Published by Elsevier
DOI: https://doi.org/10.1016/j.infsof.2022.106946
Accepted Manuscript: INFSOF-D-21-00519R2

Licence CC BY-NC-ND
Locations: Institutional Repository

The role of awareness and gamification on
technical debt management

Yania Crespo Gonzalez-Carvajal', Carlos Lopez-Nozal?, Ratl
Marticorena-Sanchez?, Margarita Gonzalo Tasis', and Mario Piattini®

! Departamento de Informatica, Universidad de Valladolid, Espaiia
{yania,marga}@infor.uva.es
2 Departamento de Ingenieria Informéatica, Universidad de Burgos, Espafia
{clopezno,rmartico}@ubu.es
3 Departamento de Tecnologias y Sistemas de Informacién, Universidad de Castilla
La Mancha, Espana
Mario.PiattiniQuclm.es

Abstract. Contexrt. Managing technical debt and developing easy-to-
maintain software are very important aspects for technological compa-
nies. Integrated development environments (IDEs) and static measure-
ment and analysis tools are used for this purpose. Meanwhile, gamifi-
cation also is gaining popularity in professional settings, particularly in
software development. Objective. This paper aims to analyse the improve-
ment in technical debt indicators due to the use of techniques to raise
developers’ awareness of technical debt and the introduction of gamifica-
tion into technical debt management. Method. A quasi-experiment that
manipulates a training environment with three different treatments was
conducted. The first treatment was based on training in the concept of
technical debt, bad smells and refactoring, while using multiple plugins
in IDEs to obtain reports on quality indicators of both the code and the
tests. The second treatment was based on enriching previous training
with the use of SonarQube to continuously raise awareness of technical
debt. The third was based on adding a gamification component to tech-
nical debt management based on a contest with a top ten ranking. The
results of the first treatment are compared with the use of SonarQube
for continuously raising developers’ awareness of technical debt; while
the possible effect of gamification is compared with the results of the
previous treatment. Results. It was observed that continuously raising
awareness using a technical debt management tool, such as SonarQube,
significantly improves the technical debt indicators of the code developed
by the participants versus using multiple code and test quality checking
tools. On the other hand, incorporating some kind of competition be-
tween developers by defining a contest and creating a ranking does not
bring about any significant differences in the technical debt indicators.
Conclusions. Investment in staff training through tools to raise devel-
opers’ awareness of technical debt and incorporating it into continuous
integration pipelines does bring improvements in technical debt manage-
ment.

Keywords: Technical Debt - Raising awareness - SonarQube - Gamifi-
cation - Quasi-experiment

1 Introduction

Current and future Software Engineering professionals must be trained in tech-
niques and tools that allow them to speed up the production of quality software,
using the best practices in software development, particularly in those techniques
and tools that keep Technical Debt (TD) under control and reduce it.

In 1992, Ward Cunningham coined the term “Technical Debt” [16], based on
the concept of financial debt, as the main factor that makes software project de-
velopment and maintenance slow and laborious. Cunningham himself relaunched
the concept in a series of keynote conferences around the world in 2008, and
since 2010 the Managing Technical Debt workshop series has provided a fo-
rum for practitioners and researchers to discuss issues related to TD. In 2016, a
Dagstuhl Seminar on “Managing Technical Debt in Software Engineering” pro-
duced a consensus definition for TD, a draft conceptual model, and a research
roadmap [6]. Its definition states that “technical debt is a collection of design
or implementation constructs that are expedient in the short term but set up a
technical context that can make future changes more costly or impossible”. The
First International Conference on Technical Debt, held in 2018, started a new
series of conferences as the successor to the previous Managing Technical Debt
workshop series. TD is still an element of undoubted interest today, since, as
published in the State of Technical Debt report in 2021 [49], software developers
nowadays waste around one day a week on paying TD.

Understanding, communicating, and managing TD can make a huge differ-
ence in both the short and long term success of a system [3,6]. The software
engineering community is coming together on defining TD as making technical
compromises between the short and the long term. Initially, the introduction of
TD was considered a deliberate action. Nowadays, it is assumed that, on many
occasions, the introduction of TD is not intentional and the novice developer
plays a fundamental role in this issue. Hence the importance of training future
software development professionals to recognise, analyse, monitor and measure
TD in order to be aware of and reduce unintentional TD. Falling into TD within
a team of expert developers is inevitable, despite the adoption of prudent strate-
gies in development. However, a novice team ignorant of design practices may
take on its reckless debt without even realizing how much effort it will have to
make in the future. This is why it may be interesting to bring to the attention
of novice developers concrete information about TD that will help them to be
more prudent and practise an aware self-management.

It is, first, a way to explain the balance between immediate delivery vs. long-
term maintainability, because it allows its integration and interaction with tools,
the estimation of models for decision-making, facilitates the understanding of the
internal quality of software and can be applied to generating economic models.

Providing incentives may help in reducing technical debt and gamification
is such a strategy for incentives. Gamification seeks to improve motivation and
efficiency when carrying out certain tasks by incorporating game mechanisms
and elements to make the task more attractive [40,48]. It has already been
pointed out that an incentive strategy may be appropriate for the improvement
of TD, and gamification seems to be a suitable alternative [11, 35].

Based on this background, we investigated the extent to which awareness-
raising and /or gamification of TD management has an impact on TD indicators.
To this end, we conducted a quasi-experiment [55] with a comparative analysis
between three different training environments for undergraduate developers and
the influence of some factors on some TD indicators of the developed code.
In particular, the role of continuously raising awareness of TD by means of
SonarQube integrated in a CI/CD pipeline and the introduction of gamification
strategies related to these indicators are analysed and compared to more classical
contexts, such as using multiple plugins in IDEs to obtain reports on code quality
indicators and tests.

This paper is therefore organised as follows: the background concerning TD,
the use of SonarQube and the inclusion of gamification is presented in Sec. 2. The
quasi-experiment is presented in Sec. 3, setting out the study design. The results
obtained in response to our research questions are then detailed in Sec. 4, followed
by a discussion of these results in Sec. 5. In Sec. 6, we review possible threats
to the validity of our study and finally, in Sec. 7, we present the fundamental
conclusions and lines of future work.

2 Related Work

Fowler [25] divides TD into two dimensions: reckless/prudent and delibera-
te/inadvertent. Our work focuses more on inadvertent, mainly reckless TD. An-
other classification of the different types of TD can be found in Rios et al. [44],
the most referenced ones being: design debt (debt that can be discovered by
analysing the source code and identifying violations of the principles of good
object-oriented design), code debt (poorly written code that violates best cod-
ing practices or rules), test debt (issues found in testing activities that can affect
the quality of the product), and documentation debt (insufficient, incomplete
or outdated documentation). We focused on these four which are also closely
related to maintainability indicators.

2.1 Software Quality and Technical Debt awareness

Static analysis of the source code to help improve TD has been studied in several
works. SonarQube is mainly used as the reference tool [17], and it is combined
with others such as GitHub and Microsoft Project [42], CodeClimate [51],
and Findbugs [38]. How the use of tools increases motivation to improve TD
is mostly studied with satisfaction surveys and qualitative analyses [17,42], but

without cross-checking with the final data on TD or statistical validation [17,
41].

Improvements in students’ TD has been checked by studying projects devel-
oped by students [17,38,41,42,51|. However, only the final results have been
observed [41], without studying the effect of raising awareness.

In relation to the more explicit awareness of TD, work has been done to
introduce changes over successive courses [17,51]. As can be deduced from the
results, prior information and awareness-raising work, combined with the use
of automatic measurement tools, had a positive influence on reducing debt and
improving the quality of the software. However, these studies focus their con-
clusions only on the analysis of survey data. Regarding automatic reviews with
tools in training environments, the effectiveness of quality tools used in the eval-
uation of projects in Software Engineering courses was investigated in Silva et
al. [47]. This paper concluded that students receive solid feedback through the
use of these tools. Ramasubbu & Kemerer [43] also proposed a normative frame-
work for the integration of TD management and software quality management.
As a practical example, in Liu & Woo [32], SonarQube was used to provide code
quality to an automatic online evaluation system. The authors indicated that the
significant advantages of the system were that it helps the instructor to discover
weaknesses during a lecture and the students to locate their mistakes efficiently.

The application of different testing techniques on different groups (non-
testing, traditional and TDD, respectively), combined with the use of such tools
as Findbugs or SonarQube to measure TD, reveal that the results are not always
as expected, with hardly any reduction in TD when applying traditional or TDD
testing [38].

2.2 Gamification and Technical Debt

Gamification in Software Engineering has been studied as a mechanism to im-
prove engagement and job satisfaction [50] and has been applied to obtaining
better code quality [39].

The reduction of TD with incentives has been studied in other works [11],
but not from a purely gamification perspective. The problem of the diversity of
evaluation in software engineering gamification [35] suggests that its application
to TD could be an option. While the evaluation in most cases was subjective
and qualitative, its combination with TD provides a more objective quantitative
analysis.

The interest of empirical studies in the effectiveness of gamification in Soft-
ware Engineering education has been highlighted [1], especially as an innovative
effect of interest, which can improve motivation in software development, but
the lack of empirical studies with quantitative results has been noted [2].

Nguyen & Bodden [36] propose including gamification features similar to
those included in video games. A wireframe prototype of a static code analysis
tool enriched with gamification elements was used to survey 8 experts. They
concluded that it is convenient to gamify these tools with elements such as
points, badges or profiles as they help the programmer’s commitment. However,

without a quantitative experimental study with a group of trainees, and without
working on real projects or programming tasks, the results were limited to the
opinions gathered from the panel of experts.

Theoretical approaches introducing gamification from a serious games pers-
pective on TD, together with refactoring, testing and the use of quality analysis
for the calculation of TD, can be found in Haendler et al [27]. More applied
approaches can also be found, such as the work by Atal et al [5]. In this case,
the authors introduce gamification in teaching peer code reviewing in order to
positively affect code quality and TD. The empirical methods used are limited
to surveying participants.

The Themis tool [23] was proposed, integrating TD support, version control
and gamification, in order to improve TD management. The study analysed the
application of this tool to a single project already in operation, with a team
of 3 managers and 14 developers. The study method is based on a survey and
subsequent qualitative evaluation of the opinions collected, but no quantitative
results in terms of TD reduction are analysed.

Some empirical research has been conducted [10] by defining a quadrant of
different TD management strategies, such as encouraging, rewarding, penalising
and forcing. The results, obtained from surveys and interviews, suggest that
developers were not usually rewarded, penalised, or forced in their companies
to maintain low levels of TD. 60% of the respondents stated that they were
encouraged, to some extent, to keep the level of TD down. An extended work [11]
emphasises incentives (rewarding and encouraging). Regarding the encouraging
approach, the introduction of an additional element such as gamification seems
to be promising.

Inspired by Besker et al. [10], we revisited the strategies these authors defined,
but in an educational setting [14]. The encouraging strategy is the most usual
in educational contexts, with instructors always encouraging students to keep
TD low. The force strategy in an educational context prevents the evaluation of
student performance and learning, and can lead to a total lack of motivation.
Therefore, we focused on comparing the rewarding and penalising strategies,
which in our case corresponds to giving teams formed by 3 or 4 students in our
“Software Architecture and Design” course either incentives or disincentives. The
study concluded that the reward strategy (the carrot), based on gamification,
worked better than the penalty strategy (the stick), based on quality gates, to
motivate the students to keep TD low and produce a high quality code.

The study we present in this paper differs from previous works in the following
points: (a) different product metrics related to TD indicators are studied, (b)
not only a descriptive study is carried out, but also a quantitative analysis with
statistically significant results to draw objective conclusions, and (c) the effect of
raising developers’ awareness when faced with the introduction of gamification
is analysed.

3 Study Design

We performed a quasi-experiment following the recommendations provided by
Kitchenham et al. [29] and Wohlin et al. [55].

In the following, we first define the goal of our quasi-experiment and present
the research questions (Section 3.1). We then present the independent and depen-
dent variables (Section 3.2) and formulate the hypotheses defined to investigate
the research questions (Section 3.3). We provide details on the participants in
the experiment (Section 3.4), present its design (Section 3.5) and the infrastruc-
ture used to collect and analyse data (Section 3.6). The section concludes by
highlighting the experiment’s operation (Section 3.7).

3.1 Goal and Research Questions

The main goal of the quasi-experiment is defined by applying the Goal Question
Metrics (GQM) template [8] as follows:

Analyse the impact of continuously raising developers’ awareness on TD and
the impact of gamification on TD management

for the purpose of evaluating their effects

with respect to the source code quality

from the point of view of the researchers

in the context of a third year software engineering course involving under-
graduate students.

