioethanol production.

K. lactis var. lactis DSM 70799, K. marxianus DSM 5422, K. marxianus DSM 5418,

K. marxianus DSM 7239, K. thermotolerans DSM 3434 (currently classified as

Lachancea thermotolerans), S. cerevisiae DSM 70449, S. stipitis DSM 3651, S. stipitis

DSM 3652 and Z. mobilis DSM 3580 were provided by DSMZ (Braunschweig,

Germany); S. cerevisiae Ethanol Red[®] was obtained from Lesaffre Advanced

Fermentations (Marcq-en-Baroeul, France); S. cerevisiae Hércules-green was provided

by Lesaffre Ibérica S.A. (Valladolid, Spain); and S. cerevisiae CECT 1383 was

purchased from CECT (Paterna, Spain). Yeasts were cultivated in Petri dishes (10 g L⁻¹

glucose, 3 g L⁻¹ yeast extract, 3 g L⁻¹ malt extract, 5 g L⁻¹ soy peptone, 20 g L⁻¹ agar) at

20 °C under aerobic conditions until the formation of colonies of 1-2 mm. Then, a

colony was transferred to an Erlenmeyer flask with 50 mL of liquid medium (10 g L⁻¹

glucose, 3 g L^{-1} yeast extract, 3 g L^{-1} malt extract, 5 g L^{-1} soy peptone). The flask was

capped with a foam stopper and incubated at 30 °C and 150 rpm in an orbital shaker

until cell density reached $1 \cdot 10^8$ cells mL⁻¹ (approximately 7-24 h). Z. mobilis was grown

in Petri dishes (50 g L^{-1} sucrose, 7 g L^{-1} yeast extract, 2.5 g L^{-1} K₂HPO₄, 1.6 g L^{-1}

 $(NH_4)_2SO_4$, 1 g L⁻¹ MgSO₄·7H₂O, 20 g L⁻¹ agar) at 30 °C under anaerobic conditions

until the formation of colonies of 1-2 mm. Then, a colony was transferred to a bottle

with 50 mL of liquid medium (50 g L^{-1} sucrose, 7 g L^{-1} yeast extract, 2.5 g L^{-1} K₂HPO₄,

1.6 g L⁻¹ (NH₄)₂SO₄, 1 g L⁻¹ MgSO₄·7H₂O). The bottle was capped with a rubber

stopper and gaseous N₂ was injected in the headspace for 5 min. The bottles were

incubated at 30 °C in an oven until cell density reached 1.10⁸ cells mL⁻¹ (approximately
24 h). Cell density was determined with a Bürker counting chamber (Paul Marienfeld
GmbH & Co. KG, Lauda-Königshofen, Germany).

193 2.2.3. Alcoholic fermentation

The hydrolysate of AP1 was used directly for alcoholic fermentation, without filtration, centrifugation, sterilization or nutrient addition. Its pH was adjusted to 5.0 with a concentrated NaOH aqueous solution and it was inoculated with 3% (v/v) of liquid inoculum containing yeasts or bacteria. All yeast fermentations were performed in 100mL Erlenmeyer flasks containing 50 mL of hydrolysate of AP1 plugged with foam stoppers, under aerobic conditions. Fermentations with Z. mobilis DSM 3580 were carried out in 100-mL rubber-capped bottles containing 50 mL of hydrolysate of AP1 where gaseous N_2 was bubbled during 5 min to guarantee anaerobic conditions. Fermentation controls were prepared with aqueous solutions at pH 5.0 containing glucose and xylose mixtures at similar concentrations to those of hydrolysate of AP1 (82 g L^{-1} glucose, 70 g L^{-1} xylose), and supplemented with nutrients and salts (20 g L^{-1} yeast extract and 2.69 g L^{-1} KH₂PO₄ for yeasts; and 7 g L^{-1} yeast extract, 2.5 g L^{-1} K₂HPO₄, 1.6 g L⁻¹ (NH₄)₂SO₄ and 1 g L⁻¹ MgSO₄·7H₂O for bacteria). All samples and controls were fermented in triplicate in an orbital shaker at 30 °C and 150 rpm during 72 h. Bioethanol fermentation yields $(Y_{E/S})$ and productivities $(W_{E/S})$ were calculated as reported by Hijosa-Valsero et al. [6], based on total sugar consumption.

211 2.3. Biochemical methane potential (BMP) experiments

The biochemical methane potential (BMP) of the different substrates was carried out in
bottles with a total volume of 0.57 L. For substrate AP1, BMPs of AP1, AP1-B and

214 AP1-E were determined. In the case of AP2, the substrate was evaluated as a fresh

215	substrate (AP2-fresh), a dry substrate (AP2-dried), and a dry and ground substrate
216	(AP2-dried powder). The ratio substrate (So) to inoculum (Xo) was 1, expressed as
217	g VS g^{-1} VS. This ratio 1 was chosen to study the maximum biochemical methane
218	potential that can be obtained from the substrates, while ensuring a stable process [20].
219	Anaerobic sludge was used as AD inoculum and it presented TS and VS concentrations
220	of 21.1 \pm 0.0 and 11.1 \pm 0.4 g L ⁻¹ , respectively. Chemical characteristics of the
221	substrates are shown in Tables 1 and 2. In every bottle, water up to a final amount of
222	0.30 L of liquid mixture was added, thus allowing a headspace for the gas of
223	approximately 0.27 L. For the determination of endogenous methane production, blanks
224	containing only AD inoculum were run. The BMP assays were run in triplicate using
225	the method described by Molinuevo-Salces et al. [21]. After the set-up of each bottle,
226	the headspace was flushed with N_2 in order to ensure anaerobic conditions. Then, the
227	bottles were placed in an incubator at 36 ± 1 °C and continuous agitation was provided
228	by a shaker. The incubation time was 37 days. The volume of biogas produced by the
229	different substrates was calculated by measuring the pressure of the bottle's headspace.
230	Biogas composition was analyzed once per week. Specific methane yield, expressed as
231	mL of CH ₄ per gram of VS added, was calculated.

