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47012 Valladolid, SPAIN

Email: i.rey@indomaut.com

Marta Galende

CARTIF Centro Tecnológico ?

47151 Boecillo (Valladolid), SPAIN
Email: margal@cartif.es

M. J. Fuente

Dpt. of Systems Engineering and Control
School of Industrial Engineering

University of Valladolid

47011 Valladolid, SPAIN
Email: maria@autom.uva.es

Gregorio I. Sainz-Palmero †,?

Dpt. of Systems Engineering and Control †

School of Industrial Engineering
University of Valladolid

47011 Valladolid, SPAIN
Email: gresai@{cartif.es, eii.uva.es}

Received (received date)
Revised (revised date)

Fuzzy modeling is one of the most known and used techniques in different areas to

model the behavior of systems and processes. In most cases, as in data-driven fuzzy mod-
eling, these fuzzy models reach a high performance from the point of view of accuracy,

but from other points of view, such as complexity or interpretability, they can present a

poor performance.
Several approaches are found in the bibliography to reduce the complexity and im-

prove the interpretability of the fuzzy models. In this paper, a post-processing approach

is carried out via rule selection, whose aim is to choose the most relevant rules for work-
ing together on the well-known accuracy-interpretability trade-off. The rule relevancy is

based on Orthogonal Transformations, such as the SVD-QR rank revealing approach, the
P-QR and OLS transformations. Rule selection is carried out using a genetic algorithm

that takes into account the information obtained by the Orthogonal Transformations.

The main objective is to check the true significance, drawbacks and advantages of the
rule selection based on the orthogonal transformations via the rule firing strength matrix.
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In order to carry out this aim, a neuro-fuzzy system, FasArt (Fuzzy Adaptive Sys-
tem ART based), and several case studies, data sets from the KEEL Project Repository,

are used to tune and check this selection of rules based on orthogonal transformations,

genetic selection and accuracy-interpretability trade-off. This neuro-fuzzy system gener-
ates Mamdani fuzzy rule based systems (FRBSs), in an approximative way. NSGA-II is

the MOEA tool used to tune the proposed rule selection.

Keywords: Fuzzy Systems, Interpretability, Accuracy, Rule Selection, Orthogonal Trans-
formations, Genetic Algorithm

1. Introduction

Fuzzy modeling is one of the most known approaches for a wide range of problems.

Data-driven rule based fuzzy models have been used in several and very different

scientific and technical areas 1,2,3,4,5.

In general, most of the fuzzy models taken into consideration in real world appli-

cations have been data-driven and rule based fuzzy models due to their advantages:

easy use and performance. This performance has usually been evaluated on the ba-

sis of the accuracy of the models, thus minimizing the error between the real and

the estimated output generated by the fuzzy models. But other aspects have not

been taken into consideration: complexity, interpretability, etc. Some of them are

basic principles of fuzzy logic, but data-driven fuzzy models use them as simple

mathematical tools, losing their original fuzzy meaning.

Complexity is a very usual index or measure, and it is a problem in data-driven

rule based fuzzy models related with other aspects of these models, such as their

accuracy and interpretability. Thus, if a reduction of this complexity was reached,

it could permit a better performance of these other aspects to be reached, so as

to obtain better fuzzy models. The question is the way in which this complexity

reduction or model improvement can be carried out. Different approaches to this

question can be found in 6,7,8,9,10.

In this work, the complexity reduction is studied based on Orthogonal Transfor-

mations and accuracy-interpretability trade-off by a genetic rule selection. Orthogo-

nal transformations 11,12 have been one of the alternative approaches for complexity

reduction and interpretability improving of fuzzy models 9,13,14,15,16,17,18,19. This

approach is focused on orthogonal transformations applied on the firing strength

matrix of the fuzzy model rules as a regression problem, in order to estimate the

relevance of the rules, then a rule selection is carried out. Each transformation has

its own strategy. In 14,20 some general comments and ideas about the research of

these transformations can be found, but in general, there is not very much extensive

and far-reaching experimentation that clearly specifies the criteria for carrying out

the rule selection.

In this context, this work checks the possibilities and drawbacks of the orthog-

onal transformations as a postprocessing approach to simplify and get more in-

terpretable approximative rule-based fuzzy models. Thus, an approximative fuzzy

model is considered involving: accuracy-interpretability criteria to give relief in some
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of the orthogonal transformation weaknesses, rule selection by a genetic approach

subject to constraints on influential rules and accuracy-interpretability trade-off and

checking the influence or relevance of the rules selected. On other hand, this can

give ideas and support to define some criteria in order to pick up the best rules of

the fuzzy models so as to get more simple, accurate and interpretable data-driven

fuzzy models.

The paper is organized as follows: first, in Section 2, a brief description of alter-

native points of view about fuzzy modeling, interpretability and accuracy are given.

This section includes a description of the main concepts of orthogonal transforma-

tions. The proposal of genetic rule selection based on orthogonal transformations

and accuracy-interpretability trade-off is introduced in Section 3. In Section 4, the

methodology used in this work is described. Some experimental studies are carried

out and the main results obtained are discussed in Section 5. Finally, in Section 6,

the most interesting conclusions obtained from this work are set out.

2. Fuzzy Modeling: Accuracy vs. Interpretability

Initially, two well known modeling approaches to generate fuzzy rules are described

in the bibliography 21,22,23:

(1) Precise Fuzzy Modeling, whose main goal is to obtain a model which is as

accurate as possible. In general, the models generated have a good accuracy

but a low level of interpretability. This modeling is popular with data-driven

knowledge but expert knowledge is also considered.

