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Abstract

In this contribution, we propose a two-stage method for Accurate Fuzzy
Modeling in High-Dimensional Regression Problems using Approximate Taka-
gi-Sugeno-Kang Fuzzy Rule-Based Systems. In the first stage, it is per-
formed an evolutionary data base learning (involved variables, granularities
and slight fuzzy partition displacements) together with an inductive rule
base learning within the same process. The second stage is a post-processing
process to perform a rule selection and a scatter-based tuning of the mem-
bership functions for further refinement of the learned solutions. Moreover,
the second stage incorporates an efficient Kalman filter to learn the coef-
ficients of the consequent polynomial function in the Takagi-Sugeno-Kang
rules. Both stages include mechanisms in order to significantly improve the
accuracy of the model and to ensure a fast convergence in high-dimensional
and large-scale regression datasets.

We tested our approach on 28 real-world datasets with different num-
bers of variables and instances. Five well-known methods have been ex-
ecuted as references. We compared the different approaches by applying
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non-parametric statistical tests for pair-wise and multiple comparisons. The
results confirm the effectiveness of the proposed method, showing better re-
sults in accuracy within a reasonable computing time.

Keywords: Accurate Fuzzy Modeling, Takagi-Sugeno-Kang Rules,
Multi-Objective Genetic Algorithms, Embedded Genetic Data Base
Learning, Regression, High-Dimensional and Large-Scale Problems.

1. Introduction

In Takagi-Sugeno-Kang (TSK) Fuzzy Rule-Based Systems (FRBSs) [1, 2],
the rule structure is formed by linguistic variables in the antecedent and
a polynomial function of the input variables in the consequent. This rule
structure involves the loss of interpretability to some degree with respect to
linguistic (Mamdani) FRBSs [3, 4], although it allows the model to be much
more accurate. Due to this reason, TSK FRBSs have been successfully ap-
plied to regression and control problems [5, 6] with the main aim of obtaining
highly accurate approximators [7]. The learning of premises and consequents
of TSK FRBSs is usually done in different stages, even alternatively, due to
the high complexity of the involved search space. However, both parts should
be obtained together within the same process, since they are dependent on
each other. Evolutionary Algorithms (EAs) are able to learn together the
antecedents and consequents of the TSK rules. This hybridization of fuzzy
systems and EAs is well-known as evolutionary or Genetic Fuzzy Systems
(GFSs) [8]. However, they usually have scalability problems in terms of com-
putational time and convergence in datasets with a high number of variables
and/or with a large amount of data.

In recent years, having to deal with large or high-dimensional datasets
has become more common, representing a hot and still open topic in the
GFSs framework [8, 9]. Large datasets include many instances, while high-
dimensional datasets refer to datasets with a high number of variables [10].
These kinds of datasets represent a challenge for GFSs: the size of large
datasets affects the fitness function computation, thus increasing the compu-
tational time, whereas high-dimensional datasets increase the search space.
Moreover, in most of the cases, the wider the search space the greater the
number of generated rules. Resulting models can be very complex, including
hundreds of rules, which increases even more their evaluation computational
time and usually lead to overfitting (especially when dealing with potential

2



highly accurate systems as TSK-type FRBSs).
Therefore, even if accuracy is the main single objective, tackling large or

high-dimensional datasets is not only devoted to deal with many variables
and/or instances but also to control the complexity of the obtained models.
Since this is difficult to find this optimal trade-off (the simplest structure
presenting near optimal accuracy), Multi-Objective Evolutionary Algorithms
(MOEAs) [11, 12] appear as an interesting tool to find the best compromise
by focussing on the most accurate solutions but avoiding too complex ones
[13]. This combination of fuzzy systems and MOEAs is an important branch
of GFSs known as Multi-Objective Evolutionary Fuzzy Systems (MOEFSs)
[9]. Even though some MOEFSs have been applied to learn TSK FRBSs [14,
15], most of them where related to improve their interpretability on synthetic
or very simple problems with a few number of variables and instances (see
[9] for a complete review on these kinds of systems).

Only a few MOEFSs have been particularly proposed to tackle high
and/or large datasets. The first two approaches [16, 17] are devoted to a
fast derivation of Mamdani linguistic rules including some mechanisms to
control dimensionality and the appropriate use of a reduced set of examples
or instance selection (training set selection) respectively. However, the search
space for learning TSK rules is more complicated than in the case of Mam-
dani rules due to the complexity to obtain the consequent linear parameters.
In fact, one of the few approached devoted to tackle scalability in the deriva-
tion of TSK FRBSs [18] is devoted to speed-up the Kalman filter [19] to
obtain the consequent coefficients, in order to integrate it in a MOEA. This
is based on decoupling the rules to only re-estimate the coefficients of the
added or modified rules when they apply mutation operators. While this is
not applicable for global learning (global modification of the rules by tuning
of the antecedents, etc.) this is an interesting approach that was applied to
several sintetic problems with up to 10 variables and 70,000 examples, given
an user predefinition of the fuzzy partitions (uniform partitions with a given
number of fuzzy sets per variable fixed by hand for each particular dataset).
Finally, another recent trend is the use of parallel computation [20, 21] in or-
der to share the computing load among different CPUs. In any case, we will
focus on the design of improved sequential algorithms since these kinds of
mechanisms could be easily integrated at any evolutionary approach for par-
allel fitness computation, improving even more those sequential algorithms
that were particularly designed for big datasets.

In this contribution, we present a scalable two-stage MOEFS for accu-
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rate fuzzy modeling by learning the global structure of TSK FRBSs, namely
METSK-HDe (Multiobjective Evolutionary learning of TSK systems for
High Dimensional problems with estimated error). The first stage is based
on the adaptation of some components from [16] (devoted to learn Mamdani-
type rules) in order to perform a fast identification of the most accurate
TSK zero-order candidate structure, by automatic learning of the appro-
priate fuzzy partitions and candidate rules. This includes a new objective
to control overfitting and a new rule generation method to obtain zero-order
TSK consequents. However, the second stage includes the main novelties con-
sidering a completely different coding scheme (which involves a much larger
search space) and a new way to efficiently integrate the Kalman filter while
performing a global scatter-based tuning of the whole TSK FRBSs (evolving
antecedents and consequents together). In both stages, we will consider the
use of MOEAs as a tool to also control the complexity of the models and the
system overfitting, but with the main global objective of obtaining accurate
models. In this way, even though our first and main objective is minimiz-

ing the system error, two additional objectives have been considered in both
stages, minimizing the number of rules and maximizing the medium coverage

degree of the examples.
In order to do this, in the first stage we present an effective Multi-

Objective Evolutionary Algorithm (MOEA) [11, 12], based on an embedded
genetic Data Base (DB) learning [8] (involved variables, granularities and a
slight lateral displacement [22] of fuzzy partitions). The Rule Base (RB) is
obtained within the same process using a new efficient ad-hoc algorithm that
also estimates the coefficients of the TSK zero-order consequents. The pro-
posed MOEA includes some specific mechanisms to ensure a fast learning of
TSK FRBSs in order to obtain and fix a candidate model structure but pre-
venting a premature convergence in problems with high number of variables
and examples. The second stage represents a new post-processing process
based on a second MOEA to perform a rule selection and a fine scatter-
based tuning of the Membership Functions (MFs). Moreover, it incorporates
a new efficient hybridization of a Kalman filter [19] and the proposed MOEA
to estimate the coefficients of the consequent polynomial functions together
with the antecedent parameters of the TSK rules, which helps to significantly
improve the accuracy of the model.

