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rule systems based on simple interpretability measures and indices by
bi-objective evolutionary rule selection
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Abstract The aim of this paper is to develop a general post-
processing methodology to reduce the complexity of data-
driven linguistic fuzzy models, in order to reach simpler
fuzzy models preserving enough accuracy and better fuzzy
linguistic performance with respect to their initial values.

This post-processing approach is based on rule selection
via the formulation of a bi-objective problem with one ob-
jective focusing on accuracy and the other on interpretabil-
ity. The latter is defined via the aggregation of several in-
terpretability measures, based on the concepts of similarity
and complexity of fuzzy systems and rules. In this way, a
measure of the fuzzy model interpretability is given.

Two neuro-fuzzy systems for providing initial fuzzy mod-
els, FasArt (Fuzzy Adaptive System ART based) and Nef-
Prox (Neuro-Fuzzy Function Approximation) and several
case studies, data sets from KEEL Project Repository, are
used to check this approach. Both fuzzy and neuro-fuzzy
systems generate Mamdani-type fuzzy rule-based systems,
each with its own particularities and complexities from the
point of view of the fuzzy sets and the rule generation. Based
on these systems and data sets, several fuzzy models are

M. Galende-Hernández · G. Sainz-Palmero
CARTIF Centro Tecnológico. Parque Tecnológico de Boecillo, parcela
205, 47151 Boecillo (Valladolid), Spain
Tel.: +34-983546504
Fax: +34-983546521
E-mail: margal@cartif.es

G. Sainz-Palmero
E-mail: gresai@cartif.es

G. Sainz-Palmero · M.J. Fuente-Aparicio
Department of Systems Engineering and Control, School of Industrial
Engineering, University of Valladolid. Paseo del Cauce s/n, 47011 Val-
ladolid, Spain
E-mail: gresai@eis.uva.es

M.J. Fuente-Aparicio
E-mail: maria@autom.uva.es

generated to check the performance of the proposal under
different restrictions of complexity and fuzziness.
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1 Introduction

Fuzzy logic based systems have proved their usefulness in
a large number of applications (Konar 2005; Karray and
De Silva 2004; Bonissoene et al. 1999). In the scientific lit-
erature, it is possible to find methodologies, algorithms and
applications based on fuzzy logic theory or in combination
with other approaches: neural networks, genetic algorithms,
etc. Fuzzy logic has been widely used for modeling, con-
trol, patterns recognition, computer vision, signal process-
ing, etc. In particular fuzzy modeling approaches are very
common in the engineering domain to develop black and
grey box models with real-world applications, for which a
large number of algorithms can be found in technical and
scientific literature.

Initially, two well known modeling approaches to gen-
erate fuzzy rules are described (Herrera 2008; Casillas et al.
2003a,b; Cordón et al. 2001):

1. Precise Fuzzy Modeling, whose main goal is to mini-
mize the error. In general, the models generated have
a good accuracy but low level of interpretability. This
modeling is popular with data-driven knowledge but ex-
pert knowledge can be considered too.

2. Linguistic Fuzzy Modeling, whose main goal is to have
a good level of interpretability but poor accuracy. Here,
knowledge from experts and from data guide the model-
ing process.

Both modeling approaches have drawbacks concerning
accuracy or interpretability. Therefore, one interesting goal
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is to achieve a good balance, or compromise solution, be-
tween accuracy and interpretability, obtaining a fuzzy model
with adequate accuracy and a good level of explanation (Ca-
sillas et al. 2003a,b). This accuracy-interpretability trade-off
has been worked from different points of view:

– Linguistic fuzzy modeling with improved accuracy, ex-
tending the model design or changing the rule structure
to make it more flexible.

– Precise fuzzy modeling with improved interpretability
by reducing the complexity of the model.

– Fuzzy Modeling that pays attention to both concepts si-
multaneously.

The trade-off question is an open one, what is the way
in which the fuzzy systems are more interpretable and accu-
rate enough?: In (Gacto and Alcalá 2011. In press.; Alonso
et al. 2009; Zhou and Gan 2008; Mencar and Fanelli 2008)
some reviews about interpretability, and the way in which
this can be achieved, can be found. Sometimes, they appear
associated with the concepts of complexity and explanation
capability (Ishibuchi et al. 2009a), which can be considered
as indirect measures to evaluate the interpretability. In some
works, for instance (Setnes and Babuška 2001; Roubos and
Setnes 2001; Jin 2000; Yen and Wang 1999; Setnes et al.
1998), the reduction of the complexity system can imply a
better interpretability of the fuzzy system. In any case, the
interpretability of fuzzy systems is still a point of discus-
sion amongst researchers (Gacto and Alcalá 2011. In press.;
Ishibuchi et al. 2009b; Ishibuchi and Nojima 2009).

One possible approach is based on genetic algorithms
(GAs) used to generate Fuzzy Rule-Based Systems (FRBSs).
Then they are called Genetic Fuzzy Systems (GFS) (Herrera
2008; Cordón et al. 2001). In this case one alternative is to
use Multi-Objective Genetic Algorithms (MOEAs) to obtain
a good trade-off between accuracy and interpretability, since
both concepts are contradictory (Gacto et al. 2010; Pulkki-
nen and Koivisto 2010; Botta et al. 2009; Alcalá et al. 2009;
Gacto et al. 2009; Pulkkinen and Koivisto 2008; Cococ-
cioni et al. 2007; Ishibuchi and Nojima 2007; Alcalá et al.
2007b; González et al. 2007; Ishibuchi and Yamamoto 2004;
Jimenez et al. 2003; Suzuki and Furuhashi 2003).

An interesting approach is to use MOEAs for genetic
rule selection. Initial models are usually made up for a high
number of fuzzy rules, then a rule subset can be selected to
represent the system in a more compact way with a better
trade-off in accuracy and interpretability . If irrelevant, re-
dundant, erroneous and conflictive rules are removed, then
the rule set is more compact and more interpretable, even
more accurate. The first contribution to this approach is in
(Ishibuchi et al. 1997).

This paper is focused on the interpretability improve-
ment of well-known algorithms for fuzzy modeling through
a complexity reduction based on an accuracy-interpretability

trade-off. This aim is carried out through a bi-objective (ac-
curacy and interpretability) genetic approach via rule selec-
tion, and a simple and understandable set of indices concern-
ing accuracy-interpretability.

This proposal takes advantage of two well-known fuzzy
modeling algorithms, FasArt (Fuzzy Adaptive System ART
based) (Cano Izquierdo et al. 2001; Sainz Palmero et al.
2000) and NefProx (Neuro-Fuzzy Function Approximation)
(Nauck and Kruse 1999), which are very popular in tech-
nical and engineering domains, improving their fuzzy per-
formance through the reduction of their complexity in order
to achieve a better accuracy-interpretability trade-off using
MOEAs. In this way, the fuzzy rules describing the behav-
ior of the modeled problem are accessible in a more inter-
pretable way, and thus extra knowledge and performance
from these fuzzy models are obtained.

This procedure has been applied to nine real-world re-
gression problems. Several fuzzy models with a good ac-
curacy are generated by the two neuro-fuzzy modeling al-
gorithms. They are used to check the proposal under dif-
ferent restrictions of complexity and fuzziness: two models
(compact model and complex model) are generated for each
case study and fuzzy modeling algorithm. Each has its own
performance in the accuracy-interpretability trade-off. Both
types of models allow the approach proposed to be checked
in two different fuzzy contexts.

The paper is organized as follows: first, in Section 2, a
brief description of alternative points of view about fuzzy
modeling, interpretability and accuracy are given. Then, in
Section 3, several complexity and interpretability measures
are presented as a part of an index that aggregates them in a
single measure. In Section 4, the methodology used in this
work is described. Some experimental studies are carried
out and the main results obtained are discussed in Section
5. Finally, in Section 6, the most interesting conclusions ob-
tained from this work are set out. Additionally, Appendix A
includes some numeric results obtained in the experiments.

2 Preliminaries: Fuzzy Modeling Interpretability and
Neuro-Fuzzy Systems

This section first introduces the fuzzy modeling and the accuracy-
interpretability trade-off problem. Then, the neuro-fuzzy sys-
tems considered in this work are commented.

2.1 Fuzzy Modeling: accuracy vs. interpretability

Fuzzy modeling implies several contradictory points of view,
such as accuracy and interpretability. This section introduces
the accuracy-interpretability trade-off problem and the MOEAs
as a tool for managing this trade-off.
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2.1.1 Accuracy vs. Interpretability

Since one of the most relevant features of a fuzzy system
must be its capacity to explain the system behaviour in an
understandable way, a good balance between accuracy and
interpretability must be achieved in the fuzzy modeling.

One of the initial tasks needed to find a good accuracy-
interpretability trade-off is to define how these factors can
be measured (Gacto and Alcalá 2011. In press.), tested or
checked:

– The way in which fuzzy modeling deals with accuracy,
or the capacity to faithfully represent the real system, is
based on error.

– But when the interpretability idea is involved, then there
is no a concise, clear and unique way about the meaning
of the interpretability concept and its formulation.

A review of the most representative works and points
of view on interpretability concepts in the specialized liter-
ature can be found in (Mencar and Fanelli 2008). In (Zhou
and Gan 2008), a review of interpretability in fuzzy system
modeling is given. Here, the authors consider two levels of
interpretability in order to analyze this concept in the fuzzy
models:

– Low-level Interpretability, the fuzzy set level is involved
in the analysis.

– High-level Interpretability, fuzzy rule level is consid-
ered.

Another complementary point of view on interpretabil-
ity of FRBSs is described in (Alonso et al. 2009). In this pa-
per, the framework is based on the previous reference (Zhou
and Gan 2008) with extra elements and concepts: the au-
thors extend the Low/High Level Interpretability concepts
to new levels named Description (System Structure Read-
ability) and Explanation (System Comprehension).

Finally, a review on the used measures to assess the in-
terpretability of linguistic FRBSs can be found in (Gacto and
Alcalá 2011. In press.), where a particular taxonomy based
on the structure of linguistic based approaches is given.

According to (Gacto and Alcalá 2011. In press.; Gacto
et al. 2010), there are two main kinds of interpretability mea-
sures for linguistic FRBSs depending on the type of inter-
pretability:

1. Complexity-based interpretability, in which the reduc-
tion of the complexity systems can imply a better inter-
pretability of the fuzzy system. Some measures used in
these cases are the number of rules, variables, labels per
rule, etc.