The research questions we addressed are the following:

RQ1 Does raising developers’ awareness of technical debt improve technical debt
indicators?

RQ2 Does introducing gamification in technical debt management improve tech-
nical debt indicators?

3.2 Selection of Variables

The independent variable represents the training environment. Three differ-
ent treatments were conducted depending on the training environment. The first
treatment was based on training the theoretical concept of TD, bad smells and
refactoring, while using multiple plugins in IDEs to obtain reports on quality
indicators of the code and the tests in a more traditional way. This treatment is
labelled as core (see Sec. 3.5.1 for its description).

The second treatment was based on enriching previous training with the
use of SonarQube to continuously raise awareness of TD by means of a CI/CD
pipeline. This treatment is labelled as sonarqube (see Sec. 3.5.2 for its descrip-
tion).

The third treatment was based on adding a gamification component to TD
management. This add-on was based on the definition of a contest with a top

ten ranking. This treatment is labelled as gamification (See Sec. 3.5.3 for its
description).

Therefore, the independent variable is a nominal variable and takes three
values: core, sonarqube and gamification.

The dependent variables of the quasi-experiment are metrics obtained from
the code developed by the subjects to accomplish the assigned programming
task.

The dependent variables considered in this study are:

— smells density (SD),

— technical debt ratio (TDR),
— branch_ coverage (BC),

— code to test (C2T),
comment density (CD).

The first two are related to the design and code debt, the second two to test
debt and the last one to documentation debt (see background in Sec. 2). Ratio
scale metrics have been selected to avoid limitations in the use of resources to
assess the observed data. These metrics are defined below.

3.2.1 Design and Code debt related metrics

Smells Density (SD) It is important to detect the presence of Code Smells
to evaluate the design and code debt. Therefore, the metric code smells
is selected, which calculates the total amount of smells present in the code.
From this absolute amount, a derived metric named smells density is defined
as a rate as follows:

SD = code smells/lines of code.

Technical Debt Ratio (TDR) Another metric related to design and code
debt included in the study is technical debt ratio. It is defined in Sonar-
Qube as the ratio between the cost of developing the software and the cost
of fixing it:

Remediation cost / Development cost
This can be restated as:

TDR = Remediation cost / (Cost to develop 1 line of code * Number of lines
of code)

The value of the cost of developing a line of code is considered to be 0.06
days by default in SonarQube.

3.2.2 Test debt related metrics

Two types of metrics are used related to test debt: static vs. dynamic, i.e.,
those which can either be obtained by static analysis or those that require an
execution to obtain them.

Coverage and test success metrics are dynamic metrics. They are calculated
by performing an execution of the code to be tested. There are several types
of coverage metrics and different tools to obtain them. Coverage metrics are
percentages which indicate the code that the tests execute against the total code
that could be executed. It is usual to take into account the metrics line coverage
and branch coverage, or even coverage which is calculated by combining the
two previous metrics. The metric line coverage is not interesting in this study
because it is very easy to obtain high levels of this kind of coverage in small size
projects. We therefore include branch coverage in the study, which is the metric
that could make the difference.

Branch Coverage (BC) On each line of code containing some boolean expres-
sions, the branch coverage simply answers the following question: ‘Has each
boolean expression been evaluated as both true and false?’” This is the den-
sity of possible conditions in flow control structures that have been followed
during the execution unit tests.

BC = (CT + CF) / (2*B) where:

CT = the conditions that have been evaluated as ‘true’ at least once;
CF = the conditions that have been evaluated as ‘false’ at least once;
B = the total number of conditions.

Code to Test (C2T) This is a static metric, so it is calculated by the static
analysis of both the main code or production code and the test code [26].
In this work, we calculate this metric as a rate between the number of unit
tests (tests) and the lines of production code. It is obtained from the metrics
tests and lines of code obtained with SonarQube:

C2T=tests/lines of code.

3.2.3 Documentation debt related metric

The participants were instructed in the principle “When you feel the need to
write a comment, first try to refactor the code so that any comment becomes
superfluous.” [24]; which is similar to “Don’t Use a Comment When You Can
Use a Function”. According to this principle, they were also instructed to only
use javadoc comments in the code. We verified that all comments in the code de-
veloped by the participants were javadoc comments. The quality of the javadoc
comments were evaluated in order to improve understandability and thus main-
tainability. Hence, the number of comment lines (metric comment lines) was
considered an interesting indicator of Documentation debt.

Comment Density (CD) is a derived metric defined as a rate as follows:

CD = Comment lines / (Lines of code + Comment lines).

3.3 Hypotheses formulation

Considering the related work, raising awareness and introducing gamification on
TD management is expected to have positive effects on the quality of software
code. Therefore, we formulated the following hypotheses:

Hle: TD indicators regarding design and code debt, test debt and documen-
tation debt behave better on average when developers are trained by con-
tinuously raising awareness of TD (sonarqube treatment) than when trained
with core treatment.

HfQQ: TD indicators regarding design and code debt, test debt and documen-
tation debt behave better on average when developers are trained adding
gamification of TD management (gamification treatment) than when trained
with sonarqube treatment.

3.4 Sampling and participants

Over a period of several years, we have worked on the continuous improvement of
training environments for Software Engineering professionals in terms of quality
software development and TD management.

The target population of this study are novice software developers. Due to
the availability of the subjects and the possibility of controlling the study, a
quasi-experiment has been carried out in the context of the University of Val-
ladolid. It is a quasi-experiment (according to Wohlin [55]) as the assignment of
treatments to subjects is a human-oriented investigation and cannot be based
on randomisation, but emerges from the characteristics of the subjects.

Focusing on the intended population of novice software developers, the par-
ticipating subjects were full-time third year students of a major in Software
Engineering, voluntarily enrolled in an optional course called Technologies for
Software Development in three different academic years (2016-2017, 2017-2018,
2018-2019), giving a total of 77 participants without repetition. The sample takes
students who are about to enter the labour market the following year, with a
uniform profile of knowledge and previous experience, and coincides with that
of a novice programmer.

According to the definition of the quasi-experiment , we have three groups,
25 subjects participated in the first treatment (core) of which 2 were female
and 23 were male, 24 subjects in the second treatment (sonarqube) of which 1
was female and 23 were male, and 28 in the third (gamification) all of whom
are male. The participants in the three groups were 21 years old on average,
had no previous work experience in Software Engineering and the same previous

academic experience. The preceding subjects they had taken were the same for
all and did not change from one group to another.

Unfortunately, as has been common in the Software Engineering profession
and studies, there were hardly any female members in the groups.

We have analysed the three groups by studying the grades obtained by the
participants in each group in the 20 subjects of the first two courses, finding no
significant differences between the groups in any of the subjects.

3.5 Experiment design

A package of 150 hours of training (60h theoretical + 90h practical) was de-
fined. This package includes framework-based development, domain-specific lan-
guages, agile practices, pair programming, Test First, the complete TDD cycle
(Red-Green-Refactor), different testing levels automation, isolation testing using
mocks, coverage and test monitoring, self-documentation, configuration man-
agement (in particular version control and issue tracking), project and depen-
dency management automation, continuous integration and continuous delivery
(CI/CD), bad smells in code, and refactoring. In addition, the concept of TD
and different metrics and indicators related to code quality and TD management
were also introduced.

The practical part of the training was carried out through the development of
four programming tasks as assignments, identified as p1, p2, p3, and p4, applying
the knowledge and tools of the training package. The relevant programming tasks
for this work were p3 and p4:

— p3 consisted of a programming task developed by pair programming, com-
pleting the TDD cycle (Red-Green-Refactor) starting from the Green phase
(since the Red phase, test first, was performed in the previous assignment
p2). In this study, p2 is subsumed into p3.

— p4 is developed individually, completing the whole TDD cycle, Red-Green-
Refactor.

A detailed description of the programming task to be developed was given to
the students. Detailed instructions were also given. The instructions contain an
explanation of the TDD cycle and indications for approaching it. Appendix A
contains the description of each programming task (Sec. A.1), and the instruc-
tions given for each assignment p3/p4 at each treatment, presented through the
differences (Sec. A.2).

In terms of the time spent, the programming tasks were around 20 hours
of work. The programming tasks were carefully designed to be different but
comparable in terms of size and difficulty in achieving high levels of coverage.
The size metrics lines of code and classes (number of classes), and the metric
cyclomatic complezity, are relevant to measure the number of different paths
from input to output, i.e., counting these paths and branches to cover, which
counts the conditions to be covered by the tests. The programming tasks were
designed to be solved by implementing 2 or 3 classes, between 300 and 400 lines

10

Table 1. Subjects and objects per training treatment in the quasi-experiment

Treatment Subjects Projs. Tools Contents and Practices
p3 p4
core 25 12 25 git, GitLab, Continuous integration and au-

Bitbucket (mirror), tomation are emphasised.
ant, maven, Technical Debt concept is intro-
Eclipse+plugins: duced.
EclEmma, A target “measures” with ant is ex-
Eclipse Metrics, plicitly required in the project as-
Eclipse Refactoring signments.
pmd

sonarqube 24 12 19 idem previous + idem previous +
SonarQube Technical Debt concept is linked to
(includes pmd as plu- SQALE framework.
gin) The ant target “measures” is

adapted to run the analysis with
SonarQube and integrated in the
gitlab CI/CD pipeline.

Continuously raising awareness of
Technical Debt indicators with So-

narQube.
gamification 28 12 16 idem previous idem previous +
gamification (contest and ranking)
Total [4d 36 60
96

of code, and from 50 to 100 for the aggregated cyclomatic complexity (depending
on the programming style).

As mentioned before, p3 was implemented by pair programming, while p4 was
individual. p4 was used as a substitute for the exam. The participants voluntarily
applied for this modality. This is the main reason why there are fewer p4 projects
than subjects in the study.

Table 1 shows the summary of the subjects and objects for each training
treatment in the quasi-experiment.

The risk of communication across the three groups along the quasi-experiment
is minimised by assigning different programming tasks to each group. Each group
studied in a different year and some participants had already graduated, while
others were taking the course.

The risk of communication between the participants in the same group always
exists but it is minimised, as in any course assignment, by penalising plagiarism.

The quasi-experiment was designed to have one factor that determines three
different treatments. The first, the so-called core, was taken as the baseline.
From there, it was compared with the treatment, in which monitoring and mea-
surement TD and other related indicators were systematically performed using
SonarQube. This was, in turn, compared with the treatment in which the gamifi-

11

Table 2. Quasi-experiment design: three training treatments (core, sonarqube and
gamification) apply to three groups of subjects on two different objects (p3, p4).

Group p3 Pair Programming p4 Individual Programming
G 2016-17 core core

G 2017-18 sonarqube sonarqube

G 2018-19 — gamification

cation of these indicators was introduced. The following subsections detail these
three training treatments identified as core, sonarqube, and gamification,
respectively.

Other factors are kept under control: the same instructor was involved in all
three groups and the participants had the same previous acquired knowledge as
presented in Sec. 3.4.

Table 2 shows the experimental configuration of the quasi-experiment, asign-
ing each treatment to each group of participants. A detailed description of each
training treatment follows.

3.5.1 The core training treatment

After several years of experience and continuous improvement, we reached
the configuration of the training package and also a practical and evaluation envi-
ronment formed by: git for local version control, GitLab as a remote repository,
collaborative development environment and issue tracker, Bitbucket to practice
automatic mirroring, Java as programming language, ant and maven for project
automation and automatic dependency management, JUnit as the base element
of test automation, Easymock/Mockito for mock-based isolation testing, Eclipse
as IDE with several integrated plugins, such as EclEmma (Eclipse plugin based
on Java Code Coverage-JaCoCo), for coverage analysis and test monitoring,
Eclipse Metrics and pmd plugins for Eclipse to visualise metrics and indicators
related to quality and TD. The Eclipse Refactoring plugin is also used to support
the last step of the TDD cycle to improve the quality of the implemented and
tested code.

The project automation with ant and maven should include a “measures”
target to obtain a report of measures and indicators related to quality and TD.

Environment details per training treatment are explained as shown in Fig-
ure 1. This figure shows two common bases: communication and local environ-
ment (arranged vertically and horizontally, respectively). These bases group a
series of elements common to all training treatments.

The vertical basis represents the agile communication environment used in
all training treatment. These are communication channels in rocket.chat on
premises that allow participants to communicate with each other and with the
instructors. Rocket.chat is an open source project similar to Slack.

