
Information and Software Technology 143 (2022) 106736

A
0
(

A
u
K
M
a

(
b

c

d

e

A

K
S
D
M
G
B

1

t
n
t
m

(

h
R

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

comparison of machine learning algorithms on design smell detection
sing balanced and imbalanced dataset: A study of God class
halid Alkharabsheh a, Sadi Alawadi e,∗, Victor R. Kebande d, Yania Crespo c,
anuel Fernández-Delgado b, José A. Taboada b

Department of Software Engineering, Prince Abdullah bin Ghazi Faculty of Information and Communication Technology, Al-Balqa Applied University
BAU), Jordan
CiTIUS, Centro Singular de Investigación en Tecnoloxías Intelixentes, Universidad de Santiago de Compostela, Santiago de Compostela 15782, Spain
Departamento de Informática. Escuela de Ingeniería Informática, Campus Miguel Delibes, Universidad de Valladolid, Paseo de Belén 15, Valladolid 47011, Spain
Department of Computer Science (DIDA), Blekinge Institute of Technology, 37179, Karlskrona, Sweden
Department of Information Technology, Uppsala University, Box 337, 75105, Uppsala, Sweden

R T I C L E I N F O

eywords:
oftware quality
esign smell detection
achine learning
od class
alanced data

A B S T R A C T

Context: Design smell detection has proven to be a significant activity that has an aim of not only enhancing
the software quality but also increasing its life cycle.
Objective: This work investigates whether machine learning approaches can effectively be leveraged for
software design smell detection. Additionally, this paper provides a comparatively study, focused on using
balanced datasets, where it checks if avoiding dataset balancing can be of any influence on the accuracy and
behavior during design smell detection.
Method: A set of experiments have been conducted-using 28 Machine Learning classifiers aimed at detecting
God classes. This experiment was conducted using a dataset formed from 12,587 classes of 24 software systems,
in which 1,958 classes were manually validated.
Results: Ultimately, most classifiers obtained high performances,-with Cat Boost showing a higher perfor-
mance. Also, it is evident from the experiments conducted that data balancing does not have any significant
influence on the accuracy of detection. This reinforces the application of machine learning in real scenarios
where the data is usually imbalanced by the inherent nature of design smells.
Conclusions: Machine learning approaches can effectively be used as a leverage for God class detection. While
in this paper we have employed SMOTE technique for data balancing, it is worth noting that there exist
other methods of data balancing and with other design smells. Furthermore, it is also important to note that
application of those other methods may improve the results, in our experiments SMOTE did not improve God
class detection.

The results are not fully generalizable because only one design smell is studied with projects developed in
a single programming language, and only one balancing technique is used to compare with the imbalanced
case. But these results are promising for the application in real design smells detection scenarios as mentioned
above and the focus on other measures, such as Kappa, ROC, and MCC, have been used in the assessment of
the classifier behavior.
. Introduction

While the quality of software is one of the most important concern
hat attracts the attention of the field/community of software engi-
eering, there is a constant need for maintaining this quality even
hough software complexity is being experienced quite often. Precisely,
aintaining the quality of software involves exercising continuous

∗ Corresponding author.
E-mail addresses: khalidkh@bau.edu.jo (K. Alkharabsheh), sadi.alawadi@it.uu.se (S. Alawadi), victor.kebande@bth.se (V.R. Kebande), yania@infor.uva.es

Y. Crespo), manuel.fernandez.delgado@usc.es (M. Fernández-Delgado), joseangel.taboada@usc.es (J.A. Taboada).

actions, that help in the identification and detection of poor program-
ming practices or bad designs in software systems, where these poor
programming pieces are referred as ‘‘Design Smells’’ [1,2]. On the same
note, detecting design smells is an activity that plays a significant role
of supporting software developers in order to come up with better
software design solutions. Design smells do not produce compilation
vailable online 8 October 2021
950-5849/© 2021 The Authors. Published by Elsevier B.V. This

http://creativecommons.org/licenses/by-nc-nd/4.0/).

ttps://doi.org/10.1016/j.infsof.2021.106736
eceived 22 January 2021; Received in revised form 23 August 2021; Accepted 23
is an open access article under the CC BY-NC-ND license

September 2021

http://www.elsevier.com/locate/infsof
http://www.elsevier.com/locate/infsof
mailto:khalidkh@bau.edu.jo
mailto:sadi.alawadi@it.uu.se
mailto:victor.kebande@bth.se
mailto:yania@infor.uva.es
mailto:manuel.fernandez.delgado@usc.es
mailto:joseangel.taboada@usc.es
https://doi.org/10.1016/j.infsof.2021.106736
https://doi.org/10.1016/j.infsof.2021.106736
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2021.106736&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Information and Software Technology 143 (2022) 106736K. Alkharabsheh et al.
or run-time errors [2], however, they portray negative impacts on
different software quality features, such as reliability, usability, change-
ability, and maintainability [3]. More often, the existence of design
smells threaten the software life cycle, which leads to poor design
outputs. Notably, the growing software complexity, the rapid advance-
ments of software systems require more novel approaches, techniques,
practices, and tools that can help to detect and identify the true positive
design smells.

Existing works have shown that quite a number of approaches
have been proposed that have had a focus on smell detection. For
example, metric-based, rule-based approaches, [4–10] and machine
learning based approaches [11–17].

These approaches (metric, rule) are constructed based on the design
smell concepts that are mapped into a set of metric rules in order to
identify software either through manual, semi-automatic, or automatic
detection. A number of approaches that have been used in design
smell research have been evaluated empirically. They have then ended
up achieving higher accuracy, however, there exist some challenges
that limit their adoption in industries, such as false positive and false
negative ratios and the low agreements between them. In spite of that,
some of these approaches have found ways of being implemented as
commercial or open source detection tools [6,7,18–20].

In quest of overcoming the aforementioned challenges, the existing
studies [11–14,21–23], have shown that machine learning techniques
can be exploited effectively towards detecting design smells in software
systems. Machine learning is a partial field of artificial intelligence that
uses mathematical algorithms to give systems the capacity to learn
without being programmed [24].

It is based on the aforementioned premise that the authors of this
paper see the need to leverage a balanced dataset to as a way of testing
whether this objective of design smell detection can be achieved. Con-
sequently, the aspect of using a balanced dataset and different design
smell detection tools presents a significant approach of design smell de-
tection. In this context, the notion of utilizing a balanced dataset in this
study, is owing to the fact that studies in [17] have shown that, models
become more accurate when the best balancing technique is used.
Studies such as [17] have shown that models become more accurate
when the best balancing technique is used. However, by the inherent
nature of design smells and the data are often highly imbalanced.
Therefore, an empirical study comparing the behavior of the classifiers
in both cases, when using an imbalanced dataset, gives insights on
how much the improvement really is. In addition, the behavior of the
classifiers should be observed from other indicators, such as Kappa,
ROC, and MCC (see Section 3.3). These indicators are more appropriate
for problem scenarios with imbalanced data, without losing track of the
other indicators such as accuracy and F-measure that are usually better
when using balanced data. Despite that, the improvement may not be
substantial, which would be good news for the application of machine
learning techniques in real scenarios of design smell detection. On
the same note, despite taking a step of validating the detected smells,
the uniqueness of this study is juxtaposed to also leverage 28 distinct
classifiers, which uniquely based on the expected results, may depict a
design smell detection behavior worth exploring.

On the one hand, this work aims empirically to investigate whether
machine learning classifiers can effectively be used for God Class design
smell detection, while on the other hand, the study does a comparison
on the behavior of the classifiers using a balanced and imbalanced
dataset from other indicators, such as Kappa, ROC, and MCC which
are more appropriate for problem scenarios with imbalanced data.
This, also is done without losing track of the other indicators such as
accuracy and F-measure that are usually better when using balanced
data. We highlight that despite the conclusions from our experiments,
there exist other methods of data balancing besides SMOTE that we em-
ployed in this paper, also with the existence of other design smells. The
application of those other methods may improve the results; however,
in our experiments, SMOTE did not improve God class detection.

Therefore, the main contributions of this paper can be summarized
2

as follows:
• We conduct an experiment using a balanced and imbalanced
dataset to show how machine learning classifiers could be lever-
aged during God Class design smell detection.

• We investigate the influence of data balancing on God Class
design smell detection.

• We provide a large dataset formed from 12,587 classes of 24
software systems that include 1958 God Classes that are manually
validated. Also there is a Reduction of false negative with the
original automatic labeling system based on five detection tools
and reducing the false positive by manual validation on the results
on the first automatic labeling stage.

• We provide a replication package that involves raw data, scripts,
and all related material for the replication of the study. [25].

Section 2 presents related works on machine learning for design
smell detection and the influence of dataset balancing on the accuracy
of the machine learning models. Section 3 describes the study goals,
research questions, and main hypotheses, as well as the study design
that includes context selection, data collection, and data analysis. Next,
Section 4 provides an analysis of the obtained results while Section 5
presents a replication of experiments using a new dataset. Section 6
discusses the main threats to the validity of the study. Finally, the paper
concludes with Section 7 by providing a conclusion and a mention of
future work.

2. Related work

In this section, related work that is focused on machine learning
techniques for design smell detection and the influence of data bal-
ancing on the learning techniques behavior concerning smell detection
activity is discussed.

2.1. Machine learning approaches for design smell detection

From a cursory view, [13] proposed a concept that addressed an
amalgamation of a machine learning approaches with Object-Oriented
(OO) metrics. The dataset that was used included two software sys-
tems that were analyzed using a prototype. The outcome showed that
learning decision trees were utilized in the detection of two types of
design flaws (Large Class & Long Method) on two software systems.
Also, [14] investigate the prediction of bad smells (Lazy Class, Feature
Envy, Middle Man, Message Chains, Long Method, Long Parameter
List, Switch Statement) using seven machine learning techniques. In
their study, the dataset involved 27 design metrics and seven bad
smells mentioned that were collected from a set of software that
have design smells detected from previous studies. Furthermore, their
prediction model was validated by statistical significance testing. In
another research, the Bayesian belief networks have been used in the
named BDTEX strategy to detect three types of anti-patterns (Blob,
Functional Decomposition & Spaghetti Code) on two Java projects [12]
and compare the results with the obtained by the detection tool based
in DECOR method, used as the reference of the state of the art in
detection. Next, [26,27] introduce an approach to detect four different
types of anti-patterns (Blob, Functional Decomposition, Spaghetti Code
& Swiss Army Knife) based on Support Vector Machine (SVM), in
three software systems and compare the results with the detection tool
DETEX which instantiate the DECOR method, used as the reference of
the state of the art in detection. In [26], the authors focused on SVM
and object-oriented metrics, while [27] they have taken into account
the feedback of practitioners in the detection strategies and compare
the results with BDTEX and DETEX. More recent research by [28]
presented a non-intrusive machine learning approach (NiPAD) that is
based on system performance metrics for detecting and classifying anti-
patterns using five machine learning techniques. They experiment with
one application and determines SVMlinear as the algorithm with the

best behavior. The obtained results showed that the proposed approach



Information and Software Technology 143 (2022) 106736K. Alkharabsheh et al.

F

I

has the ability to identify the One-lane Bridge performance anti-pattern
with high accuracy detection. Another relevant work [21] conducts a
large-scale experiment that compared sixteen machine learning tech-
niques to detect four types of code smells (God Class, Feature Envy,
Long Method and Data Class) using five different detection tools (two
tools for God Class) as ‘‘advisors’’ to perform an automate smell de-
tection as initial labeling technique. The designed experiment was able
to give a validation of 74 software systems, in addition to a sample of
1986 code smells validated by human experts as second step in labeling
which include 493 God Class, 430 Data class, 517 Feature Envy, 546
Long Method. The obtained result showed that most of the chosen
techniques have more than 95% accuracy and F-measure. From this
basis, [29] conducted a replication study of the exploration by [21] in
order to identify the current state of machine learning approaches in
design smells detection. The results of that study indicated the need
for more investigation in the learning methodologies, construction of
dataset, and the set of metrics used to present the smelly and not smelly
classes.