233 2.4. Anaerobic co-digestion of AP and swine manure: central composite design 234 and data analyses

A central composite design (CCD) was carried out to study the anaerobic co-digestion
of AP2 and swine manure (SM). In order to facilitate the performance of the different
mixtures, apple pomace corresponding to the sample AP2-dried powder was chosen.
Two factors, namely the substrate concentration (SC), based on VS, and the proportion
of AP (% AP) in the co-digestion mixture, based on VS, were selected for the

240	experimental design. The selected range for factor 1 (SC) was from 2.5 to 49.5 g L^{-1} VS.
241	The selected range for factor 2 (% AP) was between 0 and 100%. All the treatments
242	were carried out in triplicates except for the central point (T9) which was repeated 6
243	times in order to estimate the experimental error. Batch bottles were prepared as
244	previously explained in Section 2.3. In this case, the experiments lasted for 92 days.
245	
246	Response surface methodology was used to fit the experimental data into a second-order
247	polynomial equation. Two experimental responses were selected, namely VS removal
248	and specific methane yield. The following equation describes the influence of the two
249	selected factors over the responses:
250	
251	$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_{11} X_{12} + \beta_{22} X_{22} + \beta_{12} X_1 X_2$
252	
253	where Y is the predicted response value, namely VS removal or specific methane yield.
254	β_0 , β_1 , β_2 , β_{11} , β_{22} y β_{12} are the regression coefficients. X_1 and X_2 are the evaluated
255	factors (SC and % AP).
256	
257	Excel was used to obtain the regression coefficients from the data set. The
258	determination coefficient (R^2) was calculated to assess the quality of the fit of the
259	polynomial model equation. The impact of the regression coefficients on the predicted
260	response was determined by <i>p</i> -values and significant model terms were indicated by <i>p</i> -
261	values lower than 0.05.
262	
263	2.5. Chemical analyses
	10

Glucan (sum of cellulose and starch), hemicellulose, Klason lignin, proteins, fats and total phenolic compounds in dry AP samples were analyzed as described by Hijosa-Valsero et al. [6]. To determine galacturonic acid content, dry AP samples were submitted to a two-stage sulfuric acid hydrolysis procedure and were analyzed using an Agilent 1200 HPLC (Agilent Technologies, Santa Clara, CA, USA) equipped with an Aminex HPX-87H (Biorad, Hercules, CA, USA) and a Refractive Index Detector (RID) G1362A (Agilent Technologies), according to NREL [22]. Regarding ethanol and ABE hydrolysis and fermentation, aqueous samples of hydrolysates and fermented broths were centrifuged, filtered and analyzed according to Hijosa-Valsero et al. [6] for the quantification of sugars (cellobiose, maltose, glucose, xylose, galactose, mannose, rhamnose and arabinose), potential fermentation inhibitors (formic acid, acetic acid, levulinic acid, 5-hydroxymethylfurfural (5-HMF), furfural and total phenolic compounds) and fermentation products (acetone, butanol, ethanol, acetic acid and butyric acid).

Analyses of moisture, total solids (TS), VS, ash, total chemical oxygen demand (TCOD), soluble chemical oxygen demand (SCOD), total ammonia nitrogen (TAN) and total Kjeldahl nitrogen (TKN) were performed in duplicate in accordance with APHA [23]. In the case of the AP1-E, AP1-B and AP2-fresh samples and to avoid overestimation of the specific methane yield, TS and VS measurements were corrected by adding the dry-oven losses of volatile organic compounds to the standard dry matter determination. In this way, 89.2% of the total volatile fatty acids (TVFA), 37.5% of the lactic acid, and 100% of the ethanol present in those samples were added to the experimentally obtained TS-VS concentrations [24]. Duplicate samples of 30 g of

sample were added to 150 mL of water in a closed flask. The resultant liquids after 19 h
at 4 °C were used for TVFA, lactic acid and ethanol determination.

Biogas composition was analyzed using a gas chromatograph (Agilent 7890A, USA) with a thermal conductivity detector, provided by a HP-Plot column (30 m 0.53 mm 40 μm) followed by a HP-Molesieve column (30 m 0.53 mm 50 μm). Helium (7 mL min⁻ ¹) was used as the carrier gas. The injection port temperature was set at 250 $^{\circ}$ C and the detector temperature was 200 °C. The temperature of the oven was set at 40 °C for 4 min and thereafter increased to 115 °C. Methane values were expressed at normal conditions (i.e. 0 °C and 1 atm). The concentrations of acetate, propionate, butyrate, isobutyrate, valerate, iso-valerate and caproate were determined by using a gas chromatograph (Agilent 7890A, USA) equipped with a Teknokroma TRB-FFAP column of 30 m length and 0.25 mm i.d. followed by a flame ionization detector (FID). The carrier gas was helium (1 mL min⁻¹). The temperature of the detector and the injector was 280 °C. The temperature of the oven was set at 100 °C for 4 min, then increased to 155 °C for 2 min and thereafter increased to 210 °C. TVFA were calculated as the sum of those acids. Ethanol and lactic acid concentrations were determined by a HPLC (Agilent 1200, USA) equipped with an AMINEX HPX-87H column of 300 mm length, 7.8 mm i.d. followed by a refractive index detector (RID) and a diode-array detector (DAD). The mobile phase was sulfuric acid 4 mM (0.6 mL min⁻¹). The temperature of the column and the RID were 65 and 30 °C, respectively.

310 3. **Results and Discussion**

311 3.1. **Bioethanol production**

312	The hydrolysate of AP1 employed in alcoholic fermentations contained $153 \pm 4 \text{ g L}^{-1}$
313	total sugars (3.7 \pm 2 g L ⁻¹ cellobiose-maltose, 81.5 \pm 1.8 g L ⁻¹ glucose, 53 \pm 1.8 g L ⁻¹
314	xylose-mannose-galactose, 3.3 ± 0.1 g L ⁻¹ rhamnose, 12 ± 0.4 g L ⁻¹ arabinose), $0.3 \pm$
315	0.0 g L ⁻¹ formic acid, 2.9 \pm 0.1 g L ⁻¹ acetic acid and 0.35 \pm 0.0 g L ⁻¹ 5-HMF. Bioethanol
316	production from the hydrolysate of AP1 by the different strains tested is shown in Table
317	3. In general, all Kluyveromyces and Lachancea strains obtained bioethanol
318	concentrations between 49.9 and 51.5 g L^{-1} . The performance of <i>S. cerevisiae</i> strains
319	was more variable, with ethanol values ranging from 25.7 to 51.0 g L^{-1} . On the other
320	hand, the strains of Z. mobilis and S. stipitis were unsuccessful for the fermentation of
321	hydrolysate of AP1 (Table 3). There were no significant differences ($p < 0.05$) for
322	bioethanol concentrations among the six best-performing strains (DSM 70799, DSM
323	5418, DSM 5422, DSM 7239, DSM 3434 and Ethanol Red [®]). Total sugar consumption
324	was 74-84% for all the strains that produced more than 40 g L^{-1} bioethanol, with
325	bioethanol yields of 0.371-0.444 g g ⁻¹ . The strain <i>S. cerevisiae</i> Ethanol Red [®] exhibited
326	the highest sugar consumption among all strains ($p < 0.05$). The performance of control
327	fermentations (with synthetic solutions) was remarkably lower, with bioethanol
328	concentrations ranging from 2.7 g L^{-1} (Z. mobilis DSM 3580) to 29.9 g L^{-1} (S. stipitis
329	DSM 3651).
330	