2. Semantic-based interpretability, in which the semantic
associated with the membership functions is the priority.
The semantic can be seen as either the semantic integrity
or the other properties of membership functions (distin-
guishability, coverage, fuzzy ordering, etc.).

Most of the available works from the scientific literature
introduce the interpretability of the fuzzy systems based on
the interpretability of the rules, their variables, the fuzzy par-
titions and the membership functions. In fact, in Mamdani-
type FRBSs are usually the most interpretable ones.

In short, some approaches that deal with the generation
of fuzzy systems based on an adequate accuracy-interpreta-
bility trade-off are:

– Algorithms taking into account the idea of accuracy-in-
terpretability during the generation of the fuzzy system.
(Alonso and Magdalena 2010; Cpalka 2009; Ishibuchi
and Nojima 2007; González et al. 2007; Alcalá et al.
2007a, 2006; Mikut et al. 2005; Delgado et al. 2003;
Guillaume and Charnomordic 2003; Jimenez et al. 2003;
Suzuki and Furuhashi 2003; Fiordaliso 2003; Espinosa
and Vandewalle 2000)

– Interpretability of the fuzzy systems is improved or main-
tained through a postprocessing stage. Here, two approa-
ches are found:
– Similarity measures of the fuzzy systems, rules, etc.

are used in the approach mentioned in (Zong-Yi et al.
2008; Setnes 2003; Jin 2000; Setnes et al. 1998).

– Orthogonal Transformations, Here the interpretabil-
ity is improved by a complexity reduction ruled by
orthogonal transformations (Destercke et al. 2007;
Zong-Yi et al. 2005; Setnes 2003; Setnes and Babuška
2001; Yen and Wang 1999).

2.1.2 Genetic Fuzzy Systems: MOEAs as a tool for
managing the trade-off

A GFS is basically a fuzzy system augmented by a learning
process based on evolutionary computation, which includes
genetic algorithms, genetic programming, and evolutionary
strategies, among other evolutionary algorithms (EAs). A
general taxonomy of GFS is introduced in (Herrera 2008)
where GAs could be used in two different ways to generate
fuzzy systems: tuning and learning. In the scientific litera-
ture, it is possible to find papers and contributions that use
MOEAs to improve the accuracy-interpretability trade-off in
these two ways 1:

– Genetic Tuning: to improve the FRBS performance with-
out changing the existing rule base. (Gacto et al. 2010,
2009; Alcalá et al. 2007b)

– Genetic Learning: to learn fuzzy rules or other compo-
nents in the FRBS, including genetic rule selection. (Al-
calá et al. 2009; Ishibuchi and Nojima 2007; Cococcioni
et al. 2007)

Within this taxonomy an alternative is to use MOEAs
to select a subset of cooperative rules from a set of candi-

1 A complete list of papers in this area is available from the web
page http://www.iet.unipi.it/m.cococcioni/emofrbss.html
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date fuzzy rules. Here, the objective is to obtain a more re-
duced rule set, improving its original performance, in this
case the accuracy and interpretability. One of the key as-
pects, amongst the different proposals based on rule selec-
tion, is the way in which interpretability is measured.

Several alternatives have been considered to measure in-
terpretability in genetic rule selection:

– The most classic and first contribution in this area can
be found in (Ishibuchi et al. 1995). The authors apply a
mono-objective fitness function to maximize the number
of patterns classified correctly, minimizing the number
of rules. In (Ishibuchi et al. 1997), a multi-objective ge-
netic algorithm is used in the same way, and in (Ishibuchi
et al. 2001), a third objective is included to minimize
the length of the rules. Other contributions in the same
scheme are (Ishibuchi and Yamamoto 2004; Nojima and
Ishibuchi 2009; Alcalá et al. 2011).

– In (Gacto et al. 2010), a new semantic-based interpreta-
bility index called GM3M is used to do genetic tuning.
The index is based on membership functions displace-
ment, symmetry and area similarity measures. The au-
thors use a multi-objective genetic algorithm to do se-
lection and tuning simultaneously: minimizing the com-
plexity of the system through the number of rules, mea-
suring the accuracy through the error and maximizing
the interpretability through GM3M.

– In (Galende et al. 2008, 2009), the authors apply the
ideas commented previously from other points of view,
using mono-objetive algorithms and an incremental pro-
cess to measure the interpretability.

2.2 Neuro-Fuzzy Systems

Neuro Fuzzy systems are a very popular approach to gener-
ate FRBSs, taking advantage of the learning capacity of Ar-
tificial Neural Networks (ANN) and the explanatory capac-
ity of Fuzzy Logic. In this work, two different neuro-fuzzy
systems are used: FasArt (Cano Izquierdo et al. 2001) and
NefProx (Nauck and Kruse 1999). Both use Mamdani-type
rules to obtain models with high precision, but the way in
which each generates the fuzzy model is different, so their
performance is different too. If the taxonomy for FBRSs de-
scribed in (Herrera 2008) is taken into account, Nefprox can
be considered a linguistic model and FasArt an approximate
model. Another classification can be done if (Casillas et al.
2003a,b) is considered: FasArt and NefProx are Mamdani-
type FRBSs for precise modeling.

2.2.1 Neuro-Fuzzy System FasArt

The FasArt model (Cano Izquierdo et al. 2001; Sainz Pal-
mero et al. 2000) is a neuro fuzzy system based on the Adap-
tive Resonance Theory (ART).

FasArt introduces an equivalence between the activation
function of each FasArt neuron and a membership function.
In this way, FasArt is equivalent to a Mamdani-type FRBSs
with: Fuzzification by single point, Inference by product,
and Defuzzification by average of fuzzy set centers. A full
description of this model can be found in (Cano Izquierdo
et al. 2001) and (Sainz Palmero et al. 2000).

The FasArt system has been used in several previous
works (Sainz Palmero et al. 2005; Sainz et al. 2004) for mod-
eling, fault detection, pattern recognition, etc. with reason-
able results when its accuracy as a fuzzy model is involved;
but when other aspects, such as rule interpretability, are im-
portant, then some problems appear: proliferation of rules,
fuzzy sets, etc., so this system is an adequate instance for
checking this proposal, taking advantage of the knowledge
learnt and stored by FasArt for each problem involved. This
aspect is important in analyzing the results and its compari-
son with other algorithms. Here the fuzzy sets or the number
of rules are not defined by the user, but by its own algorithm
in a non supervised way, in comparison with other fuzzy
modeling algorithms, i.e. NefProx.

Most of these aspects are common for models based on
ART Theory, and they have been treated in different works
(Gómez-Sánchez et al. 2002; Parrado-Hernández et al. 2003).

2.2.2 Neuro-Fuzzy Function Approximation

NefProx2 (Nauck and Kruse 1999) is a neuro-fuzzy algo-
rithm based on supervised learning for the function approxi-
mation. The user fixed the parameters and the learning algo-
rithm generates fuzzy rules from data, minimizing the error.

In this paper NefProx, is used to generate Mamdani-
type fuzzy rules with triangular membership functions, In-
ference by max-min and Defuzzification by mean of max-
imum. Previously, the user fixes the size of the rule base
depending on the coverage of training data and based on
an initial fuzzy partition. Here, the fuzzy partitions are uni-
formly distributed, so the interpretability of these elements
is higher in comparison with the previous algorithm.

3 A Proposal for Aggregating Complexity and
Interpretability Indices in a Common Measure

In this section a measure for preserving the interpretability
is proposed. This measure is defined via the aggregation of
different simple indices based on complexity and similarity
concepts.

In general, in this context, the complexity reduction is a
way to improve the interpretability of the fuzzy systems, and
thus a good level of interpretability implies a lower level of

2 http://fuzzy.cs.uni-magdeburg.de/nefprox/
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complexity. When the complexity is reduced, then the inter-
pretability, or at least some aspects of it, is improved.

In general Mamdani-type rules are the most interpretable
ones, but this is not enough to achieve an adequate degree of
explanation of the contained knowledge.

If a good level of interpretability is desired, which im-
plies a lower complexity, then the fuzzy sets, rules, parti-
tions, structure model, operators, etc. of the fuzzy model
must reasonably show this performance. If not, as usual in
(precise) fuzzy modeling, these model elements should be
improved to achieve a better performance focused on accu-
racy and interpretability/complexity trade-off.

In this paper, the interpretability is based on the com-
plexity but also on the distinguishability concept (Chen and
Linkens 2004). The interpretability measures proposed for
this goal are based on the similarity of fuzzy sets and rules.

The index and measures proposed in this work are con-
ceptually linked with the formal framework described in (Zhou
and Gan 2008; Alonso et al. 2009; Gacto and Alcalá 2011.
In press.) from a practical engineering point of view. This
proposal is open to remove metrics/measures or to adding
new indices to set up the function according to the desired
performance needed for the fuzzy model.

The concepts for measuring the interpretability through
the reduction of the complexity are:

– Compactness (Eq. 1), a lower number of rules can be ad-
equate for a lower complexity and better interpretability
level of the model rule set.

Compactness = Number o f rules (1)

– Similarity amongst rules (Eqs. 2, 3). This index must be
minimized to improve the rule distinguishability.
First, the similarity between two rules is calculated using
eq. 2.

Sk(Ri,R j) =
∑i, j Rik(x)∧R jk(x)
∑i, j Rik(x)∨R jk(x)

=
∑i, j min(Rik,R jk)

∑i, j max(Rik,R jk)

∀1 ≤ i < j ≤ RuleNumber
∀1 ≤ k ≤ AntecedentNumber

(2)

Then the global similarity of the fuzzy rule set is calcu-
lated by the arithmetic mean (Eq. 3) of antecedent simi-
larities (Eq. 2):

Similarity = Fi, j(Fk(Sk(Ri,R j)))

F ⇒ ArithmeticMean
∀1 ≤ i < j ≤ RuleNumber
∀1 ≤ k ≤ AntecedentNumber

(3)

Other authors have used this measure (Eq. 2) success-
fully to generate fuzzy rules with low complexity (Setnes
et al. 1998; Casillas et al. 2003b; Setnes 2003; Jimenez
et al. 2003). Nevertheless, some other options can be
used to measure similarity (Jin et al. 1999; Jin 2000).