Finally, in [17], the authors performed an empirical study that
compares the performance of machine learning-based (Naive Bayes)
and heuristic-based approaches, specifically, metric-based approaches
in terms of design smell detection. In their study, the dataset involved
17 metrics and 11 code smells gathered from 13 software systems. The
obtained results show that heuristic-based approaches achieve slightly
better performance compared with machine learning techniques. How-
ever, there is a need for further investigation and researches to improve
the accuracy and effectiveness of both approaches on design smell
detection. One of the aspects that deserve more study in this type of
problem, i.e design smell detection, are the indicators of good classifiers
performance. Accuracy and F-measure should not be the only ones.
This involves working with a set of elements where only a few must be
identified (as smelly in this case). It can be quite common to obtain high
accuracy values. Accuracy alone is not a good indicator when working
with imbalanced categories. However, Cohen’s Kappa can be a good
complementary indicator when accuracy is not good because of the
large imbalance. Nevertheless, Cohen’s Kappa, by definition, is always
higher with balanced data. Hence, it is also necessary to combine the
behavior analysis with ROC and MCC indicators (see Section 3.3),
which can be used even if the categories are of very different sizes.
These indicators are widely used in medicine to assess the goodness of
a test that detects the disease, which is a similar case to that of detection
design smells.

2.2. Influence of data balancing on machine learning model concerning
design smell detection

The issue of data balancing in machine learning has attracted the
attention of the research community in the recent past. Several studies
in the existing literature have tackled this topic [30–33]. In this section,
our focus is mainly on the studies that concern data balancing in
machine learning based design smell detection.

Research in [34], examines the impact of balancing and unbalancing
datasets on the behavior of machine learning techniques regarding code
smell detection. Three types of machine learning techniques SVM, J48,
and Random Forest have been used in the experiment to detect seven
types of design smells, in four versions of the Eclipse software system.
The dataset is balanced based on a popular strategy used in [35]
while one-third of classes are positive, the remaining is negative. The
results show that the performance of the constructed models using
J48 and SVM techniques does not improve after data balancing, while
a slight improvement on the RandomForest model is observed. Their
conclusion is that data balancing does not have a dramatic influence on
the behavior of machine learning algorithms. Next, a study by [16,17]
investigates the role of data balancing techniques in machine learning
on design smell detection. The authors conducted a large scale study
3

that compares the performance of five data balancing techniques, that
involves the SMOTE technique against unbalancing data. In this study,
the experiment was conducted using a set of five machine learning algo-
rithms on a dataset of 13 open source systems, that were analyzed and
manually validated to detect 11 types of design smells. The obtained
results show that the behavior of machine learning techniques has not
significantly improved using data balancing despite the accuracy of
learned models for design smell detection that used existing metrics
which slightly changed, especially while SMOTE technique was used.
Eventually, they conclude that it is necessary to include new metrics
related to the software systems in order to increase the accuracy of
models.

Recently, in [15,36], the authors explore the influence of including
new software metrics, such as size categories and domain on the God
class detection. The experiments conducted using eight machine learn-
ing algorithms on a large dataset formed by 24 software systems. Also,
they examine the impact of using SMOTE data balancing technique on
the performance of algorithms. The results show that the performance
of machine learning algorithms improved using size and domain and
can be exploited effectively in improving design smell detection. On
the other hand, after data balancing, the behavior of algorithms slightly
improved, however, they did not find conclusive empirical evidence on
the usefulness of data balancing.

To overcome the limitations of previous works and their findings,
in this paper, from the one hand, we confirm the results concerning
exploiting machine learning approaches on design smell detection, and
from the other perspective, we generalize the conclusions related to the
influence of data balancing on design smell detection. For this purpose,
the proposed work differs from the previous works in the following
aspects:

• A large set of different machine learning techniques (28 classi-
fiers) have been used to conduct the experiment.

• A set of five different design smell detection tools have been used
initially as advisors to automatically label the original dataset to
construct the God Class dataset.

• A manual labeling of design smells has been applied by experts
to the whole dataset.

• The results have been compared by replicating the experiment on
two different datasets of the previous studies.

3. Empirical study definition and design

As mentioned before, machine learning techniques are widely ex-
ploited to detect design smells. However, despite a concentration in this
of research field, further investigation are still needed, especially in the
comparison between using or not using a balanced dataset. For studying
this aspect, the aim of this work is to (i) investigate whether machine
learning based approaches can be effectively leveraged for God Class
design smell detection, and (ii) how avoiding dataset balancing can be
of influence to the accuracy/performance of design smell detection. The
objective of this study is defined by the GQM method, widely used in
software engineering research for goal setting [37,38] as follows:

Analyze Set of classes.

With the purpose of Evaluation.

With respect to the efficiency of machine learning techniques to de-
tect God Class design smell using a balanced in front of imbal-
anced dataset.

rom the point of view of researchers.

n the context of Software hosted in open source repositories.

According to this objective, we derive the following research ques-

tions and a working hypothesis.



Information and Software Technology 143 (2022) 106736K. Alkharabsheh et al.
RQ1 To what extent can machine learning techniques be effectively lever-
aged for God Class design smell detection?

RQ2 To what extent can avoiding data balancing have an influence to the
accuracy of God Class design smell detection?

To this end, the following null hypotheses have been formulated:

Hypothesis1 Machine learning techniques cannot be effectively leveraged
for God Class design smell detection.

Hypothesis2 Avoiding data balancing will not influence the accuracy of
God Class design smell detection.

3.1. Context selection

The context of this study consists of the target software systems, God
Class design smell, and the set of machine learning techniques used for
God Class detection.

3.1.1. Target systems in the first set of experiments
We used a dataset that was previously constructed by our team, that

has also been used in other research publications with different for-
mats [15,39]. The dataset consists of 24 open-source software systems
having different domains, sizes, and categories. The selected open-
source systems have been obtained from the Github1 and SourceForge2

software repositories, which are well-known in the context of open-
source systems. All systems were written in Java language which is
one of the most recognized object-oriented languages in the context of
design smell detection, where a total of 12,587 classes were analyzed.

Table 1 reports the main characteristics of the chosen software
systems: software name and version, Number of Classes (NOC), Number
of Methods (NOM), and the Total Lines of Code (TLOC). In order
to better understand the machine learning process, we increased the
number of selected software projects in the experiment to get a high
number of classes so that we can be able to generalize the study results.
The whole dataset was included in the replication package.

3.1.2. God class design smell
There exist several types of design smells that have a possibility of

being detected in software systems. These smells vary in scope, influ-
ence, and frequency of occurrence. Important to note is that the focus
of this study is inclined towards God Class detection. God Class has in
different situations attracted great attention of the research community
based on the existing literature [40–46]. Moreover, previous work on
systematic mapping on design smell detection [1], has shown that God
Class is one of the most detected design smells in the software system
and it has often been detected using a wide set of detection tools. Also,
God class smell has a negative influence on a wide set of software
quality features such as maintainability, understandability, complex-
ity, readability, flexibility, evolvability, performance, reusability, and
stability.

God Class is a class-level smell [47] that describe the case of a class
tends to do several functions and has many responsibilities, i.e. most
of the tasks are centralized in this class. It tends to be very large in
terms of Lines of Code (LOC) and it is also very complex. Based on
the existing literature that has extensively been explored, God Class
has been referred as the Blob anti-pattern [3], and the large class bad
smell [48]. According to [49] and [50], the presence of the God Class in
a particular class is an indicator to finding other types of design smells
such as Feature Envy, Data Class, God Method, and Duplicate Code.
In order to detect God Class, it is important to explore the inside of
the class. According to [51] in their classification of design smells God
Class belongs to ‘‘Bloaters’’ group that describe parts of code that have
a large size and are hard to maintain.

1 https://github.com/github.
2 https://sourceforge.net/.
4

Table 1
Characterization of the selected software systems that includes Number of packages
(NOP), Number of classes (NOC), Number of Methods (NOM), and Total Lines of Code
(TLoC).

Project name & version NOP NOC NOM TLOC

AngryIPScanner-3.0 20 270 1049 19,965
Apeiron-2.92 6 62 641 8908
checkstyle-6.2.0 15 277 1267 41,104
DigiExtractor-2.5.2 10 80 412 15,668
Freemind-1.0.1 50 782 5987 106,396
FullSync-0.10.2 22 169 1272 24,323
GanttProject-2.0.10 52 621 5004 66,540
JasperReports-4.7.1 110 1797 15,645 350,690
jAudio-1.0.4 38 416 4257 117,615
Java graphplan-1.0.7 17 50 455 1049
JCLEC-4.0.0 33 311 1379 37,575
JDistlib-0.3.8 12 78 924 32,081
JFreeChart-1.0.X 37 499 7989 206,559
JHotDraw-5.2 12 151 1474 17,807
KeyStore Explorer-5.1 54 384 2266 83,144
Lucene-3.0.0 103 606 3837 81,611
Matte-1.7 65 603 4090 52,067
Mpxj-4.7 25 553 12,574 261,971
OmegaT-3.1.8 106 716 4472 121,909
Plugfy-0.6 10 28 91 2337
pmd-4.3.x 90 800 5256 82,885
sMeta-1.0.3 14 222 1308 30,843
SQuirreL SQL Client-3.7.1 249 20,495 1138 71,626
xena-6.1.0 281 1975 25,163 61,526

Total 1431 12,587 127,307 1,896,199

3.1.3. Machine learning techniques
A comparison of 28 machine learning algorithms has been con-

ducted, These 28 classifiers were previously used in the context of
design smell detection [21–23]. As shown in Table 2, these classifiers
belongs to 11 different families [52–54], such as Naive Bayes (NB),
Decision Trees (DT), Support Vector Machines (SVM), and Neural
Networks (NN) etc.

Furthermore, to conduct this experiment, the selected classifiers
requires training data that involve classified instances. To this end, in
our experiment, we used a binary label to classify the dataset. For each
classifier, there are one or more parameters that should be tuned.

Tuning classifier parameters have a robust effect on their perfor-
mance. For this purpose, to select the most significant parameters for
each classifier and the parameter values, we checked and reviewed
several documentations, such as [55], which include a set of learning
classifiers selected from the R3 statistical computing language.

3.2. Data collection

To answer the research questions, a source code of software systems
is needed to enable the extraction the set of related metrics, as well
as detecting the God Class design smell, and then, formulating these
data in the appropriate format to be input source for machine learning
classifiers. For this purpose, in this section we describe in detail the tool
that was used to collect the set of metrics and the set of design smell
tools used in God Class detection.

3.2.1. Metric extraction tool
Several tools have been developed to analyze source code and to

compute different measurements (metrics) concerning various quality
dimensions, such as size, complexity, coupling, cohesion, and inher-
itance. This activity of computing code metrics can be developed in
a standalone tool or besides other activities, such as design smell
detection, prioritization, or refactoring in the same tool. In this work,

3 http://r-project.org.

https://github.com/github
https://sourceforge.net/
http://r-project.org


Information and Software Technology 143 (2022) 106736K. Alkharabsheh et al.

d
r
g
s
a
a

w
d
J
m

i
I
t
u
t

d
J
i
d
c
g

m
a
c
m
c
c

3

b
i
t
i

f
t
t

Table 2
Machine learning techniques considered in this work grouped by their families.

No. Family Classifiers

1 Discriminant analysis (DA) Linear Discriminant Analysis (LDA)
Quadratic Discriminant Analysis (QDA)

2 Naive Bayesian (NB)

Multinomial Naive Bayes (MNB)
Complement Naive Bayes (CNB)
Gaussian Naive Bayes (GNB)
Bernoulli Naive Bayes (BNB)

3 Neural Networks (NN) Multi-Layers Perceptrons (MLP)

4 Support vector
machines (SVM)

Support Vector Machine (SVM)
Linear Support Vector Machine (LSVM)
Nu-Support Vector Machine (Nu-SVM)

5 Decision trees (DT) Decision Tree (DT)

6 Boosting (BST)

Gradient Boosting (GB)
Cat Boost (CBoost)
Light GBM (LGBM)
eXtreme Gradient Boosting with
RandomForest (XGBRF)
eXtreme Gradient Boosting (XGB)
AdaBoost (AB)

7 Bagging (BAG) Bagging

8 Random Forests (RF) Random Forest (RF)
Extra Trees (ET)

9 Nearest neighbor
methods (KNN)

K-Nearest Neighbors (K-NN)
Nearest Centroid (NC)

10 Gaussian Process (GP) Gaussian Process (GP)

11 Linear approaches

Ridge
Logistic Regression (LR)
Perceptron
Passive Aggressive (PA)
Stochastic Gradient Descent (SGD)

we have chosen RefactorIt4 to analyze the selected software systems
and extracted the required metrics. We decide to use an external tool
(not of the five detection tools used as advisors in first automatic
labeling strategy) to avoid any effect on the detection results of God
Class.