(2) Linguistic Fuzzy Modeling, these models have a good level of interpretability

but poor accuracy. Here, knowledge from experts and data guide the modeling

process.

Both approaches have their own drawbacks and advantages, but there are several

ways to deal with the generation of fuzzy systems whose performance includes an

adequate accuracy-interpretability trade-off. This trade-off question is an open one:

in what way are fuzzy systems more interpretable and accurate enough?. Some

reviews of interpretability and the way in which this can be achieved can be found

in 8,10,20. Sometimes, these appear associated with the concepts of complexity and

explanation capability 24, which can be considered as indirect measures to evaluate

the interpretability. In some works, for instance 14,15,16,25,26, the reduction of the

complexity system can imply a better interpretability of the fuzzy system. In any

case, the interpretability of fuzzy systems is still a point of discussion amongst

researchers 7,27.

One of the above-mentioned approaches, perhaps not the most popular, is based

on orthogonal transformations applied on the firing strength matrix of the fuzzy

model rules. The goal is to estimate the most influential rules, which are selected, so

the interpretability is improved by reducing the complexity, in this case by reducing

the number of rules 9,14,16,28. Several orthogonal transformations are taken into
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consideration in this research domain, some of the most popular are: Singular Value

Decomposition (SVD), Pivoted QR(P-QR) and Orthogonal Least-Squares (OLS)

decompositions that are considered in this work.

2.1. Orthogonal Transformations and Complexity Reduction

The orthogonal transformations are used for rule selection/reduction in fuzzy mod-

eling in two main approaches 11,14:

• Rank-revealing approach, an estimation rank of the firing strength matrix is

given. In this approach the SVD and SVD-QR Decompositions are considered.

• Rule subset selection, the individual contributions of the rules are evaluated

to reach their importance ordering16. The Pivoted QR(P-QR) and Orthogonal

Least-Squares (OLS) transformations are included in this approach.

In this context, a fuzzy model can be written as a linear regression problem (Eq.

1) 14,16:

y = P ∗ θ + e (1)

where: y = [y1, y2..., yN ]T are the measured outputs, θ = [c1, c2, ..., cM ]T are the

consequents of the M rules and e = [e1, e2, ..., eN ]T are the vector of approximation

errors. The matrix P = [p1, p2, ..., pM ] ∈ RN×M contains the firing strength of all

the M rules for the N inputs xk, where pi = [pi1, pi2, ..., piN ]T

• SVD Decomposition is used to determine the effective rank of the rule firing

matrix (P ). This can be expressed as (Eq. 2):

pi(x) =
∏N

j=1 Aij(xj)∑M
k=1

∏N
j=1 Akj(xj)

(2)

where x = [x1, .., xN ]T is the input vector, Ai1, ...AiN are fuzzy sets defined in

the antecedent space and M is the number of rules of the fuzzy model.

The pseudoinverse of P is obtained from the singular value decomposition

(SVD) of P (Eq. 3):

P = UΣV T (3)

where U ∈ RN×M and V ∈ RN×M are orthogonal matrices and Σ ∈ RM×M is

a diagonal matrix with the singular values: σ1 ≥ σ2 ≥ σ3 ≥ ... ≥ σM ≥ 0 in

decreasing order as diagonal. The pseudoinverse is (Eq. 4):

P+ = V Σ+UT (4)

where Σ+ ∈ RM×M is a diagonal matrix with the reciprocals 1/σ1, 1/σ2.....1/σr.

The number of nonzero singular values in the SVD of P reveals the rank of

P . The rank estimation, r, is not evident if a ”gap” to discriminate singular
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values is not identified, which is not usual. The most important rules are those

associated with higher singular values.

• P-QR Decomposition, this approach can produce a rule ordering without a

rank estimation. Here, P-QR is directly applied to P, obtaining a permutation

matrix 11: The QR decomposition of P is given by P ∗ Π = Q ∗ R, where

Π ∈ <M∗M is a permutation matrix, Q ∈ <N∗M has orthogonal columns and

R ∈ <M∗M is upper triangular (Eq. 5), such that

R =

[
R11 R12

0 Rkk

]
(5)

The diagonal values of R are called R-values (|Rkk|) 9, which track the singular

values σ(P ), so the most active and least redundant rules are those whose R-

values are higher 16 in the original fuzzy rule space.

• OLS Decomposition: here, the firing matrix P is decomposed into a set of

orthogonal vectors to evaluate the individual contribution of each rule: P =

WA, where W is an orthogonal matrix such as WTW = I, and A is an upper-

triangular matrix with unity diagonal values. Then, substituting P = WA into

(Eq. 1), we have y = WAθ + e = Wg + e, where g = Aθ. Since the colums wi

of W are orthogonals the sum of squares of y can be written as (Eq. 6):

yty =
∑M

i=1 giw
T
i wi + eT e (6)

The part of the output variance yty/N described by the regressors is∑
i w

T
i wi/N . Then an error reduction due to the rule i is: [err] =

g2
iw

T
i wi

yty .

Thus, this can be used to define an importance ordering for the rules and to

carry out a selection.

In short, some comments on these transformations can be made in the domain

of rule reduction 14: a) the SVD and P-QR transformations do not pay attention

to the output contribution of the rule, b) rank-revealing methods are conservative

in the rule reduction due to the difficulty of estimating the rank of P , c) OLS

Decomposition does not consider the structure of the rules in terms of redundancy,

similarity, etc.

In order to avoid these weaknesses in this work, concepts about interpretability,

accuracy and their trade-off are used together with the orthogonal transformations

in order to address the rule selection.