– Redundancy (Eq. 4), based on the previous equations,
the whole redundancy of the fuzzy rule set is calculated
through the number of pairs of rules (Card) whose re-
dundancy is higher than a threshold, βR (0 < βR < 1),
for antecedents (SkA) and consequents (SkC). Redundant
rules must be avoided.

Redundacy = Card(SkA(Ri,R j)>βR AND SkC(Ri,R j)>βR)

(RuleNumber−1)!
∀1 ≤ i < j ≤ RuleNumber
∀1 ≤ kA ≤ AntecedentNumber
∀1 ≤ kC ≤ConsequentNumber

(4)

– Consistency, avoiding incoherent rules (Eq. 5) the sys-
tem is more understandable. A threshold of incoherency,
βI , is defined as βI = 1−βR to measure the “no similar-
ity” amongst consequents.

Incoherency = Card(SkA(Ri,R j)>βR AND SkC(Ri,R j)<βI)

(RuleNumber−1)!
∀1 ≤ i < j ≤ RuleNumber
∀1 ≤ kA ≤ AntecedentNumber
∀1 ≤ kC ≤ConsequentNumber

(5)

– Completeness or No-Coverage(Eq. 6). Complete fuzzy
partition involves minimizing no coverage. The no cov-
erage is calculated as the “no coverage” arithmetic mean
for each variable.

NoCoverage = ArithmeticMean(NoCoverPartitionk)

NoCoverPartitionk =
NoCoverPoints

TotalPoint
NoCoverPoints i f Activation Level <= βC
∀1 ≤ k ≤ AntecedentNumber+ConsequentNumber

(6)

In every case, a low value of these measurements has a
positive influence on reducing complexity, thus improving
interpretability. First of all, these metrics are balanced using
λ j, then they are combined using the Arithmetic Mean to
estimate a global value for the interpretability, mainly based
on complexity concepts, of the model (Eq 7). λ j is used to
weight the metrics and it can take values between 0 and 1,
where 1 indicates that the metric is highly relevant in InterC
and 0 indicates that the metric is ignored. Moreover, each
metric is normalized (nor) to a common range.

InterC = ArithmeticMean(λnr ∗RuleNumbernor,
λs ∗Similaritynor,λr ∗Redundancynor,
λi ∗ Incoherencynor,λnc ∗NoCoveragenor)

λ j ∈ (0,1)

(7)

In this work the normalization used has been (Eq. 8):

Indexnor = 1− IndexOriginal−IndexCurrent
IndexOriginal

(8)

where Index refers to the particular metric that is being nor-
malized, i.e., to RuleNumber, Similarity, etc. Other normal-
ization options were used, but this one was the best for the
genetic approach used in this work. Here, the values of the
original fuzzy model are involved in the normalization.
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4 Methodology: A proposal to improve the trade-off
between accuracy and interpretability

In this paper, the proposed methodology is focused on im-
proving the (precise) fuzzy modeling from the point of view
of the interpretability, preserving a good level of accuracy.
Here, an approximate and a linguistic fuzzy rule generation
algorithm are taken into consideration and then, based on
this proposal, a better accuracy-interpretability trade-off is
reached.

This goal is reached using a general post-processing fuzzy
rule selection through a bi-objective genetic approach and
a simple, and easily interpretable, set of measures of inter-
pretability and accuracy.

In this way, the interpretability, or explaining capacities,
of the base precise (approximate and linguistic) fuzzy mod-
els is improved, so the complexity is reduced, preserving or
even improving the model’s accuracy.

This methodology in two stages is described in the next
sections, describing in detail the MOEA applied in the post-
processing stage for this rule selection.

4.1 A methodology in two stages

There are two stages in the methodological proposal intro-
duces in this work:

1. First some base, and precise, fuzzy models are generated
containing a good set of candidate fuzzy rules.

2. Then, a MOEA is applied to carry out a rule selection for
improving interpretability while most of their accuracy
is preserved.

In the first stage, base models are generated based on
two well-known neuro-fuzzy algorithms: FasArt and Nef-
Prox, the first is an approximate FBRS algorithm and the
second is a linguistic one but both try to obtain fuzzy mod-
els as accurate as possible, and they do not pay attention on
other aspects. Two type of base models have been generated,
each has its own performance in accuracy, interpretability
and fuzzy nature, in order to test the proposal under several
contexts. This stage is open to any rule-based algorithm de-
scribed in the specialized literature.

The second stage of the methodology, the post-processing
fuzzy rule selection through a bi-objective genetic approach,
is explained in detail in the next subsections.

4.2 Multi-Objective Evolutionary Algorithm for Rule
Selection

The second stage of this proposal is based on a bi-objective
(InterC and Acc) genetic approach. This is implemented through
the well-known NSGA-II algorithm (Deb et al. 2002). Here,

any other optimization technique could be taken into con-
sideration.

In the next subsections, the fitness functions are formu-
lated and the rest of the parameters needed to run the NSGA-
II algorithm are described.

4.2.1 Objectives

The fitness functions are shown in Eq. 9. Here, the model
performance to be reached can be considered through the
addition of a new index and its relevancy by user.

max(Accuracy) = min(Error)
max(Interpretability) = min(InterC) =

= min(AritmeticMean(λ j ∗ InterpretabilityIndex j))

(9)

The bi-objective genetic algorithm must reach a fuzzy
model with lower complexity and better accuracy-interpre-
tability trade-off by:

– Maximizing the accuracy: this is evaluated by minimiz-
ing Mean Squared Error (MSE) (Eq 10). This is the most
usual way for this goal.

MSE =
1
N

N

∑
i=1

(Yi −Y ′
i )

2 (10)

– Maximizing the interpretability of the fuzzy model: this
is guided by interpretability concepts, minimizing the
InterC index defined in Section 3. In this way, a more
compact and interpretable model can be obtained through
a rule selection, avoiding non-relevant, redundant and
incoherent rules, incomplete fuzzy partitions, etc. In or-
der to be able to use the indices proposed in Section 3,
some thresholds must be tuned by the user. Considering
(Setnes 2003; Roubos and Setnes 2001), in this work the
thresholds used are:
– βR = 0.8 for redundancy.
– βI = 1−βR = 0.2 for incoherency.
– βC = 0 as activation level for coverage.
– λi = 1 since for this work it is considered that all in-

dividual indices in InterC have the same importance.

4.2.2 Coding Scheme, Populations and Genetic Operators

In order to run NSGA-II for the rule selection, other relevant
MOEA aspects has to be considered. These are described
next:

– Individuals are coded by binary-coding: S = s1s2...sN (N
is the number of initial rules), where sq = 0 shows that
the rule Rq is not included, while sq = 1 shows the rule
is present.

– Genes take the value 1 for all of the individuals of the
initial population in order to achieve a progressive ex-
traction of the worst rules.
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Table 1 NSGA-II Parameters

Genetic operator
Selection Binary Tournament
Crossover HUX Pc=0.9
Mutation Classical Pm=0.7

Other options
Population size 100
Evaluations 50000

– Genetic operators selected according to the final objec-
tive (see Table 1):
– Binary tournament for selection.
– HUX (Eshelman 1991) is used to crossover with prob-

ability Pc. The HUX crossover exactly interchanges
the mid of the alleles that are different in the par-
ents (the genes to be crossed are randomly selected
among those that are different in the parents). This
operator ensures the maximum distance of the off-
spring to their parents (exploration).

– Classical mutation with probability Pm. This opera-
tor changes a gene value at random, sets to zero a
gene with probability Pm and sets to one with prob-
ability 1−Pm. This operator was proposed for rule
selection in (Ishibuchi et al. 1997) and it promotes
the elimination of the rules since all individuals the
initial population contained all candidates rules.

– In addition, if one individual (subset of candidates rules)
do not cover some examples previously covered then
both fitness objectives are penalized. Then these solu-
tions go (at least) to the second non-dominated front.

– The stopping criterion is the number of evaluations.

We have used the implementation of the NSGA-II algo-
rithm obtained from Kanpur Genetic Algorithms Laboratory
webpage 3, adapting some genetic operators and the evalu-
ation of the fitness function. Table 1 shows the parameters
used to run NSGA-II. NSGA-II.

5 Experimental Study

In order to check the performance of the proposal intro-
duced in this work, nine real-world data sets from the KEEL
Project (Alcalá-Fdez et al. 2009, 2011) 4 have been used:

1. Plastic Strength (PLA): 3 variables, 1650 records.
2. Quake (QUA): 4 variables, 2178 records.
3. Electrical Maintenance (ELE): 5 variables, 1056 records.
4. Abalone (ABA): 9 variables, 4177 records.
5. Stock prices (STP): 10 variables, 950 records.
6. Weather Ankara (WAN): 10 variables, 1609 records.

3 http://www.iitk.ac.in/kangal/codes.shtml
4 http://sci2s.ugr.es/keel/datasets.php

7. Weather Izmir (WIZ): 10 variables, 1461 records.
8. Mortgage (MOR): 16 variables, 1049 records.
9. Treasury (TRE): 16 variables, 1049 patterns.

First of all, the base fuzzy models are generated by the
neuro-fuzzy algorithms, then the multi-objective rule selec-
tion is carried out, generating a Pareto Front for each dataset
and for each trial.

For all the experiments, a 5-fold cross validation model
is adopted (each fold contained 20% of the records) using
four folds for training and one for testing. For each of the
possible five different partitions (train/test), both stages of
the algorithm were run 6 times, considering each time a dif-
ferent seed for the random-number generator. Therefore, we
consider the average results of 30 runs.

Only three representative models (according to the ob-
jectives) from the Pareto front are considered:

1. The most interpretable model: Best InterC.
2. The most accurate model: Best Acc.
3. The median accuracy-interpretability model: Median Acc−

InterC.

This procedure for comparison was proposed and used
in (Gacto et al. 2010) and (Alcalá et al. 2009). Finally, in
order to know the statistical significance of the results, the
mean values (over 30 runs) are calculated on the three repre-
sentative points and non-parametric statistical tests (Demšar
2006; Garcı́a and Herrera 2008; Garcı́a et al. 2009a,b) are
carried out 5.

The experimental framework is organized as follow:

– The parameters used to generate the fuzzy models by
FasArt and NefProx, and their performance, are described
in Section 5.1. In fact, two models, one more compact
and one more complex, are generated for each algorithm
and data set. Here the error is the only criterion to obtain
these models.