12

Al 3
//nstructor i 'r
publish ranking \manual/ automatic scnpt based on

vaidate ranking | SonarQube API REST
gamification

>

SonarQu! premises
irsonaroube ¥
;
sonar-gﬂab—pum

sonarqube automatic job
in gmah cucn
aulo mlrror
rocket.chat
on premises
bltbucket on cloud i&

Ve
:
g
./
g
g
B

only for p4

communications
y

ab on remlse push
core 9 P
pair programn}n g Iocal envuonment programming alone
- . (ISR RRIRTE RS
p3 Eclipse Metrics

Fig. 1. Environment description per training treatment

The horizontal basis represents the local workstation environment of the par-
ticipants that is common to all training treatments. This local environment, as
explained above at the beginning of the description of the core training treat-
ments, consists of git, ant and maven, Eclipse IDE with Refactoring, JUnit,
Easymock/mockito, EclEmma (JaCoCo), Eclipse Metrics and pmd.

From these two common bases, three layers are depicted in Figure 1, each
representing a training treatment. Each layer is stacked on top of the previous
one, representing the inclusion.

The first layer represents precisely the core training treatment described in
this section. This layer adds to what is represented on the horizontal basis (the
local workstation), two tools that complement the local with the remote: GitLab
on premises and Bitbucket on cloud.

3.5.2 The sonarqube training treatment

In the second training treatment, the use of SonarQube was added to the
core (see second layer of Figure 1). Systematic quality control using SonarQube

13

in the p3 and p4 programming tasks was introduced. This was performed as part
of a continuous integration pipeline prepared in GitLab CI/CD based on maven
commands.

First, a 2-hour seminar on the use of SonarQube was introduced. Second,
an explanation on how to incorporate analysis with SonarQube into the contin-
uous integration process using GitLab CI/CD was introduced. Thirdly, in the
instructions given to the participants to perform the programming task, it was
indicated that the refactoring process of the TDD cycle should take into account
the information obtained from SonarQube to consider refactoring opportunities.
Appendix A includes the description of the instruction documents given to par-
ticipants, as well as the description of the programming tasks to be developed.

Each time a participant pushes his/her project to the remote repository in
GitLab, the CI/CD pipeline launches an analysis to the SonarQube server. Par-
ticipants can then look at the results on that server. Additionally, the sonar-
gitlab-plugin? was also used, which takes the results of the analysis performed
with SonarQube and annotates them in the GitLab project. Unfortunately, this
plugin can no longer be used after version 7.7 of SonarQube because the “preview
mode” previously offered by SonarQube has been removed. Furthermore, in the
local workstation, the participants were instructed to launch the analysis of the
project to the SonarQube server by means of an ant target or a maven command
and browse to see the results of the analysis at any time.

3.5.3 The gamification training treatment

For the third training treatment, no changes were introduced in the contents,
their sequencing, or the tools to be used. A gamification strategy based on So-
narQube was defined and introduced in TD management.

This training treatment is referred to as gamification, and includes the
above (core + continuously raising TD awareness using SonarQube) plus the
gamification strategy in TD management.

A competition with winners and prizes was defined as a gamification strat-
egy. Gamification occurs specifically in p4. Students participate in the contest
individually by performing the full cycle Red-Green-Refactor.

A ranking among the participants was produced. To be included in the rank-
ing, each participant had to obtain the following percentages or values for his/her
project in the SonarQube server, defined as a quality gate®:

— Test Success (T'S) = 100%

— Branch Coverage (BC) > 95%

— Density of Duplications (DD) < 1%
— Bugs =0

4 https://github.com/gabrie-allaigre /sonar-gitlab-plugin

5 At https://docs.sonarqube.org/latest/user-guide/quality-gates/ it is defined and
stated: “Quality Gates enforce a quality policy in your organization by answering
one question: is my project ready for release?”

14

— Vulnerabilities = 0
— Technical Debt (T'D) <5 hours

The thresholds in the application of the Quality Gate were selected based on
the experience of previous courses (historical data) with similar programming
tasks in terms of size and complexity. What we aimed to do when defining
the QualityGate, which allows inclusion in the ranking, was to represent the
indicators of the highest quality tasks developed by the participants of previous
courses.

Once in the ranking, an order was established by assigning a score to each
participant according to the formula: 3+ BC' + (60 %5 — T'D) + (100 — DD). In
the formula, 60*5 represents the maximum 5 hours of TD accumulated that are
required for inclusion in the ranking (expressed in minutes), minus the accumu-
lated TD measured by SonarQube in minutes. In this way, the lowest accumulated
TD gets the most points. In the extreme case of TD = 0 hours, 300 points are
obtained, which are balanced by the extreme case in which branch coverage of
100% is reached, another 300 points maximum can be obtained in this way. How-
ever, the other addend (100-DD) must be a number between 99 and 100, since
the duplicate code density (DD) must be less than 1%. The maximum score
obtained in the ranking is 700 points, and at least 384 points (corresponding to
the case 95*3+0+99) must be obtained for inclusion in the ranking.

Ties are solved according to the following order:

. Higher Code to Test rate (C2T).

. Lower Technical Debt Ratio (T'DR).

. Lower Code Smell Severity (C'SS) (calculated as blocking-+major) /violations.
. Reaching the state that has led to the tie earlier.

> o N

The prize consists of extra points in the final grade. The distribution of points
is done with the top 10 of the ranking (if any). Following the ranking, we start
by distributing 1 point to number 1, 0.9 to number 2, 0.8 to number 3 and so
on, until 0.1 for number 10 is reached. When the prizes obtained are added to
the winners’ grades, the maximum grade cannot exceed 10 points.

The participant competes by visualising the evolution of the analysis in So-
narQube of his/her project. First, he/she attempts to meet the criteria to enter
the ranking, and then attempts to improve his/her points, without seeing what
the others are doing. The ranking is shown at the end, and thus the distribution
of points.

The instructors must manually review the code developed by the participants
in the ranking to ensure that all the requested functionality has been developed.
Once the ranking has been manually reviewed, the instructors publish it in the
general communication channel on rocket.chat (see upper layer of Fig. 1).

3.6 Data collection and analysis

This section describes how the study was conducted, the automation and data
collection, and the measurement acquisition.

15

3.6.1 Data collection

The measurements for the metrics as dependent variables were obtained with
SonarQube. The SonarQube server used calculates 139 metrics, each described
with name, identifier or key, and type of metric®. The version of the SonarQube
server used for the projects analysis and metrics collection was 5.6.6, since this
was the one we had installed when it was used by participants for the first time
in projects p3 and p4 in the second treatment (2017-2018 academic year).

Data collection for all the projects was automated. To do this, a pom file was
defined that responds to the maven-quickstart archetype. This archetype was
the one to be used by the students when developing the p3 and p4 projects in all
courses. Hence, the structure of all the projects was the same. All the necessary
dependencies for all the projects throughout the three training treatments were
included in the pom file, where we also configured all the necessary plugins to
produce the test execution reports and the coverage analysis, as well as the
quality analyses with SonarQube. This made it possible to treat all the projects
equally and to automate the analyses, even if SonarQube had not been used by
the participants, as in the case of the core training treatment.

The projects were anonymised and all the original pom files of all the par-
ticipants’ projects were replaced, using a shell script, by the prepared pom file,
generating a unique project identifier for each one, following a pattern that iden-
tifies the course and kind of project (p3 or p4).

3.6.2 Procedures

From this point on, all automation was performed using R. From an R script,
HTTP requests were launched to the SonarQube server to obtain measurements
of the chosen metrics for all the projects in the study. The derived metrics defined
for some dependent variables were calculated. All these values were written to
csv files.

The data loading was performed by the ‘reading csv()’ function of the ‘readr’
package [54]. For data analysis, some of the variable types were also transformed
(from character to factor), so they could be properly recognised in both data
visualisation and data analysis.

The data of interest, measurements of dependent variables, corresponded to
percentages. Thus, for the analysis of percentage data, i.e., those whose range of
variation occurs between 0 and 1, we used the beta regression [22] by using the
‘betareg()’ function of the ‘betareg’ package [15].

The ‘betareg()’ function fits beta regression models for rates and propor-
tions type data, via maximum likelihood, using a parameterisation with mean
(depending on a link function on the co-variables) and an accuracy parameter
called phi.

5 The documentation of the metrics is available at https://docs.sonarqube.org/latest/
user-guide/metric-definitions/.

16

Formally introduced by Paolino in 2001 [37], beta regression differs from tra-
ditional linear regression as it models a dependent variable that follows a beta
distribution, not a normal distribution. The beta distribution can be param-
eterised by its mean and variance similar to a normal distribution. However,
unlike the normal distribution, the variance of a beta distribution is a function
of its mean and a ‘precision’ parameter, a scaling measurement describing how
tightly clustered the observed data are. Beta regression uses this particular as-
pect of the beta distribution to model the association of explanatory variables
to changes in mean and variance simultaneously.

To explore the dataset, we used the ‘summary()’ function of the R base
package which generates a type-dependent numerical summary for each of the
variables. The ‘ggplot2’ package [53] was used to visualise the variability of
the observations of the response (dependent) variable, along the levels of the
explanatory (independent) variable ‘treatment’.

The ‘joint _tests()’ function from the ‘emmeans’ package [30] was used to
create the Student’s t-type table of variance analysis (characteristic of linear
regression models).

For the Student’s t we formulated the null hypotheses Hy, which assume that
there is no difference in the TD indicators from one treatment to another. If Hys
can be rejected, the alternative hypotheses are assumed to be true, which in this
case are the study hypotheses stated in Sec. 3.3. Hys are formulated as follows:

H?Ql: VYM,; € {SD,TDR,BC,C2T, CD},ugimrqube = pMi | representing
behaviour on average.

H{'%%: VM; € {SD,TDR, BC,C2T,CD}, poki . vvion
ing p behaviour on average.

— i
- #sonarqube’ represent-

These null hypotheses state that the TD indicators behave the same on av-
erage, independently of the treatment. Rejecting a null hypothesis according to
the p-value when performing the Student’s t-test allows the corresponding hy-
pothesis (alternative H; in Sec. 3.3) to be accepted. Better behaviour can be
assumed according to each metric interpretation (greater is better or lower is
better).

The difference in means between independent treatments was assessed with
the Student’s t-test, using Cohen’s d to quantify the size of the difference (e.g.,
small, medium or large). We used the effect size package [9] to calculate and
interpret the standardised difference d (Cohen’s d).

R scripts and data in csv files are available in the replication package”.

3.7 Operation
This section describes how the experimental plan was implemented.

7 https://github.com/clopezno/gamdebt.

17

Table 3. Number of projects (p3 in pairs and p4 individually) finally participating in
the study, broken down by the values of the independent variable ‘treatment’.

Treatment p3 p4 Total
core 11 19 30
sonarqube 7 16 23
gamification 10 16 26
Total 28 51 79

3.7.1 Training The participating subjects developed the (programming tasks)
projects p3 and p4, and both the quality of the main code and the automated
tests were analysed.

Once developed, the objects in the study were characterised by size and
complexity metrics in order to ascertain that they are comparable projects once
developed by the participants, as was intended by the design (See Sec. 3.5). It
was found that there is not much deviation between the quartiles of these metrics
taken in the developed projects p3 and p4 of the three training treatments.
Figure 2 shows the characterisation of the programming tasks on average in
terms of number of classes and lines of code obtained from each group after
training.

600

500

classes
ncloc

core sonarQube gamification core sonarQube gamification
Treatment Treatment

Fig. 2. Comparison of the distributions of size-related code measures (Number of
classes and NCLOC) for the three treatments (core, sonarqube, gamification).

3.7.2 Experiment operation The analyses of 96 projects were launched to
the SonarQube server. The distribution of these projects by course and kind of
project is shown in Table 1. From the total number of projects, 17 were excluded,

18

Table 4. Quantitative analysis RQ1. p-value Student’s t-test and effect size computa-
tion with Cohen’s d (core vs. sonarqube).

Smells Technical Branch Code to Test Comment
Density (SD) Debt Ratio Coverage (C2T) Density (CD)
(TDR) (BC)
p3 Student-t 0.0002%** 0.0099%** 0.5418 0.0461%* 0.2862

effect size 1.31 large 1.13 large -0.27 small -0.84 large 0.39 small
p4 Student-t <.0001*** <.0001%** 0.2664 0.0008*** <,0001***
effect size 2.04 large 2.41 large 0.48 small -1.16 large 2.43 large

as can be seen in Table 3, reducing the final set to 79 projects, which are the
ones that finally participated in the study.