3. Genetic Rule Selection Based on Orthogonal Transformations

and Accuracy-Interpretability trade-off

The main objective of this work is to check the advantages and drawbacks of the

orthogonal transformations for rule ordering and selection. Three well-known or-

thogonal transformations have been involved in this work: SVD, P-QR and OLS.
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The fuzzy models are generated by a neuro-fuzzy system, FasArt 29,30, which is con-

sidered an approximative fuzzy system that is very popular in engineering domains.

Now, in order to generate a better rule selection, this is carried out following the

guidance of different points of views concerned with the:

• Relevance or influence of each fuzzy rule defined by the orthogonal transforma-

tions.

• Accuracy-Interpretability trade-off in fuzzy models defined by measures on both

concepts.

These aspects are complementary and try to avoid some of the drawbacks of

orthogonal transformations:

• SVD and P-QR only consider the rule antecedents, so the accuracy of the model

can give support in both cases.

• OLS does not manage well the redundancy and similarity of the rules, so the

interpretability index can mitigate this problem.

• The importance ordering for rules provides an individual evaluation for the rule

selection.

• On the other hand, the accuracy-interpretability trade-off gives a global index

of the quality of the rule selection carried out.

In order to check all this, a genetic approach for the rule selection is done. This

provides an interesting scenario of results concerning the rule ordering and selection

based on these orthogonal transformations. The study of this scenario will give us a

better knowledge of the scope of this selection proposal, and will give response and

support to some open questions about this type of ordering and selection, such as:

• How much influence must be preserved by the selected rules?

• How many rules must be selected?

• What is the role of the rules with lower relevance by orthogonal transforma-

tions?

• Must these lower relevance rules be considered in order to achieve good models?

• etc.

In the following subsections, a brief description of the accuracy-interpretability

measures considered is done. Then, some comments and references on the genetic

and neuro-fuzzy approach used in this work are introduced.

3.1. Accuracy and Interpretability Measures

The accuracy and interpretability measures considered in this work are defined in
31. The accuracy of the model is measured through its Mean Squared Error (MSE)

(Eq. 7):
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MSE =
1

N

N∑
i=1

(yi − y′i)2 (7)

The interpretability measure is an aggregating index based on similarity and

complexity ideas. In both cases, a lower value has a positive influence on reducing the

complexity and improving the interpretability of the fuzzy models. These measures

about similarity and complexity are:

• Compactness or Number of rules (RN).

• Similarity amongst rules (S).

• Redundancy of the fuzzy rule set (R).

• Incoherency of rules (I).

• Completeness or No-Coverage (C).

Thus, the aggregation index to measure the interpretability is formulated as

follows (Eq. 8):

InterC = ArithmeticMean(

λnr ∗RuleNumbernor, λs ∗ Similaritynor,
λr ∗Redundancynor, λi ∗ Incoherencynor,
λnc ∗NoCoveragenor)

λj ∈ (0, 1)

(8)

Here λj = 1 ∀j, and the normalization is (Eq. 9):

Indexnor = 1− IndexOriginal−IndexCurrent

IndexOriginal
(9)

3.2. Genetic Algorithms and Neuro-Fuzzy Systems

3.2.1. Genetic Algorithms

Genetic algorithms, genetic programming, and evolutionary strategies, among other

evolutionary algorithms (EAs), are very popular tools to tune fuzzy models 32,33.

A general taxonomy of this is introduced in 21 where genetic algorithms are used

in two alternative ways to generate fuzzy systems: tuning and learning. There are

some papers and contributions that use multi-objective evolutionary algorithms

(MOEAs) to improve the accuracy-interpretability trade-off by taking into account

these two ways a.

Within this taxonomy, an alternative is to use MOEAs to select a subset of

cooperative rules from a set of candidate fuzzy rules. Then, the objective is to

aA list of papers on this domain can be found at
http://www.iet.unipi.it/m.cococcioni/emofrbss.html
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obtain a more reduced rule set, improving its original performance, usually the

accuracy and the interpretability.

The well-known multi-objective evolutionary algorithm, NSGA-II 34, is taken

into account in this work, but other multi-objetive evolutionary algorithms can also

be used 35. Two fitness functions from MSE (Eq. 7) and InterC (Eq. 8) are used

to get a fuzzy model with better accuracy-interpretability trade-off.

A third fitness function is used to penalize lower values from importance ordering

generated by orthogonal transformations. According to previous works 14,16, these

rules introduce a high level of similarity, low level of activity and high redundancy,

so they must be avoided. Thus, this is implemented as follows (Eq. 10):

PenaltySingular Value/R-value/Variance =

n
√∏n

i=1 (1− (SingularV alue/R− value/V ariance)normi)

(10)

where:

(Singular Value/R-value/Variance)normi
=

(Singular Value/R-value/Variance)Rulei∑n
j=1(Singular Value/R-value/Variance)Rulej

(11)

3.2.2. Neuro-Fuzzy System FasArt

On the other hand, neuro-fuzzy systems are a very popular approach to generate

FRBSs, taking advantage of the learning capacity of Artificial Neural Networks

(ANN) and the explanatory capacity of Fuzzy Logic. In this work, the neuro-fuzzy

system FasArt 29,30, which is a neuro-fuzzy system based on the Adaptive Reso-

nance Theory (ART) has been used. FasArt introduces an equivalence between the

activation function of each FasArt neuron and a membership function. In this way,

FasArt is equivalent to a Mamdani-type FRBS with: Fuzzification by single point,

Inference by product, and Defuzzification by average of fuzzy set centers. A full

description of this model can be found in 29 and 30. If the taxonomy for FBRSs

described in 21 is taken into account, FasArt is an approximate model. Another

classification can be done if 23,36 are considered: FasArt is a Mamdani-type FRBS

for precise modeling.