We tested our approach on 28 real-world regression datasets with a num-
ber of variables ranging from 2 to 40 and a number of samples ranging from
337 to 40768. When it was possible, depending on the dimensionality, we
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executed four well-known accuracy-driven single-objective methods in order
to have some good performance references. Further, since some components
of the proposed approach are based on some ideas from [16], we have also
performed an internal comparison in order to show the differences between
the new scalable method for precise scatter-based modeling and the previous
scalable MOEFS for linguistic fuzzy modeling [16]. To assess the results ob-
tained by the different algorithms, we have applied non-parametric statistical
tests for pair-wise and multiple comparisons, considering for the MOEAs the
average of the most accurate solution from each Pareto front. The results
obtained demonstrate the effectiveness of the proposed method, particularly
in terms of accuracy when dealing with high-dimensional and large-scale
datasets. It is, the method proposed obtained the most accurate results with
significant statistical differences within a reasonable computing time.

This article is organized as follows. The next section describes the general
TSK fuzzy model structure considered in this work. Section 3 presents the
proposed method describing its main characteristics and the genetic oper-
ators considered. Section 4 shows the experimental study and the results
obtained. Finally, in section 5 we point out some conclusions.

2. Takagi-Sugeno-Kang Fuzzy Rule-Based Systems

In [1, 2], Takagi and Sugeno proposed a fuzzy model based on rules in
which the antecedents are comprised of linguistic variables as in the case of
Mamdani FRBSs [3, 4]. However, as the main difference, this kind of model
is based on rules in which the consequent is not a linguistic variable but a
function of the input variables. These kinds of rules present the following
structure:

If X1 is A1 and . . . and Xn is An then
Y = p1 ·X1 + . . .+ pn ·Xn + p0,

,

where Xi are the system input variables, Y is the system output variable, pi
are real-values coefficients and Ai are fuzzy sets. Such rules are called TSK

fuzzy rules, in allusion to its creators [2].
The output of a TSK FRBS considering a Knowledge Base (KB) com-

posed of m TSK rules is computed as the weighted average of the individual
rule output Yi, i = 1 . . .m: ∑m

i=1 hi · Yi∑m
i=1 hi

,
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with hi = T (A1(x1), . . . , An(xn)) being the matching degree between the
antecedent part of the ith rule and the current system inputs x = (x1, . . . , xn),
and with T being a t-norm.

TSK FRBSs have been applied successfully to a great quantity of prob-
lems. The main advantage of these kinds of systems is the fact of presenting
a compact system equation for estimating the parameters pi using classical
methods, and obtaining an accurate system, which can be very useful for
accurate fuzzy modeling.

On the other hand, instead of considering linguistic partitions, we could
consider scatter partitions. The scatter approach is based on rules presenting
the following structure:

Ri : If X1 is Ai1 and . . . and Xn is Ain then Y is Bi ,

where Ai and Bi are fuzzy sets specific to each fuzzy rule. Approaches
based on scatter partitions present interesting advantages that make them
very suitable for precise modeling purposes:

• The expressive power of the rules that present their own specificity in
terms of the fuzzy sets involved in them, thus introducing additional
degrees of freedom in the system.

• The number of rules is adapted to the complexity of the problem, need-
ing fewer rules in simple problems, and being able to use more rules if
it is necessary. This is likely to be of benefit in tackling the curse of
dimensionality when scaling to multidimensional systems.

In this article we focus on developing accurate TSK fuzzy models based
on scatter partitions, which can provide more accurate solutions to different
problems, especially real-world high-dimensional and large-scale regression
problems with accuracy as the main requirement.

3. A Method for Evolutionary Learning of Scatter-Based TSK FRBSs
in High Dimensional and Large-Scale Problems

This section presents the proposed two stage method for regression prob-
lems with high number of variables and/or examples. In the first stage, an
effective MOEA is applied to learn an initial DB, based on a fuzzy grid in or-
der to obtain zero-order TSK candidate rules and the second stage applies an
advanced post-processing MOEA for fine scatter-based evolutionary tuning
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of MFs combined with a rule selection (see figure 1). These algorithms incor-
porate some of the ideas of the fast and scalable multi-objective genetic fuzzy
system, FSmogfse [16], for linguistic fuzzy modeling in complex regression
problems.
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Figure 1: Learning scheme of the proposed two stage algorithm.

In the following, we include a preliminary section describing a mechanism
for error estimation in large-scale problems [16] and an adaptation of Wang
and Mendel [23] method (WM) for obtaining zero-order TSK rules. Then,
sections 3.2 and 3.3 present both stages of the proposed method.

3.1. Preliminaries: Mechanisms integrated in the MOEAs

In this section, we present two mechanisms used in the proposed algo-
rithm. The first one is an error estimation mechanism used in both stages
of the algorithm. This mechanism avoids using a big percentage of the ex-
amples for error computation, estimating it from a reduced subset of the
examples. The second one is used only in the first stage to derive a set of
TSK zero-order rules as the RB generation process.

3.1.1. Mechanism for Error Estimation: Partial Error Computation on Large-

Scale Datasets

In order to handle the scalability problem in datasets with a large amount
of data, we propose to use a new mechanism presented in [16] for fast error
computation on large-scale datasets. This procedure is based on taking a
small percentage of the training examples to estimate the error of new gen-
erated solutions. Once these errors are estimated, only those solutions in the
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elite set (non dominated solutions) are evaluated considering the whole set
of examples E.

The subset of examples Ee for error estimation is obtained by random
selection of ⌊re ∗m⌋ examples in each generation. Where re is the percentage
of samples used to estimate the error and m being the dataset size. If⌊re ∗
m⌋ ≥ 1000 then re = 1000/m, i.e., no more than 1000 examples will be
considered since this was showed to be good enough when compared to the
use of all the examples (see [16] on the use or not of the error estimation
mechanism). Ee is fixed for a generation. After each generation the examples
are replaced by random selection from those examples that were not used in
the previous generation. In this way, we promote a rotation of the selected
examples.

For each new solution to be evaluated we compute its error in Ee (error
estimation). If by taking into account the estimated error and the current
non dominated solutions the new individual represents a new non dominated
solution, we perform a complete evaluation by considering the estimated error
and the examples in E − Ee. This way, the Pareto set will always contain
solutions evaluated considering 100% of the examples. See Figure 2 for a
scheme on this mechanism.
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Figure 2: Flowchart scheme of the error estimation mechanism for a new individual gen-
erated by the genetic algorithm.

3.1.2. Method for an effective generation of TSK candidate rules

We apply an adaptation of the WMmethod [23] in order to obtain a whole
KB from a given DB (a given set of linguistic terms and their associated
MFs definitions). In contrast to WM, the consequents of TSK rules are

8



obtained with all the coefficients with value 0 and the independent terms are
computed as the average of the examples covered by the rule weighted by
their matching.