– Results obtained by compact fuzzy models and Non-pa-
rametric Wilcoxon’s signed-rank tests (Zar 1999; She-
skin 2003) are shown in Section 5.2.1.

– Section 5.2.2, with the same scheme that in Section 5.2.1,
shows the results and the non-parametric statistical tests
obtained by complex fuzzy models.

– Finally, some global conclusions are commented in Sec-
tion 5.2.3.

5.1 Base Models: FasArt and NefProx

Several fuzzy models are generated based on FasArt and
NefProx algorithms for each data set considered. Both algo-
rithms allow to achieve a good accuracy, taking only in con-
sideration the model error during the learning. Furthermore,

5 http://sci2s.ugr.es/sicidm
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Table 2 FasArt and NefProx Codification and Parameters of the Fuzzy
Models

FasArt NefProx
Compact Models-1 Models-3

ρA = ρB = 0.3 ms f = 5
γA = γB = 10 maxR =−1

Complex Models-2 Models-4
ρA = ρB = 0.9 ms f = 7
γA = γB = 10 maxR =−1

Table 3 Performance of the FasArt Fuzzy Models

Model MSEtra MSEtst RN S R I C(%)
PLA-1 3.483 3.621 48.6 0.238 0.001 0.016 99.9
PLA-2 2.783 2.821 96.6 0.162 43e-5 0.006 100
QUA-1 0.050 0.054 119.8 0.220 9e-5 0.002 98.0
QUA-2 0.046 0.050 243.8 0.265 20e-5 0.002 98.1
ELE-1 117867 158820 92.6 0.225 0.004 0.001 96.3
ELE-2 56584 100229 129.8 0.266 0.003 0.001 96.9
ABA-1 6.872 7.683 122.8 0.277 32e-5 0.001 98.6
ABA-2 5.033 6.247 298.0 0.331 41e-5 0.001 100
STP-1 2.091 2.270 101.8 0.195 0 16e-5 100
STP-2 0.426 0.698 163.6 0.185 3e-5 16e-5 100
WIZ-1 5.452 16.555 221.6 0.335 3e-5 0 99.9
WIZ-2 1.788 21.934 466.4 0.360 0.6e-5 0 100
WAN-1 9.813 21.970 231.8 0.304 0 0 99.9
WAN-2 2.593 28.312 537.6 0.312 0.3e-5 0.1e-5 99.9
MOR-1 1.041 1.258 52.6 0.299 0 0 99.9
MOR-2 0.085 0.352 92.2 0.284 63e-5 8e-5 100
TRE-1 0.908 1.339 49.6 0.292 50e-5 0 99.8
TRE-2 0.150 0.552 76.6 0.289 8e-5 13e-5 100

two types of models for FasArt and NefProx are carried out
with different complexity and fuzzy performance but good
accuracy. In order to identify the models used in the experi-
mental study, they are numbered as shown in Table 2: 1 for
compact models generated by FasArt, 2 for complex mod-
els generated by FasArt, 3 for compact models generated by
NefProx and 4 for complex models generated by NefProx.
The FasArt and NefProx parameters used to generate these
base models are shown in the same Table 2:

– ρA = ρB is the vigilance parameter used by FasArt.
– γA = γB is the fuzzification rate in FasArt.
– ms f is the number of fuzzy sets for input and output

variables used by NefProx.
– maxR is the maximum number of rules generated by

NefProx: -1 means all rules found in the data are used
(no evaluation), 0 means automatic evaluation (use per-
cent = 0.75).

Tables 3 and 4 summarize the main performance aspects
of these base fuzzy models generated applying the method-
ology described previously. The indexes shown in the ta-
bles are the mean squared error for training (MSEtra) and
test (MSEtst ), the rule number (RN), the similarity (S), the
redundancy (R), the incoherency (I) and the percentage of
completeness (C(%)).

Models 1 and 3, on FasArt and NefProx respectively, are
more compact obtaining a good accuracy with low number
of rules. The similarity amongst rules could be lower, there

Table 4 Performance of the NefProx Fuzzy Models

Model MSEtra MSEtst RN S R I C(%)
PLA-3 3.208 3.222 17.0 0.210 0 0 100
PLA-4 2.606 2.636 31.0 0.161 0 0 100
QUA-3 0.039 0.041 55.8 0.272 0 0 100
QUA-4 0.035 0.037 98.0 0.229 0 0 100
ELE-3 620411 622331 79.6 0.286 0 0 99.4
ELE-4 556228 598472 100.2 0.227 0 0 99.4
ABA-3 6.653 7.231 272.2 0.433 0.012 0.007 99.3
ABA-4 5.636 6.370 500.0 0.350 0.006 0.003 95.5
STP-3 2.248 2.493 303.4 0.285 0.017 0.007 100
STP-4 1.307 1.727 433.8 0.215 0.009 0.003 100
WIZ-3 9.958 13.837 500.0 0.503 0.024 0.009 99.7
WIZ-4 10.103 17.471 500.0 0.442 0.011 0.004 100
WAN-3 12.227 15.920 500.0 0.449 0.017 0.006 98.3
WAN-4 21.836 33.620 500.0 0.390 0.008 0.003 98.5
MOR-3 0.716 0.729 170.0 0.359 0.046 0.011 100
MOR-4 0.337 0.510 301.6 0.255 0.026 0.006 99.9
TRE-3 1.029 1.087 170.6 0.350 0.047 0.011 100
TRE-4 0.491 0.673 305.4 0.243 0.028 0.004 100

is little redundancy and incoherency and the fuzzy partitions
are complete. The other models (2 and 4) are more complex,
achieving a high and better accuracy with additional rules.
The NefProx complex models have less similarity, redun-
dancy and incoherency than compact models while FasArt
complex models have sometimes less similarity, redundancy
and incoherency than compact models and other times more
with similar completeness in all cases. These models are
representative of the precise fuzzy modeling, whose main
objective is to obtain a system as accurate as possible.

In Table 5 this performance is compared with the re-
sults obtained by the Wang & Mendel algorithm (Wang and
Mendel 1992) shown in (Gacto et al. 2010). In general, the
FasArt and NefProx models show a higher accuracy but more
rules, and, in general, poorer interpretability as it is usual for
precise and approximate models.

Then, these fuzzy models are improved in order to reach
better fuzzy models using a more adequate accuracy-inter-
pretability trade-off through the proposal described in this
work.

5.2 Improved Fuzzy Models: Results and Analysis

The results and their analysis are organized according to the
results obtained for compact base fuzzy models and the re-
sults for the complex base fuzzy models. In both cases, the
measurements of Acc and InterC for the improved models
are presented, and some Non-Parametric Statistical Tests are
carried out in order to check the statistical significance of
these results. Finally, a global analysis of the results is intro-
duced.

Here, the Wilcoxon test is run taking in consideration
the three characteristic models of the Pareto front generated
by FasArt and NefProx for each compact and complex base
models. This test is used for detecting significant differences
between two sample means: it is analogous to the paired t-
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Table 5 Wang & Mendel vs Neuro-Fuzzy Systems. The results shown for Wang & Mendel have been obtained from (Gacto et al. 2010)

Compact Wang & Mendel (Wang and Mendel 1992) FasArt (Model-1) NefProx (Model-3)
Models RN MSEtra MSEtst RN MSEtra MSEtst RN MSEtra MSEtst
PLA 14.8 6.868 7.114 48.6 3.4834 3.6205 17 3.208 3.222
QUA 53.6 0.0516 0.0534 119.8 0.0500 0.0540 55.8 0.039 0.041
ELE 65 115212 115868 92.6 117866.65 158819.67 79.6 620411.26 622331.12
ABA 68 16.814 16.844 122.8 6.8719 7.6829 272.2 6.653 7.231
STP 122.8 18.148 18.084 101.8 2.0909 2.2696 303.4 2.248 2.493
WIZ 104.8 13.888 14.736 221.6 5.4522 16.5549 500 9.958 13.837
WAN 156 32.126 32.786 231.8 9.8128 21.9696 500 12.227 15.920
MOR 77.6 1.97 1.946 52.6 1.0414 1.2580 170 0.716 0.729
TRE 75 3.272 3.262 49.6 0.9083 1.3392 170.6 1.029 1.087
Complex Wang & Mendel (Wang and Mendel 1992) FasArt (Model-2) NefProx (Model-4)
Models NR MSEtra MSEtst NR MSEtra MSEtst NR MSEtra MSEtst
PLA 14.8 6.868 7.114 96.6 2.7825 2.8207 31 2.606 2.636
QUA 53.6 0.0516 0.0534 243.8 0.0455 0.0501 98 0.035 0.037
ELE 65 115212 115868 129.8 56584.25 100229.04 100.2 556227.86 598472.35
ABA 68 16.814 16.844 298 5.0332 6.2466 500 5.636 6.370
STP 122.8 18.148 18.084 163.6 0.4265 0.6981 433.8 1.307 1.727
WIZ 104.8 13.888 14.736 466.4 1.7878 21.9338 500 10.103 17.471
WAN 156 32.126 32.786 537.6 2.5934 28.3117 500 21.836 33.620
MOR 77.6 1.97 1.946 92.2 0.0855 0.3524 301.6 0.337 0.510
TRE 75 3.272 3.262 76.6 0.1501 0.5524 305.4 0.491 0.673

test in non-parametric statistical procedures. In general, the
test asks about (H0): do two samples come from populations
with the same distributions? and is based on ranks of the
differences between pairs of data.

In order to have well-defined differences in MSE and NR
a normalized differences DIFF (using Eq. 11) are adopted,
where Mean(x) represent either the MSE or the NR means
that are obtained by the x algorithm. This difference ex-
presses the improvement in percentage of the reference al-
gorithm (Gacto et al. 2010; Alcalá et al. 2009). For the rest
of simple indices (S,R,I,NC and InterC) it is not necessary.

DIFF = Mean(Other)−Mean(Re f erenceAlgorithm)
Mean(Other) (11)

5.2.1 Compact Models

This section introduces the results obtained for the compact
fuzzy models (named Models-1 for FasArt and Models-3 for
NefProx).