The highest bioethanol concentrations obtained in the present work (~50 g L⁻¹) are similar to those reported for *S. cerevisiae* ATCC 4124 (Magyar et al., 2016) and for a mixed culture of *Z. mobilis* MTCC 92 and *Candida tropicalis* TERI SH 110 (Patle and Lal, 2007) with apple pomaces containing 116-122 g L⁻¹ total sugars. Although nutrient supplementation is not necessary for AP fermentation [7, 25], it is important to have high initial sugar concentrations in the broth in order to guarantee an economically efficient fermentation, which is usually achieved by increasing the solid-to-solvent ratio during the pretreatment and enzymatic hydrolysis above 15% [26]. Therefore, low initial sugar concentrations imply low bioethanol production. For instance, Nogueira et al. [27] fermented an extract of apple pomace containing 76.2 g L⁻¹ total sugars and obtained ~34 g L⁻¹ bioethanol with *S. cerevisiae* Uvaferm CK. For an initial sugar concentration of 10-20 g L⁻¹ in an AP acid hydrolysate, Ucuncu et al. [28] obtained only 1.67 g L⁻¹ bioethanol with *Trichoderma harzianum* NRRL 31396.

According to literature, all the tested strains are able to ferment glucose and galactose into bioethanol; except Z. mobilis, which cannot ferment galactose. S. cerevisiae, K. marxianus and S. stipitis can ferment mannose. Only K. marxianus and S. stipitis can ferment xylose, and K. lactis var. lactis has been reported to assimilate xylose. S. cerevisiae and S. stipitis can assimilate rhamnose, whereas K. marxianus and S. stipitis can assimilate L-arabinose. Regarding disaccharides, S. stipitis can ferment cellobiose and maltose, whereas S. cerevisiae, K. lactis var. lactis and L. thermotolerans can ferment maltose. K. lactis var. lactis and K. marxianus can also ferment lactose, but this sugar is not present in the hydrolysate of AP1 [8, 29, 30, 31, 32, 33, 34]. In the present work, differences were observed in sugar consumption between control samples and AP1 hydrolysate samples, which could be associated with the different composition of both media. In fact, fermentation results indicate that K. marxianus, L. thermotolerans, K. lactis var. lactis and certain strains of S. cerevisiae were the most adequate for AP fermentation (Table 3). This could be related to their tolerance to fermentation inhibitors. Actually, the initial concentration of acetic acid in AP1 hydrolysates was 2.93 ± 0.12 g L⁻¹. This may have affected S. stipitis, whose bioethanol production was among the highest ones in control fermentations. Bellido et al. [35] reported that growth

and bioethanol production were totally inhibited in *S. stipitis* DSM 3651 when acetic acid concentration was 3.5 g L^{-1} , whereas a concentration of 2.5 g L^{-1} caused an inhibition of 60%. Regarding the poor performance of *Z. mobilis* for the fermentation of hydrolysate of AP1, it might be related to its narrow sugar utilisation (it only assimilates glucose, fructose and sucrose), because this species is known for its high tolerance to fermentation inhibitors [36].

3.2. Biochemical methane potential

Six different triplicate experiments were carried out. Experiments 1 to 3 corresponded to BMPs for apple pomace from juice extraction (AP1) and the correspondent exhausted broths from bioethanol (AP1-E) and biobutanol (AP1-B) productions (Fig. 1). Specific methane yield of the AP1 sample was 258 mL CH₄ g⁻¹ VS added . Specific methane yields for AP1-E and AP1-B were 463 and 290 mL CH₄ g⁻¹ VS added, respectively. Specific methane yield from AP1-E was 1.8-fold higher than that obtained from the original substrate (AP1), indicating that the process carried out for bioethanol production worked as a pretreatment for the original biomass, enhancing methane potential of the original substrate. The exhausted fermentation broth after bioethanol production (AP1-E) was characterized by a high COD and simple sugars (i.e. xylose, galactose, arabinose, etc.) concentrations (Table 2). Previous studies have reported COD values in the range of 30 to 154 g L^{-1} for a variety of stillages from the fermentation of different biomasses [37]. Methane vields of 249 and 401-458 mL CH₄ g⁻¹ VS added have been reported for anaerobic digestion of the exhausted broths after cassava and corn fermentations, respectively [38, 39]. The specific methane potential obtained from AP1-E was in the same range, probably due to the similar composition between those biomasses. The exhausted fermentation broth after biobutanol production (AP1-B)

resulted in a specific methane yield of 290 mL $CH_4 g^{-1} VS$ added, which was in the range of the original AP1. To the best of our knowledge, this is the first time that ABE distillation wastes are used as feedstock for anaerobic digestion.

Experiments 4 to 6 corresponded to BMPs for apple pomace obtained after apples pressing for cider production (AP2) (Fig. 2). Final methane yields in the range of 204-254 mL CH₄ g⁻¹ VS added were obtained for AP2. These values are in accordance to those reported by Kafle and Kim. [18] for the batch AD of apple pomace. No significant difference in specific methane yield was found between the dry (AP2-dried) and the dried and ground (AP2-dried powder) samples. On the contrary, significant differences in the specific methane yield between these two samples and the fresh one (AP2-fresh) were obtained (p > 0.05). It is noteworthy that a correction in the VS content of AP2-fresh was performed to avoid overestimations on the specific methane yield [24]. In spite of the VS correction, specific methane yield for AP-fresh was 1.25 and 1.15 times higher than for AP2-dried and AP2-dried powder, respectively. This finding indicates that to obtain the maximum methane yield of this by-product, preservation methods must minimize the loss of volatile organic compounds. The dried and ground sample was utilized for investigating co-digestion of AP and swine manure.

406 3.3. Co-digestion of AP and swine manure (SM)

Anaerobic co-digestion of AP2-dried powder and SM was investigated following a
central composite design (CCD). The coded and actual values corresponding to the
studied factors (concentration of substrate (SC) and proportion of AP (% AP)) and
responses (i.e. VS removal and specific methane yield) from the batch tests are
presented in Table 4.