This FasArt system has been used in several previous works 37,38 for modeling,

fault detection, pattern recognition, etc, with reasonable results when its accuracy

as a fuzzy model is involved; but when other aspects, such as rule interpretability,

are considered, then some problems appear; so this system is an adequate instance

for checking this proposal. Most of these aspects are common for models based on

ART Theory, and they have been treated in different works 39,40.
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Table 1. FasArt Parameters for modeling

FasArt Parameters

ρA = ρB = 0.3

γA = γB = 10

4. Methodology

In this paper, the proposed methodology is focused on checking the capacities of

the orthogonal transformations for rule selection based on accuracy-interpretability

trade-off and genetic tuning. This goal is reached using a general post-processing

fuzzy rule selection through a three-objective genetic approach: accuracy, inter-

pretability and the most influential rules. In this scenario, it will be possible to

check the trade-off of the fuzzy models tuned by the rule selection, the rule in-

fluence level preserved in the simplified models, the level of complexity reduction

achieved, the distribution of the rule influence amongst the selected rules for each

model, etc.

The fuzzy models were generated by FasArt in five fold cross validation for each

regression problem considered (see data sets in Section 5). The FasArt parameters

considered for all the cases are shown in Table 1, where ρA=ρB is the vigilance

parameter used by FasArt and γA = γB is the fuzzification rate in FasArt.

A general methodology description is summarized in Algorithm 1. This method-

ology is set out in the following sections, describing in detail the MOEA applied in

the post-processing stage for this rule selection.

4.1. Multi-Objective Evolutionary Algorithm for Rule Selection

The fuzzy rule selection to achieve lower complexity and better performance on

interpretability with enough accuracy based on the influential rules is carried out

by a MOEA. In order to achieve the aims commented previously, a three-objective

(InterC , Acc, Penalty) genetic approach is used based on the well-known NSGA-II

algorithm 34.

In the next sections, the fitness functions are formulated and the genetic param-

eters and operators are described.

4.1.1. Objectives

The fitness functions are shown in Eq. (12), here some performance desired for the

model can be taken into account.

max(Accuracy) = min(MSEtra)

max(Interpretability) = min(InterC) =

= min(AritmeticMean(λj ∗ InterpretabilityIndexj))
min(PenaltyOTvs)

(12)
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Algorithm 1 Methodology for Genetic Rule Selection based on Accuracy-

Interpretability Trade-Off and Orthogonal Transformations

for Neuro-Fuzzy Algorithm=FasArt do

2: for OT=SV D −QR:P −QR:OLS do

for DataSet = 1 to 9 do

4: for CrossV alidation = 1 to 5 do

Generation of Rule Importance Ordering by OT

6: Training Neuro-Fuzzy System (ρA = ρB = 0.3 and γA = γB = 10)

for Run = 1 to 6 do

8: Generate Initial Population

Run Genetic Algorithm NSGAII (Selection-Binary Tournament,

Crossover-HUX Pc=0.9, Mutation-Classical Pm=0.7, Population

size-100 and Evaluations-50000)

10: end for

end for

12: Analysis Pareto Front (DataSet) {Best InterC , Median Acc − InterC
and Best Acc}

end for

14: end for

end for

16: Non-Parametric Statistical Test

The three-objective genetic algorithm must get a fuzzy model with better

accuracy-interpretability trade-off based on the most influential rules and impor-

tance ordering provided by orthogonal transformations:

• Maximizing the accuracy evaluated by Mean Squared Error (MSE) (Eq 7).

• Maximizing the interpretability of the fuzzy model guided by complexity con-

cepts InterC defined in Section 3.1 (Eq 8).

• Minimizing the number of selected rules with low influence or importance (Eq

10).

4.1.2. Coding Scheme, Populations and Genetic Operators

In order to run NSGA-II, the following characterization is done:

• Individuals are coded by binary-coding : S = s1s2...sN (N is the number of

initial rules), where sq = 0 shows that the rule Rq is not included, while sq = 1

shows the rule is present.

• Genes take the value 1 for all of the individuals of the initial population in order

to achieve a progressive extraction of the worst rules.

• Genetic operators selected according to the final objective (see Table 2):

– Binary tournament for selection.
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Table 2. NSGA-II Parameters

Genetic operator

Selection Binary Tournament

Crossover HUX Pc=0.9

Mutation Classical Pm=0.7

Other options

Population size 100

Evaluations 50000

– HUX 41 is used to crossover with probability Pc. The HUX crossover

exactly interchanges half the alleles that are different in the parents (the

genes to be crossed are randomly selected among those that are different

in the parents). This operator ensures the maximum distance from the

offspring to their parents (exploration).

– Classical mutation with probability Pm. This operator changes a gene

value at random, sets a gene to zero with probability Pm and sets to one

with probability 1− Pm. This operator was proposed for rule selection in
42 and it promotes the elimination of the rules, since all individuals of the

initial population contained all candidates’ rules.

• In addition, if one individual (subset of candidates’ rules) does not cover some

examples previously covered, then fitness objectives are penalized. Then these

solutions go (at least) to the second non-dominated front.

• The stopping criterion is the number of evaluations.

The implementation of the NSGA-II algorithm considered can be reached from

Kanpur Genetic Algorithms Laboratory web page b, adapting some genetic opera-

tors and the evaluation of the fitness function. Table 2 shows the parameters used

to run NSGA-II.