However, in problems with a high number of variables and/or examples
this method can take a long time to derive thousands of rules. To avoid this
undesired situation once it is integrated within the MOEA of our first stage
a cropping criterion has been added to the method. In this way, the method
stops the process if the RB reaches a limit of 100 rules and mark the RB as
incomplete. We propose a maximum number of 100 rules for the rule crop-
ping mechanism based on some empirical trials, which showed no significant
differences in models obtained with more rules. Higher values or even those
that do not use cropping do not obtain significantly more accurate solutions.
In fact, the final number of rules obtained by the proposed algorithm in 28
real-world problems is always under 70. To penalize incomplete solutions
(which should disappear during the evolution of the first stage MOEA), we
estimate the number of rules as the product of the number of labels of the
input variables and in the case of the Mean Squared Error it is penalized
with a fixed large error.

3.2. First stage: An effective MOEA for the initial KB learning

The proposed MOEA is based on the embedded genetic DB learning
[8] (used variables, granularities and lateral displacements of fuzzy parti-
tions [22]) which allows a fast learning of the structure of the initial TSK
FRBSs, reducing its dimensionality and making use of some effective mech-
anisms in order to ensure a fast convergence in high-dimensional and large-
scale regression datasets. The embedded genetic DB learning is based on an
evolutionary process coding and evolving different DBs which are evaluated
by applying a fast inductive RB generation method and computing the error
of the so obtained FRBS (see figure 1.a for a scheme of this kind of approach).

The following subsections describe the main features of the proposed algo-
rithm: coding scheme, objectives, initial population, crossover and mutation
operators, incest prevention mechanism and stopping condition.

3.2.1. DB Codification

In order to improve the performance and to decrease the complexity of
the classic tuning approaches in complex search spaces, an effective tuning
model has been recently proposed for FRBSs in [22] considering the linguistic
2-tuples representation scheme. The linguistic 2-tuples representation allows
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the lateral displacement of the MFs by considering only one parameter (slight
displacements to the left/right of the original MFs). Since the three parame-
ters usually considered per label are reduced to only one symbolic translation
parameter, this proposal decreases the learning problem complexity, helping
to decrease the model error and facilitating a significant decrease in the model
complexity. It was extended in [16] for using only one parameter per variable
so that the same displacement is applied for all the corresponding MFs. See
figure 3 for an example on this kind of representation. We will use this last
approach as a way to allow a slight efficient tuning while DB learning.

Figure 3: Slight lateral displacement in [-0.1, 0.1].

In this way, a double coding scheme (C = CG + CL) to represent both
parts, granularity and translation parameters, is considered:

• Number of labels (CG): This part is a vector of integer numbers with
size N (with N representing the number of input variables) in which
the granularities of the different variables are coded,

CG = (L1, . . . , LN ) .

Each gene Li represents the number of labels used by the i-th variable
and takes values in the set {2, . . . , 7}. Additionally, it can take a value
equal to 1 to determine that the corresponding variable is not used.

• Lateral displacements (CL): This part is a vector of real numbers with
size N in which the displacements of the different variables are coded
[22]. In this way, the CL part has the following structure (where each
gene is the displacement value of the fuzzy partition of the correspond-
ing linguistic variable and takes values from [−0.1, 0.1]),

CL = (α1, . . . , αN ) .
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3.2.2. Objectives

In order to evaluate a given individual, the adaptation of WM method
(see subsection 3.1.2) is applied to the associated DB, in order to obtain the
corresponding RB. Once a complete KB is obtained the following objectives
are calculated:

1. Minimize the Mean Squared Error (MSE), which is our main objective:

MSE =
1

2 · |E|

|E|∑

l=1

(F (xl)− yl)2,

with |E| being the dataset size, F (xl) being the output obtained from
the FRBS decoded from a given chromosome when the l-th example is
considered and yl being the known desired output.

2. Minimize the Number of Rules (NR), to control the complexity and
overfitting.

3. Maximize the medium coverage degree of the examples, for helping to
control overfitting.

3.2.3. Initial Gene Pool

The initial population will be comprised of two different subsets of indi-
viduals:

• In the first subset, each chromosome has the same number of labels
for all the system input variables. In order to provide diversity in
the CG part, these solutions have been generated by considering all
the possible combinations in the input variables, i.e., from 2 labels to
7 labels. Additionally, for each of the these combinations two copies
are included with different values in the CL part. The first one with
random values in [−0.1, 0.0] and the second one with random values
in [0.0, 0.1]. If there is no space for these solutions, they are included
from the smallest granularities (the most interesting combinations in
principle) to the highest possible ones.

• In the second subset, we generate random solutions in order to com-
pletely fill the population (values in {2, . . . , 7} for CG and values in
[−0.1, 0.1] for CL).
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Finally, except in the cases of problems with less than three input vari-
ables, an input variable v is removed at random, Lv = 1. This action is
repeated until no more than 5 variables remain in all the individuals. This
process is applied to all the individuals in the population in order to avoid
the generation of solutions that make no sense (because of their exorbitant
number of rules).

3.2.4. Crossover and Mutation Operators

The crossover operator depends on the part of the chromosome to which it
is applied. A crossover point is randomly generated and the classical crossover
operator is applied to this point for the CG part. The Parent Centric BLX
(PCBLX) operator [24], which is based on BLX-α, is applied to the CL part.

In this way, four new individuals are obtained by combining the two
offspring generated from CG with the two offspring generated from CL. For
each of them, the mutation operator is applied with probability Pm. The
mutation operator decreases by 1 the granularity in a gene g selected at
random (Lg = Lg − 1) or randomly determines a higher granularity in {Lg +
1, . . . , 7} with the same probability. No decreasing is performed when it
provokes DBs with only one input variable. The same gene is also changed
at random in CL. Finally, after considering mutation, only the two most
accurate individuals are taken as descendants.

3.2.5. Incest Prevention and Stopping Condition

An incest prevention mechanism has been included in the CL parts by
following the concepts of CHC [25], to maintain the population diversity and
avoid premature convergence. Only parents whose hamming distance divided
by 4 is greater than a threshold is crossed. Because it uses a real encoding
scheme in CL, each gene is transformed into gray code with a fixed number
of bits per gene (BGenes). This threshold value is initialized as follows:
L = (#GenesCL ∗ BGene)/4, where #GenesCL is the number of genes in
the CL part. The algorithm ends when a maximum number of evaluations
are reached or when L is below zero.

3.3. Second stage: An advanced post-processing MOEA to perform rule se-

lection, fine tuning of MFs and efficient least-squares-based consequent

coefficients adjustment

Once a complete zero-order TSK KB is obtained in the first stage, a
post-processing MOEA is applied to perform a tuning of MFs and a rule
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selection, which will help to significantly improve the accuracy. To this end,
we present a new MOEA for accurate TSK FRBSs tuning and rule selec-
tion based on a previous MOEA, namely SPEA2E/E [26]. The new proposed
MOEA includes the error estimation procedure, described in 3.1.1. Further,
a least-squares-based iterative mechanism has been integrated to allow conse-
quent parameters adaptation accordingly to the system evolution (see figure
1.b for a scheme of this kind of approach).

The following subsections describe the main components of the post-
processing MOEA.

3.3.1. Coding Scheme, Objectives and Initial Default Rule Generation

A triple coding scheme for classical tuning (CT ), rule selection (CS) and
coefficients of the consequents (CC) is used: C = CT + CS + CC

• Tuning of MFs (CT ): Since this stage performs a scatter-based fine
tuning, in this part a real coding is used where we consider the pa-
rameters of all the MFs per rule individually,

Ci = (. . . , ai1, b
i
1, c

i
1, . . . , a

i
N ′, biN ′ , ciN ′, . . .), i = 1, . . . , m,

with aij , b
i
j and cij being the definition points of the j-th MF of the i-th

rule, with N ′ being the number of input variables determined in the
first stage and with m being the number of initial rules.