RefactorIt is an open-source tool used to examine the software sys-
tems implemented in Java based on metrics and semantic rules. Using
RefactorIt, we are able to compute 30 metrics for projects, packages,
classes, methods, types, members, and constructors. It is available in
two versions: standalone or integrated with eclipse [56]. A set of 16
object-oriented metrics have been computed for each software systems
in the dataset. The set of metrics related to different levels and quality
dimensions as can be seen in Table 3. The set of chosen metrics are
common in the literature [12–14] for design smell detection.

3.2.2. Design smell detection tools
A large set of tools has been proposed for design smell detection

according to the literature in [57] in order to help software develop-
ers towards their enhancement of software quality. These tools have
various features as follows: Metric tools-which checks if it is available,
open source or not, working environment (standalone or plug-in),
supporting different languages, detection technique, and are designed
to detect different types of design smells. From this study, to select the
candidate tools, we followed a set of criteria that include: 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑖𝑛𝑔
𝐽𝑎𝑣𝑎, 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒, 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑛𝑔 𝐺𝑜𝑑 𝐶𝑙𝑎𝑠𝑠, and it should have a ℎ𝑖𝑔ℎ 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛. According to the criteria, the results shows a large list of
tools and prototypes. Therefore, we decide to avoid prototypes and
only focus on fully automatic tools. From this list, we have chosen
a collection of five tools that include: 𝑖𝑃 𝑙𝑎𝑠𝑚𝑎, 𝐷𝐸𝐶𝑂𝑅, 𝐽𝐷𝑒𝑜𝑑𝑜𝑟𝑎𝑛𝑡,
𝑃𝑀𝐷, and 𝑇 𝑜𝑔𝑒𝑡ℎ𝑒𝑟. This set of tools is represented as the most cited

4 http://RefactorIt.sourceforge.net.
5

Table 3
Definition of chosen metrics.

No. Metric Definition Granularity level Dimension

M1 TLOC Total Lines of Code Project Size
M2 NCLOC Non-Comment Lines of Code Project Size
M3 CLOC Comment Lines of Code Project Size
M4 EXEC Executable Statements Project Complexity
M5 DC Density of Comments Project Complexity
M6 NOT Number of Types Package Complexity
M7 NOTa Number of Abstract Types Package Complexity
M8 NOTc Number of Concrete Types Package Complexity
M9 NOTe Number of Exported Types Package Complexity
M10 RFC Response for Class Class Coupling
M11 WMC Weighted Methods per Class Class Complexity
M12 DIT Depth in Tree Class Inheritance
M13 NOC Number of Children in Tree Class Inheritance
M14 DIP Dependency Inversion Principle Class Coupling
M15 LCOM Lack of Cohesion of Methods Class Cohesion
M16 NOA Number of Attributes Class Size

works in the context of design smell detection according to our previous
work in [1]. A brief description of the aforementioned tools is given in
the next paragraphs.

DECOR [7] is an approach for specifying and detecting 6 types of
esign smells/antipaterns based on a mixture of semantic and metric
ules. Definition of design smell is expressed using a custom lan-
uage called Domain Specific Language (DSL). Decor uses the design
mell definition expressed in DSL to generates the detection code
utomatically. DETEX is the name of an instantiation of the DECOR
pproach.
iPlasma [6] is an open source integrated environment for soft-

are systems quality analysis. It calculates 80 metrics and detects 21
ifferent types of design smells for software systems developed using
ava and C++. Also, it can detect God Class from the source code by
etric-based strategy that incorporates three well-known metrics.
JDeodorant [18] is an Eclipse plug-in tool that can detect automat-

cally 5 types of design smells in software systems implemented in Java.
n addition to the design smell detection activity, it can resolves the de-
ected problem by applying effective automatic refactoring. JDeodorant
ses clustering algorithm to find the God Classes in software systems
hat leads to apply the ‘‘Extract class’’ refactoring operation.
PMD [20] is developed as standalone or plugin environment to

etect 3 types of design smells in software systems implemented in
ava, Javascript, and other languages. This tool is mutual with iPlasma
n the metrics combination that used to detect God Class but with
ifferent threshold values. In addition, it is the only tool that has a
ommand-line interface while the rest require to be used through a
raphical user interface (GUI).
Together [19] is a commercial Integrated Development Environ-

ent (IDE) designed to support software architects and developers,
nd incorporates an automated tool for code smell detection. The tool
an detect 11 types of design smells and compute 55 different quality
etrics for software systems implemented in Java and C++. Together

an detect God Class from source code or UML diagrams using a
ombination of different metrics.

.3. Data analysis

In this section, we give a description of the methodology that has
een employed throughout this paper to analyze the collected data, and
n order to answer the research questions. Several stages have been used
o illustrate how the methodology has been applied and an explanation
s given further on with a representation that is shown in Fig. 1.
Stage1: Dataset building. After obtaining the software systems

rom the repositories, we used the metrics tool ‘‘RefactorIt’’ to analyze
hem and extract the set of required metrics. As mentioned in Sec-
ion 3.2.1, a set of 16 metrics have been extracted for each software

http://RefactorIt.sourceforge.net


Information and Software Technology 143 (2022) 106736K. Alkharabsheh et al.
Fig. 1. Proposed methodology.
system, and the group of detection tools (iPlasma, Decor, JDeodorant,
PMD, and Together) was used as automatic early advisors for God Class
detection.

The strategy that was followed, was to label the detection tools
result as follows: If one tool or more detects the class as God Class,
then the label will be (1), otherwise (0). This strategy will increase
the number of detected smells God Classes in the dataset reducing
the probabilities of false negative. Afterwards, we applied a manual
validation process on the God Class list detected by one or more of
the selected tools. A group of three experts with doctorate degree in
information technology (software engineering and computer science)
have excellent experience with object-oriented programming, and very
good knowledge of design smells accomplished the task. To label the
God classes, the following strategy was followed: If two or more of the
experts identified the class as a God Class, the class was taken to be
God Class and the label given was (1), otherwise (0), with this manual
validation the probability of having false positives is reduced. Next, the
set of metrics and the manual validation results have been formulated
in rows. Each row consists of 16 metrics labeled M1 to M16 plus a label
that presents the manual validation results as a binary decision to show
if it is God Class or not.

Stage2: Dataset preparation. In this stage, we conducted data
preprocessing steps to fill the missing values with the corresponding
feature average, and normalize the data in range [0, 1] because there
6

are some algorithms cannot handle negative value. Then the prepared
data was used as an input source to train, validate, and test the machine
learning classifiers used in this study. The training process required
enough data samples in order to capture the data pattern behavior
and guarantee a very good learning process, while the validation step
used for tune the classifiers hyper-parameters by selecting the suitable
values that can fit with the ML problem. Finally, the evaluation of the
ML can be performed in the testing phase, which give an indication
how good the trained classifier is. Next, a feature selection process
was conducted to avoid the non-significant metrics from the whole set
(M1 to M16) and which may negatively influence the accuracy and
performance of the model. For this purpose, we used the R package
Rminer [58], that allows to calculate the importance of each feature
for a given classifier or regressor, providing a wide list of available
models. Specifically, we calculated these importances for the rpart
classifier, selected by its speed and easy configuration (it has no tunable
hyper-parameter). The classifier choice should not condition the feature
importance, that should not depend on the classifier used to calculate it,
i.e., the importance is expected to be similar using different classifiers.
In general, it is expected to detect a few numbers of God Class design
smells compared to the total classes that will be analyzed.

The detected numbers of God Classes have been distributed between
the training, validation, and testing sets. The low fraction of smells
in these sets leads to an imbalanced classification problem in what



Information and Software Technology 143 (2022) 106736K. Alkharabsheh et al.

t
h
f
h
m
f
f
t
v
p

F
f
s
C

k
i

Table 4
List of the classifiers, with their tunable hyper-parameters and their tried values.
Classifier Hyperp. (values) Classifier Hyperp. (values)

LGBM lr = 0.05, n_estimators = 200
num_leaves = 300, max_depth = 25

GB lr = 0.01, max_features = 7
max_depth = 10
min_samples_split = 200
min_samples_leaf′ = 50

XGB gamma = 0.4, reg_lambda = 1, reg_alpha = 0.1
lr = 0.25, n_estimators = 100, max_depth = 17

Ridge alpha = 0.001, solver = lsqr

CBoost max_depth = 8, lr = 0.01
l2_leaf_reg = 10

LDA solver = svd

RF n_estimators = 500, criterion = entropy
max_depth = 300, min_samples_split = 4
min_samples_leaf = 7

NB –

Bagging criterion = entropy, max_depth = 20
max_features = sqrt, min_samples_leaf = 3
min_samples_split = 6

LR C = 90, solver = newton-cg

XGBRF gamma = 0.2, max_depth = 19, lr = 0.01
min_child_weight = 3, n_estimators = 10
num_parallel_tree = 10, reg_lambda = 0.01
reg_alpha = 0.1

SGD alpha = 0.0005, lr = 0.001
l1_ratio = 0.0004

ET max_depth = 400, min_samples_split = 4
n_estimators = 500

LSVM C = 100.0, loss = hinge

AB lr = 0.9, n_estimators = 800 PA C = 0.01

MLP activation = tanh, lr = 0.04
hidden_layer_sizes = (29, 40, 2)

Percep-
tron

alpha = 0.0005, penalty = l1

DT criterion = entropy, min_samples_split = 5
max_depth = 20, min_samples_leaf = 3

QDA reg_param = 0.001

Nu-SVM gamma = 10.0, nu = 0.02 BNB –

SVM C = 100.0, gamma = 0.1, kernel = rbf GNB –

KNN n_neighbors = 4 CNB –

GP length_scale = 2, nu = 2.6 MNB alpha = 1e−05, fit_prior=False
low classification performance is expected. Therefore, we decided to
conduct two different experiments, without dataset balancing (Experi-
ment 1) and with dataset balancing (Experiment 2) to check whether
the performance of the classifiers will be influenced or not, therefore,
reflecting on the detection accuracy through performance indicators
previously mentioned.

The Synthetic Minority Oversampling Technique (SMOTE) [58] has
been used in experiment 2 to solve the imbalanced dataset problem,
where the distribution of a class is heterogeneous with other classes.
Balancing both classes (God Class/Not God Class) in the training set was
performed. The parameter K (number of nearest neighbors) in SMOTE
was tuned by executing KNN on the training set with values K=1,2,3,
. . . ,12. The value of K that provides the highest performance is selected
for SMOTE.

Stage3: Models training and hyper-parameters tuning. As men-
ioned previously, 10-folds cross-validation were generated to train,
yper-parameter tuning, and evaluate the models. Most of the classi-
iers have a set of hyper-parameters that need to be tuned-which also
ave a significant influence on the behavior and performance of the
achine learning model. Therefore, we used 10-fold cross-validation to

ind the best suitable value for each parameter based on the description
or each classifier [55]. For each algorithm, the hyper-parameters were
uned using the obtained values reported in Table 4. The selected final
alues for the hyper-parameter are those that maximize the average
erformance over the validation sets.
Stage 4: Testing all models and selecting the best classifier.

inally, each trained classifier has been evaluated over testing data
old in terms of both accuracy and performance using different metrics
uch as Cohen’s Kappa, ROC area, precision, F-measure, and Matthews
orrelation Coefficient (MCC), respectively.

According to [1], the selected performance measures are well-
nown and widely used for this purpose. Accuracy is the ratio of
7

nstances that are correctly classified (true positive and true negative).
Table 5
Interpretation of the Cohen kappa values.

Kappa value Agreement

𝑘 < 0.20 Poor
0.21 ≤ 𝑘 < 0.40 Weak
0.41 ≤ 𝑘 < 0.60 Moderate
0.61 ≤ 𝑘 < 0.80 Good
0.81 ≤ 𝑘 ≤ 1.00 Very Good

In our case, it is the ratio of classes that are predicted correctly as
(God Class/Not God Class). This performance indicator is not enough to
decide that the classification model is good, especially, if the classified
instances is imbalanced. In this study, we have studied an comparing
performance measures when using imbalanced and balanced datasets.
In the context of this study, accuracy is computed by dividing the num-
ber of correct prediction to the total number of prediction, multiplied
by 100%.