4.1.3. Pareto Front Analysis

The Pareto fronts are generated for each trial and three representative models (ac-

cording to the objectives accuracy and interpretability) are considered to be ana-

lyzed 43,44:

(1) The most interpretable model: Best InterC .

(2) The most accurate model: Best Acc.

(3) The median model: Median Acc− InterC .

bhttp://www.iitk.ac.in/kangal/codes.shtml
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5. Experimental Study: Results and Analysis

In order to check the performance of the proposal introduced in this work, nine

real-world data sets from the KEEL Project 45,46 c have been used:

(1) Plastic Strength (PLA): 3 variables, 1650 records.

(2) Quake (QUA): 4 variables, 2178 records.

(3) Electrical Maintenance (ELE): 5 variables, 1056 records.

(4) Abalone (ABA): 9 variables, 4177 records.

(5) Stock prices (STP): 10 variables, 950 records.

(6) Weather Ankara (WAN): 10 variables, 1609 records.

(7) Weather Izmir (WIZ): 10 variables, 1461 records.

(8) Mortgage (MOR): 16 variables, 1049 records.

(9) Treasury (TRE): 16 variables, 1049 patterns.

First of all, the base fuzzy models are generated by the FasArt neuro-fuzzy al-

gorithm. Next, the multi-objective rule selection is carried out, generating a Pareto

Front for each dataset and for each trial, as shown in Algorithm 1: for all the ex-

periments, a fivefold cross validation model is adopted (each fold contained 20%

of the records), using four folds for training and one for testing. For each of the

possible five different partitions (train/test), both stages of the algorithm were

run 6 times, considering a different seed for the random-number generator each

time. Therefore, we consider the average results of 30 runs on only three repre-

sentative models from the Pareto front: Best Interpretability, Best Accuracy and

Median Accuracy-Interpretability. Finally, non-parametric statistical tests are run

to know the general significance of the results in the context of this manuscript:

non-parametric Wilcoxon’s signed-rank tests 47,48.

5.1. FasArt Fuzzy Models

The fuzzy models were generated by FasArt in fivefold cross validation for each

regression problem considered (see data set Table). The FasArt parameters used

for all the cases are shown in Table 1. In Table 3, the performance of these fuzzy

models is shown: it is possible to see that the accuracy of the models is high (as it is

usual for approximative fuzzy modeling approaches). On the other hand, in Tables

4, 5 and 6, the value distribution of relevance rules for each data set (DataSet(I))

and orthogonal transformations can be checked for the three representative models

from the Pareto Front. The first line of each table shows the initial/original model

(I), while the second line shows the final improved model performance (F). Bold

values indicate a lower value in the performance when initial (I) and final (F) models

are compared.

In these tables, it is possible to see that the number of rules with ”low relevance”

selected by the algorithm is higher than expected. Thus, the average values for each

chttp://sci2s.ugr.es/keel/datasets.php
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Table 3. Performance of Fasart Models (according to section 3.1)

Model Fasart

MSEtra MSEtst InterC RN

PLA 3.483 3.621 0.264 48.6

QUA 0.050 0.054 0.253 119.8
ELE 117867 158820 0.258 92.6

ABA 6.872 7.683 0.265 122.8
STP 2.091 2.270 0.250 101.8
WIZ 5.452 16.555 0.278 221.6

WAN 9.813 21.970 0.273 231.8
MOR 1.041 1.258 0.270 52.6
TRE 0.908 1.339 0.269 49.6

case in the interval [0% − 20%] are: 56.8% (Best InterC), 58.8% (Median Acc −
InterC) and 62.2% (Best Acc) for SVD, 55.9% (Best InterC), 58.7% (Median Acc−
InterC) and 62.4% (Best Acc) for P-QR, and 85.1% (Best InterC), 85.2% (Median

Acc − InterC) and 87.1% (Best Acc) for OLS. This can indicate that rules with

lower relevance by orthogonal transformations can be relevant for accuracy goals.

On the other hand, to find a value ”gap” for relevance that allows to discriminate

between relevant and not relevant rules in the rule selection can be too complicated

if sufficient accuracy for the model is desired.