3.3.1. VS Removal

The regression analysis for the co-digestion of AP and SM resulted in Eq. (1) for theresponse VS removal:

 $Y_{VS} = 57.3 - 5.3 (SC) + 4.8 (\% AP) - 8.2 (SC)^2 - 3.9 (\% AP)^2 + 2.8 (SC) (\% AP)$ Eq. 418 (1)

The response model presented an adjusted R^2 coefficient of 0.8790, which means that the assessed factors and their interactions are able to explain 88% of the data variability found in the response VS removal. Regression results show a statistically significant model, since the actual F-value (25.69) is higher than the calculated one (5.1 x 10^{-6}). As it can be observed in Table 5, both factors presented a significant effect on VS removal. Moreover, the quadratic term of both factors (b11, b22) and the interaction term between the two studied factors (b12) also presented a significant effect on VS removal. VS removal percentages were in the range of 29.7 to 57.3%. The resulting surface plot indicates that VS removal increases with a substrate concentration increase (Fig. 3A). The percentage of AP contributes to VS removal. These results fit well with those obtained by Molinuevo-Salces et al. [40], who found that VS removal increased with the increase in the proportion of vegetable by-products to AD of swine manure. The higher biodegradability of vegetable by-products in comparison to swine manure is the responsible of this increase in VS removal. However, VS removals in this study were lower than those obtained by Molinuevo-Salces et al. [40], who obtained values in the range of 82% VS removal.

3.3.2. Specific methane yield

The regression analysis for the co-digestion of AP and SM resulted in Eq. (2) for thespecific methane yield:

 $Y_{CH4} = 433.1 - 20.1 (SC) - 123.6 (\% AP) - 16.2 (SC)^2 - 15.8 (\% AP)^2 + 20.8 (SC) (\%$ 442 AP) Eq. (2)

The response model presented an adjusted R^2 coefficient of 0.9408, which means that the assessed factors and their interactions are able to explain 94% of the data variability found in the response specific methane yield. Regression results show a statistically significant model, since the actual F-value (67.79) is higher than the calculated one (3.4 x 10^{-10}). P-values were lower than 0.05 for both studied factors (Table 5), indicating that both of them have a significant influence on specific methane production. The highest specific methane yield was 596 mL CH₄ g⁻¹ VS, with a SC of 9.38 g VS L⁻¹ and an AP percentage of 14.6 % (T2).

Fig. 4 shows accumulated methane yield for T1 to T9. T1 and T3 contained 85.36 % of AP while T2 and T4 contained 14.64 % of AP (Table 4) but in both pairs, the higher SC, the longer lag-phase for methane production. More specifically, methane production stops after 10 days for treatments with low SC; these are T1, T2 and T7 with 9.4, 9.4 and 2.5 g VS L^{-1} , respectively. In T9 (SC of 26 g VS L^{-1}) the production stops after 15 days. The other treatments present a lag-phase between 15-35 days to start producing methane. T3 presents the longest lag-phase of about 35 days. The mixture in T3 contained a high SC (42.62 g SV L^{-1}) and a high AP percentage (85.36 %), which

could have led to TVFA accumulation. Once TVFA were consumed, methane production started.

On the other hand, if treatments with a constant value for SC (i.e. T5, T6 and T9) are compared, it is seen that an increase in AP content resulted in a decrease in specific methane yield (Fig. 4). In this vein, specific methane yield for T5 (100 % AP) is 215 mL CH₄ g^{-1} VS while specific methane yield for swine manure (T6) is 567 mL CH₄ g^{-1} VS. Kafle and Kim [18] obtained similar values when anaerobically digesting apple by-products (i.e. 267 mL CH₄ g⁻¹ VS).

3.3.3. AD stability

pH values at the end of the experiment were between 7.0 and 7.8. TVFA concentration at the end of the experiment were low, indicating that anaerobic microorganisms successfully converted organic matter into methane. Moreover, high ammonium concentrations could lead to process failure due to ammonia-mediated inhibition of the AD microorganisms activity. The inhibitory concentrations are between 4 and 10 g TAN L⁻¹. Ammonium concentrations at the end of the experiments were below those inhibitory levels, so that no ammonia-mediated inhibition was expected.

4. Conclusions

Bioethanol and methane can be successfully produced from apple pomaces (AP) following a biorefinery approach. As a first step, alcoholic fermentation could be used as a method to obtain bioethanol as well as to pretreat AP, enhancing methane production by anaerobic digestion. Bioethanol concentrations about 50 g L^{-1} were obtained by different strains of K. marxianus, K. lactis, L. thermotolerants and S. *cerevisiae* with yields of 0.371-0.444 g g⁻¹. Specific methane yield of the exhausted

broths after bioethanol and biobutanol production were 463 and 290 mL CH₄ g ⁻¹ VS added, respectively. Specific methane yield of the exhausted broth after bioethanol production was 1.8 higher than that of the original AP (i.e. 258 mL CH₄ g ⁻¹ VS added). Anaerobic co-digestion of manure and AP is favoured at low substrate concentrations and low AP content in the mixtures. The highest methane yield (596 mL CH₄ g ⁻¹ VS added) was obtained with a substrate concentration of 9 g L⁻¹ SV and an AP content in the mixture of 15%.

495 Acknowledegements

Financial support for this work was managed by the National Institute of Research and Agro-Food Technology (INIA) and co-financed with FEDER funds (Projects RTA2015-00060-C04-01). The authors thank Novozymes for kindly providing samples of their enzymes. MH-V is supported by a postdoctoral contract (DOC-INIA, Grant Number DOC 2013-010) funded by the Spanish National Institute for Agricultural and Food Research and Technology (INIA) and the European Social Fund. Authors thank R. Antón del Río, N. del Castillo Ferreras and G. Sarmiento Martínez for their technical help.

References

506 [1] D. Mamma, E. Topakas, C. Vafiadi, P. Christakopoulos. 2009. Biotechnological
507 potential of fruit processing industry residues, in: Nigam, P.S., Pandey, A. (Eds.),
508 Biotechnology for agro-industrial residues utilization, Springer, Dordrecht, 2009, p.
509 273-291.

[2] G.S. Dhillon, S. Kaur, S.K. Brar, Perspective of apple processing wastes as lowcost substrates for bioproduction of high value products: a review, Renew Sust Energ Rev. 27 (2013) 789-805. [3] R. Rodríguez Madrera, R. Pando Bedriñana, B. Suárez Valles, Enriquecimiento nutricional de la magaya con levaduras autóctonas, Tecnología Agroalimentaria 17 (2013) 46-50.