Projects were excluded for different reasons: either because they could not
be analysed with SonarQube, because they generated errors, or because the So-
narQube metrics could not be obtained as the tests were not available. In gen-
eral, they corresponded to cases in which the participants did not complete the
tasks specified in the p3 and p4 assignments. These cases could be considered as
dropouts.

4 Results

This section presents the results obtained from the analysis of the dependent
variables in the study, according to the procedures described in Sec. 3.6. In
addition, a descriptive analysis of the data with the help of boxplot diagrams is
presented. The presentation is structured around the defined research questions.

Regarding RQ1: Does raising developers’ awareness of technical debt im-
prove technical debt indicators?

For each metric considered, VM, € {SD,TDR, BC,C2T,CD}, and for each
project (programming task) p € {p3,p4}, we analysed the following null hypoth-
esis:

H§Q1(p) : p’i\g;arqube = p‘%;'e

Table 4 shows the results of the Student’s t-tests on the two experimental
scenarios considered: pair programming (p3) and individual programming (p4).
The cells of the Table represent the probability of accepting the alternative
hypothesis as true, when the null hypothesis could be true, known as the p-
value. The p-values denoting different behaviours of the measure applying the
different training treatments (core vs. sonarqube) are marked in bold according
to the following degree criterion: less than 0.001 (highlighted with ****) less
than 0.01 (highlighted with **’) and less than 0.05 (highlighted with **’).

The experimental results in Table 4 suggest that the training treatment based
on continuously raising awareness of the TD with the SonarQube tool (training

19

treatment core vs. training treatment sonarqube) has an impact on the metrics.
Seven out of 10 of the metrics treated exhibited different behaviours regarding
the means of the metrics. According to the p-values and the degree criteria, it can
be seen that the influence of the training treatment is greater when the project
is individual (p4), with 4 out of 5 significant values, than when it is carried out
in pairs (p3), with 3 out of 5 significant values.

In addition to the detailed analysis of treatment comparison and quantifica-
tion of improvement based on averages, Fig. 3 and Fig. 4 present the boxplot
plots for p3 and p4, respectively, which visually corroborate the results of the
detailed analysis of the considered metrics. For each project, the boxplots of the
five metrics used as dependent variables are presented.

We further complement this analysis by interpreting the measurement values
and analysing their improvement from the mean in the scenarios considered in
our experimental design. In both scenarios, p3 and p4, Code to Test (C2T), as
well as Smells Density (SD) and Technical Debt Ratio (TDR), are dependent on
the training treatment of the participants. Moreover, the measurement values
improve when SonarQube is used in training. This statement is discussed in
detail for each metric below.

20

. 20)
0.15
15
g ”
= 2 o °
2 0.10 o~ ©
o . N B
: N 8 1.0
2 = s (P —
£ . ks
@ c
. S
0.05 £ 05 .
*
0.00 ol 0.0 .
core sonarQube core sonarQube
100 R
95 08
8 * :
[} * -
S % K .
° . 0.6
2 2
g -t H
S 85 ° *
— .®
£ .
0.4 . .
ole
..
80 .
. 0.2 .
core sonarQube core sonarQube
0.3 . .
*
> 0.2 .
@ .
2 .
o) .
°
€
o
£
£
8
0.1

core sonarQube

Fig. 3. RQ1. Evolution of the measures for TD indicators with the training treatment
(core vs. sonarqube) in the project (programming task) developed in pairs (p3).

4
0.15 . .
Jo. 3
* g o
= 0.10 A o
3 : g :
] . o B2 e
° [3 .
0 ° ot
© ° ®
g 8
@ c .
: 5
0.05 3
M 1
*
f.e .
0.00 0 .
core sonarQube core sonarQube
100
. .
.) 06 .
. .
90
g
[0} . -
& L ¢
g . s :
g 8o L < 04 .
o] -
5] o *
c
o .
o
70
0.2
core sonarQube core sonarQube
0.4
0.3 IQ
= o
B .
S .
© 02 ‘
= BN X Se—
c O
o)
<] .
o
0.1
0.0
core sonarQube

Fig. 4. RQ1. Evolution of the measures for TD indicators with the training treatment
(core vs. sonarqube) in the project (programming task) developed individually (p4).
22

The interpretation of SD and TDR means that values equal to zero are
preferred. Taking the mean of the TDR values, a significant improvement is
observed at p3 and even more improvement at p4. The analysis of the mean
values with respect to SD also shows this improvement, even more so in p4.

The interpretation of the C2T measure is different, where values close to 1
are better in this metric. The results for the improvement of C2T compared to
the mean on p3 and p4 are again confirmed.

In both scenarios, p3 and p4, the Branch Coverage (BC) measure is shown to
be independent of the training treatment. The interpretation of the BC measure
denotes the best results with values close to 1. If we analyse in detail the values of
its means, we observe very high values (> 0.9) and there is a slight improvement
in its values when training with SonarQube.

The only indicator that behaves differently for p3 and p4 is Comment Density
(CD). In p3, it behaves the same for both training treatments. In p4, different
behaviours are observed. The interpretation of this measure is not objective and
is based on recommendations of threshold values that even depend on program-
ming languages. For this reason, it is not possible to analyse the improvement
based on averages.

As a conclusion of this analysis, it has been observed that training students
by continuously raising TD awareness using SonarQube improves the measures
related to design/code debt and test debt indicators in their developments. The
measure related to documentation debt behaves differently in the case of the p4
project, but we cannot state that it is improved.

Regarding RQ2: Does introducing gamification in technical debt manage-
ment improve technical debt indicators?

For each metric considered, VM; € {SD,TDR, BC,C2T,CD}, and for project

(programming task) p4, we analysed the null hypothesis:
H(?QQ(le) : /’Livrﬁzarqube = M%ﬁe

Table 5 collects the results of the Student’s t-test on the unique experimental
scenario considered (individual project p4, since it is the one in which gamifi-
cation is applied, as explained in Section 3.5.3). The cells in Table 5 represent
the p-values. The p-values denoting different behaviours of the measure apply-
ing the different training treatments (sonarqube vs. gamification) are marked
in bold, according to the following degree criterion: less than 0.001 (highlighted
with 7***7) less than 0.01 (highlighted with "**’) and less than 0.05 (highlighted
with 7).

The experimental results in Table 5 suggest that the training treatment that
adds gamification based on a contest and ranking, with respect to continuously
raising TD awareness using SonarQube, does not have a significant influence
on the measures. According to the p-values and the degree criteria, 3 of the 5
measures treated show the same behaviour with regard to the averages of the

23

Table 5. Quantitative analysis RQ2. p-value Student’s t-test and effect size computa-
tion with Cohen’s d (sonarqube vs. gamification).

Smells Technical Branch Code to Test Comment
Density (SD) Debt Ratio Coverage (C2T) Density (CD)
(TDR) (BC)
P4 Student-t 0.3461 0.6922 0.1201 0.0005*** 0.0001***
effect size -0.39 small 0.04 very -0.69 1.16 large 1.42 large
small medium

metrics. These measures correspond to Branch Coverage (BC), Smells density
(SD) and Technical Debt Ratio (TDR).

Figure 5 shows the boxplots of each metric comparing the sonarqube (TD
awareness training treatment, with respect to the gamification treatment, using
the TD as a reference value. The visual analysis corroborates the results of the
comparison obtained with the hypothesis tests of Table 5.

The interpretation of the C2T metric is that it improves when the values are
closer to 1. The results of C2T denote that adding gamification does not improve
the mean (see Fig. 5).

Regarding the CD metric, there is an increase in the mean in the gamifi-
cation training treatment vs. the sonarqube training treatment (from 19% to
27%). However, if we look at the CD when comparing sonarqube treatment vs
core treatment, we can see a decrease in the mean. In fact, it can be interpreted
that raising TD awareness using SonarQube has not really contributed to the
quality of the javadoc comments. When the instructor observed this drop from
the core training treatment to the sonarqube training treatment, in the gamifi-
cation treatment it was highly emphasised in the lessons and seminars. CD did
not participate in any way in the game rules, so we believe that the CD is not
influenced by the gamification, but by the instructor’s reinforcement.

5 Discussion

5.1 RQ1: Raising developers’ awareness of Technical Debt

As noted by other authors, after reviewing the results that answer our research
question RQ1, we have observed the advantages in the improvement in TD indi-
cators when the tool SonarQube is included. Specifically, in our study, we have
confirmed this with indicators related to design/code debt, test debt and doc-
umentation debt. These results agree with other previous works, such as those
described in Sec. 2. It seems evident that continuously raising awareness of TD
will have a positive effect on TD indicators. However, as with other similar ones,
this intuition should be empirically confirmed, as is done here.

24

0.15
. 2 L. .
0.10 ® :
2 2 .
3 - g
[} . N = .
© . 2
0 ° ot
© . © .
0.05 — % 5 . .,
. Qo ° .
* T
! o .ese s
0.00 . -
sonarQube gamification sonarQube gamification
100
- *
0.
95 . J 6 .
* .
g .
[0} . N -
g Q04 .
o . k) . ¢
S 8
c .
8 . .
85 L
0.2
. co.
80 . ee
sonarQube gamification sonarQube gamification
03 -
[
® 02 .
5 S
3 T
-
c
o) S
€
£ .
<]
o
0.1
0.0
sonarQube gamification

Fig. 5. RQ2. Evolution of the measures for TD indicators with the training treatment
(sonarqube vs. gamification) in the programming task developed individually (p4).

From a more detailed point of view, with this study, we observe that the types
of TD analysed, such as design/code debt, test debt and documentation debt,
obtain different significant results. Documentation debt is the least influenced
by the training treatment. This may be due to the interpretation of the indicator
used. Comment density is an objective indicator whose interpretation does not
lead unambiguously to indicating whether a higher value means better or worse
documentation. There is a non-capture subjectivity component to the quality of
the documentation.

In the case of BC (branch coverage), the use of SonarQube does not add value
to the use of JUnit+EclEmma in Eclipse. SonarQube just imports the results of
the report generated by JaCoCo. That is probably why this test debt indicator
is not significantly improved.

Regarding C2T improvement, overviews of the number of tests, classes, of
code, functions, etc, are very clearly shown in SonarQube. It is easier to calculate
the C2T indicator with the information that can be consulted in SonarQube than
with the aggregated information from the different IDE plugins.

In the case of SD (Smell Density), participants in the core treatment were
instructed to use pmd as a plugin in Eclipse, as pmd detects smells in code. So-
narQube detects a wider set of smells, as it is an aggregation of different plugins,
pmd in particular. This may influence the improvement of this indicator in the
treatment called sonarqube.

As for TDR (Technical Debt Ratio), the inclusion in the process of the con-
tinuous use of SonarQube seems to make the difference. Using several plugins to
obtain metrics and detect smells, such as Eclipse Metrics and pmd, does not seem
to foster raising awareness of TD. We believe that being aware of the increase in
TD at several points of the development process and, at the same time, of the
assessment in the time needed to repay it, influences participants’ attempts to
keep TD under control. Furthermore, using these indicators as means of detect-
ing refactoring opportunities and repaying TD in this part of the TDD cycle is
another factor to consider in the observed differences.

Most participants added white-box tests to increase the coverage indicator
related to test debt. To improve the design and code debt indicators, partici-
pants applied refactorings. We have observed that the majority of the partici-
pants applied some manual refactorings. We also observed the use of automatic
refactoring operations with the Eclipse Refactoring plugin. The most common
were “renames” refactorings. Almost all participants used “renames” (methods,
attributes), followed by “moves” refactorings (classes from one package to an-
other, methods from one class to another). Next in usage was “Use supertype
as possible” followed by “Extract Interface”. Last, and least, "Extract method"
refactoring was also applied several times by different participants. We did not
find other kinds of automatic refactoring applied. In the rest of the cases, when
participants need to repay TD, they refactor by manual edition. This also applies
in the case of the gamification treatment.

Results in p4 are better than in p3 mainly because they are individually
applying what they learned and experienced in pairs. However, we believe it

26

is also because of the emphasis in the instructions that explicitly mention the
actions to perform in the last phase of the TDD cycle. All these are available in
the course documentation, but it seems to raise awareness when it is emphasised
in the task programming instructions.