Table 6 shows the averaged results obtained in the three
characteristic models of the Pareto Front considered in this
work over 30 runs for each case study considered. Specifi-
cally, the table shows the mean of the proposed index InterC
and mean squared error for the test, MSEtst , for each one
of these three models taken into account: Best InterC, Me-
dian Acc−InterC and Best Acc. The first line shows the base
model (I), while the second line shows the performance of
the final improved model (F).

It is possible easily to see that InterC is better, being
able to improve up to 71.53%. The only exception is the
Mor-1 case, in Best Acc model where the interpretability is

reduced: InterC increases from 0.480 to 1.548. MSEtst es
preserved in the same order of magnitude for all cases.

In Appendix A, Table 12 shows the mean of each in-
dividual measurements: the mean squared error for train-
ing (MSEtra) and test (MSEtst), the mean rule number (RN),
the mean similarity (S), the mean redundancy (R), the mean
incoherency (I) and the mean percentage of completeness
(C(%)).

The Wilcoxon test for the FasArt Compact Models (Ta-
ble 7) accepts that:

– Best InterC model; here the interpretability index is im-
proved and the accuracy is slightly worse. This is usual:
the contradictory dilemma Accuracy vs. Interpretability
and Complexity. Although in some cases the accuracy is
worse, its value can be acceptable because it acceptably
stays low.

– Median Acc− InterC models have an accuracy similar
to the base models, and the interpretability index is im-
proved. The accuracy has been preserved without rele-
vant loss of precision.

– Best Acc models have accuracy and interpretability in-
dexes that are not statistically different. Here, the no
variation in the interpretability can be considered para-
doxical if the Rule Number, Similarity, etc... are individ-
ually analyzed in Table 12. This result is a consequence,
basically, of the way in which FasArt generates fuzzy
partitions, and the equality of relevance given to each
metric in the index defined: rule number vs. complete-
ness.

The Wilcoxon test results obtained by the NefProx com-
pact models (Table 8) shows:
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Table 6 Performance of the Improved Compact Fuzzy Models

FasArt Best InterC Median Acc− InterC Best Acc
Models MSEtst InterC MSEtst InterC MSEtst InterC
PLA-1(I) 3.621 0.800 3.621 0.800 3.621 0.800
PLA-1(F) 3.718 0.228 3.073 0.260 2.688 0.472
QUA-1(I) 0.054 0.840 0.054 0.840 0.054 0.840
QUA-1(F) 0.042 0.448 0.039 0.483 0.038 0.546
ELE-1(I) 158820 1.000 158820 1.000 158820 1.000
ELE-1(F) 166133 0.884 159943 0.916 160842 1.017
ABA-1(I) 7.683 1.000 7.683 1.000 7.683 1.000
ABA-1(F) 6.881 0.494 5.902 0.565 5.788 0.633
STP-1(I) 2.270 0.520 2.270 0.520 2.270 0.520
STP-1(F) 2.815 0.346 2.745 0.368 2.405 0.537
WIZ-1(I) 16.555 0.520 16.555 0.520 16.555 0.520
WIZ-1(F) 17.571 0.366 17.401 0.376 16.701 0.387
WAN-1(I) 21.970 0.560 21.970 0.560 21.970 0.560
WAN-1(F) 23.233 0.439 22.970 0.451 22.567 0.465
MOR-1(I) 1.258 0.480 1.258 0.480 1.258 0.480
MOR-1(F) 1.266 0.411 1.216 0.469 1.178 1.548
TRE-1(I) 1.339 0.680 1.339 0.680 1.339 0.680
TRE-1(F) 1.463 0.498 1.351 0.512 1.335 0.652
NefProx Best InterC Median Acc− InterC Best Acc
Models MSEtst InterC MSEtst InterC MSEtst InterC
PLA-3(I) 3.222 0.400 3.222 0.400 3.222 0.400
PLA-3(F) 4.391 0.287 3.572 0.344 3.222 0.400
QUA-3(I) 0.041 0.400 0.041 0.400 0.041 0.400
QUA-3(F) 0.042 0.303 0.041 0.327 0.041 0.363
ELE-3(I) 622331 0.600 622331 0.600 622331 0.600
ELE-3(F) 700774 0.474 620292 0.505 614691 0.551
ABA-3(I) 7.231 0.920 7.231 0.920 7.231 0.920
ABA-3(F) 6.377 0.642 6.271 0.680 6.205 0.725
STP-3(I) 2.493 0.800 2.493 0.800 2.493 0.800
STP-3(F) 2.339 0.528 2.164 0.557 2.055 0.588
WIZ-3(I) 13.837 0.840 13.837 0.840 13.837 0.840
WIZ-3(F) 13.271 0.630 12.998 0.644 12.804 0.667
WAN-3(I) 15.920 1.000 15.920 1.000 15.920 1.000
WAN-3(F) 16.661 0.808 16.161 0.827 16.034 0.852
MOR-3(I) 0.729 0.800 0.729 0.800 0.729 0.800
MOR-3(F) 0.975 0.475 0.660 0.529 0.632 0.615
TRE-3(I) 1.087 0.800 1.087 0.800 1.087 0.800
TRE-3(F) 1.350 0.482 0.978 0.543 0.942 0.608

– Best InterC models have improved the interpretability
index (better interpretability so lower complexity) but
the accuracy is a little more reduced. If the error values
are observed (i.e. in the worst case the ECMtst increased
from 3.222 to 4.391) these remain low enough.

– Median Acc− InterC models have similar precision of
the base models and the interpretability index is increased,
so their complexity have been reduced.

– Best Acc models improve both accuracy and interpretabil-
ity index. All the individual indices MSEtst , NR, S, R, I
are reduced while NC is maintained.

5.2.2 Complex Models

This section presents the results obtained when complex base
fuzzy models (named Models-2 for FasArt and Models-4 for
NefProx) are involved.

The Table 9 shows the averaged results obtained for the
Best InterC, Median Acc− InterC and Best Acc models in
the Pareto front for each data set: in fact the table shows the
mean of the proposed index InterC and the mean squared
error for the test MSEtst . The first line shows the base model

Table 7 Wilcoxon test for the FasArt Compact Fuzzy Models: original
model (R+) and improved model (R-)

Best InterC
Measure R+ R- Hypothesis (alpha=0.10) p-value
MSEtst 15.0 30.0 Accepted 0.374

NR 45.0 0.0 Rejected 0.008
S 45.0 0.0 Rejected 0.008
R 41.0 2.0 Rejected 0.028
I 40.0 5.0 Rejected 0.043

NC 5.0 40.0 Rejected 0.018
InterC 45.0 0.0 Rejected 0.008

Median Acc− InterC
Measure R+ R- Hypothesis (alpha=0.10) p-value
MSEtst 26.0 19.0 Accepted 0.678

NR 45.0 0.0 Rejected 0.008
S 45.0 0.0 Rejected 0.008
R 41.0 2.0 Rejected 0.028
I 40.0 5.0 Rejected 0.043

NC 2.0 41.0 Rejected 0.012
InterC 45.0 0.0 Rejected 0.008

Best Acc
Measure R+ R- Hypothesis (alpha=0.10) p-value
MSEtst 31.0 14.0 Accepted 0.314

NR 45.0 0.0 Rejected 0.008
S 40.0 5.0 Rejected 0.038
R 33.0 10.0 Accepted 0.249
I 29.0 16.0 Accepted 0.225

NC 1.5 43.5 Rejected 0.008
InterC 33.0 12.0 Accepted 0.214

(I), while the second line shows the performance of the final
improved model(F).

The InterC improvement is from 2.02% to 71.52%, while
for MSEtst is from −0.82% to %−26.04. In the worst case
the interpretability increase from 0.560 to 1.123 (Tre-2, Best
Acc model) and the accuracy increase from 0.552 to 0.725
(Tre-2, Best InterC model).

In Appendix A, Table 13 shows the mean of the individ-
ual measures: the mean squared error for training (MSEtra)
and test (MSEtst), the mean of rule number (RN), the mean
similarity (S), the mean redundancy (R), the mean incohe-
rency (I) and the mean percentage of completeness (C(%)).

The Wilcoxon test for the FasArt Complex Models (Ta-
ble 10) shows:

– Best InterC models have improved the interpretability
index with worse accuracy. Taking into consideration the
high precision of the original models, this precision loss
can be acceptable.

– Median Acc− InterC models have improved the inter-
pretability index while preserving the accuracy of the
base models.

– Best Acc models are not statistically different, for neither
the accuracy nor the interpretability index. Here the no
variation of interpretability models is similar to the case
commented previously.
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Table 8 Wilcoxon test for the NefProx Compact Fuzzy Models: orig-
inal model (R+) and improved model (R-)

Best InterC
Measure R+ R- Hypothesis (alpha=0.10) p-value
MSEtst 11.0 34.0 Accepted 0.173

NR 45.0 0.0 Rejected 0.008
S 44.0 1.0 Rejected 0.011
R 41.0 2.0 Rejected 0.028
I 41.0 2.0 Rejected 0.028

NC 18.0 27.0 Accepted 0.655
InterC 45.0 0.0 Rejected 0.008

Median Acc− InterC
Measure R+ R- Hypothesis (alpha=0.10) p-value
MSEtst 35.0 10.0 Accepted 0.139

NR 45.0 0.0 Rejected 0.008
S 42.0 3.0 Rejected 0.021
R 41.0 2.0 Rejected 0.028
I 41.0 2.0 Rejected 0.028

NC 18.0 27.0 Accepted 0.655
InterC 45.0 0.0 Rejected 0.008

Best Acc
Measure R+ R- Hypothesis (alpha=0.10) p-value
MSEtst 42.0 2.0 Rejected 0.017

NR 44.0 0.0 Rejected 0.012
S 38.0 6.0 Rejected 0.066
R 41.0 2.0 Rejected 0.028
I 41.0 2.0 Rejected 0.028

NC 18.0 27.0 Accepted 0.655
InterC 44.0 0.0 Rejected 0.011

For NefProx Complex Models the results of Wilcoxon
test (Table 11) shows:

– Best InterC models, the accuracy is worse in some cases
but this is balanced by the complexity reduction, so bet-
ter interpretability.

– Median Acc− InterC models have similar error with bet-
ter interpretability (fewer rules, similarity, redundancy
and incoherency with equal completeness).

– Best Acc models, the interpretability index is improved
as previous models and the accuracy remains small.