[4] M. Yates, M.R. Gomez, M.A. Martin-Luengo, V.Z. Ibañez, A.M.M. Serrano,
Multivalorization of apple pomace towards materials and chemicals. Waste to wealth, J
Clean Prod 143 (2017) 847-853.

[5] N.B.D. Thi, C.Y. Lin, G. Kumar, Waste-to-wealth for valorization of food waste to
hydrogen and methane towards creating a sustainable ideal source of bioenergy, J Clean
Prod 122 (2016) 29-41.

[6] M. Hijosa-Valsero, A.I. Paniagua-García, R. Díez-Antolínez, Biobutanol production
from apple pomace: the importance of pretreatment methods on the fermentability of
lignocellulosic agro-food wastes, Appl, Microbiol, Biot. 101 (21) (2017) 8041-8052.

[7] M. Magyar, L. da Costa Sousa, M. Jin, C. Sarks , V. Balan, Conversion of apple
pomace waste to ethanol at industrial relevant conditions. Appl Microbiol Biotechnol.
100 (2016) 7349-7358.

535	[8] N. Rodrussamee, N. Lertwattanasakul, K. Hirata, S. Limtong, T. Kosaka, M.
536	Yamada, Growth and ethanol fermentation ability on hexose and pentose sugars and
537	glucose effect under various conditions in thermotolerant yeast Kluyveromyces
538	marxianus, Appl Microbiol Biotechnol. 90 (4) (2011) 1573-1586.
539	
540	[9] M. Papini, I. Nookaew, M. Uhlén, J. Nielsen, Scheffersomyces stipitis: a
541	comparative systems biology study with the Crabtree positive yeast Saccharomyces
542	cerevisiae, Microb Cell Fact 11 (2012) 136.
543	
544	[10] Q. Jin, N. Quereshi, H. Wang, H. Huang, Acetone - butanol - ethanol (ABE)
545	fermentation of soluble and hydrolyzed sugars in apple pomace by Clostridium
546	beijerinckii P260, Fuel. 244 (2019) 536-544.
547	
548	[11] S. Mohana, B.K. Acharya, D. Madamwar, Distillery spent wash: treatment
549	technologies and potential applications, J Hazard Mater. 163(1) (2009) 12-25.
550	
551	[12] R.B. Nair, M.J. Taherzadeh, Valorization of sugar-to-ethanol process waste
552	vinasse: a novel biorefinery approach using edible ascomycetes filamentous fungi,
553	Bioresour Technol. 221 (2016) 469-476.
554	
555	[13] A.M. Omolola, Anaerobic digestion of ethanol distillery waste-stillage for biogas
556	production. Master thesis. University Högskolan i Borås, 2007.
557	http://bada.hb.se/handle/2320/3961. Last accessed 12.07.2019.
558	
	22

[14] Y. Kharayat, Distillery wastewater: bioremediation approaches, J Integr Environ Sci. 9 (2) (2012) 69-91. [15] K.B. Cantrell, T. Ducey, K.S. Ro, P.G. Hunt, Livestock waste-to-bioenergy generation opportunities, Bioresour Technol. 99 (2008) 7941-7943. [16] A.C. Contreras-Lopez, R.L. Bobo, Anaerobic digestion of cider apple residues, Int J Hydrogen Energ. 17 (12) (1992) 971-975. [17] M.C. García-González, B. Riaño, B. Molinuevo-Salces, D. Hernández, Revalorización Energética de Subproductos hortofrutícolas, REC 2018. [18] G.K. Kafle, S.H. Kim, Anaerobic treatment of apple waste with swine manure for biogas production: batch and continuous operation, Appl Energ. 103 (2013) 61-72. [19] R. Díez-Antolínez, M. Hijosa-Valsero, A.I. Paniagua-Garcia, X. Gomez, In situ two-stage gas stripping for the recovery of butanol from acetone-butanol-ethanol (ABE) fermentation broths, Chem Eng Trans. 64 (2018) 37-42. [20] F. Raposo, V. Fernández-Cegrí, M.A. De la Rubia, R. Borja, F. Béline, C. Cavinato, Biochemical methane potential (BMP) of solid organic substrates: evaluation of anaerobic biodegradability using data from an international interlaboratory study, J Chem Technol Biotechnol. 86 (8) (2011)1088-1098.

583	[21] B. Molinuevo-Salces, X. Gómez, A. Morán, M.C. García-González, Anaerobic co-
584	digestion of livestock and vegetable processing wastes: Fibre degradation and digestate
585	stability, Waste Manage. 33 (6) (2013) 1332-1338.
586	
587	[22] NREL (National Renewable Energy Laboratory, USA), Standard Procedures for
588	Biomass Compositional Analysis, USA, 2008.
589	https://www.nrel.gov/docs/gen/fy13/42618.pdf. Last accessed 30.05.2019.
590	
591	[23] American Public Health Association (APHA), Standards Methods for the
592	Examination of Water and Wastewater, Washington, D.C , American Public Health
593	Association, American Water Works Association, Water Environment Federation, . 21st
594	ed, 2005.
595	
596	[24] M.G. Porter, R.S. Murray, The volatility of components of grass silage on oven
597	drying and the inter-relationship between dry-matter content estimated by different
598	analytical methods, Grass Forage Sci. 56 (4) (2001) 405-411.
599	
600	[25] S. Patle, B. Lal, Ethanol production from hydrolysed agricultural wastes using
601	mixed culture of Zymomonas mobilis and Candida tropicalis, Biotechnol Lett. 29
602	(2007) 1839-1843.
603	
604	[26] W. Parawira, M. Tekere, Biotechnological strategies to overcome inhibitors in
605	lignocellulose hydrolysates for ethanol production: review. Crit Rev Biotechnol. 31 (1)
606	(2011) 20-31.
607	