Cohen’s Kappa [59] is another essential performance indicator that
was used in this study. Cohen kappa is used to measure the agreement
between the true label of instance and the one predicted by the selected
classifier. The kappa values range from −1 to 1. The interpretation of
Cohens kappa values is shown in Table 5 where kappa result of all
classifiers is shown in percentages.

Receiver Operating Characteristic (ROC) area [60] is a good mea-
sure to visualize the performance of an classifier. It is a plot that
compares the sensitivity (true positive rate) of the classifier against the
specificity (false positive rate). Table 6 show the interpretation of ROC
values. When the value is close to 1, the classifier performance is better.

Precision indicates the portion of correctly detected God Classes
within the set of all detected God Classes. The precision result range
was between 0 and 1.



Information and Software Technology 143 (2022) 106736K. Alkharabsheh et al.

t
u

c
o
w
t
I
p

u
m
w
t
a
o
h
W

Table 6
Interpretation of the ROC area.

ROC value Interpretation

0.5 < 𝑅𝑂𝐶 ≤ 0.6 Fail
0.6 < 𝑅𝑂𝐶 ≤ 0.7 Poor
0.7 < 𝑅𝑂𝐶 ≤ 0.8 Fair
0.8 < 𝑅𝑂𝐶 ≤ 0.9 Good
0.9 < 𝑅𝑂𝐶 ≤ 1 Excellent

F-measure is a classical method of evaluating the performance of
he classifier. It combines the precision and recall into one metric. We
sed the F-measure for a trade-off between the classifiers.

The final assessment indicator is the Matthews Correlation Coeffi-
ient (MCC) [61]. It is used to measure the binary quality between the
bserved and predicted classifications. The MCC range from −1 to 1 in
hich the higher the value (1) of the coefficient, indicates the stronger

he correlation (i.e. agreement between prediction and observation).
f the value is zero, then no correlation, and a disagreement between
rediction and observation when the value is (−1).

In the conducted experiments, the Wilcoxon rank-sum test [62] was
sed to assess separately the difference between the accuracy, kappa, F-
easure, precision, ROC, and MCC values achieved by the 28 classifiers
ith and without data balancing. The null hypothesis of the accuracy

est is: The accuracy comes from distributions with equal mean with
nd without data balancing (i.e. classifiers have the same behavior
n God Class detection with and without data balancing), the same
ypothesis is tested for kappa, F-measure, precision, ROC and MCC.
hen the 𝑝-value is less than 0.05, we reject the null hypothesis, so

the difference between cases is statistically significant. This measure is
widely used for this purpose according to existing literature [14,29,63–
65].

All necessary information for replicating the work, such as data
description, raw data, and scripts is available in the replication pack-
age [25].

4. Results analysis

The obtained results that were used to statistically study the hy-
potheses in this paper are discussed in this section. In the first sub-
section, we analyzed and discussed the results of the selected detection
tools and manual validation that we used to assign a label of the classes
(Dataset building), while in the second, we focus on the performance
of the classifiers (Dataset formulation, tuning hyper-parameter, and
testing the models) that will answer the formulated research questions.

4.1. God class detection

Table 7 shows a summary of the God Class detection results using
automatic detection tools (GC-tool) and the manual validation (GC-
manualvalidation) for each software system according to the labeling
strategy mentioned in stage one (Dataset Building) of the proposed
methodology in Section 3.3. According to the initial tool labeling
strategy, a set of 1958 God Classes have been detected in the software
systems, which is the maximum number of smells detected in the whole
dataset. After applying the labeling strategy of the manual validation
on the detection tools results, only 485 God Classes (out of 1958) were
found and representing 4% of the whole dataset (12,587). This ratio is
normal and confirms previous conclusions in the literature about the
low degree of agreement on design smell detection between different
evaluators (humans, tools, and human vs. tools) [40,41]. This com-
bined labeling method helps in first reducing the probability of false
negatives, and after that, reducing the probability of false positives, as
mentioned before. The largest number of God Classes were detected
using tools in Jasperreport 4.7.1 while the lowest number in Plugfy-
0.6. On the other hand, using manual validation, the largest number of
8

God Classes was detected in Xena 6.1.0 while no God Class was detected
in the group of (AngryIPScanner-3.0, checkstyle-6.2.0, FullSync-0.10.2,
JCLEC-4.0.0, Plugfy-0.6,). The full details about the numbers of God
Class detected by each tool in each software system found in the data
description part at the replication package [25].

Table 8 shows the number of detection tools against the number
of God Classes detected by tools, manual validation, and the ratio of
God Classes (manual validation) over the whole dataset. As can be
seen, the higher the number of detection tools, the lower the number
of detected God Classes. Therefore, the gap between both labels (God
Class/Not God Class) is increased, and the imbalanced dataset problem
will be more complex. According to [17], in their study, state that if
the dataset is exceptionally imbalanced, the best balancing techniques
fails although permits the model to be more accurate, because the
model is difficult to be applicable due to the few number of label that
belonging to the minority class (God Class in our case). It is important
that the dataset includes a large number of design smells in order
to train the learning classifiers on a good training set. Therefore, the
classifier obtains a better behavior. The last row of Table 8 reports
the Pearson correlations between the number of God Classes detected
for each number of tools and the number of God classes after manual
validation is 0.97 which is highly positive value show that whether the
number of God Classes detected by tools increased the number of God
Classes manually detected also increased.

4.2. Training the classifiers

In this stage, after the dataset has been prepared to be ready for in-
putting to the classifiers, as the first step, we conducted an exploratory
experiment before the main two experiments to investigates whether
the using the whole set of metrics (M1 to M16) have an influence to
the classifiers results. For this purpose, we assessed the importance
of each metric using the importance function in the rminer package,
overcomes 0.5. Ten metrics were selected by the importance function:
TLOC, NCLOC, CLOC, WMC, RFC, EXEC, DIT, NOA, NOTc, and DC. In
this experiment, the classifiers have been trained on the whole set of
metrics and on the important set.

Fig. 2 shows the Kappa, ROC, and MCC values of machine learning
performance without data balancing using all the metrics and only the
important set. As it can be seen, a better performance is achieved using
the whole set of metrics (blue line) compared with important set (red
line) in all figures, except the set of (BNB, CNB, GB) in the Kappa
and MCC tests, and the GB in the ROC area test where obtained a
slightly better performance. The differences between Kappa values of
all metrics (blue line) and the important set (red line) were analyzed
with a Wilcoxon rank-sum test. The null hypothesis in this case were
‘‘Classifiers have the same behavior on God Class detection using the
whole and important set of metrics’’. The results show that the null
hypothesis is rejected, with a 𝑝-value (0.00016). Therefore, the result
is significant which means classifiers have different behavior. Also,
the classifiers achieved better performance (better behavior) with the
whole set of metrics in the ROC area and MCC tests. Therefore, the
null hypothesis is rejected with a p-values (0.00001, 0.00008) for the
ROC and MCC respectively. The same approach was followed in cases
of accuracy, precision, and F-measure tests where the null hypothesis
also is rejected with p-values less than (0.00001). Due to the paper size,
we do not show the figures of accuracy, precision, and F-measure Since
the performance is better using the whole set of metrics.

4.2.1. Experiment 1: Without dataset balancing
In this section, we will answered the first research question:

RQ1 To what extent can machine learning techniques be effectively lever-
aged for God Class design smell detection?



Information and Software Technology 143 (2022) 106736K. Alkharabsheh et al.

o
t
K
w
v
v

e

Table 7
Distribution of detected God Classes in the selected software systems using the set of tools (GC-tool) and manual validation (GC-ManualValidation) results.

Project GC-tools GC-manual Project GC-tools GC-manual

AngryIPScanner-3.0 2 0 JFreeChart-1.0.X 161 37
Apeiron-2.92 16 1 JHotDraw-5.2 26 3
checkstyle-6.2.0 21 0 KeyStore Explorer-5.1 47 12
DigiExtractor-2.5.2 27 2 Lucene-3.0.0 146 42
Freemind-1.0.1 42 23 Matte-1.7 32 6
FullSync-0.10.2 13 0 Mpxj-4.7 137 57
GanttProject-2.0.10 167 15 OmegaT-3.1.8 194 27
JasperReports-4.7.1 311 81 Plugfy-0.6 1 0
jAudio-1.0.4 122 21 pmd-4.3.x 29 10
Java graphplan-1.0.7 18 3 sMeta-1.0.3 20 4
JCLEC-4.0.0 88 0 SQuirreL SQL Client-3.7.1 89 20
JDistlib-0.3.8 22 14 xena-6.1.0 227 107

Total #GC-tools 1958
Total #GC-manual 485
Table 8
The number of God Classes detected by tools, human, and their ratio against the whole
dataset.

#Tools #GC-tools GC-manual Manual/WholeDataset (%)

1 1419 229 1.8%
2 300 99 0.78%
3 160 89 0.71%
4 55 45 0.36%
5 24 23 0.17%
Alltools 1958 485 4%

Correlation 0.97

Table 9
Accuracy, Kappa, F-measure, Precision, ROC. and MCC performance values achieved
by each classifier without dataset balancing.

Classifier Accuracy F-measure Precision Kappa ROC MCC

1 CBoost. 99.1579 0.9916 0.9918 0.8880 0.9508 0.8885
2 RF. 99.1261 0.9913 0.9913 0.8823 0.9426 0.8826
3 XGBRF. 99.1102 0.9911 0.9912 0.8798 0.9415 0.8802
4 LGBM. 99.0864 0.9908 0.9909 0.8755 0.9373 0.8761
5 XGB. 99.0863 0.9909 0.9909 0.8767 0.9404 0.8770
6 Bagging. 98.9672 0.9896 0.9896 0.8585 0.9274 0.8591
7 ET. 98.8719 0.9887 0.9887 0.8476 0.9209 0.8480
8 AB. 98.8480 0.9882 0.9882 0.8384 0.9065 0.8398
9 MLP. 98.8083 0.9881 0.9883 0.8396 0.9215 0.8409
10 GP. 98.6415 0.9862 0.9862 0.8124 0.8963 0.8133
11 KNN. 98.6018 0.9857 0.9856 0.8026 0.8820 0.8044
12 SVM. 98.5620 0.9856 0.9858 0.8071 0.9042 0.8077
13 SGD. 98.5382 0.9846 0.9848 0.7822 0.8578 0.7883
14 LR. 98.3555 0.9826 0.9826 0.7526 0.8395 0.7590
15 DT. 98.3396 0.9832 0.9832 0.7711 0.8798 0.7724
16 LSVM. 98.3078 0.9822 0.9821 0.7473 0.8392 0.7529
17 PA. 98.2522 0.9815 0.9816 0.7366 0.8307 0.7446
18 LDA. 98.2363 0.9809 0.9812 0.7243 0.8162 0.7353
19 Nu-SVM. 98.1929 0.9820 0.9822 0.7670 0.8872 0.7676
20 NC. 98.1410 0.9818 0.9824 0.7095 0.8974 0.7624
21 QDA. 97.5689 0.9770 0.9792 0.7095 0.8975 0.7149
22 Perceptron. 97.4021 0.9739 0.9768 0.6428 0.8497 0.6624
23 Ridge. 97.2750 0.9665 0.9711 0.4679 0.6621 0.5340
24 GNB. 96.9572 0.9732 0.9810 0.6901 0.9569 0.7159
25 MNB. 96.1548 0.9431 0.9366 0.1094 0.5029 0.0384
26 GB. 96.1469 0.9426 0.9244 0.0000 0.5000 0.0000
27 BNB. 87.8923 0.9117 0.9694 0.3411 0.9232 0.4472
28 CNB. 75.5304 0.8303 0.9614 0.1659 0.8252 0.2811

The classification in this experiment has been performed with the
riginal dataset where the God Classes are randomly distributed on
raining, validation, and testing sets. Table 9 reports the Accuracy,
appa, F-measure, Precision, ROC, and MCC values for each classifier
ith the best configuration that has been selected with 10-fold cross-
alidation. The results sorted by decreasing order to the accuracy
alues.