Table 4. Genetic Rule Influence Distribution by Fasart and SVD Decomposition

Best InterC Median Acc− InterC Best Acc

(%) (%) (%)
Models 0-20 20-30 30-100 0-20 20-30 30-100 0-20 20-30 30-100

PLA(I) 70.8 13.6 15.6 70.8 13.6 15.6 70.8 13.6 15.6
PLA(F) 34.1 19.8 46.1 47.3 19.9 32.9 62.5 17.3 20.3

QUA(I) 79.0 10.2 10.9 79.0 10.2 10.9 79.0 10.2 10.9

QUA(F) 73.6 12.5 13.9 74.5 12.2 13.3 76.4 11.7 11.9

ELE(I) 97.8 0.2 1.9 97.8 0.2 1.9 97.8 0.2 1.9

ELE(F) 97.6 0.3 2.2 97.7 0.2 2.1 97.7 0.2 2.0

ABA(I) 66.9 14.3 18.7 66.9 14.3 18.7 66.9 14.3 18.7

ABA(F) 62.1 15.5 22.5 61.6 15.4 23.0 65.2 14.1 20.7

STP(I) 28.3 30.1 41.7 28.3 30.1 41.7 28.3 30.1 41.7
STP(F) 24.7 30.7 44.6 24.7 30.3 45.0 26.1 30.5 43.4

WIZ(I) 66.6 17.6 15.8 66.6 17.6 15.8 66.6 17.6 15.8
WIZ(F) 64.2 18.4 17.4 64.5 18.2 17.4 65.0 18.2 16.8

WAN(I) 75.2 14.8 10.0 75.2 14.8 10.0 75.2 14.8 10.0

WAN(F) 72.6 16.2 11.3 72.6 16.1 11.3 73.5 15.7 10.8

MOR(I) 49.1 13.3 37.6 49.1 13.3 37.6 49.1 13.3 37.6
MOR(F) 41.3 15.3 43.4 41.1 15.2 43.7 43.3 15.4 41.3

TRE(I) 51.6 11.3 37.1 51.6 11.3 37.1 51.6 11.3 37.1
TRE(F) 40.8 12.3 46.9 43.4 11.6 45.0 50.4 11.2 38.5
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Table 5. Genetic Rule Influence Distribution by Fasart and P-QR Decomposition

Best InterC Median Acc− InterC Best Acc
(%) (%) (%)

Models 0-20 20-30 30-100 0-20 20-30 30-100 0-20 20-30 30-100

PLA(I) 68.7 14.4 16.9 68.7 14.4 16.9 68.7 14.4 16.9

PLA(F) 35.5 20.4 44.1 48.0 20.0 32.1 61.9 17.7 20.4

QUA(I) 77.5 12.0 10.5 77.5 12.0 10.5 77.5 12.0 10.5

QUA(F) 74.5 12.2 13.3 74.8 11.7 13.5 77.7 10.7 11.7

ELE(I) 97.8 1.1 1.1 97.8 1.1 1.1 97.8 1.1 1.1
ELE(F) 97.6 1.2 1.2 97.6 1.2 1.2 97.7 1.1 1.1

ABA(I) 63.0 16.9 20.0 63.0 16.9 20.0 63.0 16.9 20.0
ABA(F) 55.6 19.3 25.1 59.5 18.0 22.5 62.6 17.2 20.3

STP(I) 28.3 30.5 41.3 28.3 30.5 41.3 28.3 30.5 41.3

STP(F) 25.3 30.4 44.4 25.1 30.5 44.4 27.9 29.4 42.7

WIZ(I) 66.5 17.7 15.8 66.5 17.7 15.8 66.5 17.7 15.8

WIZ(F) 64.0 18.3 17.7 64.2 18.2 17.6 64.9 18.0 17.2

WAN(I) 75.3 14.9 9.8 75.3 14.9 9.8 75.3 14.9 9.8

WAN(F) 72.4 16.1 11.5 72.8 16.0 11.2 73.0 15.9 11.1

MOR(I) 49.1 13.3 37.7 49.1 13.3 37.6 49.1 13.3 37.6
MOR(F) 38.7 13.7 47.6 42.5 13.8 43.6 48.1 13.6 38.3

TRE(I) 51.6 11.7 36.7 51.6 11.7 36.7 51.6 11.7 36.7

TRE(F) 39.3 13.2 47.5 43.5 12.7 43.8 50.9 11.4 37.8

Table 6. Genetic Rule Influence Distribution by Fasart and OLS Decomposition

Best InterC Median Acc− InterC Best Acc
(%) (%) (%)

Models 0-20 20-30 30-100 0-20 20-30 30-100 0-20 20-30 30-100

PLA(I) 94.2 3.3 2.5 94.2 3.3 2.5 94.2 3.3 2.5

PLA(F) 86.3 7.2 6.5 83.7 8.8 7.5 93.7 2.5 3.8

QUA(I) 96.5 1.5 2.0 96.5 1.5 2.0 96.5 1.5 2.0

QUA(F) 95.0 2.2 2.8 95.0 2.2 2.8 95.5 2.0 2.5

ELE(I) 77.5 14.0 8.4 77.5 14.0 8.4 77.5 14.0 8.4
ELE(F) 75.3 15.4 9.2 75.4 15.4 9.2 76.4 14.8 8.7

ABA(I) 87.5 6.2 6.4 87.5 6.2 6.4 87.5 6.2 6.4

ABA(F) 84.8 7.5 7.7 85.7 6.3 8.0 87.9 5.7 6.5

STP(I) 88.8 5.1 6.1 88.8 5.1 6.1 88.8 5.1 6.1

STP(F) 88.4 5.2 6.5 87.7 5.5 6.8 88.2 5.0 6.8

WIZ(I) 98.6 0.5 0.9 98.6 0.5 0.9 98.6 0.5 0.9
WIZ(F) 98.3 0.6 1.1 98.3 0.6 1.1 98.3 0.6 1.1

WAN(I) 98.4 0.7 1.0 98.4 0.7 1.0 98.4 0.7 1.0
WAN(F) 98.1 0.8 1.1 98.1 0.8 1.1 98.2 0.8 1.0

MOR(I) 76.8 9.1 14.1 76.8 9.1 14.1 76.8 9.1 14.1
MOR(F) 74.9 8.2 16.9 75.5 8.9 15.6 78.3 7.5 14.1

TRE(I) 73.8 8.5 17.7 73.8 8.5 17.7 73.8 8.5 17.8

TRE(F) 65.6 8.1 26.3 66.5 8.7 24.8 72.0 7.5 20.4

5.2. Genetic Rule Selection: Results

This section shows the main results obtained by the NSGA-II genetic algorithm

and the fitness-functions, that are based on the orthogonal transformations and
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the accuracy-interpretability trade-off. Tables 7, 8 and 9 show the averaged results

obtained from the Pareto Front work over 30 runs for each case study considered:

the MSE for training (MSEtra) and testing (MSEtst), the interpretability (InterC)

and the mean rule number (RN). Values in bold indicate a better performance when

initial (I) and final (F) models are matched.