5.2.3 Global Analysis

In general, the results obtained show a reasonable interpre-
tability improvement of the (precise) fuzzy models obtained
by well-known fuzzy algorithms whose main and original
goal is to obtain models as accuracy as possible. In general,
this interpretability improvement, that implies a complex-
ity reduction, have been reached with an acceptable loss of
accuracy and even, in some cases, the accuracy has been in-
creased or preserved in similar ratios to the base models. In
fact, a better interpretability has not to imply a loss of accu-
racy (see Tables 6 and 9). This better accuracy-interpretability
trade-off based on complexity measures has been reached
using a genetic approach focused on the final objectives.

Table 9 Performance of the Improved Complex Fuzzy Models

FasArt Best InterC Median Acc− InterC Best Acc
Models MSEtst InterC MSEtst InterC MSEtst InterC
PLA-2(I) 2.821 0.760 2.821 0.760 2.821 0.760
PLA-2(F) 3.172 0.216 2.567 0.248 2.374 0.590
QUA-2(I) 0.050 1.000 0.050 1.000 0.050 1.000
QUA-2(F) 0.041 0.492 0.038 0.521 0.038 0.581
ELE-2(I) 100229 1.000 100229 1.000 100229 1.000
ELE-2(F) 97416 0.740 87004 0.788 85157 0.869
ABA-2(I) 6.247 0.880 6.247 0.880 6.247 0.880
ABA-2(F) 5.385 0.431 5.273 0.470 5.240 0.535
STP-2(I) 0.698 0.680 0.698 0.680 0.698 0.680
STP-2(F) 0.755 0.353 0.749 0.549 0.686 0.721
WIZ-2(I) 21.934 0.440 21.934 0.440 21.934 0.440
WIZ-2(F) 23.251 0.360 23.182 0.365 23.067 0.377
WAN-2(I) 28.312 0.680 28.312 0.680 28.312 0.680
WAN-2(F) 31.191 0.510 30.416 0.516 30.070 0.580
MOR-2(I) 0.352 0.680 0.352 0.680 0.352 0.680
MOR-2(F) 0.447 0.391 0.381 0.415 0.373 0.642
TRE-2(I) 0.552 0.560 0.552 0.560 0.552 0.560
TRE-2(F) 0.725 0.354 0.548 0.379 0.534 1.123
NefProx Best InterC Median Acc− InterC Best Acc
Models MSEtst InterC MSEtst InterC MSEtst InterC
PLA-4(I) 2.636 0.400 2.636 0.400 2.636 0.400
PLA-4(F) 3.286 0.296 2.824 0.335 2.655 0.392
QUA-4(I) 0.037 0.400 0.037 0.400 0.037 0.400
QUA-4(F) 0.037 0.285 0.037 0.302 0.037 0.331
ELE-4(I) 598472 0.600 598472 0.600 598472 0.600
ELE-4(F) 612939 0.502 598735 0.520 593548 0.543
ABA-4(I) 6.370 1.000 6.370 1.000 6.370 1.000
ABA-4(F) 6.128 0.782 6.093 0.799 6.019 0.827
STP-4(I) 1.727 0.800 1.727 0.800 1.727 0.800
STP-4(F) 1.812 0.560 1.693 0.580 1.664 0.611
WIZ-4(I) 17.471 0.840 17.471 0.840 17.471 0.840
WIZ-4(F) 19.099 0.603 18.829 0.624 18.860 0.653
WAN-4(I) 33.620 0.880 33.620 0.880 33.620 0.880
WAN-4(F) 35.156 0.658 35.003 0.681 34.684 0.744
MOR-4(I) 0.510 0.880 0.510 0.880 0.510 0.880
MOR-4(F) 0.415 0.620 0.382 0.647 0.377 0.681
TRE-4(I) 0.673 0.800 0.673 0.800 0.673 0.800
TRE-4(F) 0.611 0.528 0.584 0.551 0.572 0.585

The performance evaluation permits the following anal-
ysis based on the Best Acc, Best InterC and Median Acc−
InterC models from Pareto Fronts by the improvement:

– For the Best InterC models the interpretability is im-
proved (and complexity is reduced) but the deterioration
of the precision is higher than in the other models (Me-
dian Acc− InterC and Best Acc). Here, the model error
is more significant, but taking into account the fact that
the base models usually have a high level of precision,
the improved models can remain accurate enough even
with this precision loss.

– The Median Acc− InterC models reduce their complex-
ity, improving the metrics considered for the InterC in-
dex, without a significative loss of accuracy. In fact, the
interpretability improvement is achieved while preserv-
ing the accuracy level.

– The improvement for the Best Acc models is higher in
the case of the NefProx compact models, but in NefProx
complex models this improvement is also reached. This
does not happen with FasArt models where both aspect
are similar in base and improved models.
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Table 10 Wilcoxon test for the FasArt Complex Fuzzy Models: origi-
nal model (R+) and improved model (R-)

Best InterC
Measure R+ R- Hypothesis (alpha=0.10) p-value
MSEtst 14.0 31.0 Accepted 0.314

NR 45.0 0.0 Rejected 0.008
S 45.0 0.0 Rejected 0.008
R 45.0 0.0 Rejected 0.008
I 44.0 0.0 Rejected 0.012

NC 5.0 40.0 Rejected 0.028
InterC 45.0 0.0 Rejected 0.008

Median Acc− InterC
Measure R+ R- Hypothesis (alpha=0.10) p-value
MSEtst 31.0 14.0 Accepted 0.314

NR 45.0 0.0 Rejected 0.008
S 45.0 0.0 Rejected 0.008
R 42.0 3.0 Rejected 0.021
I 44.0 0.0 Rejected 0.012

NC 5.0 40.0 Rejected 0.028
InterC 45.0 0.0 Rejected 0.008

Best Acc
Measure R+ R- Hypothesis (alpha=0.10) p-value
MSEtst 33.0 12.0 Accepted 0.214

NR 45.0 0.0 Rejected 0.008
S 38.0 7.0 Rejected 0.066
R 26.0 19.0 Accepted 0.678
I 29.0 15.0 Accepted 0.401

NC 5.0 40.0 Rejected 0.028
InterC 34.0 11.0 Accepted 0.173

If the final models are compared, even though the dif-
ferent focus of both approaches, with the Wang & Mendel
algorithm shown in (Gacto et al. 2010) again, it is possi-
ble to observe that the accuracy is better and the trade-off
accuracy-interpretability has been highly improved for these
precise models, but although a great reduction of the num-
ber of rules have been obtained, the number of rules in the
improved FasArt and NefProx models remains higher.

On the other hand, there is a significant difference be-
tween FasArt and NefProx algorithms, when the interpreta-
bility of the fuzzy partitions is involved from the classical
point of view. This aspect is guaranteed, although optimiz-
able, in NefProx by the user, such as in this work. In FasArt
that is not guaranteed, mainly in complex models, and some
extra post-processing focused on the fuzzy sets, that are gen-
erated by clustering, is recommendable.

In the previous analysis the different influence of the in-
dividual complexity measures is remarkable, and this aspect
must be taken into account by the user: i.e. Rule Number
vs. Completeness: Must they have the same relevance?, this
should be tuned by the user in accordance with his/her way
of understanding the complexity and interpretability. In this
work, this is influenced by the fuzzy modeling algorithms
considered. Here the measures described previously have
different relevancy for FasArt and NefProx.

Table 11 Wilcoxon test for the NefProx Complex Fuzzy Models: orig-
inal model (R+) and improved model (R-)

Best InterC
Measure R+ R- Hypothesis (alpha=0.10) p-value
MSEtst 17.0 28.0 Accepted 0.515

NR 45.0 0.0 Rejected 0.008
S 44.0 1.0 Rejected 0.011
R 41.0 2.0 Rejected 0.028
I 41.0 2.0 Rejected 0.028

NC 6.0 36.0 Rejected 0.028
InterC 45.0 0.0 Rejected 0.008

Median Acc− InterC
Measure R+ R- Hypothesis (alpha=0.10) p-value
MSEtst 27.0 18.0 Accepted 0.594

NR 45.0 0.0 Rejected 0.008
S 44.0 1.0 Rejected 0.011
R 41.0 2.0 Rejected 0.028
I 41.0 2.0 Rejected 0.028

NC 12.0 29.0 Rejected 0.080
InterC 45.0 0.0 Rejected 0.008

Best Acc
Measure R+ R- Hypothesis (alpha=0.10) p-value
MSEtst 33.0 12.0 Accepted 0.214

NR 45.0 0.0 Rejected 0.008
S 38.0 7.0 Rejected 0.066
R 41.0 2.0 Rejected 0.028
I 41.0 2.0 Rejected 0.028

NC 12.0 29.0 Rejected 0.080
InterC 45.0 0.0 Rejected 0.008

6 Conclusions

This work introduces a simple methodology to improve fuzzy
models obtained by well-known fuzzy modeling algorithms.
The improvement is based on the complexity reduction, re-
dundancy reduction, consistency, completeness, etc. of these
models via rule selection. This is based on a bi-objective
genetic approach guided by Accuracy and Interpretability
measures to obtain a good trade-off between both contradic-
tory performance.

A well-known set of useful measures about interpretabil-
ity and accuracy concepts are implemented and adequately
aggregated to check this proposal. They are based on the
compactness, similarity, redundancy, consistency and com-
pleteness of the fuzzy sets and rules.

The checking of this proposal is carried out using nine
case studies of the KEEL project, and two fuzzy modeling
algorithms with good accuracy: FasArt and NefProx. Each
one of these approaches generated two type of models, each
one with a different performance in complexity and other
aspects in order to test two different contexts.

The experimental results have shown a reasonable suc-
cess: the complexity reduction, so a interpretability improve-
ment, is reached for all models. This better interpretability
has not to imply a mandatory loss of accuracy. When this
happens the loss of accuracy has been moderate and accept-
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able, even in no few cases, the accuracy have been preserved
even improved.