5.2 RQ2: Gamification on Technical Debt management

Regarding the observations of adding a competitive factor, based on ranking
gamification, to the TD management (RQ2), no improvement in results has
been observed, compared to continuously raising awareness of TD using So-
narQube. Although it seems interesting to continue doing studies to confirm
these observations, it has already been pointed out in Moldon et al. [34] that
the inclusion of gamification elements can end up conditioning the behaviour of
software developers, even in a negative sense. However, it is debatable whether
the inclusion of SonarQube for raising awareness of TD is implicitly already
a gamification activity embedded in the development process. Developers can
identify TD measures with points and TD reduction with achievements. Given
our results, the inclusion in the second training treatment of the management
of TD with a tool, before gamification in the third training treatment, may
have altered or softened this effect. This raises the possibility of improving the
gamification activity itself.

The participants in this study, the 18-19 group, indicated that they missed
the social part of gamification e.g. showing their achievements to the commu-
nity, increasing competitiveness and having immediate feedback of the impact in
the ranking of their actions repaying the debt. Introducing all these requires a
more sophisticated gamification tool. After this study, we adapted a competitive
programming environment and showed the first results of using it in improving
technical debt indicators as reported in [14].

The participants also indicated that when they did not know what else to do,
they devoted time to thinking how to programme the same with lower cyclomatic
complexity in order to indirectly obtain better C2T and to improve javadoc
comments in order to obtain better marks.

Further research is needed and a new study should be designed to check
whether different decisions in the gamification (rules and environment) work
better for the objective of having better technical debt indicators.

5.3 Implications

As a consequence of the results and their discussion, we can highlight some
implications for academia, researchers and practitioners.

Academia has to include TD in their curricula regarding Software Engineer-
ing. In such cases, TD should be treated as a “first class subject” as are Require-
ments or Testing [20]. University teachers need to incorporate TD concepts and
use tools (such as SonarQube) that allow students to acquire some TD skills.
Teachers should also be involved in the use and evaluation of different gamifica-
tion techniques in Computer Science courses.

27

It is important for researchers to be involved in studies on the effect of the use
of tools on TD awareness and management. They should also investigate to what
extent this influences the improvement of TD indicators. It is also necessary, on
the one hand, to continue the empirical validation of the effectiveness, efficacy
and efficiency of gamification environments; and, on the other, to investigate how
gamification theory and tools should be used to create new and more efficient
gamification environments.

In the case of practitioners, it is necessary to implant such tools as SonarQube
in software engineering teams, and continuously assess their impact on decreasing
TD or keeping it under control. On the one hand, industry has to incorporate
TD into CI/CD processes. On the other, companies should adopt gamification
techniques very cautiously and should not take it for granted that they will
produce an improvement in software quality, specifically in the management of
TD. As is fortunately being accepted more and more in the software industry,
the importance of quantitative and data-driven management must be reaffirmed
when managing software quality and TD. Finally, it is important to find the best
ways to train practitioners in aspects related to TD.

6 Threats to Validity

In this section, we discuss threats to the validity of our results using Cook and
Campbell’s classification [4,13,45,55]. The threats are classified as conclusion,
internal, construct and external validity.

6.1 Conclusion validity

Threats to the conclusion validity refer to the reliability of the conclusions, it
describes the relationship between the treatment and the outcome of the ex-
periment [55]. One of the threats could be the reliability of the experiment’s
implementation. In order to avoid this threat it has been implemented in a sim-
ilar way in each training treatment. Furthermore, the type of problem assigned
as projects was conceptually similar, but also similar in size and complexity.

As Ampatzoglou et al. [4] state, researcher bias can greatly impact the con-
clusions reached and can be considered a threat to the conclusion validity. In this
case, the interpretation of the comment density metric is subjective and its im-
provement is evaluated according to threshold values that are highly dependent
on such factors as the programming language or the organisation’s commenting
style (e.g., inclusion of code licensing information in the comments).

In our study, the comparison of treatment methods has been one of equality
and difference, so this threat has had no effect.

6.2 Internal validity

Threats to internal validity refer to ensuring that anything that may affect the
dependent variables is a causal relationship and not the result of a factor that
has not been accounted for or measured.

28

We mitigated the threat of subject dropout in the middle of the study by
making it count as part of the course grade. Nevertheless, it is impossible to
fully avoid dropouts. Those objects resulting from dropouts were removed from
the study because they could not be analysed.

We also reduced the threat of history, as each training treatment was carried
out during the same academic semester in successive courses, in which similar
events occur.

The aim is to strike a balance between avoiding the copying effect from one
course to another using the same programming task and not comparing the
treatment results from one year to another using the same programming task.
To achieve an adequate compromise, it was decided to avoid the copy effect but
to introduce programming tasks, which, although different, are very similar in
terms of size, complexity, and hours of effort required. This intention was checked
with an a posteriori study shown previously in Section 3.7.1. This threat could
be eliminated in a replication in which the experiment can be carried out with
3 groups in parallel and with no communication between them.

The group subjects are different in each training treatment, so the results may
be biased by the knowledge they have at the start of training in each training
treatment. Given the context in which the quasi-experiment design could be
conducted, it was not possible to control the subjects in each of the training
treatments. However, in order to reduce this threat, it was possible to control
their educational background, ensuring that the subjects had no previous work
experience and generally had the same prior education. However, it is true that
a participant may have had some prior knowledge of his/her own.

A threat has been detected in the design of the gamification activity devel-
oped in the third training treatment. The gamification definition is based on
metrics obtained with SonarQube, so it becomes difficult to separate the influ-
ence of gamification per se from the influence of the awareness of TD itself. This
should be mitigated in future redesigns of the quasi-experiment.

However, from the point of view of a social threat, the effect of gamification
in other contexts has not always had positive effects, either from the point of
view of excessive disclosure of private information [52] or suspicion of its use
as a control mechanism [28]. Although the first problem is not so applicable in
gamification in software development; in the second case, it must be taken into
account, but more from the point of view of TD management.

6.3 Construct validity

Construct validity refers to the relationship between theory and observation. It
is therefore necessary to take into account, on the one hand, the way in which
the experiment has been designed and its capacity to reflect the construct, and
on the other, those related to the behaviour of the subjects [55].

In our case, the objective is to measure the impact on TD, specifically on
four types of TD. In the quasi-experiment, commonly accepted metrics are used
in relation to these aspects, so this threat is not important.

29

As for the objects of study, the projects vary for each training treatment to
avoid the learning-copying effect. In this case, the threat was mitigated because
the degree of difficulty was similar, which is corroborated by the measures of
complexity and size of the projects.

One threat to take into account is the gamification design itself. A series of
decisions were taken to design both the gamification process and specifically the
contest. It is necessary to point out that it is not possible to mitigate this threat,
because the contest is established in that way, but the replication package can
always be used to perform another type of gamification.

6.4 External validity

Threats to external validity limit the generalisability of the results, so the sub-
jects, the environment and the timing of the quasi-experiment must all be taken
into account.

One of the threats to external validity comes from having students as sub-
jects. In this case, this threat is reduced since they are third-year students who
are very close to graduating and starting their professional work.

There is an open debate about the use of novice programmers for this type
of studies [21]. Some works have shown that years of professional experience do
not have the expected effect on improving quality and productivity. However,
experience gained in academic training does seem to have a positive effect [18].
Furthermore, it has also been found that the effect of experience for the intro-
duction of TD is not as relevant as other factors, such as the maturity of the
project, the habits of the programmer, or the type of specific tasks developed in
the period [19].

The effect of gender on gamification must also be taken into account. Some
work has reflected a gender moderation between playfulness and intention to
use [12]. In the world of software development, the gender distribution is very
uneven, with a higher number of men, more likely to actively participate in
these dynamics. In our study, there is hardly any female representation,which
is unfortunately representative of what is happening in Software Engineering
today. Being aware of this, the study still needs to be replicated in a context
where there is more female representation.

Another threat corresponds to the choice of the programming tasks to be
solved by the subjects. They are similar to real situations that are developed in
industry, limited in complexity, length and duration, but not really a part of a
real software project development.

The use of SonarQube and its associated plugins as reference tools can also
generate some threats. In [44], the Sonar TD plugin is presented as the most
cited tool in TD management. This is confirmed by data on 100K organisations,
including 15K public open source projects using the tool [46]. Despite being the
most widely used, it is true that the tool cannot be 100% correct, with diffuse TD
elements and overestimated remediation time [7,46]. Nevertheless, being one of
the de facto standards, it seems to be a suitable option to establish comparisons
between experimental studies, while still being aware of the tool’s weaknesses.

30

However, it is considered an external threat to validity, as a generalization threat,
because different results could be obtained if another tool were used to measure
TD indicators, so it would be interesting to replicate the study by adapting it
to other tools. For example, using Kiuwan 8 or Cast Software ¥, but given their
different characteristics, they would not guarantee the same results. Besides, the
high costs associated with this kind of tool make it problematic to replicate them
in academic contexts.

In short, the study has been carried out in a specific context. Factors in-
fluencing this context may affect the generalisability of the results. It would be
interesting to design replications of this study in different contexts and with
other programming languages and tools.

7 Conclusions and future work

The importance of managing TD is widely accepted in the software engineering
community in both business and academic domains. However, previous training
of developers and TD management are different in software development organ-
isations. One reason is theoretical, due to the lack of a concrete definition of
the factors for calculating TD. The second reason is practical, and refers to the
lack of a standardised technological development environment based on rules
and code quality measures.

The literature reviews on TD [31,44] include studies to obtain a classifica-
tion and improve the understanding of this metaphorical concept. Under this
referential and theoretical framework, it seems relevant to continue developing
empirical studies that help to confirm hypotheses related to the consequences of
the different ways of managing TD.

In this paper, we have conducted a quasi-experiment based on three training
treatments, where we analyse, on the one hand, the effect of continuously raising
awareness of TD using such dedicated tools as SonarQube and, on the other,
introducing gamification in the management of TD, using Software Engineering
developers/students as the study subjects.

The study has evaluated the quality improvement with code metrics as in-
dicators of different types of TD (design debt, code debt, test debt and doc-
umentation debt). The introduction of SonarQube in the development process
for continuously raising awareness of TD has significantly improved the studied
indicators.

Regarding design/code debt, the results show a significant improvement in
this case. However, there is not such a positive effect with the introduction of
gamification on TD management.

Regarding the test debt related indicators, it was observed that although the
test coverage (BC) did not show an improvement with the introduction of Sonar-
Qube in the development process, the C2T, which measures the number of unit
tests with respect to the production lines of code, did improve. Analysing these

& https://www.kiuwan.com
9 https://www.castsofware.com

31

results in detail, we observed that, in the baseline technological environment
(core treatment), EclEmma was used to obtain reports on the test coverage. In
all the treatments, the developments showed a coverage value above 90%. Being
aware of this information and setting a quality standard based on a threshold
value makes developers comply with it in their developments. However, this test
coverage indicator is not conclusive on test debt. In order to see the quality of
the test codes, it should be complemented with the C2T, which did improve
when SonarQube was introduced to continuously raise awareness of TD.

The results for the documentation debt indicators did not show convergent
findings.

As a general conclusion of the results obtained in this empirical study, it
has been observed that the quality of the codes produced by developers who
use tools (such as SonarQube) that calculate, and can be used in a systematic
way to raise awareness on TD, are better than those produced by developers
who do not. Accordingly, investment in staff training in this kind of tool and its
proper introduction in the development process do return improvements in TD
indicators.

TD indicators, when introducing gamification in TD management, did not
reveal a significant improvement compared to when SonarQube was introduced
to continuously raise awareness of TD. However, it would be advisable to define
new empirical studies that consider different gamification strategies (badges,
live ranking and social issues) that could achieve an improvement in the TD
indicators. These new gamification strategies should take into account, as pointed
out in Moldon et al. [33], that the effect of gamification, or in this specific case,
the abandoning of certain gamification practices in development, shows a change
in the behaviour of programmers; which is not always aimed at improving the
quality of the product, but due to other social and psychological issues. Directing
gamification under the umbrella of improving code quality and reducing TD
should limit and cushion this possible negative effect.

As future work, the most important goal to achieve would be to adapt the
study to an industrial setting, and also try to move from a quasi-experiment to
experiment, attempting to achieve the full randomisation of the groups. However,
proposing new gamification strategies and carrying out experiments to check
which strategy brings better results would be another important step forward.

Acknowledgement

This research is based on the work carried out under the Innovation projects
of Universidad de Valladolid PID2017/2018-28, PID2018,/2019-38. The authors
would like to thank the reviewers and Dr. Valentin Cardenoso for the comments
that have served to improve the first versions of this work.

References

1. Alhammad, M.M., Moreno, A.M.: Gamification in software engineering education:
A systematic mapping. JOURNAL OF SYSTEMS AND SOFTWARE 141, 131-

32

10.

11.

12.

13.

14.