In general, these results for the three orthogonal transformations, on three

Pareto Front points analyzed (Best InterC, Median Acc-InterC and Best Acc), show

that the interpretability have been improved, reducing the complexity and the num-

ber of rules of the fuzzy models. On the other hand, the acuracy of the models has

been preserved in reasonable levels, without a too much loss of accuracy, and, in

some cases, the accuracy has been also improved.
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Then, for checking the scope of orthogonal transformations using genetic algo-

rithms, the Wilcoxon test is run on error and interpretability/complexity indices for

the three characteristic models from the Pareto front. This test is used for detecting

significant differences between two sample means: it is analogous to the paired t-

test in non-parametric statistical procedures. In general, the test asks (H0): do two

samples come from populations with the same distributions?. It is based on ranks

of the differences between pairs of data.

The Wilcoxon test for the three orthogonal transformations (Tables 10, 11 and

12) accepts that:

• Best InterC models have improved the interpretability and complexity index

preserving the accuracy of the original models except in QRP.

• Median Acc− InterC models have an accuracy similar to the original models,

and the interpretability and complexity indexes are improved. So the accuracy

has been preserved without relevant loss of precision.

• Best Acc models have improved the interpretability and complexity index and

the accuracy is preserved.

Table 10. Wilcoxon test for SVD: original model (R+) and improved model (R-)

Best InterC
Measure R+ R- Hypothesis (alpha=0.10) p-value

MSEtst 12.0 33.0 Accepted 0.214
NR 45.0 0.0 Rejected 0.008

InterC 45.0 0.0 Rejected 0.008

Median Acc− InterC
Measure R+ R- Hypothesis (alpha=0.10) p-value

MSEtst 20.0 25.0 Accepted 0.767

NR 45.0 0.0 Rejected 0.008
InterC 45.0 0.0 Rejected 0.008

Best Acc
Measure R+ R- Hypothesis (alpha=0.10) p-value

MSEtst 39.0 6.0 Rejected 0.051
NR 45.0 0.0 Rejected 0.008

InterC 40.0 5.0 Rejected 0.038

In general, for the three orthogonal transformations taken into account, and for

the three Pareto Front points analyzed (Best InterC , Median Acc − InterC and

Best Acc), the rule selection has generated rule subsets that have improved their

interpretability, reducing their complexity and preserving a reasonable level of ac-

curacy in comparison with other works involving the same data sets. In some cases,

the accuracy has been improved through the rule selection, simultaneously improv-

ing its interpretability. This is more notorious in the Best Acc point in comparison

with the others: Best InterC and Median Acc− InterC . In this Best Acc point, in

averaged values for all data sets, the accuracy (∆MSEtra
∼= −9, ∆MSEtst

∼= −9),
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Table 11. Wilcoxon test for QRP: original model (R+) and improved model (R-)

Best InterC
Measure R+ R- Hypothesis (alpha=0.10) p-value

MSEtst 7.0 38.0 Rejected 0.066

NR 45.0 0.0 Rejected 0.008
InterC 45.0 0.0 Rejected 0.008

Median Acc− InterC
Measure R+ R- Hypothesis (alpha=0.10) p-value

MSEtst 18.0 27.0 Accepted 0.594

NR 45.0 0.0 Rejected 0.008

InterC 44.0 1.0 Rejected 0.011

Best Acc
Measure R+ R- Hypothesis (alpha=0.10) p-value

MSEtst 35.0 10.0 Accepted 0.139
NR 45.0 0.0 Rejected 0.008

InterC 38.0 7.0 Rejected 0.066

Table 12. Wilcoxon test for OLS: original model (R+) and improved model (R-)

Best InterC
Measure R+ R- Hypothesis (alpha=0.10) p-value

MSEtst 11.0 34.0 Accepted 0.173
NR 45.0 0.0 Rejected 0.008

InterC 45.0 0.0 Rejected 0.008

Median Acc− InterC
Measure R+ R- Hypothesis (alpha=0.10) p-value

MSEtst 19.0 26.0 Accepted 0.678

NR 45.0 0.0 Rejected 0.008
InterC 45.0 0.0 Rejected 0.008

Best Acc
Measure R+ R- Hypothesis (alpha=0.10) p-value

MSEtst 36.0 9.0 Accepted 0.110

NR 45.0 0.0 Rejected 0.008

InterC 39.0 6.0 Rejected 0.051

interpretability (∆InterC ∼= −16) and the number of rules (∆RN ∼= −19) have

been improved for every orthogonal transformation used.

On the other hand, the number of fuzzy rules is decreased from the point of

Best InterC and to the point Best Acc, and their accuracy too.

This can be connected with the role of lower influence rules by orthogonal trans-

formations (lower values): in Tables 4, 5 and 6, the distribution of these values is

shown by intervals. In general, the genetic rule selection has to choose a relevant

number of rules whose importance values are low: according to the usual rule selec-

tion by orthogonal transformations, these rules must not be considered. The number

of this rule type is increased from the point of Best InterC to the point Best Acc,

in proportion to the increase in the accuracy. Thus, these rules have an accuracy

role for the fuzzy models.
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Another point to be analyzed is the level of influence preserved, i.e., the aggre-

gation of the individual influence of the rules selected in the simplified models: in

Tables 13, 14 and 15, the average values are shown for each data set, each Pareto

Front Point considered and each orthogonal transformation. In general, this value

is around 80% − 90%, there are no relevant differences between the several cases

shown, so the selection has saved most of the information of the original model.