As further work, this approach will be applied to a real
problem, as a biotechnological process focused on waste
water treatment, with a double objective: to obtain good fuzzy
models and knowledge through the interpretable rules of
these models describing the complex relationships ruling
these treatments.
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A Tables of results

Table 12 Performance of the improved compact fuzzy models

FasArt Best InterC NefProx Best InterC
Models MSEtra MSEtst RN S R I C(%) Models MSEtra MSEtst RN S R I C(%)
PLA-1(I) 3.483 3.621 48.60 0.2379 0.0011 0.0156 99.90 PLA-3(I) 3.208 3.222 17.00 0.2098 0 0 100
PLA-1(F) 3.742 3.718 18.80 0.1314 0 0 99.90 PLA-3(F) 4.350 4.391 10.60 0.1701 - - 100
QUA-1(I) 0.050 0.054 119.80 0.2202 0.0001 0.0023 98.03 QUA-3(I) 0.039 0.041 55.80 0.2723 0 0 100
QUA-1(F) 0.039 0.042 56.57 0.1692 0 0 98.03 QUA-3(F) 0.041 0.042 28.40 0.2742 - - 100
ELE-1(I) 117867 158820 92.60 0.2251 0.0043 0.0010 96.34 ELE-3(I) 620411 622331 79.60 0.2860 0 0 99.44
ELE-1(F) 124646 166133 87.20 0.2178 0.0038 0.0005 96.34 ELE-3(F) 659619 700774 37.20 0.2575 - - 99.44
ABA-1(I) 6.872 7.683 122.80 0.2770 0.0003 0.0008 98.61 ABA-3(I) 6.653 7.231 272.20 0.4330 0.0118 0.0069 99.25
ABA-1(F) 6.187 6.881 67.80 0.2536 0 0 98.61 ABA-3(F) 5.783 6.377 153.40 0.4199 0.0071 0.0033 99.25
STP-1(I) 2.091 2.270 101.80 0.1952 0 0.0002 100 STP-3(I) 2.248 2.493 303.40 0.2848 0.0174 0.0066 100
STP-1(F) 2.239 2.815 64.60 0.1756 - 0.0001 99.15 STP-3(F) 1.881 2.339 174.47 0.2766 0.0126 0.0025 100
WIZ-1(I) 5.452 16.555 221.60 0.3354 3e-5 0 99.88 WIZ-3(I) 9.958 13.837 500.00 0.5031 0.0237 0.0092 99.67
WIZ-1(F) 5.341 17.571 115.97 0.3041 0 - 99.67 WIZ-3(F) 8.988 13.271 357.80 0.4847 0.0187 0.0045 99.67
WAN-1(I) 9.813 21.970 231.80 0.3039 0 0 99.92 WAN-3(I) 12.227 15.920 500.00 0.4492 0.0174 0.0060 98.33
WAN-1(F) 9.686 23.233 109.80 0.2794 - - 99.87 WAN-3(F) 11.627 16.661 369.60 0.4346 0.0140 0.0032 98.33
MOR-1(I) 1.041 1.258 52.60 0.2986 0 0 99.93 MOR-3(I) 0.716 0.729 170.00 0.3587 0.0460 0.0112 100
MOR-1(F) 1.007 1.266 36.80 0.2847 - - 99.60 MOR-3(F) 0.890 0.975 76.60 0.3510 0.0316 0.0029 100
TRE-1(I) 0.908 1.339 49.60 0.2920 0.0005 0 99.83 TRE-3(I) 1.029 1.087 170.60 0.3498 0.0465 0.0106 100
TRE-1(F) 1.030 1.463 36.00 0.2816 0 - 99.74 TRE-3(F) 1.260 1.350 76.80 0.3440 0.0293 0.0037 99.55
FasArt Median Acc− InterC NefProx Median Acc− InterC
Models MSEtra MSEtst RN S R I C(%) Models MSEtra MSEtst RN S R I C(%)
PLA-1(I) 3.483 3.621 48.60 0.2379 0.0011 0.0156 99.90 PLA-3(I) 3.208 3.222 17.00 0.2098 0 0 100
PLA-1(F) 2.818 3.073 22.00 0.1535 0 0 99.90 PLA-3(F) 3.559 3.572 13.00 0.2008 - - 100
QUA-1(I) 0.050 0.054 119.80 0.2202 0.0001 0.0023 98.03 QUA-3(I) 0.039 0.041 55.80 0.2723 0 0 100
QUA-1(F) 0.035 0.039 64.13 0.1760 0 0.0002 98.02 QUA-3(F) 0.039 0.041 34.00 0.2790 - - 100
ELE-1(I) 117867 158820 92.60 0.2251 0.0043 0.0010 96.34 ELE-3(I) 620411 622331 79.60 0.2860 0 0 99.44
ELE-1(F) 118905 159943 87.60 0.2198 0.0042 0.0007 96.34 ELE-3(F) 616480 620292 47.20 0.2659 - - 99.44
ABA-1(I) 6.872 7.683 122.80 0.2770 0.0003 0.0008 98.61 ABA-3(I) 6.653 7.231 272.20 0.4330 0.0118 0.0069 99.25
ABA-1(F) 5.185 5.902 80.00 0.2614 0.0001 5e-5 98.61 ABA-3(F) 5.627 6.271 161.20 0.4222 0.0079 0.0039 99.25
STP-1(I) 2.091 2.270 101.80 0.1952 0 0.0002 100 STP-3(I) 2.248 2.493 303.40 0.2848 0.0174 0.0066 100
STP-1(F) 2.100 2.745 69.20 0.1802 - 0.0001 98.97 STP-3(F) 1.671 2.164 181.40 0.2770 0.0129 0.0032 100
WIZ-1(I) 5.452 16.555 221.60 0.3354 3e-5 0 99.88 WIZ-3(I) 9.958 13.837 500.00 0.5031 0.0237 0.0092 99.67
WIZ-1(F) 5.096 17.401 124.40 0.3083 0 - 99.67 WIZ-3(F) 8.189 12.998 363.00 0.4860 0.0188 0.0049 99.67
WAN-1(I) 9.813 21.970 231.80 0.3039 0 0 99.92 WAN-3(I) 12.227 15.920 500.00 0.4492 0.0174 0.0060 98.33
WAN-1(F) 9.298 22.970 119.20 0.2858 - - 99.87 WAN-3(F) 10.791 16.161 376.00 0.4359 0.0146 0.0035 98.33
MOR-1(I) 1.041 1.258 52.60 0.2986 0 0 99.93 MOR-3(I) 0.716 0.729 170.00 0.3587 0.0460 0.0112 100
MOR-1(F) 0.945 1.216 38.80 0.2961 - - 98.91 MOR-3(F) 0.618 0.660 82.80 0.3521 0.0321 0.0053 100
TRE-1(I) 0.908 1.339 49.60 0.2920 0.0005 0 99.83 TRE-3(I) 1.029 1.087 170.60 0.3498 0.0465 0.0106 100
TRE-1(F) 0.917 1.351 39.00 0.2833 0 - 99.74 TRE-3(F) 0.848 0.978 84.20 0.3447 0.0291 0.0065 99.77
FasArt Best Acc NefProx Best Acc
Models MSEtra MSEtst RN S R I C(%) Models MSEtra MSEtst RN S R I C(%)
PLA-1(I) 3.483 3.621 48.60 0.2379 0.0011 0.0156 99.90 PLA-3(I) 3.208 3.222 17.00 0.2098 0 0 100
PLA-1(F) 2.549 2.688 27.20 0.2207 0.0006 0.0037 98.63 PLA-3(F) 3.208 3.222 17.00 0.2098 - - 100
QUA-1(I) 0.050 0.054 119.80 0.2202 0.0001 0.0023 98.03 QUA-3(I) 0.039 0.041 55.80 0.2723 0 0 100
QUA-1(F) 0.034 0.038 79.90 0.1925 0 0.0004 97.97 QUA-3(F) 0.038 0.041 43.80 0.2799 - - 100
ELE-1(I) 117867 158820 92.60 0.2251 0.0043 0.0010 96.34 ELE-3(I) 620411 622331 79.60 0.2860 0 0 99.44
ELE-1(F) 116196 160842 88.60 0.2208 0.0045 0.0011 96.34 ELE-3(F) 612113 614691 62.20 0.2791 - - 99.44
ABA-1(I) 6.872 7.683 122.80 0.2770 0.0003 0.0008 98.61 ABA-3(I) 6.653 7.231 272.20 0.4330 0.0118 0.0069 99.25
ABA-1(F) 5.079 5.788 91.20 0.2630 0.0002 0.0001 98.61 ABA-3(F) 5.579 6.205 174.40 0.4232 0.0089 0.0045 99.25
STP-1(I) 2.091 2.270 101.80 0.1952 0 0.0002 100 STP-3(I) 2.248 2.493 303.40 0.2848 0.0174 0.0066 100
STP-1(F) 2.037 2.405 78.20 0.1965 - 0.0002 99.12 STP-3(F) 1.616 2.055 191.00 0.2773 0.0137 0.0037 100
WIZ-1(I) 5.452 16.555 221.60 0.3354 3e-5 0 99.88 WIZ-3(I) 9.958 13.837 500.00 0.5031 0.0237 0.0092 99.67
WIZ-1(F) 5.021 16.701 134.53 0.3129 0 - 99.81 WIZ-3(F) 8.004 12.804 375.40 0.4880 0.0199 0.0053 99.67
WAN-1(I) 9.813 21.970 231.80 0.3039 0 0 99.92 WAN-3(I) 12.227 15.920 500.00 0.4492 0.0174 0.0060 98.33
WAN-1(F) 9.151 22.567 131.80 0.2903 - - 99.87 WAN-3(F) 10.654 16.034 388.80 0.4380 0.0153 0.0037 98.33
MOR-1(I) 1.041 1.258 52.60 0.2986 0 0 99.93 MOR-3(I) 0.716 0.729 170.00 0.3587 0.0460 0.0112 100
MOR-1(F) 0.924 1.178 41.40 0.3075 - - 98.05 MOR-3(F) 0.582 0.632 98.00 0.3556 0.0366 0.0079 100
TRE-1(I) 0.908 1.339 49.60 0.2920 0.0005 0 99.83 TRE-3(I) 1.029 1.087 170.60 0.3498 0.0465 0.0106 100
TRE-1(F) 0.898 1.335 41.40 0.2877 0.0005 - 99.72 TRE-3(F) 0.816 0.942 97.80 0.3446 0.0331 0.0081 99.77
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Table 13 Performance of the improved complex fuzzy models