608	[27] A. Nogueira, L.D. Santos, C. Paganini, G. Wosiacki, Avaliação da fermentação
609	alcoólica do extrato de bagaço de maçã (Evaluation of the alcoholic fermentation of
610	aqueous extract of the apple pomace), Semina Ciênc Agrár. 26 (2) (2005) 187-194.
611	
612	[28] C. Ucuncu, C. Tari, H. Demir, A.O. Buyukkileci, B. Ozen, Dilute-acid hydrolysis
613	of apple, orange, apricot and peach pomaces as potential candidates for bioethanol
614	production, Journal of Biobased Mater Bio. 7 (2013) 1-14.
615	
616	[29] J.C. Du, Preez, M. Bosch, B.A. Prior, The fermentation of hexose and pentose
617	sugars by Candida shehatae and Pichia stipites, Appl Microbiol Biotechnol. 23 (1986)
618	228-233.
619	
620	[30] C.P. Kurtzman, Pichia, E.C. Hansen emend. Kurtzman. In The Yeasts (Fourth
621	Edition). A Taxonomic Study, Elsevier, 1998, p. 273-352.
622	
623	[31] M. Silveira, R. Jonas, The biotechnological production of sorbitol, Appl Microbiol
624	Biotechnol. 59 (2002) 400-408.
625	
626	[32] A.J.A. van Maris, D.A. Abbott, E. Bellissimi ,J. van den Brink, M. Kuyper,
627	M.A.H. Luttik, H.W. Wisselink, W.A. Scheffers ,J.P. van Dijken, J.T. Pronk, Alcoholic
628	fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae:
629	current status, Antonie Van Lee. 90 (2006) 391-418.
630	
	25

631	[33] M.M. Lane, N. Burke, R. Karreman, K.H. Wolfe, C.P. O'Byrne, J.P. Morrissey,
632	Physiological and metabolic diversity in the yeast Kluyveromyces marxianus. Anton
633	Van Lee. 100 (2011) 507-519.
634	
635	[34] A. Pentjuss, E. Stalidzans, J. Liepins, A. Kokina, J. Martynova, P. Zikmanis, I.
636	Mozga, R. Scherbaka, H. Hartman, M.G. Poolman, D.A. Fell, A. Vigants,
637	Model- based biotechnological potential analysis of Kluyveromyces marxianus central
638	metabolism, J Ind Microbiol Biotechnol. 44 (2017) 1177-1190.
639	
640	[35] C. Bellido, S. Bolado, S., M. Coca, S. Lucas, G. González-Benito, M.T. García-
641	Cubero, Effect of inhibitors formed during wheat straw pretreatment on ethanol
642	fermentation by Pichia stipites, Bioresour Technol. 102 (2011) 10868-10874.
643	
644	[36] J.P. Delgenes, R. Moletta, J.M. Navarro, Effects of lignocellulose degradation
645	products on ethanol fermentations of glucose and xylose by Saccharomyces cerevisiae,
646	Zymomonas mobilis, Pichia stipitis, and Candida shehatae, A Enzyme Microb Tech. 19
647	(1996) 220-225.
648	
649	[37] A. Cesaro, V. Belgiorno, Combined biogas and bioethanol production:
650	Opportunities and challenges for industrial application, Energies. 8 (8) (2015) 8121-
651	8144.
652	
653	[38] G. Luo, L. Xie, Z. Zou, W. Wang, Q. Zhou, Q., H. Shim, Anaerobic treatment of
654	cassava stillage for hydrogen and methane production in continuously stirred tank

reactor (CSTR) under high organic loading rate (OLR), Int J Hydrogen Energ. 35 (21) (2010) 11733-11737.

[39] C. Eskicioglu, M. Ghorbani, Effect of inoculum/substrate ratio on mesophilic
anaerobic digestion of bioethanol plant whole stillage in batch mode, Process Biochem.
46 (8) (2011) 1682-1687.

662 [40] B. Molinuevo-Salces, M.C. García-González, C. González-Fernández, M.J. Cuetos,

663 A. Morán, X. Gómez, Anaerobic co-digestion of livestock wastes with vegetable

processing wastes: a statistical analysis, Bioresour Technol. 101 (24) (2010) 9479-9485.

1 2	666	
3 4	667	Figure 1. Accumulated methane yields for AP1, AP1-E and AP-B. Data are means of
5 6	668	triplicate experiments.
7	669	
8 9	670	Figure 2. Accumulated methane yields for AP2 samples. Data are means of triplicate
10 11	671	experiments.
12 13	672	
14 15	673	Figure 3. Surface response plot for VS removal response (A) and specific methane yield
16	674	response (B).
17 18	675	
19 20	676	Figure 4. Accumulated specific methane yields for T1-T9. Data are means of duplicate
21 22	677	experiments, exception made for T6, with six replicate experiments.
23		
24 25		
26		
27		
28		
29 30		
31		
32		
33		
34		
35 36		
36 37		
38		
39		
40		
41		
42		
43 44		
44 45		
46		
47		
48		
49		
50		
51 52		
53		
54		
55		
56		
57		
58 59		
59 60		
61		
62		22
63		28
64		
65		

Figure captions

692 Figure 4.

Table 1. Composition of the apple pomaces (AP1 and AP2). Average and standarddeviations are shown for TS and VS.

	Units	AP1	AP2
TS	g kg ⁻¹	865.6 ± 51.3	923.1 ± 2.4
VS	g kg ⁻¹	720.2 ± 56.6	910.3 ± 2.2
Total carbohydrates	% TS	59.78	50.54
Soluble carbohydrates	% TS	16.64	0.16
Glucan	% TS	22.71	29.02
Hemicellulose	% TS	15.79	16.14
Galacturonic acid	% TS	5.47	8.00
Klason lignin	% TS	19.80	21.47
Protein	% TS	5.21	5.71
Fat	% TS	1.52	2.49
Total phenolic compounds	mg g ⁻¹	3.5	2.2

5 6			
	Units	AP1-E	AP1-B
TS	g L ⁻¹	214.7 ± 5.9	88.8 ± 4.0
VS	$g L^{-1}$ $g L^{-1}$	133.2 ± 5.1	52.5 ± 2.3
CODt	g L $g L^{-1}$	296.2 ± 25.7	95.4 ± 0.9
CODs TVFA	g L $g L^{-1}$	167.5 ± 4.5 6.2 ± 0.2	85.1 ± 1.7
Cellobiose + Maltose	g L g L ⁻¹	<0.05	11.4 ± 0.3 <0.05
Glucose	g L $g L^{-1}$	0.05	6.41
Xylose + Galactose +	-		
Mannose	g L ⁻¹	12.37	0.53
Rhamnose	g L ⁻¹	7.02	1.86
Arabinose	g L ⁻¹	15.62	0.71
Acetone	g L ⁻¹	n. d.	0.63
Butanol	g L ⁻¹	n. d.	1.5
Ethanol	g L ⁻¹	3.6	0.12
Acetic acid Butyric acid	g L ⁻¹ g L ⁻¹	n. d. n. d.	3.75 3.91

Table 3. Bioethanol fermentation parameters for the different strains with hydrolysate ofAP1. Averages and standard deviations are shown.