All classifiers have achieved high performance values with a few
xceptions. The accuracy, precision, and F-measure values of all the
9

classifiers were high on average 97%, 97.9%, and 97.3% respectively,
compared with kappa 68.9%, ROC 85.9%, and MCC 70.3%. CBoost
is one of the Boosting family classifiers that achieved the highest
performance values in all metrics except ROC, while CNB from Naive
Bayes achieved the lowest performance in accuracy. F-measure and GB
from the Boosting the lowest performance in kappa, precision, ROC,
and MCC. The high performance may be related to the features of
these metrics (accuracy, precision, and F-measure) that consider the
capability of the classifier model to classify the true negative and pos-
itive classes. Although the accuracy, F-measure, and precision results
of most classifiers are high, it is not enough definitely to indicate the
advantage of using machine learning classifiers [22,23]. For this reason,
we included the kappa, ROC, and MCC tests as explained before.

The kappa values are shown in the fifth column of Table 9. More
than 78% (22 out of 28) of the classifiers have achieved kappa greater
than (66%). Especially, the set of CBoost, RF, XGBRF, XGB, LGBM, and
Bagging has obtained the best results (>85%), which interpreted as
very good behavior. The higher value was 88.8% achieved by CBoost
while the lower value was zero by GB. Also, as it can be seen, 93%
of the classifiers (26 out of 28) were achieved ROC values greater than
80%, and 50% of this set (13 out of 26) greater than 90% which means
according to the ROC interpretation shown in Table 6 that classifiers
have been obtained good to excellent behavior. The higher ROC value
was 96% achieved by GNB while the lower value was 50% by GB. The
last column of the table shows the MCC values for each classifier. Near
to 42% of classifiers have achieved MCC greater than 80% (12 out of
28), which means that classifiers have very good agreement in God
Class prediction. CBoost has obtained the higher value (88.9%) while
the GB the lowest value (50%)

Based on above, we find the vast majority of machine learning
classifiers have achieved high and accurate performance values ac-
cording to the accuracy, Kappa, precision, F-measure, ROC, and MCC
measurements, such as CBoost, RF, and XGBRF because it is represents
the natural scenario when detection design smells. Therefore, we con-
clude that machine learning techniques effectively can be leveraged
for God Class design smell detection. The null hypothesis: (Machine
learning techniques cannot be effectively leveraged for God Class design
smell detection.) is rejected.

4.2.2. Experiment 2: With dataset balancing
This section will answered the second research question:

RQ2 To what extent can avoiding data balancing have an influence to the
accuracy of God Class design smell detection?

The second experiment was developed over balanced data, where
SMOTE has been used to balance the training data as aforementioned
in stage 2. Table 10 reports the performance values for each classifier
with the best configuration that has been selected with 10-fold cross-
validation. Also, the results sorted by decreasing order to the accuracy

values.



Information and Software Technology 143 (2022) 106736K. Alkharabsheh et al.
Fig. 2. Top: Kappa values with all the metrics and important metrics sorted by decreasing values of the former. Middle: ROC values with all the metrics and important metrics
sorted by decreasing values of the former. Bottom: MCC values with all the metrics and important metrics sorted by decreasing values of the former.
All classifiers have achieved high performance values on average
for 96.1% for accuracy, 71% for kappa, 96.8% for F-measure, 98.1%
for precision, 92.6% for ROC, and 72.9% for MCC respectively. LGBM,
XGBRF, XGB from the Boosting family are the classifiers that achieved
the best performance, while the CNB and MNB of Naive Bayes fam-
ily have achieved the lowest performance values. As it can be seen,
comparing the average performance values of this experiment (with
data balancing) with the first experiment (without data balancing), we
observed its slightly better, in particular, the value of precision (97.9%
to 98.1%), kappa (68.9% to 71%), ROC (85.9% to 92.6%), and MCC
(70.3% to 72.9%), while the accuracy and F-measure have been slightly
decreased from 97% to 96.1% and 97.3% to 96.8% respectively. The
achieved results after data balancing also confirm the answer to the
first research question (RQ1) that machine learning techniques can
be leveraged effectively for God Class design smell detection. After
10
using SMOTE and comparing Tables 9 and 10, all classifiers obtained
different order based on their accuracy. For example, in experiment 1
(without data balancing), LGBM has achieved the fifth rank in terms
of kappa, F-measure, precision, and MCC while in experiment 2 (with
data balancing) it is full front to the first rank, i.e., the best classifier
with data balancing in terms of accuracy, kappa, F-measure, and pre-
cision. Table 11 shows the confusion matrices, the Kappa and ROC (in
percentage) of LGBM classifier over the 10-fold cross validation without
(left part) and with (right part) data balancing. LGBM achieves the best
Kappa and ROC using data balancing (right part). Compared to the left
part, the changes rose slightly, where the percentage of true positives
is raises from 2.89% to 3.32%, while the false negatives reduces from
0.24% to 0.17%. However, the false positive rose from 0.45% to 0.55%,
while Kappa and ROC also rose slightly.



Information and Software Technology 143 (2022) 106736K. Alkharabsheh et al.

a
c
b
s
t
c
s
t
w

p
i

Table 10
Accuracy, Kappa, F-measure, Precision, ROC, and MCC performance values achieved
by each classifier with dataset balancing.

Classifier Accuracy F-measure Precision Kappa ROC MCC

1 LGBM. 99.1261 0.9915 0.9918 0.8883 0.9621 0.8894
2 XGB. 99.0270 0.9905 0.9909 0.8796 0.9617 0.8938
3 CBoost. 98.9911 0.9902 0.9907 0.8732 0.9596 0.8747
4 RF. 98.9911 0.9901 0.9906 0.8729 0.9588 0.8743
5 Bagging. 98.8481 0.9890 0.9901 0.8615 0.9725 0.8658
6 XGBRF. 98.8243 0.9888 0.9900 0.8591 0.9736 0.8637
7 ET. 98.6019 0.9865 0.9876 0.8291 0.9492 0.8323
8 AB. 98.5789 0.9847 0.9850 0.8152 0.9188 0.8195
9 MLP. 98.3635 0.9841 0.9850 0.7956 0.9233 0.7982
10 DT. 98.1888 0.9825 0.9835 0.7755 0.9153 0.7780
11 Nu-SVM. 98.0297 0.9810 0.9820 0.7538 0.9040 0.7560
12 SVM. 97.9349 0.9797 0.9802 0.7416 0.8849 0.7422
13 KNN. 97.9187 0.9803 0.9824 0.7558 0.9253 0.7616
14 GP. 97.8554 0.9793 0.9804 0.7410 0.8987 0.7432
15 GB. 97.7959 0.9788 0.9799 0.7347 0.8961 0.7371
16 Ridge. 97.6564 0.9774 0.9788 0.7118 0.8827 0.7153
17 LDA. 97.5453 0.9764 0.9779 0.7001 0.8793 0.7038
18 NC. 97.3249 0.9762 0.9786 0.7047 0.9103 0.7128
19 LR. 96.8700 0.9723 0.9797 0.6828 0.9466 0.7064
20 SGD. 96.7350 0.9713 0.9796 0.6755 0.9497 0.7019
21 LSVM. 96.6320 0.9706 0.9797 0.6776 0.9577 0.7065
22 PA. 96.6000 0.9704 0.9794 0.6681 0.9518 0.6968
23 Perceptron. 96.4967 0.9694 0.9784 0.6581 0.9391 0.6853
24 QDA. 96.3060 0.9680 0.9779 0.6444 0.9436 0.6749
25 BNB. 96.0757 0.9664 0.9779 0.6342 0.9503 0.6697
26 GNB. 95.4322 0.9618 0.9769 0.6004 0.9537 0.6456
27 CNB. 76.1262 0.8344 0.9616 0.1706 0.8292 0.2862
28 MNB. 76.1183 0.8343 0.9619 0.1718 0.8323 0.2886

Table 11
Confusion matrix, Kappa and ROC (in %) of the best classifier (LGBM) without data
balancing (left part), and with data balancing (right part).

LGBM/without balancing LGBM/with balancing

Not-GodClass GodClass Not-GodClass GodClass

Not-GodClass 96.29 0.45 95.78 0.55
GodClass 0.24 2.89 0.17 3.32

Kappa (%) ROC (%) Kappa (%) ROC (%)
87.6 93.7 88.8 96.2

Fig. 3 shows the Kappa, ROC, and MCC values of classifiers with
nd without data balancing. According to the ROC area figure, most of
lassifiers achieved slightly better performance when the training set is
alanced (red line) compared with the imbalanced set (blue line) with
ome exception in case of GNB and SVM. On the other hand, according
o the values of kappa (Top figure) and MCC (Bottom figure), most of
lassifiers achieved better behavior without data balancing, despite the
lightly improvement in the remained classifiers. In general, we can say
hat classifiers have the same behavior on God Class detection with and
ithout data balancing.

A wilcoxon rank-sum test comparing kappa, ROC, MCC, accuracy,
recision, and F-measure values with and without balancing separately
s used to test the null hypothesis ‘‘Avoiding data balancing will not
influence the accuracy of God Class design smell detection’’. The test gives
a p-values greater than 0.05 in terms of kappa (0.1585), precision
(0.2340), and MCC (0.2460) which means that the null hypothesis
is accepted because the difference between classifications with and
without balancing is not significant. On the other hand, The p-values
were less than 0.05 in terms of accuracy, ROC, and F-measure. The
test gives a p-values of 0.00054, 0.0010, and 0.00001 for accuracy, F-
measure and ROC respectively, which means the difference between
classifications with and without balancing is statistically significant.
Therefore, the null hypothesis is rejected.

Although the null hypothesis is rejected, in the case of accuracy,
ROC, and F-measure, the data balancing does not influence the perfor-
mance of the classifiers. Therefore, we concludes that data balancing
11

slightly influence the performance of the classifiers.
Table 12
Characteristics of projects in the first dataset used in the replication experiments.

Project&Version NOP NOC NOM TLOC God class

ant-rel-1.8.3 80 1473 13,213 119,256 6
argouml-VERSION_0_14 94 1373 9045 199,075 2
cassandra-cassandra-1.1.0 48 699 11,360 110,712 2
apache-wicket-1.4.11 260 1568 12,429 174,033 4
derby-10.3.3.0 50 1746 5987 535,187 24
hadoop-release-0.2.0 20 327 2460 34,662 2
hsqldb-2.2.0 52 590 5004 254,014 11
incubator-livy-0.6.0-incubating 11 1016 450 130,696 6
nutch-release-0.7 53 532 3220 50,578 0
qpid-0.18 226 2172 21,448 189,271 6
xerces-Xerces-J_1_4_2 42 489 6088 150,445 6
eclipse-R3_4 12 5061 924 423,423 25
elasticsearch-v0.19.0 570 1395 21,739 315,619 2

Total 1518 18,441 113,367 2,686,971 96

5. Experiments replication

To mitigate a threat of the study where results can be biased by a
dataset build by the authors themselves, in this section, the replication
of both experiments (1 and 2) is presented using the same set of
machine learning classifiers and two different datasets proposed by
other authors to confirm machine learning classifiers could be lever-
aged during design smell detection and analyzing the influence of data
balancing on design smell detection.

5.1. Data collection

The new datasets are constructed on the basis of datasets used in
the literature. The first dataset is previously used in [16,66] while the
second dataset points in the work by [21]. Both datasets consists of
manually validated instances of design smells, where the God Class
is one of those smells. These datasets are available at the replication
package [25]. The format of the new datasets is changed by including
the same set of metrics shown in Table 3 of Section 3.2.1, in order
to be in the same format of the dataset constructed by our team and
described in Section 3.2.

The first of the two dataset consists of 125 releases of 13 projects,
and more than 120,000 classes, while the second of these two dataset
consists of 74 software projects and more than 55,000 classes. In
this experiment, from the first dataset, we selected a release of each
software project that include the higher number of detected God Classes
and manually labeled as God Class instances. Also, regarding the sec-
ond dataset, we selected the same sample of God Classes that were
manually validated (420 classes) and used in the original experiment.
Tables 12 and 13 reports a description of the first and second datasets
respectively, gathered in the replication of the experiments, in addition,
the number of detected God Classes in each project. Comparing the
main dataset with the new datasets, we can see the ratio of detected
God Classes in the main dataset is much higher (main dataset 485 God
Class against 96 in the first dataset and 140 in the second dataset).
The reasons are due to the difference between datasets regarding the
number and nature (domain and size category) of the analyzed software
systems in each dataset, the total number of classes found in the
systems, the number of detection tools used for God Class detection,
the number of experts who executed the manual validation process, and
the proposed God class labeling strategy.