• Rule selection (CS): consists of binary-coded strings with size m. De-
pending on whether a rule is selected or not, values ‘1’ or ‘0’ are re-
spectively assigned to the corresponding gene.

• Coefficients of the consequents (CC): This is a vector of real num-
bers with size (N ′ + 1) ∗m in which the coefficients of the consequent
polynomial function for each TSK rule are encoded,

CC = (. . . , pi1, . . . , p
i
N ′, p0, . . .), i = 1, . . . , m.

This stage of the algorithm considers the same three objectives presented
in section 3.2.2. However, since this time we are performing a rule selection,
in order to ensure a complete covering of the training examples, we apply a
penalization to the MSE value if any training example is not covered by any
rule. In this case, once we compute the MSE associated to this undesired
solution we sum to it the MSE of the initial solution as penalization. This
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ensures that the most accurate solution through evolution is always covering
all the training examples.

In any case, based on the initial zero-order TSK KB obtained in the
first stage, a default general rule (to be used in case of uncovered data) is
initially generated by applying the standard Kalman filter (10 iterations)
and by taking into account examples whose coverage by the initial KB is
under 0.2 (which are close to uncovered regions). In any event, at least the
two examples with the least covering degree are taken into account. Since
this is a default rule, its activation degree (matching) is fixed to 1.0 for
all the examples selected to apply the filter. The so obtained rule will be
applied each time a given input is not covered by any of the rules when we
are evaluating a new individual (MSE computation). Since we ensure the
covering of all the training examples, the real aim of this rule is to provide
a reasonable output for new uncovered data from real systems or test data
application.

3.3.2. Initial Gene Pool

The initial population is obtained with all individuals having all genes
with value ‘1’ in CS. In the CT part, the initial DB is included as an initial
solution and the remaining individuals are randomly generated maintaining
their values within their respective variation intervals. The variation intervals
for each of the three definition points of each MF are fixed in the following
way from the initial corresponding MF (See Figure 4):

[I laj , I
r
aj ] = [aj − (bj − aj)/2, aj + (bj − aj)/2]

[I lbj , I
r
bj
] = [bj − (bj − aj)/2, bj + (cj − bj)/2]

[I lcj , I
r
cj ] = [cj − (cj − bj)/2, cj + (cj − bj)/2]

(1)

Figure 4: Tuning by changing the basic MF parameters and corresponding variation in-
tervals

Finally, the CC part of the first individual includes the consequents ob-
tained in the first stage. Then, we apply the standard Kalman filter to the
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initial individual (1 iteration) in order to obtain estimated initial coefficients.
The remaining individuals are initialized with these same coefficients. We do
not use the Kalman filter to obtain the coefficients for all individuals, because
it would significantly increase the computational time of the algorithm. In
the next subsections, we will present an efficient way to integrate the Kalman
filter in order to also apply it through evolution.

3.3.3. Crossover and Mutation Operators

An incest prevention mechanism has been included by following the con-
cepts of CHC [25] and by only taking into account the CT parts. Following
the original CHC scheme (for binary coding), two parents are crossed if their
hamming distance divided by 4 is over a predetermined threshold, L (see
formulation in subsection 3.2.5).

The BLX-0.5 [27] crossover is applied to obtain the CT part of the off-
spring. The binary part CS is obtained based on the CT parts (MF param-
eters) of the corresponding parents and offspring [13, 26]. For each gene in
the CS part which represents a concrete rule:

1. The displacement parameters of the MFs involved in such rules are
extracted from the corresponding CT parts for each individual involved
in the crossover (offspring and parents 1 and 2). These displacements
represent the specific differences between these three individuals for
such rules.

2. Euclidean normalized distances are computed between the offspring
rule and each parent rule by considering the center points (vertex) of
the MFs comprising such rules. The differences between each pair of
centers are normalized by the amplitudes of their respective variation
interval.

3. The parent with the closest distance to the offspring is the one that
determines whether this rule is selected or not for the offspring by
directly copying its value in CS for the corresponding gene.

The CC part is obtained by directly copying its values from the parent
with the closest distance in CS to the offspring. In this way, the coefficients
are only inherited from the closest parent since, actually, they will be mainly
learned through the integrated efficient Kalman filter proposed in the follow-
ing section.

The mutation operator is only applied in the CS part and this favors rule
extraction since mutation is only engaged to remove rules.
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3.3.4. Efficient application of the Kalman filter

Kalman filter [19] is a classic technique to estimate the coefficients of the
consequent polynomial function in the TSK rules. This technique obtains
good results in training, but usually presents overfitting in test. To avoid this
undesired situation, only a small percentage of samples (the same examples
used to estimate errors, see section 3.1.1) is used to obtain the coefficients of
the TSK rules.

In this sense, once a new solution is generated by crossover and mutation,
and evaluated on the small percentage of examples, if the estimated error is
the best known error until this moment, which means it would be non domi-
nated and therefore a candidate to be evaluated in the whole set of examples,
the Kalman filter is applied in the same subset of examples, Ee, to obtain the
corresponding consequent parameters before the whole evaluation. This way
working provides a validation mechanism for the obtained coefficients since
they should also perform on the examples that were not used by Kalman
filter.

In this way, we do not apply the Kalman filter to obtain the coefficients for
all individuals, since it would significantly increase the computational time of
the algorithm. Further, in order to save much more time and in order to make
the coefficients converge together with the MFs and the selected rules, only
one iteration of the Kalman filter is run each time. Thus, the Kalman filter
is only initialized at the beginning of the algorithm and each time restart-
ing is applied, so that the coefficients are progressively improved for those
combinations of MFs and rules that continuously promote new more accu-
rate solutions. This is possible due to the kind of process (post-processing)
which does not change the system structure (the same Kalman parameters
can be maintained from one solution to another), and by considering that
not selected rules are not activated by examples (matching 0) to apply the
filter. Anyway, since the subset of examples Ee changes randomly at each
new generation, we would like to remark that all the examples are finally seen
by the Kalman filter but avoiding the strong overfitting sometimes appears
when they are considered together.

See Figure 5 for a flowchart scheme of the Kalman filter application in-
tegrated with the error estimation mechanism once a new individual has
been generated by the evolutionary algorithm. Dashed lines represent the
additional steps for this efficient application of the Kalman filter.
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Figure 5: Flowchart scheme of the Kalman filter integration together with the error esti-
mation once a new individual has been generated by the evolutionary algorithm. Dashed
lines represent the part related to the filter application while dotted lines represent the
use of the example subsets.

3.3.5. Restarting

This mechanism is applied when the threshold value L is below zero.
Once restarting is applied, L is set to its initial value (see Section 3.3.3). The
restarting operator is applied by only copying the best individual for each of
the three objectives as the first three individuals of a new initial population.
The external population is then set to empty. The remaining individuals of
this initial population copy the values of the most accurate individual for
the CS part and take values generated at random in the CT part. In order
to assign good candidate values to the CC part of these new individuals and
to avoid an unnecessary particular computation for each of them, Standard
Kalman filter is only applied on the most accurate individual and the same
obtained parameters are copied in the CC part for all these new individuals.
Additionally, it regenerates the default rule as explained in section 3.3.1, but
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taking into account examples whose coverage by the current most accurate
individual is under 0.2 (which are close to current uncovered regions).