Species	Strain	Bioethanol $(g L^{-1})$	Acetic acid (g L ⁻¹)	Total sugar consumption (%)	$Y_{E/S} (g g^{-1})$	W _E (g h ⁻¹)
Kluyveromyces lactis	DSM 70799	49.9 ± 0.5	3.77 ± 0.10	80.0 ± 0.5	0.402 ± 0.006	0.694 0.007
Kluyveromyces marxianus	DSM 5418	50.5 ± 0.6	6.73 ± 0.09	78.8 ± 0.4	0.412 ± 0.003	0.701 0.008
Kluyveromyces marxianus	DSM 5422	50.1 ± 0.8	4.79 ± 0.21	78.6 ± 0.2	$\begin{array}{c} 0.410 \pm \\ 0.005 \end{array}$	0.695 0.011
Kluyveromyces marxianus	DSM 7239	49.9 ± 0.1	5.40 ± 0.15	78.7 ± 0.5	0.408 ± 0.003	0.693 0.002
Lachancea thermotolerans	DSM 3434	51.5 ± 0.4	3.78 ± 0.23	74.5 ± 0.9	0.444 ± 0.009	0.715 0.005
Saccharomyces cerevisiae	CECT 1383	46.5 ± 0.5	3.51 ± 0.04	79.9 ± 1.4	0.374 ± 0.003	0.646 0.007
Saccharomyces cerevisiae	DSM 70449	25.7 ± 10.5	2.10 ± 0.75	37.9 ± 13.5	0.463 ± 0.025	0.357 0.146
Saccharomyces cerevisiae	Ethanol Red [®]	51.0 ± 1.0	4.05 ± 0.11	84.0 ± 0.3	0.398 ± 0.009	0.708 0.014
Saccharomyces cerevisiae	Hércules- green	44.5 ± 0.8	3.60 ± 0.05	77.3 ± 3.6	0.371 ± 0.012	0.619 0.012
Scheffersomyces stipitis	DSM 3651	0.0 ± 0.0	3.03 ± 0.16	0.0 ± 0.0	$\begin{array}{c} 0.000 \pm \\ 0.000 \end{array}$	0.000 0.000
Scheffersomyces stipitis	DSM 3652	0.2 ± 0.05	3.13 ± 0.17	0.4 ± 1.2	0.391 ± 0.776	0.003 0.001
Zymomonas mobilis	DSM 3580	7.8 ± 4.7	2.60 ± 1.47	37.3 ± 35.8	0.342 ± 0.370	$0.108 \\ 0.065$

Table 4. Coded values, actual values and response values for the co-digestion of AP andSM. Averages and standard deviations are shown.

	Coded value	ues	Actual val	ues	Responses	
	SC (g VS	L ⁻¹) % AP	SC (g VS L ⁻¹)	% AP	VS removal (%)	Specific methane yield (mL CH ₄ g ⁻¹ VS added)
Treatments						
T1	-1	1	9.38	85.36	45.3 ± 0.7	310.3 ± 27.5
T2	-1	-1	9.38	14.64	39.7 ± 0.5	596.4 ± 15.4
Т3	1	1	42.62	85.36	57.0 ± 0.5	268.0 ± 8.5
T4	1	-1	42.62	14.64	40.1 ± 1.5	472.8 ± 5.8
T5	0	1.4142	26.00	100.00	54.7 ± 2.2	214.6 ± 17.2
T6	0	-1.4142	26.00	0.00	43.6 ± 0.5	566.8 ± 16.1
T7	-1.4142	0	2.50	50.00	29.7 ± 0.1	388.2 ± 25.1
Т8	1.4142	0	49.50	50.00	51.3 ± 3.6	391.6 ± 15.3
Т9	0	0	26.00	50.00	57.3 ± 0.9	433.1 ± 10.4

720	Table 5. Regression results for the two studied responses in the co-digestion of AP and
721	SM.

	VS removal		Specific methane yield		
	Coefficient	Prob	Coefficient	Prob	
β0	57.3	< 0.001	433.1	< 0.001	
β1	- 5.3	< 0.001	-20.1	0.01	
β2	4.8	< 0.001	-123.6	< 0.001	
β11	-8.2	< 0.001	-16.2	0.066	
β22	-3.9	0.011	-15.8	0.072	
β12	2.8	0.027	20.8	0.054	
	$R^2 = 0.9146$, Adj. R^2	= 0.8790,	$R^2 = 0.9549$, Adj. R^2	$^{2}=0.9408,$	
	r=0.9563		r=0.9772		
	F value= 25.69 Prob	$>F=5.1 \times 10^{-6}$	F value= 67.79, Prob>F= 3.4×10^{-10}		

723
 724 R², determination coefficient; Adj. R², adjusted determination coefficient; r, regression coefficient; F value.
 725

Supplementary material

Table S. 1. Bioethanol fermentation parameters for the different strains with control solutions (82 g L^{-1} glucose, 70 g L^{-1} xylose). Averages and standard deviations are

- shown.

Species	Strain	Ethanol (g L ⁻¹)	Acetic acid (g L^{-1})	Total sugar consumption (%)	$Y_{E/S} (g g^{-1})$	$W_{\rm E} (g L^{-1} h^{-1})$
Kluyveromyces lactis	DSM 70799	27.7 ± 0.2	0.92 ± 0.06	66.8 ± 0.4	0.313 ± 0.004	0.384 ± 0.003
Kluyveromyces marxianus	DSM 5418	23.9 ± 0.2	5.69 ± 0.09	67.8 ± 0.4	0.267 ± 0.001	0.332 ± 0.003
Kluyveromyces marxianus	DSM 5422	26.5 ± 0.0	2.86 ± 0.03	66.6 ± 0.0	0.301 ± 0.000	0.368 ± 0.000
Kluyveromyces marxianus	DSM 7239	24.1 ± 0.0	5.63 ± 0.16	67.7 ± 0.2	0.269 ± 0.000	0.334 ± 0.000
Kluyveromyces thermotolerans	DSM 3434	29.7 ± 0.1	0.82 ± 0.10	65.4 ± 0.2	0.343 ± 0.000	0.412 ± 0.001
Saccharomyces cerevisiae	CECT 1383	23.0 ± 0.1	5.49 ± 0.11	66.4 ± 0.2	0.262 ± 0.000	0.319 ± 0.001
Saccharomyces cerevisiae	DSM 70449	27.4 ± 0.4	1.33 ± 0.04	98.9 ± 0.1	0.193 ± 0.003	0.380 ± 0.005
Saccharomyces cerevisiae	Ethanol Red ®	24.0 ± 0.6	2.20 ± 0.15	62.7 ± 0.4	0.309 ± 0.008	0.333 ± 0.008
Saccharomyces cerevisiae	Hércules- green	25.2 ± 0.0	5.45 ± 0.14	65.3 ± 0.1	0.293 ± 0.000	0.351 ± 0.000
Scheffersomyces stipitis	DSM 3651	29.9 ± 0.2	0.50*	54.2 ± 0.2	0.402 ± 0.002	0.415 ± 0.002
Scheffersomyces stipitis	DSM 3652	27.7 ± 0.2	0.57*	56.9 ± 0.2	0.355 ± 0.002	0.385 ± 0.002
Zymomonas mobilis	DSM 3580	2.7 ± 0.1	0.27 ± 0.00	9.1 ± 0.4	0.197 ± 0.003	0.038 ± 0.001