For example, the first dataset consisted of 13 software systems
formed of 18,441 classes that did an analysis a using one tool developed
by the authors to detect God Classes. The manual validation process
was conducted by a group of two authors who individually validated
the candidate God Classes. Regarding the second dataset [21], the
number of the analyzed systems is 74, formed of more than 55,000
classes. The tools PMD and iPlasma were used to detect God Classes,



Information and Software Technology 143 (2022) 106736K. Alkharabsheh et al.
Fig. 3. Top: Kappa values with and without data balancing sorted by decreasing values of the former. Middle: ROC values with and without data balancing sorted by decreasing
values of the former. Bottom: MCC values with and without data balancing sorted by decreasing values of the former.
and the manual validation performed by three Masters students on the

selected sample of detected God Classes (420). Finally, compared with

the main dataset we build and use on the original set of experiments,

the number of analyzed software was 24 formed of 12,587 classes. A

set of five detection tools include Decor, iPlasma, PMD, JDeodorant,

and Borland Together were used for the first stage of labeling by

automatic detection of God Classes. In addition, the manual validation

was conducted on the whole set of detected God Classes (1958) by three

persons who have a Ph.D. in different IT fields.
12
5.2. Results and discussion of the replication

The number of God Classes labeled by human experts in the first
dataset are 96 of a total of 18,441 classes, which represents 0.52%
of true positives while in the second dataset 140 of a total of the
selected sample of 420 classes, which represents 33% . The percentage
of first dataset (0.52%) is lower than the percentage of our dataset
(4%), and the percentage of the second dataset (33%) is higher than
the percentage of our dataset. In experiment 2 (with data balancing),
LGBM achieved the first performance rank using our dataset according
to accuracy, F-measure, precision indicators while the second and third
rank according to MCA and ROC, respectively. While the seventh and
fifteen rank using the first and second datasets according to the kappa



Information and Software Technology 143 (2022) 106736K. Alkharabsheh et al.
Table 13
Sample of classes of each project and the number of detected God classes (GC) in each
sample (N) in the second dataset used in the replication experiments.

Project&Version N GC Project&Version N GC

aoi-2.8.1 9 7 jmoney-0.4.4 6 3
argouml-0.34 2 0 jparse-0.96 4 1
axion-1.0.M2 3 1 jpf-1.0.2 8 2
castor-1.3.1 6 1 jruby-1.5.2 3 1
colt-1.2.0 3 0 jspwiki-2.8.4 6 2
columba-1.0 6 1 jsXe-04_beta 6 2
displaytag-1.2 5 1 jung-2.0.1 2 0
drawswf-1.2.9 6 0 junit-4.1 1 0
drjava-20100913-r5387 9 4 log4j-1.2.16 5 1
emma-2.0.5312 4 1 lucene-3.5.0 4 1
exoportal-1.0.2 13 0 marauroa-3.8.1 5 1
findbugs-1.3.9 7 0 megamek-0.35.18 5 2
fitjava-1.0.1 27 2 mvnforum-1.2.2-ga 10 2
fitlibraryforfitnesse-20100806 9 0 nekohtml-1.9.14 6 3
freecol-0.10.3 8 7 openjms-0.7.7-beta-1 2 0
freecs-1.3.20100406 4 3 oscache-2.4.1 5 1
freemind-0.9.0 2 0 picocontainer-2.10.2 2 0
galleon-2.3.0 14 6 pmd-4.2.5 4 0
ganttproject-2.0.9 5 1 poi-3.6 3 1
heritrix-1.14.4 1 1 cobertura-1.9.4.1 0 0
hsqldb-2.0.0 15 13 proguard-4.5.1 2 2
itext-5.0.3 12 6 quartz-1.8.3 6 4
jag-6.1 5 4 quickserver-1.4.7 6 2
jasml-0.10 6 1 quilt-0.6-a-5 6 1
jasperreports-3.7.3 2 0 roller-4.0.1 6 0
javacc-5.0 7 3 squirrel_sql-3.1.2 6 0
jedit4.3.2 4 3 sunflow-0.07.2 3 0
jena-2.6.3 1 0 tomcat-7.0.2 3 0
jext-5.0 5 1 trove-2.1.0 3 0
jFin_DateMath-1.0.1 4 0 velocity-1.6.4 1 0
jfreechart-1.0.13 2 1 wct-1.5.2 9 2
jgraph-5.13.0 5 3 webmail-0.7.10 4 2
jgraphpad-5.10.0.2 7 4 Weka-3.7.5 4 2
jgrapht-0.8.1 2 2 xalan-2.7.1 9 5
jgroups-2.10.0 5 2 xerces-2.10.0 20 12
jhotdraw-7.5.1 6 2 xmojo-5.0.0 4 1
jmeter-2.5.1 2 2 pooka-3.0-080505 6 3

Total number of God Classes 140

values respectively. This classifier has not been able to keep the high
performances achieved using our balanced dataset. Same behaviors
were replicated with the whole remaining classifiers. The results show
that the ratio of God Classes in the dataset influenced the performance
of classifiers. Furthermore, the differences between the characteristics
of software systems used in these datasets regarding the size and
domain have an important role in the performance of the classifiers.
It is worth noting the importance of this outcome as it significantly
addresses important aspects needed by the research community to-
wards obtaining accurate detection results using the machine learning
approach.

All classifiers achieved high performance values in the replication
experiments using the first and second datasets with some exceptions.
The average values of accuracy, kappa, F-measure, precision, ROC,
and MCC using the first dataset without data balancing were (98.9%,
29.6%, 99%, 99.4%, 67.3%, and 34.5%) respectively, while with data
balancing were (98.4%, 38.8%, 98.7%, 99.5%, 84%, and 44%) respec-
tively. Regarding the second dataset, the average values of accuracy,
kappa, F-measure, precision, ROC, and MCC without data balancing
were (92.04%, 81.8%, 92%, 93%, 91%, and 82.4%) respectively, while
with data balancing were (92.3%, 82.5%, 92.3%, 92.7%, 91.4%, and
83%) respectively. As can be seen, in both datasets, they have a
slight improvement in their behavior with data balancing with some
exceptions.

The achieved results confirm the answer of the first research ques-
tion (RQ1) in the main experiment of this study, that machine learning
approaches can be effectively exploited for God Class design smell de-
13

tection. Therefore, also in this experiment, the null hypothesis: Machine
Table 14
P-values.

Dataset Accuracy F-measure Precision Kappa ROC MCC

FirstDataset 0.00022 0.01352 0.1031 0.00142 0.00001 0.00262
SecondDataset 0.08364 0.05486 0.04338 0.05118 0.01208 0.05486

learning techniques cannot be effectively leveraged for God Class design
smell detection. is rejected.

Figs. 4 and 5 shows the Kappa, ROC, and MCC values for all
classifiers using the new dataset with and without balancing. In both
figures, according to the kappa and ROC values, most classifiers were
achieved a slightly better performance behavior with data balancing
(red line) compared with imbalanced (blue line). This behavior agrees
with the results of the main experiment using our dataset shown in
Fig. 3.

We conducted a Wilcoxon test on the accuracy, kappa, F-measure,
precision, ROC, and MCC values, in order to test the second null
hypothesis ‘‘Avoiding data balancing will not influence the accuracy of
God Class design smell detection’’. The p-values of this test are shown
in Table 14. According to the p-values obtained using the first dataset,
the results permit us to reject the null hypothesis (with exception of
precision 𝑝-value), which means that the result is statistically signif-
icant. Also, the p-values according to the second dataset allow us to
accept the null hypothesis (with the exception of precision and ROC
p-values), which means that the result is not statistically significant. In
general, the result from the replication experiment concludes that data
balancing slightly influences the performance of classifiers on detecting
God Class and agrees with the conclusion of the main experiment.

6. Threats to validity

The threats to the validity of the set of experiments designed will
be discussed in this section.

6.1. Construct validity

The main threat to construct validity is the set of selected design
smell detection tools used to detect God Class. Despite the fact that
these tools are implemented based on different strategies according to
the definition of God Class, they also allowed different set of metrics
and threshold values to be used. This portrayed high accuracy on
detection, and represented the set of the most cited state of the art
according to our previous work [1], however, a study on threats to
construction of this study is given.

To overcome this threat a manual validation process of the whole
1958 God Classes obtained by detection tools was conducted. This
task was accomplished by a group of three researchers who have Doc-
torate Degrees in Information Technology (software engineering and
computer science), and have excellent experience with object-oriented
programming and a very good knowledge on design smells. The set of
machine learning classifiers is considered another threat to the study —
regarding the selected classifiers families, set of metrics that have been
used to train the classifiers, and selecting the best model. To mitigate
this threat, we selected a large set of learning classifiers well-known
for this purpose by analyzing previous studies. The selected set belongs
to eleven families in order to avoid the behavior of specific classifiers
that can influence the detection accuracy and behavior. Additionally,
we applied a feature selection experiment before the classification in
order to identify the metrics with the most influence in the results and
then we used the cross validation process to reduce the variance in the
detection results.



Information and Software Technology 143 (2022) 106736K. Alkharabsheh et al.
Fig. 4. Top: Kappa values with and without data balancing sorted by decreasing values of the former according to first dataset. Middle: ROC values with and without data
balancing sorted by decreasing values of the former according to first dataset. Bottom: MCC values with and without data balancing sorted by decreasing values of the former
according to first dataset.
6.2. Internal validity

Several terms are used to describe design smell in different context,
for example, God Class is known as Large Class code smell, and The
Blob anti-pattern. These concepts are related to different characteristics
of God Class, such as, a class that has many responsibilities, high
complexity, more functionality, and a very large number of lines of
codes. Therefore, various sets of metrics were used to measure these
characteristics and to construct the detection rules.

To overcome this threat we used different tools that were developed
based on these concepts that had a focus of using different detection
strategies. Another essential threat is the total number of detected God
Classes in the dataset, especially, after the manual validation. But it is
14
normal that we detected a few numbers of God Classes compared to the
whole classes. This threat will lead to an unbalancing problem between
class instances (God Class/Not God Class) in the dataset. To manage this
threat, we used oversampling and under-sampling techniques in order
to balance the dataset.

6.3. External validity

The nature of software systems used in the dataset is the main
external threat. Only the set of open source systems that belong to
different domain and size categories have been used in the experiment
and may affect the generalization of results regarding the training
process of machine learning classifiers. Most of the proposed detection



Information and Software Technology 143 (2022) 106736K. Alkharabsheh et al.
Fig. 5. Top: Kappa values with and without data balancing sorted by decreasing values of the former according to second dataset. Middle: ROC values with and without data
balancing sorted by decreasing values of the former according to second dataset. Bottom: MCC values with and without data balancing sorted by decreasing values of the former
according to second dataset.
approaches, techniques, and tools are evaluated on benchmarks or
corpus of open source systems. These types of systems are stored in
well-known repositories. We think there are no differences between
the development of open source and commercial systems. Both types
have been developed in similar languages and high quality. Therefore,
whether the systems are open source or commercial will not influence
the behavior of machine learning classifiers. We managed this threat by
replicating the experiment on two other datasets of open source systems
from different domains and size categories and involve a high number
of classes.
15
Based on the outcomes of this study that was conducted only
one design smell (God Class), with projects developed in a single
programming language, and because only one balancing technique is
used to compare with the imbalanced case. Consequently, we note a
generic threat to the generalization of the study. we note that there
may/exist other methods of data balancing besides SMOTE that we
employed in this paper, also with the existence of different design
smells, and projects developed in different programming language. The
application of those other methods may improve the results. However,
in our experiments, SMOTE did not improve God class detection. As
per the proposition in this paper, we note that the study are not fully



Information and Software Technology 143 (2022) 106736K. Alkharabsheh et al.
generalizable but the conclusions are promising for the application in
real design smells detection scenarios as mentioned above and the focus
on other measures, such as Kappa, ROC, and MCC to assess the classifier
behavior, once the accuracy is very good.

All these threats either internal, external, and construction affect the
generalization of the study results but they are wide similar to the rest
of the state of the art experiments

7. Conclusion and future work

The paper presents a study to ascertain whether machine learning
classifiers can be exploited effectively for purposes of design smell
detection with a specific focus to God class. Additionally, this study
compares the performance of the classifiers in the imbalanced dataset
case with the balanced dataset case. For this purpose, we designed a
set of experiments that compared 28 supervised machine learning clas-
sifiers belonging to various families-to aid in detecting God Class design
smell. To conduct this study, we constructed a large dataset of 24 open-
source software from different domains and sizes that consist of 12,587
classes where 485 God Class were manually validated. The dataset was
prepared using an external source code analyzer tool (Refactorit), a
set of five well-known design smell detection tools that are common
in God Class detection as automatic early advisors, together with a
group of three human experts that have been used to label the class
instances detected by one or more tool. The strategy we followed for
labeling detection tools result was as follows: If one tool or more detects
the class as God Class, then the label will be (1), otherwise (0). A
set of 1958 God Classes were detected by the applied tools where the
probabilities of false negative are reduced, and evaluated by a group of
human experts where the final number of God Classes was 485 where
the manual validation reduced the probabilities of false positives.

As a first step, we conducted a feature selection experiment to
analyze the set of metrics and select the most important one. This
previous experiment shows that it should be better working with the
whole set of metrics. Next, we developed two different experiments
for classification as follows: Experiment 1 using the original dataset
without data balancing, and Experiment 2 using the Synthetic Minor-
ity Oversampling Technique (SMOTE) to solve the data unbalanced
problem, which afterwards increases the classifier performance. For
all the classifiers, the achieved performance results were evaluated in
terms of accuracy, Cohen Kappa, ROC area, precision, and F-measure.
According to the performance metrics values in the features selection
experiment, all classifiers have achieved a better performance using the
whole set of metrics compared with important set. For this purpose, we
conducted the main experiments using the whole set. In experiment 1
(without data balancing) using the main dataset, XGB has obtained the
highest performance in terms of accuracy, kappa, F-measure, precision,
and ROC values. In contrast, in Experiment 2 (with data balancing),
LGBM has obtained the highest performance using all performance
metrics values except ROC, while XGB full back to the second rank. The
results shows that most of classifiers have not able to keep the achieved
high performances (i.e., their rank). According to the p-values obtained
from the performance values for the combined values of accuracy,
kappa, F-measure, precision, and ROC with and without balancing, the
null hypothesis ‘‘the classifiers have the same behavior on God Class
detection, with and without data balancing’’ is rejected in all cases. The
results of this experiment shows that data balancing slightly affect on
the performances of classifiers.

After replicating both experiments (1 and 2) using new datasets,
all classifiers have achieved high performance values as in the main
dataset. Based on the obtained performance results in the replication
experiments, we confirm our conclusions using main dataset that ma-
chine learning techniques can be effectively leveraged for design smell
detection particularly using God Class.

Despite the large number of previous works that confirmed the
16

accuracy of machine learning techniques in design smell detection,
this area has not been exploited sufficiently to improve the design
smell detection. This situation was clearly observed in the replication of
the experiments while using different datasets. For this purpose, other
information related to software systems, such as size categories and
domains should be taken into account by the industries and the re-
search community when they developing new approaches, techniques,
and tools as shows our work in [36].

Although we can see the results in Figs. 4 and 5 that are obtained
using the new datasets (first and second), which also agrees with Fig. 3
that most of classifiers achieved slightly better performance, the null
hypothesis ‘‘the classifiers have the same behavior on God Class de-
tection with and without data balancing’’ cannot be rejected as shown
in Table. As a consequence, we have an empirical evidence that data
balancing does not have adequately influence on the performances of
classifiers to detect God Class design smell. Also, from the perspective
of this study, it is imperative to highlight that despite the conclusions
drawn from our experiments that were performed only on one design
smell on projects developed in a single programming language, and
only one balancing technique is used to compare with the imbalanced
case. We note a generic threat to the generalization of the study. there
exist other methods of data balancing besides SMOTE that we employed
in this paper, also with the existence of different design smells, and
projects implemented in different programming languages. The appli-
cation of those other methods may improve the results. However, in
our experiments, SMOTE did not improve God class detection. As per
the proposition in this paper, we note that the study are not fully
generalizable but the conclusions are promising for the application in
real design smells detection scenarios as mentioned above and the focus
on other measures, such as Kappa, ROC, and MCC to assess the classifier
behavior, once the accuracy is very good. The outcomes of this work
from one side confirms that machine learning can be used effectively
in the context of detection of true positive design smells (God Class in
our case). This is also the case in the smells that have a negative impact
on software quality, and from the other perspective, data balancing
slightly influences the accuracy of design smell detection when machine
learning classifiers are used. Also, in terms of practical applicability,
the authors note that leveraging machine learning for smell detection
not only can play a significant role in maintaining software quality but,
based on the obtained results-this can as well can also be employed to
automatically detect and predict the likelihood of design smells with a
higher degree of certainty.

In the future, this work will be extended further in certain directions
in order to improve and generalize the obtained results. To this end,
we plan to replicate the conducted experiments by using a large-scale
dataset that is manually evaluated, a wide set of software metrics,
more types of design smells, apply more machine learning techniques,
analyze software systems implemented in different programming lan-
guages, and includes other inputs that can help in obtaining better
classifiers behavior.

CRediT authorship contribution statement

Khalid Alkharabsheh: Conceptualization, Methodology, Software,
Validation, Formal analysis, Visualization, Data curation, Investigation,
Supervision, Writing – original draft, Writing – review & editing. Sadi
Alawadi: Conceptualization, Methodology, Formal analysis, Visualiza-
tion, Software, Data curation, Validation, Writing – review & editing.
Victor R. Kebande: Conceptualization, Methodology, Writing – re-
view & editing. Yania Crespo: Methodology, Software, Investigation.
Manuel Fernández-Delgado: Methodology, Software, Investigation.
José A. Taboada: Methodology, Software, Investigation.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.



Information and Software Technology 143 (2022) 106736K. Alkharabsheh et al.
References

[1] K. Alkharabsheh, Y. Crespo, E. Manso, J. Taboada, Software design smell
detection: a systematic mapping study, Softw. Qual. J. (2018).

[2] F. Pérez, Refactoring Planning for Design Smell Correction in Object-Oriented
Software (Ph.D. thesis), School of Engineering, Valladolid University, 2011.

[3] W.H. Brown, R.C. Malveau, H.W. McCormick, T.J. Mowbray, AntiPatterns:
Refactoring Software, Architectures, and Projects in Crisis, John Wiley & Sons,
Inc, 1998.

[4] M. Choinzon, Y. Ueda, Detecting defects in object oriented designs using design
metrics, in: J. Conf. on Knowledge-Based Software Engineering, 2006, pp. 61–72.

[5] R. Fourati, N. Bouassida, H. Abdallah, A metric-based approach for anti-pattern
detection in UML designs, Comput. Inf. Sci. (2011) 17–33.

[6] C. Marinescu, R. Marinescu, P.F. Mihancea, R. Wettel, IPlasma: An integrated
platform for quality assessment of object-oriented design, in: Intl. Conf. Software
Maintenance - Industrial and Tool Volume, 2005, pp. 77–80.

[7] N. Moha, Y.-G. Guéhéneuc, DECOR: a tool for the detection of design defects,
in: Intl. Conf. on Automated Software Engineering, 2007, pp. 527–528.

[8] M.J. Munro, Product metrics for automatic identification of ‘‘bad smell’’ design
problems in java source-code, in: Intl. Conf. Software Metrics, 2005, p. 15.

[9] R. Shatnawi, Deriving metrics thresholds using log transformation, J. Softw.:
Evol. Process. 27 (2) (2015) 95–113.

[10] L. Tahvildar, K. Kontogiannis, Improving design quality using meta-pattern
transformations: a metric-based approach, J. Softw.: Evol. Process. 16 (4–5)
(2004) 331–361.

[11] S. Hassaine, F. Khomh, Y.-G. Guéhéneuc, S. Hamel, Ids: an immune-inspired
approach for the detection of software design smells, in: Intl. Conf. Quality of
Information and Communications Technology, 2010, pp. 343–348.

[12] F. Khomh, S. Vaucher, Y.-G. Guéhéneuc, H. Sahraoui, BDTEX: A GQM-based
Bayesian approach for the detection of antipatterns, J. Syst. Softw. 84 (4) (2011)
559–572.

[13] J. Kreimer, Adaptive detection of design flaws, Electron. Notes Theor. Comput.
Sci. 141 (4) (2005) 117–136.

[14] N. Maneerat, P. Muenchaisri, Bad-smell prediction from software design model
using machine learning techniques, in: Intl. J. Conf. on Computer Science and
Software Engineering, 2011, pp. 331–336.

[15] K. Alkharabsheh, Y. Crespo, M. Fernández-Delgado, J.M. Cotos, J.A. Taboada,
Assessing the influence of size category of the project in god class detection,
an experimental approach based on machine learning (MLA), in: International
Conference on Software Engineering & Knowledge Engineering, 2019, pp.
361–366.

[16] F. Pecorelli, D. Di Nucci, C. De Roover, A. De Lucia, A large empirical assessment
of the role of data balancing in machine-learning-based code smell detection, J.
Syst. Softw. (2020) 110693.

[17] F. Pecorelli, F. Palomba, D. Di Nucci, A. De Lucia, Comparing heuristic and
machine learning approaches for metric-based code smell detection, in: 2019
IEEE/ACM 27th International Conference on Program Comprehension (ICPC),
2019, pp. 93–104.

[18] N. Tsantalis, T. Chaikalis, A. Chatzigeorgiou, Jdeodorant: Identification and
removal of type-checking bad smells, in: Intl. Conf. on Software Maintenance
and Reengineering, 2008, pp. 329–331.

[19] Borland, Together, 2008, http://www.borland.com/together.
[20] T. Copeland, PMD Applied, Centennial Books, 2005.
[21] F.A. Fontana, M.V. Mäntylä, M. Zanoni, A. Marino, Comparing and experimenting

machine learning techniques for code smell detection, Empir. Softw. Eng. 21 (3)
(2016) 1143–1191.

[22] M.I. Azeem, F. Palomba, L. Shi, Q. Whang, Machine learning techniques for code
smell detection: A systematic literature review and meta-analysis, Inf. Softw.
Technol. 108 (2019) 115–138.

[23] A. Al-Shaaby, H. Aljamaan, M. Alshayeb, Bad smell detection using machine
learning techniques: A systematic literature review, Arab. J. Sci. Eng. 45 (2020).

[24] J. Alzubi, A. Nayyar, A. Kumar, Machine learning from theory to algorithms: An
overview, J. Phys. Conf. Ser. 1142 (2018) 012012.

[25] k. Alkharabsheh, S. Alawadi, V. Kebande, Y. Crespo, M. Delgado, J.
Taboada, Replication package of raw data, scripts and all necessary material
for replication, 2021, URL: https://drive.google.com/drive/folders/1_Q7i52QPb-
MogNzW6vpePWSNkYyA1gKX?usp=sharing.

[26] A. Maiga, N. Ali, N. Bhattacharya, A. Sabané, Y.-G. Guéhéneuc, G. Antoniol,
E. Aïmeur, Support vector machines for anti-pattern detection, in: Intl. Conf.
Automated Software Engineering, 2012, pp. 278–281.

[27] A. Maiga, N. Ali, N. Bhattacharya, A. Sabane, Y.-G. Gueheneuc, E. Aimeur,
Smurf: A svm-based incremental anti-pattern detection approach, in: Intl. Conf.
on Reverse Engineering, 2012, pp. 466–475.

[28] M. Peiris, J.H. Hill, Towards detecting software performance anti-patterns using
classification techniques, ACM SIGSOFT Softw. Eng. Notes 39 (1) (2014) 1–4.

[29] D. Di Nucci, F. Palomba, D.A. Tamburri, A. Serebrenik, A. De Lucia, Detecting
code smells using machine learning techniques: are we there yet? in: Intl. Conf.
on Software Analysis, Evolution and Reengineering, 2018, pp. 612–621.
17
[30] N.V. Chawla, Data mining for imbalanced datasets: An overview, in: O. Maimon,
L. Rokach (Eds.), Data Mining and Knowledge Discovery Handbook, Springer US,
Boston, MA, 2010, pp. 875–886, http://dx.doi.org/10.1007/978-0-387-09823-
4_45.

[31] S. Hassaine, F. Khomh, Y. Gueheneuc, S. Hamel, Ids: An immune-inspired ap-
proach for the detection of software design smells, in: 2010 Seventh International
Conference on the Quality of Information and Communications Technology,
2010, pp. 343–348, http://dx.doi.org/10.1109/QUATIC.2010.61.

[32] K. Kourou, T.P. Exarchos, K.P. Exarchos, M.V. Karamouzis, D.I. Fotiadis, Ma-
chine learning applications in cancer prognosis and prediction, Comput. Struct.
Biotechnol. J. 13 (2015) 8–17.

[33] D.D. Nucci, F. Palomba, D.A. Tamburri, A. Serebrenik, A.D. Lucia, Detecting
code smells using machine learning techniques: Are we there yet? in: 2018 IEEE
25th International Conference on Software Analysis, Evolution and Reengineering
(SANER), IEEE Computer Society, 2018, pp. 612–621, http://dx.doi.org/10.
1109/SANER.2018.8330266.

[34] J. Ali Reshi, S. Singh, Investigating the role of code smells in preventive
maintenance, J. Inf. Technol. Manag. 10 (4) (2018) 41–63.

[35] Y.-G. Guéhéneuc, H. Sahraoui, F. Zaidi, Fingerprinting design patterns, in: 11th
Working Conference on Reverse Engineering, IEEE, 2004, pp. 172–181.

[36] K. Alkharabsheh, Y. Crespo, M. Fernandez-Delgado, J. Viqueira, J. Taboada,
Exploratory study of the impact of project domain and size category on the
detection of the god class design smell, Softw. Qual. J. (2021).

[37] R. Per, H. Martin, Guidelines for conducting and reporting case study research
in software engineering, Empir. Softw. Eng. 14 (2) (2009) 131–164.

[38] C. Wohlin, P. Runeson, M. Höst, M.C. Ohlsson, B. Regnell, Experimentation in
Software Engineering, Springer, 2012.

[39] K. Alkharabsheh, S. Almobydeen, Y. Crespo, J.A. Taboada, Influence of nominal
project knowledge in the detection of design smells: An exploratory study with
god class, Int. J. Adv. Stud. Comput. Sci. Eng. 5 (11) (2016) 120–127.

[40] K. Alkharabsheh, Y. Crespo, E. Manso, J. Taboada, Comparación de herramientas
de Detección de Design Smells, in: Jornadas de Ingeniería Del Software Y Bases
de Datos, 2016, pp. 159–172.

[41] K. Alkharabsheh, Y. Crespo, E. Manso, J. Taboada, Sobre el grado de acuerdo
entre evaluadores en la detección de design smells, in: Jornadas de Ingeniería
Del Software Y Bases de Datos, 2016, pp. 143–157.

[42] S. Counsell, E. Mendes, Size and frequency of class change from a refactoring
perspective, in: Int. Conf. on Software Evolvability, 2007, pp. 23–28.

[43] F.A. Fontana, P. Braione, M. Zanoni, Automatic detection of bad smells in code:
An experimental assessment, J. Obj. Technol. 11 (2) (2012) 5–1.

[44] W. Li, R. Shatnawi, An empirical study of the bad smells and class error
probability in the post-release object-oriented system evolution, J. Syst. Softw.
80 (7) (2007) 1120–1128.

[45] J.A. Santos, M.G. de Mendonça, C.V. Silva, An exploratory study to investigate
the impact of conceptualization in god class detection, in: Intl. Conf. on
Evaluation and Assessment in Software Engineering, 2013, pp. 48–59.

[46] A. Yamashita, M. Zanoni, F.A. Fontana, B. Walter, Inter-smell relations in
industrial and open source systems: A replication and comparative analysis, in:
Intl. Conf. on Software Maintenance and Evolution, 2015, pp. 121–130.

[47] M. Lanza, R. Marinescu, Object-Oriented Metrics in Practice: Using Software
Metrics to Characterize, Evaluate, and Improve the Design of Object-Oriented
Systems, Springer Science & Business Media, 2007.

[48] M. Fowler, K. Beck, Refactoring: Improving the Design of Existing Code,
Addison-Wesley Professional, 1999.

[49] N. Moha, Y.-G. Gueheneuc, L. Duchien, A.-F. Le Meur, Decor: A method for the
specification and detection of code and design smells, IEEE Trans. Softw. Eng.
36 (1) (2010) 20–36.

[50] A. Yamashita, L. Moonen, Exploring the impact of inter-smell relations on soft-
ware maintainability: An empirical study, in: Intl.Conf. on Software Engineering,
2013, pp. 682–691.

[51] A. Tiberghien, N. Moha, T. Mens, K. Mens, Répertoire des Défauts de Conception,
Technical Report 1303, University of Montreal, 2007.

[52] M. Fernández-Delgado, E. Cernadas, S. Barro, D. Amorim, Do we need hundreds
of classifiers to solve real world classification problems? J. Mach. Learn. Res. 15
(1) (2014) 3133–3181.

[53] J. Wainer, Comparison of 14 different families of classification algorithms on
115 binary datasets, 2016, arXiv preprint arXiv:1606.00930.

[54] S. Alawadi, M.F. Delgado, D.M. Pérez, Machine Learning Algorithms for Pattern
Visualization in Classification Tasks and for Automatic Indoor Temperature
Prediction (Ph.D. thesis, Ph. D. thesis), Universidade de Santiago de Compostela,
2018.

[55] I.H. Witten, E. Frank, M.A. Hall, C.J. Pal, Data Mining: Practical Machine
Learning Tools and Techniques, Morgan Kaufmann, 2016.

[56] C. López, E. Manso, Y. Crespo, The identification of anomalous code measures
with conditioned interval metrics, in: 13th TOOLS Workshop on Quantitative
Approaches in Object-Oriented Software Engineering (QAOOSE 2010) MáLaga,
Spain, MáLaga, 2010.

[57] G. Rasool, Z. Arshad, A review of code smell mining techniques, J. Softw.: Evol.
Process. 27 (11) (2015) 867–895.

[58] N.V. Chawla, K.W. Bowyer, L.O. Hall, W.P. Kegelmeyer, SMOTE: synthetic
minority over-sampling technique, J. Artif. Intell. Res. 16 (2002) 321–357.

http://refhub.elsevier.com/S0950-5849(21)00186-5/sb1
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb1
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb1
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb2
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb2
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb2
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb3
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb3
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb3
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb3
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb3
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb4
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb4
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb4
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb5
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb5
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb5
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb6
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb6
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb6
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb6
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb6
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb7
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb7
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb7
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb8
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb8
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb8
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb9
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb9
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb9
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb10
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb10
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb10
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb10
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb10
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb11
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb11
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb11
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb11
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb11
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb12
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb12
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb12
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb12
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb12
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb13
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb13
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb13
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb14
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb14
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb14
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb14
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb14
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb15
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb15
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb15
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb15
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb15
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb15
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb15
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb15
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb15
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb16
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb16
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb16
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb16
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb16
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb17
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb17
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb17
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb17
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb17
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb17
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb17
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb18
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb18
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb18
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb18
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb18
http://www.borland.com/together
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb20
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb21
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb21
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb21
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb21
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb21
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb22
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb22
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb22
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb22
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb22
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb23
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb23
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb23
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb24
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb24
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb24
https://drive.google.com/drive/folders/1_Q7i52QPb-MogNzW6vpePWSNkYyA1gKX?usp=sharing
https://drive.google.com/drive/folders/1_Q7i52QPb-MogNzW6vpePWSNkYyA1gKX?usp=sharing
https://drive.google.com/drive/folders/1_Q7i52QPb-MogNzW6vpePWSNkYyA1gKX?usp=sharing
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb26
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb26
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb26
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb26
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb26
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb27
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb27
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb27
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb27
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb27
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb28
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb28
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb28
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb29
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb29
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb29
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb29
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb29
http://dx.doi.org/10.1007/978-0-387-09823-4_45
http://dx.doi.org/10.1007/978-0-387-09823-4_45
http://dx.doi.org/10.1007/978-0-387-09823-4_45
http://dx.doi.org/10.1109/QUATIC.2010.61
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb32
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb32
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb32
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb32
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb32
http://dx.doi.org/10.1109/SANER.2018.8330266
http://dx.doi.org/10.1109/SANER.2018.8330266
http://dx.doi.org/10.1109/SANER.2018.8330266
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb34
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb34
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb34
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb35
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb35
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb35
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb36
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb36
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb36
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb36
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb36
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb37
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb37
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb37
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb38
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb38
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb38
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb39
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb39
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb39
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb39
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb39
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb40
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb40
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb40
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb40
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb40
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb41
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb41
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb41
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb41
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb41
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb42
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb42
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb42
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb43
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb43
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb43
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb44
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb44
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb44
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb44
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb44
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb45
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb45
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb45
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb45
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb45
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb46
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb46
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb46
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb46
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb46
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb47
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb47
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb47
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb47
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb47
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb48
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb48
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb48
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb49
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb49
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb49
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb49
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb49
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb50
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb50
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb50
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb50
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb50
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb51
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb51
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb51
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb52
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb52
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb52
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb52
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb52
http://arxiv.org/abs/1606.00930
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb54
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb54
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb54
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb54
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb54
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb54
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb54
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb55
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb55
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb55
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb57
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb57
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb57
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb58
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb58
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb58


Information and Software Technology 143 (2022) 106736K. Alkharabsheh et al.
[59] N. Blackman, J. Koval, Interval estimation for cohen’s kappa as a measure of
agreement, Stat. Med. 19 (5) (2000) 723–741.

[60] A.P. Bradley, The use of the area under the roc curve in the evaluation of
machine learning algorithms, Pattern Recognit. 30 (7) (1997) 1145–1159.

[61] B. Matthews, Comparison of the predicted and observed secondary structure of t4
phage lysozyme, Biochim. Biophys. Acta (BBA) - Protein Struct. 405 (2) (1975)
442–451.

[62] M. Hollander, D.A. Wolfe, E. Chicken, Nonparametric Statistical Methods, Vvol.
751, John Wiley & Sons, 2013.

[63] F.A. Fontana, P. Braione, M. Zanoni, Automatic detection of bad smells in
code: An experimental assessment, J. Obj. Technol. 11 (2) (2012) 5:1–38,
http://dx.doi.org/10.5381/jot.2012.11.2.a5.
18
[64] F.A. Fontana, M. Zanoni, A. Marino, M.V. Mantyla, Code smell detection:
Towards a machine learning-based approach, in: Int. Conf. on Software
Maintenance, 2013, pp. 396–399.

[65] T. Hall, S. Beecham, D. Bowes, D. Gray, S. Counsell, Developing fault-prediction
models: What the research can show industry, IEEE Softw. 28 (6) (2011) 96–99.

[66] F. Pecorelli, F. Palomba, D. Di Nucci, A. De Lucia, Comparing heuristic and ma-
chine learning approaches for metric-based code smell detection, in: Proceedings
of the 27th International Conference on Program Comprehension, in: ICPC ’19,
IEEE Press, 2019, pp. 93–104, http://dx.doi.org/10.1109/ICPC.2019.00023.

http://refhub.elsevier.com/S0950-5849(21)00186-5/sb59
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb59
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb59
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb60
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb60
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb60
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb61
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb61
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb61
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb61
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb61
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb62
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb62
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb62
http://dx.doi.org/10.5381/jot.2012.11.2.a5
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb64
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb64
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb64
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb64
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb64
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb65
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb65
http://refhub.elsevier.com/S0950-5849(21)00186-5/sb65
http://dx.doi.org/10.1109/ICPC.2019.00023

	A comparison of machine learning algorithms on design smell detection using balanced and imbalanced dataset: A study of God class
	Introduction
	Related work
	Machine learning approaches for design smell detection
	Influence of data balancing on machine learning model concerning design smell detection

	Empirical study definition and design
	Context selection
	Target systems in the first set of experiments
	God class design smell
	Machine learning techniques

	Data collection
	Metric extraction tool
	Design smell detection tools

	Data analysis

	Results analysis
	God class detection
	Training the classifiers
	Experiment 1: Without dataset balancing
	Experiment 2: With dataset balancing


	Experiments replication
	Data collection
	Results and discussion of the replication

	Threats to validity
	Construct validity
	Internal validity
	External validity

	Conclusion and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	References