FasArt Best InterC NefProx Best InterC
Models MSEtra MSEtst RN S R I C(%) Models MSEtra MSEtst RN S R I C(%)
PLA-2(I) 2.783 2.821 96.60 0.1622 0.0004 0.0058 100 PLA-4(I) 2.606 2.636 31.00 0.1610 0 0 100
PLA-2(F) 3.206 3.172 36.20 0.1147 0 0 100 PLA-4(F) 3.284 3.286 18.00 0.1423 - - 98.68
QUA-2(I) 0.046 0.050 243.80 0.2649 0.0002 0.0022 98.13 QUA-4(I) 0.035 0.037 98.00 0.2286 0 0 100
QUA-2(F) 0.036 0.041 145.80 0.2240 0 3e-5 98.12 QUA-4(F) 0.035 0.037 46.00 0.2180 - - 100
ELE-2(I) 56584 100229 129.80 0.2661 0.0032 0.0010 96.85 ELE-4(I) 556228 598472 100.20 0.2266 0 0 99.35
ELE-2(F) 54089 97416 111.80 0.2541 0.0006 0.0007 96.84 ELE-4(F) 577220 612939 59.40 0.2082 - - 99.35
ABA-2(I) 5.033 6.247 298.00 0.3312 0.0004 0.0012 99.96 ABA-4(I) 5.636 6.370 500.00 0.3496 0.0062 0.0030 95.52
ABA-2(F) 4.276 5.385 208.20 0.3048 3e-5 0.0001 99.96 ABA-4(F) 5.247 6.128 356.40 0.3355 0.0046 0.0015 95.52
STP-2(I) 0.426 0.698 163.60 0.1854 3e-5 0.0002 100 STP-4(I) 1.307 1.727 433.80 0.2145 0.0093 0.0026 100
STP-2(F) 0.451 0.755 133.60 0.1749 0 0 99.45 STP-4(F) 1.213 1.812 296.00 0.2098 0.0070 0.0010 100
WIZ-2(I) 1.788 21.934 466.40 0.3603 0.6e-5 0 100 WIZ-4(I) 10.103 17.471 500.00 0.4418 0.0106 0.0042 99.97
WIZ-2(F) 1.743 23.251 358.00 0.3472 0.2e-5 - 100 WIZ-4(F) 9.819 19.099 373.60 0.4257 0.0069 0.0019 99.97
WAN-2(I) 2.593 28.312 537.60 0.3119 0.3e-5 0.1e-5 99.93 WAN-4(I) 21.836 33.620 500.00 0.3899 0.0080 0.0032 98.50
WAN-2(F) 2.505 31.191 415.40 0.3053 0 0 99.93 WAN-4(F) 21.239 35.156 388.20 0.3763 0.0050 0.0017 98.50
MOR-2(I) 0.085 0.352 92.20 0.2844 0.0006 0.0001 99.99 MOR-4(I) 0.337 0.510 301.60 0.2548 0.0260 0.0062 99.88
MOR-2(F) 0.097 0.447 64.13 0.2759 0 4e-5 99.82 MOR-4(F) 0.226 0.415 171.60 0.2510 0.0217 0.0019 99.70
TRE-2(I) 0.150 0.552 76.60 0.2893 0.0001 0.0001 99.99 TRE-4(I) 0.491 0.673 305.40 0.2426 0.0275 0.0044 100
TRE-2(F) 0.208 0.725 46.73 0.2760 0 0 99.46 TRE-4(F) 0.333 0.611 171.40 0.2434 0.0220 0.0012 99.69
FasArt Median Acc− InterC NefProx Median Acc− InterC
Models MSEtra MSEtst RN S R I C(%) Models MSEtra MSEtst RN S R I C(%)
PLA-2(I) 2.783 2.821 96.60 0.1622 0.0004 0.0058 100 PLA-4(I) 2.606 2.636 31.00 0.1610 0 0 100
PLA-2(F) 2.409 2.567 45.80 0.1240 0 0 100 PLA-4(F) 2.733 2.824 23.00 0.1499 - - 100
QUA-2(I) 0.046 0.050 243.80 0.2649 0.0002 0.0022 98.13 QUA-4(I) 0.035 0.037 98.00 0.2286 0 0 100
QUA-2(F) 0.033 0.038 154.80 0.2315 0 0.0002 98.12 QUA-4(F) 0.035 0.037 52.20 0.2236 - - 100
ELE-2(I) 56584 100229 129.80 0.2661 0.0032 0.0010 96.85 ELE-4(I) 556228 598472 100.20 0.2266 0 0 99.35
ELE-2(F) 41899 87004 113.60 0.2561 0.0012 0.0007 96.84 ELE-4(F) 555512 598735 67.60 0.2093 - - 99.35
ABA-2(I) 5.033 6.247 298.00 0.3312 0.0004 0.0012 99.96 ABA-4(I) 5.636 6.370 500.00 0.3496 0.0062 0.0030 95.52
ABA-2(F) 4.087 5.273 216.20 0.3075 5e-5 0.0002 99.96 ABA-4(F) 5.151 6.093 362.60 0.3362 0.0047 0.0016 95.52
STP-2(I) 0.426 0.698 163.60 0.1854 3e-5 0.0002 100 STP-4(I) 1.307 1.727 433.80 0.2145 0.0093 0.0026 100
STP-2(F) 0.409 0.749 147.40 0.1806 3e-5 0.0001 99.74 STP-4(F) 1.090 1.693 300.20 0.2100 0.0071 0.0012 100
WIZ-2(I) 1.788 21.934 466.40 0.3603 0.6e-5 0 100 WIZ-4(I) 10.103 17.471 500.00 0.4418 0.0106 0.0042 99.97
WIZ-2(F) 1.655 23.182 365.87 0.3488 0.2e-5 - 100 WIZ-4(F) 9.497 18.829 380.60 0.4270 0.0072 0.0021 99.97
WAN-2(I) 2.593 28.312 537.60 0.3119 0.3e-5 0.1e-5 99.93 WAN-4(I) 21.836 33.620 500.00 0.3899 0.0080 0.0032 98.50
WAN-2(F) 2.374 30.416 428.60 0.3062 0 0 99.93 WAN-4(F) 20.772 35.003 392.80 0.3779 0.0052 0.0019 97.22
MOR-2(I) 0.085 0.352 92.20 0.2844 0.0006 0.0001 99.99 MOR-4(I) 0.337 0.510 301.60 0.2548 0.0260 0.0062 99.88
MOR-2(F) 0.081 0.381 69.33 0.2806 0 0.0001 99.80 MOR-4(F) 0.196 0.382 179.00 0.2514 0.0217 0.0026 99.88
TRE-2(I) 0.150 0.552 76.60 0.2893 0.0001 0.0001 99.99 TRE-4(I) 0.491 0.673 305.40 0.2426 0.0275 0.0044 100
TRE-2(F) 0.151 0.548 54.93 0.2822 0 0 99.58 TRE-4(F) 0.284 0.584 176.60 0.2428 0.0217 0.0017 99.69
FasArt Best Acc NefProx Best Acc
Models MSEtra MSEtst RN S R I C(%) Models MSEtra MSEtst RN S R I C(%)
PLA-2(I) 2.783 2.821 96.60 0.1622 0.0004 0.0058 100 PLA-4(I) 2.606 2.636 31.00 0.1610 0 0 100
PLA-2(F) 2.249 2.374 55.40 0.1452 0.0007 0.0013 100 PLA-4(F) 2.606 2.655 29.60 0.1618 - - 100
QUA-2(I) 0.046 0.050 243.80 0.2649 0.0002 0.0022 98.13 QUA-4(I) 0.035 0.037 98.00 0.2286 0 0 100
QUA-2(F) 0.033 0.038 163.60 0.2355 3e-5 0.0004 98.12 QUA-4(F) 0.035 0.037 62.80 0.2313 - - 100
ELE-2(I) 56584 100229 129.80 0.2661 0.0032 0.0010 96.85 ELE-4(I) 556228 598472 100.20 0.2266 0 0 99.35
ELE-2(F) 39839 85157 115.20 0.2540 0.0014 0.0011 96.84 ELE-4(F) 550608 593548 77.60 0.2127 - - 99.35
ABA-2(I) 5.033 6.247 298.00 0.3312 0.0004 0.0012 99.96 ABA-4(I) 5.636 6.370 500.00 0.3496 0.0062 0.0030 95.52
ABA-2(F) 4.028 5.240 223.00 0.3096 0.0001 0.0003 99.96 ABA-4(F) 5.105 6.019 374.80 0.3388 0.0051 0.0018 95.52
STP-2(I) 0.426 0.698 163.60 0.1854 3e-5 0.0002 100 STP-4(I) 1.307 1.727 433.80 0.2145 0.0093 0.0026 100
STP-2(F) 0.396 0.686 149.60 0.1871 4e-5 0.0002 99.86 STP-4(F) 1.048 1.664 312.20 0.2106 0.0073 0.0015 100
WIZ-2(I) 1.788 21.934 466.40 0.3603 0.6e-5 0 100 WIZ-4(I) 10.103 17.471 500.00 0.4418 0.0106 0.0042 99.97
WIZ-2(F) 1.614 23.067 380.53 0.3513 0.3e-5 - 100 WIZ-4(F) 9.400 18.860 392.80 0.4295 0.0078 0.0024 99.97
WAN-2(I) 2.593 28.312 537.60 0.3119 0.3e-5 0.1e-5 99.93 WAN-4(I) 21.836 33.620 500.00 0.3899 0.0080 0.0032 98.50
WAN-2(F) 2.326 30.070 447.00 0.3074 0.2e-5 0 99.93 WAN-4(F) 20.639 34.684 402.20 0.3798 0.0055 0.0020 96.46
MOR-2(I) 0.085 0.352 92.20 0.2844 0.0006 0.0001 99.99 MOR-4(I) 0.337 0.510 301.60 0.2548 0.0260 0.0062 99.88
MOR-2(F) 0.074 0.373 79.47 0.2848 0.0007 0.0001 99.94 MOR-4(F) 0.191 0.377 191.80 0.2528 0.0224 0.0032 99.88
TRE-2(I) 0.150 0.552 76.60 0.2893 0.0001 0.0001 99.99 TRE-4(I) 0.491 0.673 305.40 0.2426 0.0275 0.0044 100
TRE-2(F) 0.138 0.534 65.93 0.2940 0.0001 0.0002 99.76 TRE-4(F) 0.275 0.572 187.40 0.2430 0.0219 0.0023 99.84
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