150 (JUL 2018). https://doi.org/10.1016/].jss.2018.03.065

. Alhammad, M.M., Moreno, A.M.: Challenges of gamification in software pro-

cess improvement. Journal of Software: Evolution and Process 32(6), e2231
(2020). https://doi.org/https://doi.org/10.1002/smr.2231, https://onlinelibrary.
wiley.com/doi/abs/10.1002 /smr.2231, 2231 JSME-19-0049.R1

. Allman, E.: Managing technical debt. Communications of ACM 55(5) (May 2012)
. Ampatzoglou, A., Bibi, S., Avgeriou, P., Verbeek, M., Chatzigeorgiou, A.:

Identifying, categorizing and mitigating threats to validity in software engi-
neering secondary studies. Information and Software Technology 106, 201-
230 (2019). https://doi.org/https://doi.org/10.1016/j.infsof.2018.10.006, https://
www.sciencedirect.com /science/article /pii/S0950584918302106

. Atal, R., Sureka, A.: Anukarna: A software engineering simulation game for teach-

ing practical decision making in peer code review. In: Lichter, H., Anwar, T.,
Sunetnanta, T., Vianden, M., Dubey, A., Celis, L.E., Grant, E.S., Shankarara-
man, V. (eds.) QuASoQ/WAWSE/CMCEQAPSEC. CEUR Workshop Proceed-
ings, vol. 1519, pp. 63-70. CEUR-WS.org (2015), http://dblp.uni-trier.de/db/
conf/apsec/quasoq2015.html# AtalS15

. Avgeriou, P., Kruchten, P., Ozkaya, 1., Seaman, C.: Managing Technical Debt in

Software Engineering (Dagstuhl Seminar 16162). Dagstuhl Reports 6(4), 110-138
(2016). https://doi.org/10.4230/DagRep.6.4.110, http://drops.dagstuhl.de/opus/
volltexte/2016,/6693

. Baldassarre, M.T., Lenarduzzi, V., Romano, S., Saarimidki, N.: On

the diffuseness of technical debt items and accuracy of remediation
time when wusing sonarqube. Information and Software Technology 128,
106377 (2020). https://doi.org/https://doi.org/10.1016/j.infsof.2020.106377,
https://www.sciencedirect.com/science/article/pii/S0950584919302113

. Basili, V.R., Weiss, D.M.: A methodology for collecting valid software engineer-

ing data. IEEE Transactions on Software Engineering SE-10(6), 728-738 (1984).
https://doi.org/10.1109/TSE.1984.5010301

. Ben-Shachar, M.S., Liidecke, D., Makowski, D.: effectsize: Estimation of effect size

indices and standardized parameters. Journal of Open Source Software 5(56), 2815
(2020). https://doi.org/10.21105/joss.02815, https://doi.org/10.21105/joss.02815
Besker, T., Martini, A., Bosch, J.: Carrot and stick approaches when
managing technical debt. In: Proceedings of the 3rd International Confer-
ence on Technical Debt. p. 21-30. TechDebt 20, ACM, New York, NY,
USA (2020). https://doi.org/10.1145/3387906.3388619, https://doi.org/10.1145/
3387906.3388619

Besker, T., Martini, A., Bosch, J.: The wuse of incentives to pro-
mote technical debt management. Information and Software Technology
142, 106740 (2022). https://doi.org/https://doi.org/10.1016/j.infsof.2021.106740,
https://www.sciencedirect.com /science/article/pii/S0950584921001907

Codish, D., Ravid, G.: Gender moderation in gamification: Does one size fit all? In:
Proceedings of the 50th Hawaii international conference on system sciences. p. 10
(01 2017). https://doi.org/10.24251 /HICSS.2017.244

Cook, T., Campbell, D.: Quasi-experimentation — design and analysis issues for
field settings. Houghton Mifflin Company (1979)

Crespo, Y., Gonzalez-Escribano, A., Piattini, M.: Carrot and stick ap-
proaches revisited when managing technical debt in an educational con-
text. In: 2021 2021 IEEE/ACM International Conference on Technical Debt
(TechDebt) (TechDebt). pp. 99-108. IEEE Computer Society, Los Alamitos,

33

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

CA, USA (may 2021). https://doi.org/10.1109/TechDebt52882.2021.00020, https:
//doi.ieeecomputersociety.org/10.1109/TechDebt52882.2021.00020

Cribari-Neto, F., Zeileis, A.: Beta regression in R. Journal of Statistical Software
34(2), 1-24 (2010), http://www.jstatsoft.org/v34/i02/

Cunningham, W.: The WyCash portfolio management system. ACM SIGPLAN
OOPS Messenger 4(2), 29-30 (1993). https://doi.org/10.1145/157710.157715
Delgado, D., Velasco, A., Aponte, J., Marcus, A.: Evolving a project-based soft-
ware engineering course: a case study. In: The 30th IEEE Conference on Software
Engineering Education and Training. pp. 77-86 (2017)

Dieste, O., Aranda, A.M., Uyaguari, F., Turhan, B., Tosun, A., Fucci, D., Oivo, M.,
Juristo, N.: Empirical evaluation of the effects of experience on code quality and
programmer productivity: an exploratory study. Empirical Software Engineering
22(5), 2457-2542 (Oct 2017). https://doi.org/10.1007/s10664-016-9471-3, https:
//doi.org/10.1007 /s10664-016-9471-3

Digkas, G., Ampatzoglou, A., Chatzigeorgiou, A., Avgeriou, P.: The temporality of
technical debt introduction on new code and confounding factors. Software Quality
Journal (11 2021). https://doi.org/10.1007/s11219-021-09569-8

Falessi, D., Kruchten, P.: Five reasons for including technical debt in the soft-
ware engineering curriculum. In: Proceedings of the 2015 European Conference on
Software Architecture Workshops. ECSAW ’15, Association for Computing Ma-
chinery, New York, NY, USA (2015). https://doi.org/10.1145/2797433.2797462,
https://doi.org/10.1145/2797433.2797462

Feldt, R., Zimmermann, T., Bergersen, G.R., Falessi, D., Jedlitschka, A., Juristo,
N., Miinch, J., Oivo, M., Runeson, P., Shepperd, M., Sjgberg, D.I.LK., Turhan,
B.: Four commentaries on the use of students and professionals in empirical soft-
ware engineering experiments. Empirical Software Engineering 23(6), 3801-3820
(Dec 2018). https://doi.org/10.1007/s10664-018-9655-0, https://doi.org/10.1007/
$10664-018-9655-0

Ferrari, S., Cribari-Neto, F.: Beta regression for modelling rates and proportions.
Journal of Applied Statistics 31(7), 799-815 (2004), https://EconPapers.repec.
org/RePEc:taf:japsta:v:31:y:2004:1:7:p:799-815

Foucault, M., Blanc, X., Storey, M.D., Falleri, J., Teyton, C.: Gamification: a game
changer for managing technical debt? A design study. CoRR abs/1802.02693
(2018), http://arxiv.org/abs/1802.02693

Fowler, M., with contributions of Beck, K., Brant, J., Opdyke, W., et al.: Refac-
toring: Improving the Design of Existing Code. Object technology series, Addison-
Wesley (1999)

Fowler, M.: Technical debt quadrant. MartinFowler.com blog (2009)

Fox, A., Patterson, D.: Engineering Software as a Service: An Agile Approach
Using Cloud Computing. Strawberry Canyon LLC, 2nd edn. (2013)

Haendler, T., Neumann, G.: Serious refactoring games. In: Proceedings of the
52nd Hawaii International Conference on System Sciences. pp. 1-10 (2019).
https://doi.org/10.24251/HICSS.2019.927

Hammedi, W., Leclercq, T., Poncin, I., Alkire (Née Nasr), L.. Un-
covering the dark side of gamification at work: Impacts on engage-
ment and well-being. Journal of Business Research 122, 256-269
(2021). https://doi.org/https://doi.org/10.1016/j.jbusres.2020.08.032,
https://www.sciencedirect.com /science/article/pii/S0148296320305415
Kitchenham, B.A., Pretorius, R., Budgen, D., Brereton, P., Turner, M.,
Niazi, M., Linkman, S.G.: Systematic literature reviews in software en-
gineering - A tertiary study. Inf. Softw. Technol. 52(8), 792-805 (2010).

34

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

https://doi.org/10.1016 /j.infsof.2010.03.006, https://doi.org/10.1016/j.infsof.
2010.03.006

Lenth, R.: emmeans: Estimated Marginal Means, aka Least-Squares Means (2020),
https://CRAN.R-project.org/package=emmeans, r package version 1.5.2-1 — For
new features, see the ’Changelog’ file (in the package source)

Li, Z., Avgeriou, P., Liang, P.: A systematic mapping study on technical debt
and its management. JOURNAL OF SYSTEMS AND SOFTWARE 101, 193-220
(MAR 2015). https://doi.org/10.1016/j.jss.2014.12.027

Liu, X., Woo, G.: Applying code quality detection in online programming judge.
In: Proceedings of the 2020 5th International Conference on Intelligent Infor-
mation Technology. p. 56-60. ICIIT 2020, Association for Computing Machin-
ery, New York, NY, USA (2020). https://doi.org/10.1145/3385209.3385226, https:
//doi.org/10.1145/3385209.3385226

Moldon, L., Strohmaier, M., Wachs, J.: How gamification affects software de-
velopers: Cautionary evidence from a natural experiment on github. In: 2021
IEEE/ACM 43rd International Conference on Software Engineering (ICSE).
pp. 549-561. IEEE Computer Society, Los Alamitos, CA, USA (may 2021).
https://doi.org/10.1109/ICSE43902.2021.00058, https://doi.ieeecomputersociety.
org/10.1109/ICSE43902.2021.00058

Moldon, L., Strohmaier, M., Wachs, J.: How gamification affects software
developers: Cautionary evidence from a quasi-experiment on github. ArXiv
abs/2006.02371 (06 2020)

Monteiro, R.H.B., de Almeida Souza, M.R., Oliveira, S.R.B., dos Santos Portela,
C., de Cristo Lobato, C.E.: The diversity of gamification evaluation in the soft-
ware engineering education and industry: Trends, comparisons and gaps. CoRR
abs/2102.05089 (2021), https://arxiv.org/abs,/2102.05089

Nguyen Quang Do, L., Bodden, E.: Gamifying static analysis. In: Proceed-
ings of the 2018 26th ACM Joint Meeting on European Software Engineer-
ing Conference and Symposium on the Foundations of Software Engineering. p.
714-718. ESEC/FSE 2018, Association for Computing Machinery, New York, NY,
USA (2018). https://doi.org/10.1145/3236024.3264830, https://doi.org/10.1145/
3236024.3264830

Paolino, P.: Maximum likelihood estimation of models with beta-distributed de-
pendent variables. Political Analysis 9(4), 325-346 (2001)

Parodi, E., Matalonga, S., Macchi, D., Solari, M.: Comparing technical debt in
student exercises using test driven development, test last and ad hoc programming.
In: 2016 XLII Latin American Computing Conference (CLEI). pp. 1-10 (2016).
https://doi.org/10.1109/CLEI.2016.7833380

de Paula Porto, D., de Jesus, G.M., Ferrari, F.C., Fabbri, S.C.P.F.:
Initiatives and challenges of wusing gamification in software engineering:
A systematic mapping. Journal of Systems and Software 173, 110870
(2021). https://doi.org/https://doi.org/10.1016/j.jss.2020.110870, http://www.
sciencedirect.com/science/article/pii/S0164121220302600

Pedreira, O., Garcia, F., Brisaboa, N., Piattini, M.: Gamification in software en-
gineering - A systematic mapping. INFORMATION AND SOFTWARE TECH-
NOLOGY 57, 157-168 (JAN 2015). https://doi.org/10.1016/j.infsof.2014.08.007

Quezada Sarmiento, P., Guaman, D., Barba Guaman, L.R., Enciso, L., Cabrera,
P.: Sonarqube as a tool to identify software metrics and technical debt in the
source code through static analysis. In: Proceedings of 2017 the 7th International
Workshop on Computer Science and Engineering. pp. 171-175 (07 2017)

35

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

Raibulet, C., Arcelli Fontana, F.: Collaborative and teamwork software develop-
ment in an undergraduate software engineering course. The Journal of Systems &
Software 144, 409 — 422 (2018)

Ramasubbu, N., Kemerer, C.F.: Integrating technical debt management and
software quality management processes: A normative framework and field
tests. IEEE Transactions on Software Engineering 45(3), 285-300 (2019).
https://doi.org/10.1109/TSE.2017.2774832