In each stage of the algorithm (between restarting points), the number
of solutions in the external population considered to form the mating pool
is progressively reduced, by focusing only on those with the best accuracy.
To do that, the solutions are sorted from the best to the worst (considering
accuracy as criterion) and the number of solutions considered for selection is
reduced progressively from 100% at the beginning to 50% at the end of each
stage. This helps to focus the search on the desired Pareto zone (see [13]),
highly accurate solutions with the least possible number of rules, giving more
selective pressure to those solutions that have a high accuracy (crossing dis-
similar solutions in principle and similar ones at the end). It is done by taking
into account the value of L. In the last evaluations when restart is disabled,
this mechanism for focusing on the most accurate solutions (the most diffi-
cult objective), is also disabled in order to obtain a wide, well-formed Pareto
front, from the most accurate solutions to the most interpretable ones.

4. Experiments and Analysis of Results

In order to evaluate the usefulness of the proposed approach, namely
METSK-HDe (Multiobjective Evolutionary learning of TSK systems for
High Dimensional problems with estimated error), in high-dimensional and
large-scale regression datasets, we have used 28 real-world problems with
different numbers of variables and cases. Table 1 sums up the main charac-
teristics of the different problems considered in this study and shows the link
to the KEEL project webpage [28, 29] from which they can be downloaded.
These problems have been selected from minor to major complexity, covering
a range from 2 to 40 input variables and from 337 to 40768 examples (even
though each of them is complicated in itself in terms of the modeling task).
The more complex problems are MV, HOU, ELV, CA, POLE, PUM and AIL
because of the large number of variables and data. These problems repre-
sent an important challenge for this algorithm. This is due to the long time
needed to evaluate an individual and to the minimum number of evaluations
needed to reach convergence.

This section is organized as follows:

• First, we describe the experimental set-up, datasets and methods con-
sidered in this article (Section 4.1).
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Table 1: Datasets considered for the experimental study
Problem Abbr. Variables Cases

Electrical Length ELE1 2 495
Plastic Strength PLA 2 1650
Quake QUA 3 2178
Electrical Maintenance ELE2 4 1056
Friedman FRIE 5 1200
Auto MPG6 MPG6 5 398
Delta Ailerons DELAIL 5 7129
Daily Electricity Energy DEE 6 365
Delta Elevators DELELV 6 9517
Analcat ANA 7 4052
Auto MPG8 MPG8 7 398
Abalone ABA 8 4177
California Housing CAL 8 20640
Concrete Compressive Strength CON 8 1030
Stock prices STP 9 950
Weather Ankara WAN 9 1609
Weather Izmir WIZ 9 1461
MV Artificial Domain MV 10 40768
Forest Fires FOR 12 517
Mortgage MOR 15 1049
Treasury TRE 15 1049
Baseball BAS 16 337
House-16H HOU 16 22784
Elevators ELV 18 16559
Computer Activity CA 21 8192
Pole Telecommunications POLE 26 14998
Pumadyn PUM 32 8192
Ailerons AIL 40 13750

Available at http://www.keel.es/

• Second, we perform an internal comparison in order to show the differ-
ences between the new scalable method for precise scatter-based model-
ing and the previous scalable method for linguistic modeling [16] (Sec-
tion 4.2).

• Third, we compare the solutions of our proposed method with respect
to four well-known accuracy-driven methods in Section 4.3.

• Finally, we show the computational costs of the different algorithms
and we discuss the scalability of the proposed approach in Section 4.4.
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4.1. Experimental Set-up

To evaluate the effectiveness of the proposed method designed for high di-
mensional and large-scale regression problems, several well-known accuracy-
driven methods have been included for comparisons. Four different methods
for precise modeling have been considered: The classical method (ANFIS),
one statistical regression method and two related evolutionary methods.

The first one, ANFIS [5] is a neural FRBS to obtain global semantics-
based TSK FRBSs. This classical method obtains very accurate FRBSs,
thanks to gradient descent and least squares estimation mechanisms. How-
ever, this was only possible to run its classical version (based on grid parti-
tioning) on the first eight datasets, obtaining in all the cases worse results
than those obtained by the proposed algorithm. A better alternative is using
ANFIS with the technique of subtractive clustering [30] found in the Fuzzy
Logic Toolbox of Matlab instead of the grid-partitioning, which is known to
be preferred to grid partitioning on high dimensional datasets. We will call
this approach ANFIS-SUB. ANFIS-SUB applies the subtractive clustering
method to obtain an initial TSK-based FRBS that is tuned by ANFIS. We
have considered this version for comparison. The second one, Linear-LMS
[31] is a classical statistical regression method based on gradient techniques,
which obtains a regression model as a result of a linear combination of its
features. The weights of such combination are fitted as a linear discriminant
using Least Mean Squares. In a broad sense, it can be considered as an
effective LMS-based approach for precise modeling with local linear models.
The third one, TSK-IRL [32] is an evolutionary method based on MOGUL
(a methodology to obtain Genetic FRBSs under the Iterative Rule Learning
approach) which combines an inductive algorithm and a (µ, λ) evolution-
strategy. This allows to automatically generate a preliminary TSK-type KB
for a concrete problem which is tuned in a second evolutionary stage. The
fourth one, LEL-TSK [33] obtains accurate local semantics-based TSK rules.
This two-stage evolutionary algorithm also based on MOGUL has been de-
veloped to consider the interaction between input and output variables.

Additionally, FSmogfse+Tune [16] method is used for internal compar-
ison. This method is a Fast and Scalable Multi-Objective Genetic Fuzzy
System for Linguistic Fuzzy Modeling in High-Dimensional Regression Prob-
lems and is only considered in order to show the higher accuracy of the
proposed approach and the differences between both algorithms (since they
have some common operators) and between both types of modeling.
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Table 2: Methods considered for the experimental study

Ref. Method Type of learning

[5, 30] ANFIS-SUB Adaptive Neuro-Fuzzy Inference System using Subtractive Clustering
[31] Linear-LMS Least Mean Squares Linear Regression
[32] TSK-IRL Genetic learning of TSK Rules under Iterative Rule Learning
[33] LEL-TSK Local Evolutionary Learning of TSK Rules
[16] FSmogfse+Tune FMOGFS for internal comparison. This learns: (Gr. & Lateral

partition params. & RB by WM) + (Tuning of MF parameters
and rule selection) by SPEA2E/E including error estimation

- METSK-HDe Proposed here to learn: (Gr. & Lateral partition params & zero-
order TSK RB) + (Tuning of MF parameters, rule selection and
Kalman-based consequents) by SPEA2E/E including error
estimation

Gr.: Granularities

A brief description of the studied methods is presented in Table 2, which
summarizes their main characteristics. The values of the parameters con-
sidered by Linear-LMS [31], TSK-IRL [32] and LEL-TSK [33] are those
proposed by the authors of the methods. These methods are available in
http://www.keel.es/ and are accuracy oriented single-objective-based algo-
rithms whose main objective is to obtain FRBSs as accurately as possible.
In the case of ANFIS-SUB method [30, 5] the parameters considered are:
Range of Influence, 0.5, Squash Factor, 1.25, Accept Ratio, 0.5 and Reject
Ratio, 0.15 (the standard values commonly used in the literature). However,
since the method crashed in a few datasets with these values, we changed
them specifically in order to allow an appropriate application in these cases.
In the case of the MOEA-based methods (FSmogfse+Tune and METSK-
HDe) based on the well-known SPEA2 [34], we have considered an external
population size of 61 and a proportion of 1/3 rounded to 200 as standard
population size. The remaining parameters for them are: a maximum of
100,000 evaluations, 0.2 as mutation probability (crossover is always applied
in SPEA2), 30 bits per gene for the Gray codification, re = 0.2 for the fast
error computation technique (with a upper bound of 1000 instances), and the
set {2, . . . , 7} as possible numbers of labels in all the system variables for the
learning approaches. Table 3 resumes the parameters used by the proposed
method. They are general fixed parameters for all the 28 datasets, so that
this is not necessary to find particular parameter values for a given dataset.