Table S. 2. Sugar consumption (%) during bioethanol fermentation for the different

strains. Note: In the case of AP1 samples, the low initial concentrations of cellobiose-

maltose, rhamnose and arabinose may have provoked some incertitude in consumption

values. Average and standard deviations are shown.

	Control		Apple pomace hydrolysate of AP1					
Species	Strain	Glucose	Xylose	Cellobiose + Maltose	Glucose	Xylose + Mannose + Galactose	Rhamnose	Arabinose
Kluyveromyces lactis	DSM 70799	100 ± 0	25.4 ± 0.8	88.1 ± 1.1	99.8 ± 0.1	78.5 ± 0.9	0 ± 0	0 ± 0
Kluyveromyces marxianus	DSM 5418	100 ± 0	27.6 ± 0.8	86.7 ± 0.7	99.9 ± 0.0	79.6 ± 0.4	0 ± 0	0 ± 0
Kluyveromyces marxianus	DSM 5422	100 ± 0	25.0 ± 0.0	89.0 ± 0.4	100 ± 0	79.1 ± 0.2	0 ± 0	0 ± 0
Kluyveromyces marxianus	DSM 7239	99.9 ± 0.1	27.8 ± 0.9	88.9 ± 1.2	99.9 ± 0.0	79.3 ± 0.5	0 ± 0	0 ± 0
Lachancea thermotolerans	DSM 3434	99.4 ± 0.0	26.0 ± 0.8	88.6 ± 1.2	99.7 ± 0.2	74.1 ± 1.1	0 ± 0	0 ± 0
Saccharomyces cerevisiae	CECT 1383	99.7 ± 0.0	24.8 ± 0.4	88.5 ± 0.6	100 ± 0	80.2 ± 1.6	0 ± 0	0 ± 0
Saccharomyces cerevisiae	DSM 70449	97.9 ± 0.2	20.9 ± 0.2	0 ± 0	67.0 ± 17.7	20.3 ± 12.6	0 ± 0	0 ± 0
Saccharomyces cerevisiae	Ethanol Red ®	99.9 ± 0.1	16.0 ± 1.0	59.2 ± 2.5	100 ± 0	95.9 ± 0.3	0 ± 0	0 ± 0

Saccharomyces cerevisiae	Hércules- green	100 ± 0	22.0 ± 0.2	76.2 ± 18.9	99.8 ± 0.2	75.0 ± 5.8	0 ± 0	0 ± 0
Scheffersomyces stipitis	DSM 3651	100 ± 0	50.6 ± 69.9	8.0 ± 5.3	0 ± 0	0 ± 0	100 ± 0	0 ± 0
Scheffersomyces stipitis	DSM 3652	100 ± 0	54.6 ± 64.2	12.7 ± 5.4	0 ± 0	0 ± 0	100 ± 0	0 ± 0
Zymomonas mobilis	DSM 3580	12.3 ± 0.6	5.3 ± 0.2	0 ± 0	42.9 ± 32.4	36.7 ± 36.3	0 ± 0	31.6 ± 39.3

Table S. 3. pH, TKN, TAN, TVFA at the end of the AD experiments. Average and standard deviations are shown.

Treatment	pН	TKN (mg L^{-1})	TAN (mg L ⁻¹)	TVFA (mg L ⁻¹)
AP1	7.16 ± 0.04	1108 ± 76	531 ± 4	42 ± 2
AP1-E	7.45 ± 0.02	1249 ± 40	621 ± 9	117 ± 7
AP1-B	7.26 ± 0.01	1449 ± 6	812 ± 8	111 ± 21
AP2 - fresh	7.01 ± 0.01	1054 ± 0	517 ± 13	33 ± 6
AP2 - dried	7.04 ± 0.02	1059 ± 21	538 ± 0	70 ± 3
AP2 –dried and ground	7.08 ± 0.02	1067 ± 23	544 ± 9	150 ± 17

Table S. 4. pH, TS, VS, TKN, TAN, TVFA at the end of T1-T9. Average and standard deviations are shown.

Treatment	pН	TS (g L^{-1})	VS (g L^{-1})	TKN (mg L^{-1})	$TAN (mg L^{-1})$	$TVFA (mg L^{-1})$
T1	7.12 ± 0.01	11.0 ± 0.1	6.9 ± 0.1	1051 ± 10	636 ± 4	64 ± 28
T2	7.41 ± 0.01	12.5 ± 0.2	7.5 ± 0.1	1634 ± 57	1073 ± 32	58 ± 2
T3	7.29 ± 0.04	16.9 ± 0.3	14.5 ± 0.2	1603 ± 43	944 ± 14	124 ± 14
T4	7.76 ± 0.00	28.3 ± 0.5	17.8 ± 0.5	4017 ± 1	3128 ± 13	93 ± 24
T5	6.98 ± 0.03	13.5 ± 0.7	9.6 ± 0.5	1031 ± 4	429 ± 4	38 ± 2
T6	7.64 ± 0.01	21.3 ± 0.2	12.4 ± 0.1	3136 ± 24	2475 ± 14	62 ± 13
T7	7.29 ± 0.00	9.6 ± 0.1	5.6 ± 0.0	961 ± 90	656 ± 16	14 ± 20
Т8	7.67 ± 0.06	26.2 ± 1.7	17.7 ± 1.3	3153 ± 88	2274 ± 28	42 ± 13
Т9	7.48 ± 0.00	17.3 ± 0.3	10.6 ± 0.2	2067 ± 81	1522 ± 31	21 ± 11