This can give an idea of how to define a criterion for manual or automatic rule

selection.

Table 13. Genetic Influence Preservation Rate by Fasart and SVD Decomposition

Best InterC Median Acc− InterC Best Acc

Models mean(std) mean(std) mean(std)

PLA(F) 0.481(0.075) 0.656(0.079) 0.713(0.070)

QUA(F) 0.799(0.057) 0.824(0.049) 0.799(0.045)

ELE(F) 0.935(0.031) 0.956(0.023) 0.964(0.017)

ABA(F) 0.843(0.051) 0.876(0.036) 0.883(0.028)

STP(F) 0.936(0.041) 0.925(0.036) 0.897(0.039)

WIZ(F) 0.874(0.058) 0.887(0.044) 0.871(0.041)

WAN(F) 0.855(0.068) 0.874(0.055) 0.851(0.051)

MOR(F) 0.815(0.090) 0.880(0.065) 0.803(0.063)

TRE(F) 0.716(0.111) 0.871(0.106) 0.867(0.079)

Table 14. Genetic Influence Preservation Rate by Fasart and P-QR Decomposition

Best InterC Median Acc− InterC Best Acc
Models mean(std) mean(std) mean(std)

PLA(F) 0.524(0.087) 0.679(0.055) 0.721(0.064)

QUA(F) 0.724(0.065) 0.763(0.051) 0.743(0.043)

ELE(F) 0.937(0.024) 0.952(0.017) 0.960(0.014)

ABA(F) 0.773(0.042) 0.853(0.047) 0.846(0.036)

STP(F) 0.907(0.037) 0.924(0.040) 0.889(0.037)

WIZ(F) 0.861(0.050) 0.885(0.036) 0.878(0.026)

WAN(F) 0.869(0.038) 0.896(0.038) 0.874(0.031)

MOR(F) 0.797(0.057) 0.871(0.058) 0.799(0.064)

TRE(F) 0.738(0.082) 0.832(0.049) 0.866(0.091)

At this point, if this selection is carried out by hand, considering these preserved

values of influence and using the well-known criterion to select the rules with most

influence (value) until this aggregated level is achieved for each data set, then the

results are shown in Tables 16, 17 and 18. These tables show the mean of each

individual measurement: the MSE for training (MSEtra) and testing (MSEtst), the

interpretability (InterC) and the mean rule number (RN). Values in bold indicate

a lower value in the performance when initial (I) and final (F) models are compared.
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Table 15. Genetic Influence Preservation Rate by Fasart and OLS Decomposition

Best InterC Median Acc− InterC Best Acc
Models mean(std) mean(std) mean(std)

PLA(F) 0.435(0.181) 0.707(0.078) 0.721(0.048)

QUA(F) 0.791(0.132) 0.865(0.090) 0.812(0.124)

ELE(F) 0.976(0.018) 0.977(0.022) 0.969(0.037)

ABA(F) 0.851(0.036) 0.902(0.029) 0.851(0.049)

STP(F) 0.922(0.046) 0.946(0.038) 0.903(0.040)

WIZ(F) 0.902(0.043) 0.917(0.035) 0.886(0.024)

WAN(F) 0.902(0.058) 0.928(0.038) 0.889(0.060)

MOR(F) 0.781(0.099) 0.829(0.086) 0.736(0.063)

TRE(F) 0.736(0.108) 0.845(0.074) 0.916(0.043)

Here, it is possible to check that the accuracy is worse than the selection carried

out by the genetic algorithm, also the number of rules is lower. This is connected

with the role of the rule associated with lower values of influence by orthogonal

transformations. This can be due to the conservative behavior of the genetic selec-

tion, perhaps, in some of the cases involves in this work, other more risky selections

could be possible, reducing the number of rules, on the basis of lower influential

rules and reducing the accuracy, but keeping it within competitive levels.
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The fact that there are no significant differences in the results among the or-

thogonal transformations, despite the different nature of each one, can be due to

the trade-off considered through the genetic rule selection. The consideration of this

trade-off can compensate the different attention paid by each orthogonal transfor-

mation to rule antecedents or outputs.

6. Conclusions

This work is focused on the checking of the capacities and drawbacks of orthogonal

transformations for complexity reduction and interpretability improving of fuzzy

models. This aim is carried out by rule selection using a genetic algorithm subject

to accuracy-interpretability trade-off, and the influence rule provided by orthogonal

transformations. Three of these transformations have been used: SVD, P-QR and

OLS, each of which has its own behavior in this task.

In order to check this, nine regression problems have been involved in the ex-

perimental work. The results achieved by the genetic selection on complexity, in-

terpretability and accuracy are reasonable, but a bit conservative from the number

of rules-accuracy point of view. The experiments have demonstrated the relevance

of the rules associated with lower influence values by orthogonal transformations,

so these rules will not be considered in the traditional management of rule selec-

tion, but they have relevance from the accuracy point of view. In the Best Acc

Pareto Front point it has been possible, in averaged values for all data sets, to

improve simultaneously: the training error (MSEtra), the test error (MSEtst), the

interpretability (InterC) and the number of rules (RN).

On the other hand, some references on the level rule influence to be preserved

in the simplified fuzzy model have been obtained. This can be used in future for

the definition of the criteria to select the fuzzy rules.

Another aspect to be remarked on is that there are no significant differences

between the orthogonal transformations considered in this work, despite their dif-

ferent natures and behavior. This can be explained by the consideration of the

accuracy-interpretability trade-off through the genetic rule selection.
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