In all the experiments, we adopted a 5-fold cross-validation model, i.e.,
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Table 3: METSK-HDe fixed parameters
Population size 200
External Population size 61
Evaluations 100000
Mutation probability 0.2
Number of Labels {2, . . . , 7}
Bits per gene for the Gray codification 30
Rate of examples used to estimate the error 0.2
Maximum of examples used to estimate the error 1000
Maximum number of rules for the rule cropping (first stage) 100

we randomly split the dataset into 5 folds, each containing 20% of the pat-
terns of the dataset, and used four folds for training and one for testing 1.
For each of the five partitions, we executed six trials of the algorithms (6
different seeds). For each dataset, we therefore consider the average results
of 30 runs. In the case of the MOEA-based algorithms (FSmogfse+Tune

and METSK-HDe), the average values are calculated considering the most
accurate solution from each obtained Pareto front. Our main aim following
this approach is to have the possibility of statistically comparing the single
objective approaches (only accuracy) with the most accurate solution found
by the proposed MOEA.

In order to assess whether significant differences exist among the results,
we adopt statistical analysis [35, 36] and in particular non-parametric tests,
according to the recommendations made in [35] and [36], where a set of
simple, safe and robust non-parametric tests for statistical comparisons of
classifiers has been analyzed. We will employ different approaches for mul-
tiple comparison, including Friedman’s test [37], Iman and Davenport’s test
[38] and Holm’s method [39]. For a detailed description of these tests and for
detailed explanation of the use of non-parametric tests for data mining and
Computational Intelligence see theWebsite at http://sci2s.ugr.es/sicidm/.
To perform the tests, we use a level of confidence α = 0.1.

4.2. Internal comparison: Linguistic versus Precise modeling

In this section, we present a brief comparison of the proposed method for
precise modeling with respect to a recent evolutionary method for linguistic

1The corresponding data partitions (5-fold) for these datasets are available at the KEEL
project webpage [28]: http://sci2s.ugr.es/keel/datasets.php
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modeling called FSmogfse+Tune [16], which was developed to be applied
on High Dimensional and Large-Scale datasets. Even though linguistic and
precise models are not comparable (they are developed with different pur-
poses), since some of the ideas and philosophy of the proposed method are
based on this previous one, we want to show that it clearly outperform the
previous one in terms of accuracy, thus giving an interesting alternative when
the main requirement is accuracy. This previous method is also based on a
multi-objective embedded genetic DB learning, which allows a slight uni-
form displacement of linguistic fuzzy partitions and includes the fast error
estimation.

The results obtained by the studied methods are shown in Table 4. This
table is grouped in columns by algorithms and it shows the average of the
results obtained by each algorithm in all the studied datasets. For each one,
the first column shows the average number of rules and used variables (R/V).
The second and third columns show the average MSE in training and test
data (Tra./Tst.). Moreover, table 4 also includes the results obtained in the
first stage of the proposed method (intermediate results of METSK-HDe

method).
In this case (with only two algorithms to compare), we adopt statistical

analysis for pair-wise comparison, in particular we use Wilcoxon’s Signed-
Ranks test [40, 41]. Wilcoxon’s test is based on computing the differences
between two sample means (typically, mean test errors obtained by a pair
of different algorithms on different datasets). In the classification framework
these differences are well defined since these errors are in the same domain.
In our case, to have well defined differences in MSE, we propose to adopt a
normalized difference DIFF, defined as:

DIFF =
Mean(Other)−Mean(ReferenceAlgorithm)

Mean(Other)
, (2)

where Mean(x) represents the MSE means obtained by the x algorithm.
This difference expresses the improvement percentage of the reference algo-
rithm.

Table 5 shows the results of the Wilcoxon test on the test error for the
proposed method and linguistic-based one. The results show that METSK-
HDe outperforms FSmogfse+Tune on the test error. The null hypothesis
associated with Wilcoxon’s test is rejected (p < α), in favor of METSK-
HDe due to the differences between R+ and R−. This is due to the use of
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Table 4: Average results of the proposed accurate method (METSK-HDe) vs. lin-
guistic method (FSmogfse+Tune). Results in this table (Tra. and Tst.) should
be multiplied by 10+5, 10−8, 10−6, 10+9, 10+8, 10−6, 10−4 or 10−8 in the case of
ELE1, DELAIL, DELELV, CAL, HOU, ELV, PUM or AIL respectively.

FSmogfse+Tune METSK-HDe

(first stage) (final result)
DATASET R/V Tra. Tst. R/V Tra. Tst. R/V Tra. Tst.
ELE1 (2/495) 8.1/2 1.516 1.954 15/2 1.691 1.925 11.4/2 1.350 2.022
PLA (2/1650) 18.6/2 1.106 1.194 23/2 1.192 1.218 19.2/2 1.057 1.136
QUA (3/2178) 3.2/1.3 0.0175 0.0178 35.9/2.9 0.0181 0.0185 18.3/2.9 0.0171 0.0181
ELE2 (4/1056) 8/2 9665 10548 59/4 19452 20095 36.9/4 2270 3192
FRIE (5/1200) 22/3.1 2.71 3.138 95.1/4.1 2.868 3.084 66/4.1 1.075 1.888
MPG6 (5/398) 20/3 2.86 4.562 99.6/4.9 2.904 4.469 53.6/4.9 1.082 4.478
DELAIL (5/7129) 6.2/2.6 1.498 1.528 98.3/5 1.547 1.621 36.8/5 1.190 1.402
DEE (6/365) 18.3/3.8 0.059 0.093 96.4/4.2 0.064 0.095 50.6/4.2 0.030 0.103
DELELV (6/9517) 7.9/2.6 1.072 1.086 91/4.2 1.102 1.119 39.1/4.2 0.9725 1.031
ANA (7/4052) 10/3 0.003 0.003 48.9/4.3 0.005 0.006 33.3/4.3 0.002 0.004
MPG8 (7/398) 23/3 2.757 4.747 98.7/4.7 2.692 5.610 64.2/4.7 1.154 5.391
ABA (8/4177) 8/3 2.445 2.509 42.4/4.2 2.523 2.581 23.1/4.2 2.205 2.392
CAL (8/20640) 8.4/2.9 2.94 2.95 99.8/4.9 2.617 2.638 55.8/4.9 1.64 1.71
CON (8/1030) 15.4/3.5 29.901 32.977 96.5/4.2 34.089 38.394 53.7/4.2 15.054 23.885
STP (9/950) 23/3 0.764 0.912 100/5.3 0.696 0.780 66.4/5.3 0.167 0.387
WAN (9/1609) 8/2 1.441 1.635 91.1/4.7 1.428 1.773 48/4.7 0.701 1.189
WIZ (9/1461) 10/2 0.929 1.011 55.4/4 1.185 1.296 29.1/4 0.729 0.944
FOR (12/517) 10/3 1418 2628 93.7/5.2 1643 4633 40.6/5.2 551 5587
MOR (15/1049) 7/2 0.016 0.019 40.9/4.3 0.026 0.028 27.2/4.3 0.005 0.013
TRE (15/1049) 9/3 0.034 0.044 42.8/4.6 0.045 0.052 28.1/4.6 0.017 0.038
BAS (16/337) 17/6 141320 261322 95.7/7 112347 320133 59.8/7 47900 368820
MV (10/40768) 14/3 0.158 0.158 76.4/4 0.244 0.244 56.5/4 0.06 0.061
HOU (16/22784) 11.7/4.4 9.35 9.4 68.9/5 10.224 10.368 30.5/5 8.29 8.64
ELV (18/16559) 8/3 9 9 76.4/5.5 8.79 8.90 34.9/5.5 6.75 7.02
CA (21/8192) 14/5 5.021 5.216 71.3/6.1 5.760 5.880 32.9/6.1 4.376 4.949
POLE (26/14998) 13.1/4.5 100.845 102.816 100/6.3. 149.641 150.673 46.3/6.3 57.964 61.018
PUM (32/8192) 17.6/2 0.29 0.292 87.5/4 0.587 0.594 63.3/4 0.2669 0.2871
AIL (40/13750) 15/4 1.95 2 99.1/6 1.788 1.822 48.4/6 1.39 1.51