Rios, N., de Mendonga Neto, M.G., Spinola, R.O.: A tertiary study on tech-
nical debt: Types, management strategies, research trends, and base informa-
tion for practitioners. Information and Software Technology 102, 117 — 145
(2018). https://doi.org/https://doi.org/10.1016/j.infsof.2018.05.010, http://www.
sciencedirect.com/science/article/pii/S0950584918300946

Runeson, P., Host, M.: Guidelines for conducting and reporting case study
research in software engineering. Empirical Software Engineering 14(2), 131
(Dec 2008). https://doi.org/10.1007/s10664-008-9102-8, https://doi.org/10.1007/
$10664-008-9102-8

Saarimaki, N., Baldassarre, M.T., Lenarduzzi, V., Romano, S.: On the accuracy of
sonarqube technical debt remediation time. In: 2019 45th Euromicro Conference
on Software Engineering and Advanced Applications (SEAA). pp. 317-324 (2019).
https://doi.org/10.1109/SEAA.2019.00055

Silva, D., Nunes, 1., Terra, R.: Investigating code quality tools in the context of
software engineering education. Computer Applications in Engineering Education
25(2), 230-241 (2017). https://doi.org/10.1002/cae.21793, https://onlinelibrary.
wiley.com/doi/abs/10.1002/cae.21793

Souza, M.R.d.A., Veado, L., Moreira, R.T., Figueiredo, E., Costa, H.: A system-
atic mapping study on game-related methods for software engineering education.
INFORMATION AND SOFTWARE TECHNOLOGY 95, 201-218 (MAR 2018).
https://doi.org/10.1016/j.infsof.2017.09.014

Stepsize: The State of Technical Debt 2021 report. https://www.stepsize.com/
report (2021), [Online; accessed 14-July-2021]

Stol, K.J., Schaarschmidt, M., Goldblit, S.: Gamification in software engineering:
The mediating role of developer engagement and job satisfaction. Empirical Soft-
ware Engineering (2021)

Tonin, G.S., Goldman, A., Seaman, C., Pina, D.: Effects of technical debt aware-
ness: A classroom study. In: Baumeister, H., Lichter, H., Riebisch, M. (eds.) Ag-
ile Processes in Software Engineering and Extreme Programming. pp. 84-100.
Springer International Publishing, Cham (2017)

Trang, S., Weiger, W.H.: The perils of gamification: Does engag-
ing with gamified services increase wusers’ willingness to disclose per-
sonal information? Computers in Human Behavior 116, 106644 (2021).
https://doi.org/https://doi.org/10.1016/j.chb.2020.106644, https://www.
sciencedirect.com /science/article/pii/S0747563220303915

Wickham, H.: ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New
York (2016), https://ggplot2.tidyverse.org

Wickham, H.: readr: Read Rectangular Text Data (2020), https://CRAN.
R-project.org/package=readr, r package version 1.5.2-1 — For new features, see
the "Changelog’ file (in the package source)

Wohlin, C., Runeson, P., Host, M., Ohlsson, M., Regnell, B., Wesslén, A.: Experi-
mentation in Software Engineering. Springer Berlin Heidelberg, Berlin, Heidelberg,
Ist ed. 2012. edn. (2012)

36

A Programming tasks assigned

A.1 Description of each programming task

A.1.1 Description of the programming task: P3-core treatment

In an information system, it is necessary to develop the services of a newslet-
ter. The following is a description of the features to be included in the current
iteration:

Concerning the news:

1. A news item necessarily has a headline, the date of publication, the source
(name of the media or press agency), a URL where the complete content of
the news item is found, and a category.

2. The categories in which a news item can be classified are: national, interna-
tional, society, economy, sport, and culture.

3. News headlines, according to good practices in this regard, should have less
than 13 words and at least one. One-word headlines are rare but acceptable,
for example: “Shame!”.

4. A news item should be comparable to another item in terms of date of
publication, indicating whether it is earlier, the same, or later.

5. A news item will be considered “similar” to another if it coincides in the
headline, category, and date of publication, even if the source and URL with
the complete content do not coincide. In the case of the date of publication,
it will also be considered similar with two days of difference in the date
(previous or later).

A newsletter is a grouping and selection of news for some purpose. Concerning
the newsletter:

1. It must be possible to create an empty newsletter.

2. It must be possible to add news to a newsletter.

3. The newsletter must ensure that it does not contain repeated news items.

4. It must be possible to create a newsletter from a list of news items. The

order of appearance in the list shall be considered the order of arrival of the
news items in the newsletter.

. It must be possible to know how many news items are in a newsletter.

6. For each newsletter it must be possible to know the date of the most recent
news contained in the newsletter and the date of the oldest.

7. It must be possible to obtain from the newsletter a list in chronological order
(from earlier to later) based on the date of publication of the news. When
two news items coincide in date of publication, the one that was first added
to the newsletter shall be considered the earlier one.

8. It must be possible to obtain from the newsletter a list of its news ordered
by category. This list will always appear in the order in which they are
mentioned in point 2 of the description of the news items. That is to say, first
the national news, then the international news, etc. Within each category,
the news will appear in chronological order applying the same criteria as in
point 7.

ot

37

9.

10.

A list of news items “similar” to a given news item contained in the newsletter
can be obtained from the newsletter, sorted according to the same criteria
as in point 7.

From a newsletter, another newsletter may be obtained whose news will

be a subset of those contained in the origin. Several possibilities will be

considered:

(a) It must be possible to obtain a newsletter from another given a specific
date, it is ensured that in the resulting newsletter all the news has been
published on the day of the indicated date.

(b) If you wish to obtain a newsletter from another newsletter given two
dates, it is ensured that in the resulting newsletter all the news items
have been published within the given date range.

(¢) You can also define one newsletter from another given a category of news.
In the resulting newsletter, all the news will be of the given category.

(d) It must be possible to combine options (a) or (b) with (c), i.e., to be
able to obtain a newsletter from another newsletter that includes all the
news of a category on a date, or all the news of a category within a date
range.

A.1.2 Description of the programming task: P3-sonarqube treatment

A system needs to model the information and behaviour of a city’s urban

bus network. The features to be included in the current iteration are described
below.

[\]

Concerning the bus network:

. The bus network consists of several lines, at least two.
. A line is uniquely identified in the bus network by a number.
. It must be possible to query the bus network, given a number, for the line

object corresponding to that number.

. It must be possible to add or remove lines from the network.
. It must be possible to obtain an array with all the lines that form the net-

work.

Concerning the lines and their stops:

. Every line has two special stops known as the start and end of the route.

The lines have an almost circular route, so the start and end of the route
must be very close, at a distance of fewer than 100 metres.

. It must be possible to obtain an array with all the stops of a line from the

start to the end of the route. A line must have at least 3 stops (counting the
start and end of the line).

. It must be possible to add or remove intermediate stops to the lines, as well

as to change the start and end of the route (provided that the correction
conditions are still met).

38

10.

11.

12.

All stops will be uniquely identified by an order number on the route (starting
from the start of the route to the end of the route). Stops will also have a
GPS address expressed in decimal degrees (GD).

GPS coordinates locate an object’s position on the entire Earth. The location
is done by characterising the latitude and longitude of the position. Decimal
degrees represent the minutes and seconds part of the degrees represented
in the sexagesimal system as the decimal part of a real number whose inte-
ger part is given by degrees (2°15'23” = 12° + 15(1/60)° + 23(1/3600)° ~
12.25639°). In decimal degrees (GD) Northern latitudes are positive, South-
ern latitudes are negative, Eastern longitudes are positive and Western lon-
gitudes are negative.

In the bus network, given a direction expressed in GD and a radius expressed
in metres, information on the lines that stop within that radius should be
provided.

It must be possible to check if a line has a stop near a GPS address, defining
near at a distance of fewer than 200 metres.

It must be possible to know if a line has a correspondence with another line.
Correspondence between two lines is defined as the case in which a line has
a stop near a stop of the other line, defining near as less than 200 metres.
It must be possible to know, in case of correspondence, at which stop or
stops this correspondence occurs.

It must be possible to know if there is the possibility of direct transfer from
one line to another . The possibility of direct transfer is defined as both lines
having stops that coincide exactly in the GPS position expressed in GD.

It must be possible to know, in case there is a possibility of direct transfer,
at which stop or stops there is such a possibility.

It must be possible to know the distance from one stop to another on the
line. We also want to know the distance from a stop on one line to a stop on
another line of the network.

A.1.3 Description of the programming task: P3-gamification treat-
ment

It is desirable to have support for a voting system that allows rankings of

different elements of the same type to be created. We do not wish to define the
whole system at the moment, nor how the end-user will use it.

In the voting system, there will be contests from the results of which rankings

will be obtained.

1.

2.

Concerning the contest:

It must be possible to open a contest, the result of which will be a ranking.
The ranking can be a top 10 or you could choose the number of elements to
be included in the ranking.

The elements are nominated to participate in the contest. It is desirable to
be able to nominate elements for the contest. It is not possible to nominate
elements that have already been nominated.

39

—

It must be possible to nominate several elements at once.

It must be possible to close the nominations to start voting.

The elements are voted once they have been nominated. It must be possible
to vote for one item in the contest. You cannot vote more than once in a
contest.

To vote a nominated item, an identifier representing the voter must be indi-
cated, but anonymity must be guaranteed (a task that is beyond the scope
of this practice).

As long as the voting is not closed, a resulting ranking cannot be produced.
It must be possible to close the voting in the contest.

. If the voting has already been closed, it is not possible to nominate more

elements or to vote for the already nominated ones, but it is possible to
consult the result by obtaining the resulting ranking. It must be possible to
obtain the ranking with the result of the voting.

In order not to dilute the voting too much, a limit on the number of nomi-
nations of elements will be established. It must be possible to set the limit
when the contest is created.

Once the resulting ranking has been produced, it must be possible to consult

. Concerning the ranking:

. It must be possible to consult the element that occupies position number i

in the ranking.

It must be possible to query the position of a given element e, by value or
by reference.

It must be possible to know if element e is in the ranking, by value or by
reference.

It must be ensured that the ranking cannot be modified.

It must be possible to compare the ranking with another ranking (of the
same size) of elements of the same type and obtain a list with the differences
of positions, taking the first ranking as reference (example: [+2, -1, -1, 0]
indicates that the first element has moved up 2 positions, the second has
moved down 1 position, the third the same, and the fourth and last has not
moved from its previous position).

It is also desirable to have a method in the class that implements a contest

which compares two already closed contests, receiving the number of elements
to compare and the other contest (of elements of the same type as the receiving
contest) with which it will be compared as parameters. The implementation of
this method will be based on the rankings. It will return the array of differ-
ences between the rankings of both contests in comparison (rankings of the size
indicated as a parameter).

A.

1.4 Description of the programming task: P4-core treatment

40

We are developing an application for an educational environment. In this en-
vironment, we have been asked to provide the following necessary characteristics
with respect to the evaluation of a subject.

It must be taken into account that we want the student to be univocally
identified by a string of characters that represents a code in another system.
The data of the students and their grades should not be in the same system in
order to be able to separate them and to better guarantee data protection.

A subject must have a name, a short description, a maximum grade, a start
date and an end date.

Tests can be created linked to the subject and they shall have a test date.
The completion date of a test in a subject must be included between the start
and end dates of the subject.

Each test has a name, a brief description, a maximum grade and a weight in
the evaluation of the corresponding period. The weight will be a number between
0 and 1, representing the percentage in which the grade will be considered in the
subject.

In the subject, the sum of the weights of the tests cannot be greater than
1. It will not be necessary to always be 1 in order to allow the addition of new
tests. Only the sum shall be required to be one at the time of obtaining the final
grades for the course, as explained below.

A grade for a test is a pair <student identifier, grade earned on the test>.
The grade cannot be higher than the maximum grade indicated for the test.
There are two ways to add grades to a test: add a grade (a pair is added) or add
a list of grades (of student-grade pairs).

Tests have an indicator as to whether they have been fully graded or not. In
a fully graded test, no new grades can be added, but grades already included
can be modified.

For a test, you can request the list of grades obtained (list of student-grade
pairs). If the date of the test has not been held, it cannot be graded.

For a subject, the list of final grades or the list of partial grades of the
subject can be requested (list of student-grade pairs). The grades obtained by
the students in the subject may not be higher than the maximum grade assigned
to it. It will be taken into account that each test has a maximum grade associated
with it, which may differ from each other and from the course grade. The grades
of the tests must be weighted in the subject according to the weight.

The final grade list for the course may only be requested if the sum of the
weights of the tests is exactly 1 and if all tests have been fully graded.