Table 5: Wilcoxon’s test: METSK-HDe (R+) vs FSmogfse+Tune (R−) on MSE in
tst.

Comparison R+ R− Hypothesis (α = 0.1) p-value

METSK-HDe vs. FSmogfse+Tune 321 85 Rejected 0.007

TSK FRBS and the new ideas included in the algorithm such as the efficient
Kalman filter and the use of a new objective which prevents overfitting.
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4.3. Comparison to other related well-known methods for precise modeling

This section analyzes the results of the proposed method, METSK-HDe,
with respect to the previous accuracy oriented contributions as explained in
section 4.1. The results obtained by the studied methods are shown in Ta-
ble 6. This table is grouped in columns by algorithms and it shows the
average of the results obtained by each algorithm in all the studied datasets.
For each one, the first column shows the average number of rules (R), except
in Linear-LMS method since this method is not a rule-based approach. The
second and third columns show the average MSE in training and test data
(Tra./Tst.). We also show the number of labels (NL) used for some algo-
rithms. Further, since the proposed algorithm is able to reduce the number
of used variables, we also show the average number of variables together with
the rules (R/V).

No values are shown for TSK-IRL and LEL-TSK in several datasets
since the large number of variables and cases provoked memory overflow er-
rors after several hours running without finishing the evaluation of the initial
population (some memory issues were improved in these methods to solve
this problem, which helped to show results in at least some of the datasets
with more than 8 variables, but it was impossible to run them in more com-
plex problems). Due to this reason, since TSK-IRL is only applicable to
a few number of datasets, we will compare it first by only considering the
results obtained in the corresponding datasets. In this case, we have again
two algorithms to compare, so that we adopt the same statistical analysis for
pair-wise comparison as it was presented in the previous subsection.

Additionally, since this time we will also compare more than two algo-
rithms together, we also use non-parametric tests for multiple comparison. In
order to perform a multiple comparison, it is necessary to check whether any
of the results obtained by the algorithms present any inequality. In the case
of finding some we can find out, by using a post-hoc test, which algorithms’
partners’ average results are dissimilar. Of course, since accuracy is our main
objective we will use the results obtained in Tst., defining the control algo-
rithm as the best performing one (which obtains the lowest value of ranking,
computed through a Friedman test [37]). In order to test whether significant
differences exist among all the mean values we use Iman and Davenport’s
test [38]. Finally, we use Holm’s [39] post-hoc test to compare the control
algorithm with the remainder.

In the following subsections, we present the corresponding statistical anal-
ysis depending on the group of datasets for which each method is applica-
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ble. As we previously said, the first subsection compares METSK-HDe to
the method that can be run only on a few number of datasets (i.e., small
datasets). The second subsection compares METSK-HDe to those methods
that are able to be also applied on medium and even high complex datasets.
The final subsection draws some conclusions on the results obtained.

4.3.1. Analysis on the method that can only be executed in small datasets

First, we compare the proposed algorithm with the method that can only
be executed for the simplest datasets. In this way, the proposed method
(METSK-HDe) is compared on the test error to TSK-IRL [32] in the first
13 datasets.

Table 7: Wilcoxon’s test: METSK-HDe (R+) vs TSK-IRL (R−) on MSE in tst.

Comparison R+ R− Hypothesis (α = 0.1) p-value

METSK-HDe vs. TSK-IRL 84 21 Rejected 0.048

We use Wilcoxon’s Signed-Ranks test [40, 41] between the proposed method
and TSK-IRL. Table 7 shows the results of the Wilcoxon test on the test er-
ror. The results show that METSK-HDe outperforms TSK-IRL on the
test error for the datasets considered. The null hypothesis associated with
Wilcoxon’s test is rejected (p < α), in favor of METSK-HDe due to the
differences between R+ and R−.

4.3.2. Analysis on methods that can be executed in all or almost all datasets

In this subsection, we compare the proposed algorithm with the methods
that can execute on almost every dataset. In this way, the proposed method
(METSK-HDe) is compared on the test error to LEL-TSK [33], ANFIS-SUB
[30, 5] and Linear-LMS [31] for the first 21 datasets.

Table 8 shows the rankings of the different methods considered in this
study. Iman and Davenport’s test [38] tells us that significant differences exist
among the observed results in all datasets. The best rankings are obtained by
the proposed method (METSK-HDe). We now apply Holm’s method [39]
to compare the best ranking method with the remaining methods. Table 9
presents these results. Holm’s test rejects the hypothesis of equality with the
remaining methods in Tst (p < α/i). From this analysis we can state that
METSK-HDe outperforms the other methods.
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Table 8: Rankings obtained through Friedman’s test on MSE in tst (first 21 datasets)
Algorithm Ranking on MSE in tst

METSK-HDe 1.714
Linear-LMS 2.476
ANFIS-SUB 2.667
LEL-TSK 3.143

Table 9: Holm’s post-hoc test with α = 0.1 on MSE in tst (first 21 datasets)
i Algorithm z p α/i Hypothesis
3 LEL-TSK 3.586 3.362E-4 0.03 Rejected
2 ANFIS-SUB 2.390 0.017 0.05 Rejected
1 Linear-LMS 1.912 0.056 0.1 Rejected

Furthermore, we compare the proposed algorithm with the methods that
can be executed on all the datasets. In this way, the proposed method
(METSK-HDe) is compared on the test error to ANFIS-SUB [30, 5] and
Linear-LMS [31].

Table 10 shows the rankings of the different methods considered in this
study. Iman and Davenport’s test [38] tells us that significant differences exist
among the observed results in all datasets. The best ranking is obtained by
the proposed method (METSK-HDe). We now apply Holm’s method [39]
to compare the best ranking method to the remaining methods. Table 11
presents these results. In this table, the algorithms are ordered with respect
to the z-value obtained. Holm’s test rejects the hypothesis of equality with
the rest of the methods in Tst (p < α/i). From this analysis we can state
that METSK-HDe outperforms the other two methods in accuracy.

Table 10: Rankings obtained through Friedman’s test on MSE in tst
Algorithm Ranking on MSE in tst

METSK-HDe 1.607
ANFIS-SUB 2.143
Linear-LMS 2.250

Table 11: Holm’s post-hoc test with α = 0.1 on MSE in tst
i Algorithm z p α/i Hypothesis
2 Linear-LMS 2.405 0.016 0.05 Rejected
1 ANFIS-SUB 2.004 0.045 0.1 Rejected
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4.3.3. Global analysis of the results

Analyzing the results shown in Table 6 and taking into account the re-
sults of the statistical tests, we can draw the following conclusions:

• TSK-IRL [32] and LEL-TSK [33] methods obtain very accurate results
on training, which usually leads them to present overfitting and very
bad test errors.

• ANFIS-SUB [30, 5] and Linear-LMS [31] methods present very com-
petitive results in both, training and test with respect to the previous
approaches. Moreover, both methods (apart from the one proposed)
can be applied to the most complex datasets.

• The proposed method presents simple solutions (less number of vari-
ables and rules) without significant overfitting. This method obtains
the best results on test error in general as shown by the statistical tests
in the previous subsections.

4.4. Computational Times and Scalability of the Proposed Algorithm

With respect to scalability it is very important to analyze the running
times of the different methods (these times were obtained in an Intel Core
2 Quad Q9550 2.83GHz, 8 GB RAM by using only one of the four cores).
Table 12 shows the running times of the different algorithms. Moreover,
table 12 also includes the times obtained in the first stage of the proposed
method.

In this case, except for the most complex datasets, the proposed method
is able to obtain solutions taking only several minutes (less than one hour).
Further, the times for the most complex ones are also very good, taking into
account the kinds of problems they represent.

TSK-IRL [32] and LEL-TSK [33] can take a significant amount of time
in problems when the number of variables and/or instances becomes high.
These algorithms cannot run in high-dimensional datasets, because the large
number of variables and cases provoked memory overflow errors after several
hours running without finishing the evaluation of the initial population.

Even though ANFIS-SUB [30, 5] and Linear-LMS [31] are very fast meth-
ods, the results in table 6 and the statistical tests in tables 9 and 11 show
how the additional time used by the proposed algorithm makes it able to
obtain the best results within a reasonable time (which is not highly affected
in complex problems).
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Table 12: Average time of a run of the different methods — hours, minutes and seconds
(h:m:s)

DATASET ANFIS-SUB TSK-IRL Linear-LMS LEL-TSK METSK-HDe

(first stage) (final)

ELE1 (2/495) 0:00:30 0:02:16 0:00:02 0:02:01 0:00:02 0:01:01

PLA (2/1650) 0:17:53 0:07:18 0:00:02 0:18:12 0:00:05 0:03:09

QUA (3/2178) 0:05:55 0:32:35 0:00:02 0:50:02 0:00:17 0:08:38

ELE2 (4/1056) 0:00:49 0:27:25 0:00:02 0:09:39 0:00:11 0:12:58

FRIE (5/1200) 0:25:50 11:12:23 0:00:06 1:33:33 0:00:27 0:39:57

MPG6 (5/398) 4:09:47 0:55:30 0:00:00 0:12:47 0:00:12 0:27:42

DELAIL (5/7129) 1:45:13 4:05:31 0:00:02 2:48:41 0:02:41 2:30:39

DEE (6/365) 6:55:34 3:24:38 0:00:03 0:06:20 0:00:11 0:20:15

DELELV (6/9517) 0:00:52 23:01:40 0:06:36 10:33:35 0:02:41 1:29:30

ANA (7/4052) 0:03:29 1:20:18 0:00:01 5:22:26 0:00:48 0:40:23

MPG8 (7/398) 0:00:34 1:46:18 0:00:01 0:26:19 0:00:12 0:25:41

ABA (8/4177) 0:03:28 20:54:04 0:00:01 2:41:04 0:00:58 0:28:55

CAL (8/20640) 0:08:56 0:00:06 63:17:03 0:05:07 5:13:28

CON (8/1030) 0:03:26 13:26:42 0:00:02 1:52:33 0:00:24 0:35:02

STP (9/950) 0:01:47 0:00:02 0:34:39 0:00:26 0:43:45

WAN (9/1609) 0:00:54 0:00:02 1:41:19 0:00:30 0:47:12

WIZ (9/1461) 0:00:51 0:00:02 1:29:14 0:00:37 0:19:33

FOR (12/517) 0:17:31 0:00:02 6:20:35 0:00:27 0:27:55

MOR (15/1049) 0:02:31 0:00:02 0:33:14 0:00:31 0:07:55

TRE (15/1049) 0:02:45 0:00:02 0:43:16 0:00:30 0:10:59

BAS (16/337) 0:00:28 0:00:02 2:02:47 0:00:26 0:51:58

MV (10/40768) 0:08:57 0:00:01 0:07:51 3:17:54

HOU (16/22784) 0:14:18 0:00:02 0:08:14 5:07:58

ELV (18/16559) 0:11:25 0:00:02 0:04:59 3:06:58

CA (21/8192) 0:00:45 0:00:01 0:04:06 3:37:49

POLE (26/14998) 0:15:04 0:00:01 0:07:56 4:40:22

PUM (32/8192) 0:16:28 0:00:02 0:07:36 2:22:25

AIL (40/13750) 0:16:45 0:00:02 0:11:21 5:26:30
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5. Conclusions

This paper presents a scalable two-stage multi-objective genetic algorithm
for precise fuzzy modeling of scatter-based TSK FRBSs in high-dimensional
and large-scale regression problems. In the first stage, it is performed an
evolutionary DB learning (involved variables, granularities and slight fuzzy
partition displacements). The RB is obtained within the same process using
an efficient ad-hoc algorithm to estimate the coefficients of the TSK con-
sequents. The MOEA includes some specific mechanisms to ensure a fast
learning of TSK FRBSs, allowing to obtain the model structure and to pre-
vent premature convergence in problems with high number of variables and
examples. The second post-processing stage performs a rule selection and a
fine scatter-based tuning of the MFs. Moreover, it incorporates an efficient
Kalman filter [19] to estimate the coefficients of the consequent polynomial
functions of the TSK rules, which helps to significantly improve the perfor-
mance of the model. We propose the use of MOEAs only as a tool, but
mainly focusing on obtaining accurate models.

The results obtained in 28 datasets of different complexities confirm the
effectiveness of the proposed method. METSK-HDe has shown that it is
able to obtain very accurate models avoiding overfitting on test error. More-
over, the proposed method has been compared to other well recognized meth-
ods, showing the best results on MSE in test. The scalability of the proposed
method is also a key characteristic, which is able to solve problems with 40
variables or more than 40,000 cases in a fast way (still reasonable for an
evolutionary-based approach).
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