Partial grades may be obtained at any time, using only the grades of the
tests that have been fully graded so far for their calculation.

41

A.1.5 Description of the programming task: P4-sonarqube treatment

As part of a bigger system, we wish to have a special type of Queue that
we will call “Buddy Queue”. Normally, you have to enter a queue at the end. A
Buddy Queue is where you can reserve a place for a friend or group of friends.
Thus, when a new person arrives in the queue, if a friend of his/her has reserved
a place, he/she can stand right in front of his/her friend, instead of having to go
to the back of the queue.

To avoid situations that are difficult for the rest of the people in the queue
to accept, such as the whole group of classmates in Software Engineering being
able to sneak in because one reserved places for 40, the following limitations are
established:

It will not be acceptable to enter the queue by reserving for more than 10

friends.

If a person has reserved for n friends, after the n indicated friends have

entered, he/she will not be able to allow anyone else to enter.

— A friend who has been allowed to enter by another friend cannot in turn
allow anyone else to enter.

— A person who is in the queue cannot re-enter the queue.

As a minimum, it must be possible to have certain functionalities in the
buddy queue that allow:

1. To reserve places in the queue: when a person arrives in the queue, he/she
provides the number of friends he/she wishes to reserve for. He/She may not
reserve for anyone else. The one who makes the reservation is placed last in
the queue.

2. Queuing with the one in the queue: when a new person arrives in the queue,
he/she checks if he/she has a friend already in the queue who has booked. If
so, he/she can enter the queue just in front of his/her friend (always taking
care of the restrictions above), while also making sure that whoever is in the
queue wishes him /her to be there as a friend.

. Knowing how many friends a person said he/she was coming with.

4. Knowing, given a person who is in the queue, how many friends he/she can

still sneak in.

5. Knowing, for a person who is already in the queue, which of those in front
are the friends for whom he/she reserved a place.

6. Knowing which person would be served according to the order of the queue.

7. Serving the person whose turn it is, after which it would simply be that
he/she is no longer in the queue.

w

In the case of a person, it must be possible to:

1. Know if another person is his/her friend, as well as to know all his/her
friends.
2. Have the person meet other people and become friends with them.

42

3. Differentiate between acquaintances and friends. First, someone must be an
acquaintance to then be a friend.

4. Allow the person to stop being friend with one of your present friends, who
would again become simply an acquaintance.

A.1.6 Description of the programming task: P4-gamification treat-
ment

The same programming task as in P4-core.

A.2 Instructions given to participants

A.2.1 Instructions given for P3-core treatment

P2 subsumed in P3:
Steps 1 and 2 of the TDD cycle (Red- -Refactor)!? corresponding to the
Red phase will be performed:

1. Write the tests that exercise the code you wish to have,
2. Check that the tests fail.

Following the test-driven design (TDD) process:

define which classes we are going to create

define the test classes to perform the test-driven design process

— define (in the test classes) how the objects of the classes we have created are
used.

specify their functionality in the tests.

— describe this functionality in the javadoc of the created classes.

The history of commits should allow the TDD process to be appreciated.

Once the first version of the tests that allowed us to create the stubs of the
classes has been established, we should specify its functionality in these tests and
describe it in the javadoc. Improve the tests. Add new tests (in separate test
classes), taking into account black-box techniques (data-driven partition tests,
state-based partition tests).

Tests will be implemented with JUnit 4. The necessary stubs will have been
created from the classes designed using TDD to compile and execute the tests.

Apply modularity criteria so that the test classes do not grow too large.
Consider defining one or more fiztures. Create one or more suite(s) to group test
classes. Provide at least one suite that includes all the tests developed.

It is expected that the result of running the tests in this practice will be
red. Therefore, if any implementation of the stubs has been done, it should be
a fake implementation (fake implementation) so that tests do not produce

19 Red (fail) and green (success) refers to the code of colours used by automated testing
tools.

43

errors but fail. The objective is that all the implemented tests fail, except for
exceptional cases clearly indicated and commented. In such cases, fail will be
written as the last test instruction to achieve failure.

Tests will be categorised using the @Category annotation.

Purely P3:

The next phase of the TDD cycle should be conducted to obtain test successes
(phase).

The coverage level achieved will be measured. In addition to the tests de-
veloped in the first phase, white-box tests will be developed to increase the
coverage. The coverage level should be improved with as few tests as possible.
The static rate code to test and the cyclomatic complexity of the implemented
classes should be measured.

One of the classes implemented will be tested in isolation (the Newsletter shall
be isolated from the News) using mock objects (optionally based on EasyMock
or Mockito).

The implementation will be accomplished by applying pair programming,
continuous integration and automatic dependency management.

Version control will be provided using git. GitLab on-premises (gitlab.inf.
uva.es) will be used as a centralised repository and Bitbucket as a mirror. At
the submission deadline, the instructor will be added to the project (hence no
more commits and pushes to the centralised repository in GitLab or the backup
in Bitbucket are allowed) as indicated in the submission rules.

The repository will not hold any .class or . jar or class documentation that
can be generated at any time with javadoc (use .gitignore).

The use of git for branching and merging will be assessed. The branches of
the project will include: the master branch, a develop branch, and one branch-
per-task.

Pair programming techniques will be applied, so each task will be assigned
to the pair, but the role of “driver” and “observer or navigator” should be inter-
changed along with the task development. The history of commits made in each
branch will be reviewed and it will be assessed whether commits are made by
the different members of the pair, as this will indicate their role as the driver at
that moment. To do so, when working as driver, each developer will use his/her
git user in his/her local workstation to commit to the task branch.

When a task is completed, it should be integrated into the develop branch.
The integrations in master should only be of tested functional parts, with the
tests succeeding. To achieve this, tests in isolation will be used when necessary.

The project will be automated using ant and maven.

As mentioned before, the repository will not hold any .class or .jar, but
it should be enough to make a pull or clone from the GitLab repository in
a fresh environment and use the ant script (build.xml) to compile, execute,
run the tests, analyse the coverage, etc. Therefore, the external dependencies of
the project will be managed by maven. The ant script will basically be used to
delegate to maven in order to avoid having to memorise the maven tasks and
parameters needed for each target.

44

The project will be based on the maven archetype maven-archetype-quickstart.
The basic version of the pom.xml obtained from the indicated archetype should
be reviewed and modified to add dependency management and update versions,
as well as the configuration of plugins needed for coverage analysis and reporting,
quality analysis and reporting, and any others needed by the authors.

The ant script (build.xml) must have at least the following targets that
must be named exactly as follows:

compile: ensures that all dependencies are obtained and generates the .class
from the source code (depends on the clean target). This is the default target.

runTDDAndBlackBoxTests: run the tests categorised as TDD and black-
box excluding sequence tests.

runSequenceTests: run only sequence tests.

runWhiteBoxTests: run only the tests categorised as white-box, added to
improve coverage level.

runAllTestsNolsolation: equivalent to running the tests described in the pre-
vious three targets.

runAllTestsInIsolation: run all the tests in isolation (based on mock objects).

coverageReport: analyse test coverage obtained with the tests that target
runAllTestNolsolation runs and get different types of coverage reports (in-
struction coverage, branch coverage, complexity coverage).

genDocumentation: generate project documentation, including the doc folder
generated with javadoc from self-contained documentation in the source
code.

clean: clean the project space, remove any generated file and folder as a result
of any other previous ant target execution.

measures: get a report with measures regarding code to test rate and the cy-
clomatic complexity of the implemented classes.

As mentioned before, to achieve these targets, it will be advisable to rely on
calls to maven.

In GitLab, the continuous integration mechanism based on yaml syntax will
be used. The pipeline phases will include works to build, run tests (with and
without isolation), and a project deployment simulation that includes the docu-
mentation generation. The yaml file provided in the example published in GitLab
will be used as a basis.

The result of the tests’ execution in this phase should be in all cases,
both in the tests in isolation based on mock objects and in the tests with real
objects.

Tests shall be categorised using the annotation @Category to indicate their
nature, tests used for TDD, black-box tests, sequence tests, tests in isolation
based on mock objects, as well as white-box tests introduced to increase the
level of coverage. It should be noted that several categories can be assigned to a
test class (applying to all tests in the class) or to an individual test.

45

A.2.2 Instructions given for P3-sonarqube treatment

In this task, the same instructions are given as in the P3-core.

Modifications from the instructions given in the P3-core:

Replace “the Newsletter shall be isolated from the News” by “the Bus Net-
work shall be isolated from the Line”.

Add-on to the instructions given in P3-core for introducing SonarQube and
its integration in CI/CD:

“In GitLab, the continuous integration mechanism based on yaml syntax
will be used. The pipeline phases will include works to build, run tests (with
and without isolation), perform quality analysis using SonarQube, and a project
deployment simulation that includes the documentation generation. The yaml
file provided in the example published in GitLab will be used as a basis. In
the reference yaml file, the pipeline explains how to launch an analysis with
SonarQube that is registered in the server. Do this from time to time to keep
track of the evolution of the quality of your project.”

Change in the ant target:

measures: perform a quality analysis of the project using SonarQube and ob-
tain a report that measures the code to test rate and the cyclomatic com-
plexity of the implemented classes.

A.2.3 Instructions given for P3-gamification treatment

Modified from the instructions given in the P3-sonarqube:

Replace “the Bus Network shall be isolated from the Line” by ‘the Contest
shall be isolated from the Ranking”.

No further addition or modification regarding P3-sonarqube. Gamification is
not included in this programming task. Nevertheless, the students are already
aware that the contest will take place in P4-gamification. They know the prize
and the rules that will be applied.

A.2.4 Instructions given for P4-core treatment

In this task, the same instructions are given as in the P3-core, but the refer-
ences to pair programming are suppressed because it is an individual task.

Modifications from the instructions given in the P3-core:

Remove from the P3-core instructions the paragraph starting from “Pair
programming’”.

Replace “Newsletter shall be isolated from News” by “Subject shall be iso-
lated from Test”.

Add-on to the instructions given in the P3-core:

“Complete the full TDD cycle Red- -Refactor. Emphasise in the last
step: remove duplications, detect refactoring opportunities, improve the under-
lying design and code by refactoring.

46

Perform as long as possible the refactoring operations with the Eclipse Refac-
toring Plugin. The Refactor menu in Eclipse contains the option History which
allows the performed refactoring operations to be seen.

Check that the Refactoring history is held in the git repository to keep
track of the refactoring operations performed. Hence, in a fresh environment, a
pull or clone from the version control repository will allow to see the refactoring
history to be seen. To do this, add the hidden folder .refactoring to the version
control. Eclipse stores the refactoring history in that folder. For further details,
please refer to the course documentation.

At the end of this phase, it must be ensured that the result of running the
tests is still J

A.2.5 Instructions given for P4-sonarqube treatment

In this task, the same instructions are given as in the P4-core.

Modifications from the instructions given in the P4-core:

Replace “Subject shall be isolated from Test” by ‘BuddyQueue shall be
isolated from Person”.

Rewrite the first paragraph of the add-on in the P4-core to introduce
SonarQube:

“Complete the full TDD cycle Red- -Refactor. Emphasise in the last
step: remove duplications, detect refactoring opportunities, improve the under-
lying design and code by refactoring, follow the recommendations for quality
improvement that you will find when running analyses with SonarQube.”

A.2.6 Instructions given for P4-gamification treatment

In this task, the same instructions are given as in the P4-sonarqube.

Modifications from the instructions given in the P4-sonarqube:

Replace “BuddyQueue shall be isolated from Person” by “Subject shall be
isolated from Test”.

Add the contest rules and prizes as explained in Sec. 3.5.3.

47

Source Files (word or latex)

This piece of the submission is being sent via mail.

Credit Author Statement

CRediT author statement

Yania Crespo Gonzalez-Carvajal: Conceptualisation, Methodology, Data
Curation, Formal Analysis, Writing- Original draft preparation, Writing - Re-
view & Editing. Carlos Lépez Nozal: Methodology, Formal Analysis, Data
Curation, Visualisation, Writing - Review & Editing. Raiil Marticorena
Sanchez: Validation, Writing - Review & Editing, Visualisation. Margarita
Gonzalo Tasis: Validation, Writing- Original draft preparation, Writing - Re-
view & Editing. Mario Piattini Velthuis: Methodology, Writing - Review &
Editing, Supervision.

Declaration of Interest Statement

Declaration of interests

The authors declare that they have no known competing financial interests or personal relationships
that could have appeared to influence the work reported in this paper.

CIThe authors declare the following financial interests/personal relationships which may be considered
as potential competing interests:

