
Software Quality Journal manuscript No.
(will be inserted by the editor)

Exploratory Study of the Impact of Project Domain
and Size Category on the Detection of the God Class
Design Smell

Khalid Alkharabsheh · Yania Crespo ·
Manuel Fernández-Delgado · José R.
Viqueira · José A. Taboada

Received: date / Accepted: date

Abstract Design smell detection has proven to be an efficient strategy to improve
software quality and consequently decrease maintainability expenses. This work ex-
plores the influence of information of project context expressed as project domain
and size category information, on the automatic detection of the god class design
smell by machine learning techniques. A set of experiments using eight classifiers
to detect god classes was conducted on a dataset containing 12, 587 classes from
24 Java projects. The results show that classifiers change their behavior when they
are used on datasets that differ in these kind of project information. The results
of god class design smell detection can be improved by feeding machine learning
classifiers with this project context information.

Keywords Design Smell Detection · Machine Learning · Software Metrics ·
Project Context Information · God Class.

1 Introduction1

Software quality is an important concern for practitioners in software factories,2

as well as for academics and researchers. To maintain software quality, the main3

K. Alkharabsheh
Department of Software Engineering
Al-Balqa Applied University (BAU)
As-Salt 19117, Jordan.
E-mail: khalidkh@bau.edu.jo

M. Fernández-Delgado, J.R. Viqueira, J.A. Taboada
CiTIUS, Centro Singular de Investigación en Tecnoloxías Intelixentes,
Universidad de Santiago de Compostela, Santiago de Compostela 15782. Spain.
E-mail: {manuel.fernandez.delgado,jrr.viqueira,
joseangel.taboada}@usc.e

Y. Crespo (corresponding author)
Departamento de Informática. Escuela de Ingeniería Informática.
Campus Miguel Delibes, Universidad de Valladolid
Paseo de Belén 15, Valladolid 47011. Spain.
E-mail: yania@infor.uva.es

Manuscript Click here to access/download;Manuscript;manuscript.tex

Click here to view linked References

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

QJO-D-20-00091R2

Published by Springer Nature .
DOI: https://doi.org/10.1007/s11219-018-9424-8
Accepted manuscript. Terms:
https://www.springernature.com/gp/open-science/policies/accepted-manuscript-terms

2 Khalid Alkharabsheh et al.

processes that need to be undertaken are identifying bad pieces, modifying code,4

correcting bugs, adding new functionalities into the software structure, and testing.5

The poor and bad pieces in a software structure (either in the source code or6

design) are termed “design smells”. Design smells do not produce compilation or7

run-time errors (Alkharabsheh et al., 2018), but they negatively affect software8

quality factors such as reusability, stability, flexibility and maintainability (Brown9

et al., 1998). We use the term design smell , as (Alkharabsheh et al., 2018) does,10

because we consider that it integrates different smells which can manifest in the11

code but are caused by deficiencies in the design. Note that other alternative terms12

are used in the literature, such as code smells (coined by Kent Beck in Ward’s13

Wiki1, as a hint that something has gone wrong somewhere in the code), anti-14

patterns (Brown et al., 1998), bad smells (Fowler and Beck, 1999) or architectural15

smells (Azadi et al., 2019), among others.16

Great interest has been observed in the state of the art with respect to the17

identification and correction of design smells using different approaches and tech-18

niques (Alkharabsheh et al., 2018; Rasool and Arshad, 2015; Zhang et al., 2011).19

Many researchers have attempted to tackle this problem by using metric-based,20

rule-based approaches (Choinzon and Ueda, 2006; Fourati et al., 2011; Marinescu21

et al., 2005; Moha, 2007; Moha and Guéhéneuc, 2007; Munro, 2005; Shatnawi,22

2015; Tahvildar and Kontogiannis, 2004) and machine learning approaches (Has-23

saine et al., 2010; Khomh et al., 2011; Kreimer, 2005; Maneerat and Muenchaisri,24

2011). All these studies depend on the definition of the design smells, which is25

mapped into rules manually or automatically; these rules are specified by using26

a combination of metrics that is directly related to the definition of the design27

smells. However, a substantial effort is needed to identify the right threshold value28

for each metric.29

For example, the god class, which is known in the literature as the god class30

or the blob anti-pattern (Brown et al., 1998), god class disharmony (Lanza and31

Marinescu, 2007), and that is similar in definition to the large class bad smell32

(Fowler and Beck, 1999), is characterized by a class that tends to be very large33

and complex and also has low cohesive functionality. Therefore, the rule that is34

used to detect the god class should include a set of metrics related to class size,35

complexity and functionality. According to Riel (1996), the god class is defined36

as the class of an object controlling too many objects in the system, which has37

grown beyond all logic to become the class that does everything. Fowler and Beck38

(1999) described the bad smell large class in similar definition, where the class39

tries to do much tasks. In good object-oriented designs, the logic of the system is40

uniformly distributed across multiple classes. A god class has too many instance41

variables (attributes), a large number of methods, relations with other classes, i.e.,42

too much code, which increases the danger of duplicated code.43

The god class is one of the design smells which has attracted more attention of44

the research community (Alkharabsheh et al., 2016a,b; Counsell and Mendes, 2007;45

Fontana et al., 2012a; Li and Shatnawi, 2007a; Santos et al., 2013; Yamashita et al.,46

2015). Moreover, it is one of the most frequently detected and hence deserve efforts47

devoted to improve detection and management of this design smell , as revealed48

in the systematic mapping we conducted (Alkharabsheh et al., 2018). According49

to (Moha et al., 2010) and (Yamashita and Moonen, 2013), who investigated the50

1 https://wiki.c2.com/?CodeSmell.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

...Impact of Project Domain and Size Category on the Detection of God Class 3

relationships between different types of design smells, they found a relationship51

between the presence of god class and of other design smells, such as data class,52

duplicated code, feature envy, large class and god method. Besides, god class is53

one of the design smells that most negatively influence on a broad set of software54

quality factors such as maintainability, understandability, changeability, stability,55

performance, complexity, reusability, and evolvability (Alkharabsheh et al., 2018).56

Despite the diversity of approaches, tools and techniques in the literature that57

could be used to improve the detection of design smells, the adoption of appro-58

priate techniques remains a challenge for the software industry. From our review59

of the state of the art (Alkharabsheh et al., 2018), we observed the following.60

Firstly, differences in understanding the precise definition of the design smell lead61

to inconsistency: 1) in the results obtained by different software detection tools62

(Alkharabsheh et al., 2016a) or by human evaluators (Alkharabsheh et al., 2016b);63

2) in the real impacts that design smells have on a particular software quality fac-64

tor; and 3) in identifying the most important smells to remove from a software.65

Secondly, the process of mapping the definition of the design smell into accurate66

and efficient detection algorithms is not exploited adequately due to the ambi-67

guities in the definition of the design smell and its mapping to metrics, but also68

because some adaptation to the context, the project or the organization, may be69

required.70

Most of the research community has not taken into account the impact of71

project context factors in design smell detection (Santos et al., 2018). Our research72

assumption is that the criteria used by experts to identify god classes are influenced73

by some features of the assessed projects which are not explicitly defined. As an74

example, larger size or complex classes are more likely to be acceptable (i.e., not75

considered as god classes) in certain sophisticated application domains. Similarly,76

large size projects can have the same type of impact in the size and complexity of77

acceptable classes. The present research investigates whether both project features,78

domain and size category, have a positive influence on the detection of god class79

design smell . This is further elaborated in subsection 2.2.80

On the basis of this assumption, in this paper we investigate whether the81

detection heuristics of the design smell has to be tuned according to the domain82

of the assessed project and its size classification, which are frequent features when83

analyzing different types of projects. The main contribution of this study is to84

test the influence of these features by evaluating the performance of eight machine85

learning classifiers in the automatic detection of god classes with and without86

project domain and project size category information. We use a large dataset87

where the god classes are labeled by a committee of five design smell detection88

software tools. First we study jointly the influence of project domain and size89

category, and afterwards we analyze each feature independently. This is followed90

by an analysis on a dataset in which the classification has been carried out by91

human experts in order to show whether the results vary.92

The rest of this paper is organized as follows. Section 2 presents some re-93

lated work, particularly Subsection 2.2 deals with the project context informa-94

tion. Next, Section 3 describes the problem to be solved, the Machine Learning95

techniques (Subsection 3.1), data collection (Subsection 3.2) and methodology96

(Subsection 3.3). Section 4 discusses the results of the experiments designed in97

the previous section. After that, a replication of the Step 1 of the methodology,98

using a different dataset, is described in Section 5 together with a joint analysis99

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

4 Khalid Alkharabsheh et al.

by classifier of all the experiments conducted. Section 6 presents the main threats100

to their validity. Finally, Section 7 presents our conclusions and the direction we101

intend to take in future work.102

2 Related Work103

2.1 On design smells detection and Machine Learning techniques104

Several studies have focused on design smell detection using different strategies,105

which range from manual to semiautomated and fully automated inspection. The106

software tools that deal with detecting design smells automatically in the software107

structure include iPlasma (Marinescu et al., 2005), a tool that uses a metrics-based108

approach to detect design smells (named disharmonies) at different abstraction109

levels. In their methodology, more than 80 metrics related to size, complexity,110

coupling and cohesion can be applied to analyze different software artifacts. The111

works (Moha and Guéhéneuc, 2007) and (Moha et al., 2010) introduced DECOR, a112

tool that uses a domain specific language to specify design smells at a high level of113

abstraction, where the specification can be defined manually by the practitioners in114

order to detect design smells using software context and vocabulary. In (Tsantalis115

et al., 2008) JDeodorant is presented, an Eclipse plug-in tool that identifies design116

smells in source code and applies a set of refactoring operations to remove them117

automatically. JDeodorant uses several methods and techniques to identify four118

types of design smell (feature envy, type-checking, long method, and god class).119

Some other detection tools such as Checkstyle (http://www.checkstyle.sourcef120

orge.net.) and FXCop (https://msdn.microsoft.com/en-us/library/bb42947121

6.aspx) are related to bugs, dead code or unused code, and coding style problems,122

but they do not address higher level design smells.123

The authors of (Palomba et al., 2015; Rapu et al., 2004; Tufano et al., 2015)124

employed the changing of software history information for design smells detec-125

tion. In (Palomba et al., 2015), they proposed the HIST approach to detect five126

design smells (feature envy, blob, divergent change, shotgun surgery and parallel127

inheritance) by analyzing the changes among different software artifacts. This ap-128

proach was evaluated empirically by two studies and the accuracy was assessed129

in terms of precision and recall. In (Rapu et al., 2004), the historical information130

was used to refine the concepts of detection strategy for god class and data class131

design smells, by defining a new historical measurement to increase the detection132

accuracy. In (Tufano et al., 2015), a metric-based methodology is developed to133

analyze the source code artifacts for identifying different types of design smells.134

In order to investigate when and why design smells are introduced in code, this135

work conducted a large empirical study of the change history of 200 open source136

projects from different domains to detect five types of design smells that include137

the blob, class data should be private, complex class, functional decomposition,138

and spaghetti code. The results conclude that design smells are introduced mainly139

during the maintenance tasks.140

Other studies exploited the developers context for improving the design smells141

detection. In (Palomba et al., 2014a), the aim was to ascertain to what extent142

developers understand design smells as problems that should be solved. Moreover,143

they wanted to check which design smells are considered the most harmful. The144

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

...Impact of Project Domain and Size Category on the Detection of God Class 5

results showed that several design smells were not acknowledged as problems to145

solve. Nevertheless, design smells related to size and complexity such as god class146

were always seen as problems. ReCon (Morales et al., 2017) is an example of refac-147

toring approach related to the developer task context, which uses a metaheuristics148

technique to compute the best order of refactoring operation that influences only149

the code artifacts that are relevant to the developer context.150

On the other hand, several studies used machine learning approaches to detect151

design smells compared with metric-based and rule-based. For instance, (Kreimer,152

2005) presented a method to detect design flaws by combining object-oriented153

metrics and machine learning techniques. The proposed approach was validated154

using five design flaws (the blob, feature envy, long method, lazy class and delegator)155

and two software systems (IYC, with 91 classes, and Weka, with 597 classes). More156

recently, (Maneerat and Muenchaisri, 2011) proposed a methodology that uses157

seven machine learning algorithms and seven state-of-the-art datasets consisting158

of 27 design model metrics to predict seven smells (lazy class, feature envy, middle159

man, message chains, long method, long parameter list and switch statement) using160

software design models.161

The Bayesian detection expert (BDTEX) is a goal question metric-based ap-162

proach that detects anti-patterns using Bayesian belief networks founded on rule-163

based representation (Khomh et al., 2011). This approach was validated using164

three anti-patterns (the blob, functional decomposition, and spaghetti code) and165

two Java projects (Xerces v2.7.0, with 589 classes, and GanttProject v1.10.2, with166

188 classes). SVMDetect (Maiga et al., 2012b) uses the support vector machine167

and object-oriented metrics for each class to detect four anti-patterns (the blob,168

functional decomposition, spaghetti code, and swiss army knife) on three open169

source software solutions (ArgoUML v0.19.8, with 1,230 classes, Azureus v2.3.0.6,170

with 1,449 classes, and Xerces v2.7.0, with 513 classes). Afterwards, (Maiga et al.,171

2012a) proposed SMURF, an approach to detect anti-patterns also based on the172

support vector machine that takes into account feedback from developers. More173

recently, (Peiris and Hill, 2014) proposed NiPAD, a non-intrusive machine learning174

approach for identifying and classifying anti-patterns. Classifiers were trained on175

two datasets of metrics, and then used to predict new metrics. The results showed176

that the approach can detect one lane bridge anti-pattern with 0.94 accuracy.177

In (Fontana et al., 2016), a previous work (Fontana et al., 2013b) is extended,178

performing a large-scale comparison of 32 machine learning techniques and 74179

projects to detect four design smells: data class, god class, feature envy, and long180

method. According to the authors, most of the selected classifiers obtained accu-181

racy and F-measures values above 95%, being random forest and J48 the best-182

performing ones. These results show that machine learning approaches can im-183

prove design smells detection. Recently, in (Di Nucci et al., 2018), a criticism to184

the current state of the research in ML about design smells detection is devel-185

oped, concluding that more work is required regarding to methodology, datasets186

and metric analysis in classes with and without smells. They also analyze the im-187

pact of some dataset properties such as class unbalancing, and of feature selection,188

on the detection of several design smells types, using F-measure as performance189

measurement.190

A systematic literature review and meta-analysis of machine learning tech-191

niques for smell detection was conducted in (Azeem et al., 2019). This study con-192

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

6 Khalid Alkharabsheh et al.

cludes, among other aspects, that other sources of information for the classification193

of smelly instances should be investigated.194

The main difference between our approach and previous works that employed195

machine learning is that they only included numerical information (metrics) in196

the dataset. Also, they used just two or three projects in the validation process,197

conducting experiments with less than eight machine learning technique, with the198

exception of (Fontana et al., 2016) and (Di Nucci et al., 2018), who used 74 projects199

and 32 techniques. In contrast, the current work extends numerical information200

(metrics) with project context information (its domain and size category expressed201

in nominal scales) and our objective is to evaluate its influence on the god class202

detection, considering 12,587 classes from 24 open source Java projects, and eight203

machine learning classifiers arising from different families. Another important dif-204

ference is in the results evaluation: the current paper uses the Cohen Kappa and205

Matthews correlation coefficient (MCC) as performance measurements. Studies as206

(Bekkar. et al., 2013) shown that problems with unbalanced data should be better207

evaluated measuring some indicators such as MCC, Cohen Kappa and Receiving208

Operating Characteristic (ROC) curve (Powers, 2011). When assessing a project209

for god class design smell detection, it is normal that data are imbalanced because210

just a small ratio of the project classes can be considered as god classes.211

Recently, in (Pecorelli et al., 2019) a comparison between heuristic-based detec-212

tion and machine learning detection techniques is conducted. The experiment ana-213

lyzes five machine learning algorithms in front of an heuristic-based tool (DECOR).214

The study was conducted with five different smells. The authors use as performance215

indicators precision, recall, F-Measure and MCC. A dataset with different versions216

of 13 projects was used. The results shows that the best classifier of the five used217

was Naive Bayes, and that the heuristic approach in DECOR still perform better,218

yet have low performance. The problem with unbalance datasets in design smells219

detection is also highlighted.220

As a consequence of the last conclusion, in (Pecorelli et al., 2020) an empir-221

ical study comparing the performance of five data-balancing techniques for code222

smell detection with respect to a no-balancing baseline was conducted. The data-223

balancing techniques included those which perform training only on the minority224

class such as Cost-Sensitive Classifier, and One-Class Classifier, resampling tech-225

niques such as Oversampling and Undersampling, and Creating synthetic instances226

(SMOTE). The results obtained shows that SMOTE is the best data balancing227

technique among the other five. However, authors state that if the dataset is ex-228

ceptionally imbalanced, this technique fails because, although SMOTE allows the229

model to be more accurate, in many cases, it is not applicable because of the few in-230

stances belonging to the minority class. The authors concluded, on one hand, that231

existing data balancing techniques are inadequate for code smell detection and,232

on the other hand, that their results indicate that structural metrics alone are not233

adequate for code smell detection, which is in the line of the ground assumption234

that motivates our work.235

Finally, a multi-label classification (MLC) machine learning technique is ana-236

lyzed in (Guggulothu and Moiz, 2020) for two method-level code smells: Feature237

Envy and Long Method. The authors use the smell correlation and experimented238

with three different MLC techniques, analyzing with and without the usage of the239

correlation between smells.240

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

...Impact of Project Domain and Size Category on the Detection of God Class 7

2.2 Project context information241

In this subsection the software context on the identification of design smells (code242

smells, bad smells, anti-patterns, . . .) is explored in depth.243

The antecedents of using context information to detect smells are found in what244

it is known as “relative metrics thresholds”. In (Crespo et al., 2006) it is stated that245

most of the tools for metric-based smells detection use generic values for thresholds.246

Authors dealt with the question of whether using generic vs. relative thresholds247

affects the detection of bad smells and argue that product domain and size could248

also affect the results. In (Alves et al., 2010) a method that determines metric249

thresholds using measurements in a benchmark of software systems is designed.250

Machine learning and data mining techniques were utilized in (Herbold et al.,251

2011) to define a data-driven methodology for the calculation of thresholds for a252

metric set using Rectangle Learning. Authors stated that an important aspect of253

thresholds for metrics is that they are often dependent on the properties of the254

project environment. In order to evaluate results they used a case study assessed255

by measuring Matthews Correlation Coefficient (MCC) and F-score (F-measure).256

Moreover, in (Fontana et al., 2015), a benchmark-based methodology for deriving257

metrics’ thresholds for code smell detection is presented.258

In the conclusions of the study presented at (Fontana et al., 2012b), the authors259

stated that to improve the smells’ detection techniques, information related to the260

domain of the analyzed systems should be taken into account. A large-scale study261

that investigated the relationships between the presence of smells and quality-262

related metrics computed over Java Mobile apps in different application domains263

was conducted in (Linares-Vásquez et al., 2014). The authors found that some264

smells are commonly present in all the domains while others are most prevalent265

in certain domains. DECOR was used as anti-patterns & smells detection tool.266

Although the referred work is not intended to improve detection by adapting to the267

domain as part of the project context, the authors state, on one side, that “domain268

matters” and, on the other side, that “metrics are not enough”. This is the same269

statement that can be found in (Simons et al., 2015) regarding a very close topic270

which is refactoring to improve quality. Through qualitative analysis of a survey271

of professionals, answered by 50 engineers, authors find that a simple static view272

of software is insufficient to assess software quality, and that software quality is273

dependent on factors that are not amenable to measurement via metrics. As part274

of this qualitative analysis, authors found that “The Problem Domain Matters”275

and also that “Qualities Have Meaning only in a Given Context”.276

Based on (Crespo et al., 2006), in (Liu et al., 2016) a method with genetic277

algorithms to dynamically adapt thresholds in smells detection was designed and278

tested. This method captures the developer/project context through incorporat-279

ing engineers feedback in the process. Engineers could adapt metrics’ based smell280

detection tools with the so calculated thresholds. The method includes collecting281

feedback automatically from the engineers who manually check and resolve smells.282

Hence, it collects information about which smells have been confirmed manu-283

ally, and which smells have been denied. Five open-source projects were used in284

evaluation. Authors assessed results using precision and recall. Manual applica-285

tion of detection algorithms was achieved by three engineers and JDeodorant was286

used for metric collection. With this approach, we can not infer what are the im-287

portant context factors that influence in improving smell detection. In contrast,288

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

8 Khalid Alkharabsheh et al.

(López Nozal, 2012) used J48 algorithm in order to obtain decisions trees and find289

that domain and project size can influence on improving detection because rules290

regarding this data appear in the obtained decisions trees. It inspired us to con-291

duct this exploratory study to assess the positive influence of introducing project292

context information, mainly domain and size category, in machine learning based293

automatic god class detection.294

Moreover, Chapter 1 of (Mistrik et al., 2015) states that metric’s thresholds295

may vary considerably depending on software size, cost, nature of team, etc. In296

(Mori et al., 2018) authors observed that software domain and size are relevant fac-297

tors to be considered when building benchmarks for metric’s threshold derivation.298

Recently, this work was continued in (Vale et al., 2019), calculating thresholds for299

a benchmark with three different methods as a comparison with the Vale’s thresh-300

old calculation method. Authors use an SPL called MobileMedia. They tune smell301

detection such as god class and lazy class with the so calculated thresholds, and302

observe that using the Vale’s thresholds improves the detection of those smells303

in terms of precision and recall when applying Lanza & Marinescu strategy for304

detecting god class and lazy class manually with the different thresholds in the305

same line as (Liu et al., 2016).306

3 Study Design307

This section is organized as follows, first of all, in Subsection 3.1 we describe308

the machine learning classification techniques used in this study to automatically309

detect god classes. After that, we describe the data collection in Subsection 3.2.310

Finally, in Subsection 3.3, the methodology applied is explained.311

The scope of the study is limited to god class in first place because of the nature312

of the smell. The hypotheses on the influence of the domain and size of the project313

on the detection of god class can be intuitively explained before conducting the314

experiments. In second place, the design of the methodology uses combinations of315

labeling by the five tools, as is detailed in next section: only one tool detects the316

god class, two of the tools detect the god class, three, four or all five detect the317

god class. This implies that the five tools must be able to analyse the same smell.318

In the systematic mapping study we conducted on smells detection (Alkharabsheh319

et al., 2018), it is shown that it is not usual to find that several tools detect a com-320

mon subset of smells. Human validation on the cases of the God Classes detected321

simultaneously by four of the tools and the five tools to check the false positive322

reduction are performed. In the first case we detect 8 false positives among the 79323

god classes and, in the second case only one false positive was detected, particu-324

larly strange, among the 24 god classes detected. This is explained in Section 4325

when describing results of step 4 of the methodology (page 24). At the end, a326

replication experiment is conducted using a manually classified dataset which is327

well known in the literature (Pecorelli et al., 2019, 2020).328

3.1 Machine Learning Techniques329

We selected several classification techniques that are widely applied for smell detec-330

tion (Khomh et al., 2011; Kreimer, 2005; Maneerat and Muenchaisri, 2011; Fontana331

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

...Impact of Project Domain and Size Category on the Detection of God Class 9

et al., 2013b). These techniques use information about the code of the classes332

(which in the literature is called an input pattern, see below) to decide whether it333

is a god class, i.e., there are only two possible labels: “god class” and ‘not god class”.334

We use several techniques in order to avoid that the conclusions of our study may335

be biased by the specific classifier. These classifiers represent different approaches336

such as Bayesian networks, support vector machines, rule learners and decision337

trees. Implementations of the chosen techniques are available in the well-known338

data mining software Weka version 3.7 (http://www.cs.waikato.ac.nz/ml/weka).339

Most classifiers have one or several tunable hyper-parameters, which usually have340

strong influence on their performance. The set of values used for the hyper-341

parameter tuning is extracted from the classifier documentation (Witten et al.,342

2016). The following list briefly describes each classifier and its hyper-parameter343

tuning.344

1. LibSVM is an integrated library for support vector classification, regression345

and distribution estimation. The library is available with different software346

interfaces and extensions, such as Weka, Matlab, C, Java and Python. In our347

experiments, the classifier used is the Gaussian kernel SVM, whose high perfor-348

mance has been widely tested in the literature. The tunable hyper-parameters349

are regularization (C) and the inverse of the squared Gaussian spread (�),350

tuned by selecting 20 values in the ranges 22i+1, with �3 i 7, and 22i+1,351

with �8 i 1, respectively.352

2. IBK is the instance-based k-neighbor classifier, which classifies each input pat-353

tern to the label of the majority of the k closest neighbors for training. The354

LinearNNSearch is the selected search algorithm with IBK. The number of355

nearest neighbors (k) is tuned using eight odd values between 1 and 41.356

3. J48 is the Weka implementation of the C4.5 decision tree algorithm, which is357

also a popular classification method. It can produce rules that are understand-358

able and intelligible for classifying new instances. The confidence interval (C)359

is tuned using the values 0.1, 0.25 and 0.5.360

4. JRip is a learning algorithm based on association rules with reduced error361

pruning (REP). It produces logical rules for classification that are easy to362

understand and that can be converted into source code. It has two tunable363

hyper-parameters: number of folds for REP (F � 3, 4 values) and number of364

optimization runs (O � 2, 3 values).365

5. SMO, uses the sequential minimal optimization algorithm to solve the quadratic366

programming problem which appears through the training of a support vector367

machine. It uses heuristics to partition the training dataset into smaller prob-368

lems that can be solved analytically. In the experiment, the SMO used a square369

polynomial kernel given by K(x,y) = (xTy + 1)2. The complexity hyper-370

parameter (C) is tuned by selecting 20 values in the set 22i+1, (�3 i 7371

).372

6. NB is the Naive Bayes based on the Bayesian theorem with strong assump-373

tions on the independent features. It belongs to the family of probabilistic374

classifiers and is suitable for large-size input data. The NB has no tunable375

hyper-parameter, and we use supervised discretization (D parameter).376

7. RC (Random Committee) is an ensemble of random base classifiers, trained377

using different random seeds on the same data whose output is the average378

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

10 Khalid Alkharabsheh et al.

prediction of the base classifiers, in this case random classification trees. The379

number of iterations (I) is tuned with five values (I � 10).380

8. RF is the well-known random forest classifier, an ensemble (“forest”) of ran-381

dom decision trees, where each tree has a particular subset of input features. It382

classifies each pattern by selecting the tree that contains the majority of clas-383

sifications among all the existing trees. The number of iterations (I) is tuned384

with four values (I � 100).385

3.2 Data Collection386

As mentioned above, we built a dataset composed by 24 open source Java projects387

containing 12,587 classes and 1,852 KLOC, which were obtained from the Source-388

Forge source code repository. Only projects written in Java were selected because389

it is the only programming language which is common to all the detection tools390

used. Furthermore, Java is one of the most common mainstream object-oriented391

languages, particularly in the context of open source software and design smell392

detection tools and it allows to evaluate many metrics. We also selected projects393

belonging to different domains and sizes in order to allow us complete the study.394

Finally, only projects in beta, mature or production/stable status were selected395

to discard prototypes or experimental software. Specifically, we obtained a set of396

projects with a long-life cycle (before 2013) with a history of several versions.397

Given the large number of available projects meeting these criteria in the Source-398

Forge repository, we randomly selected 24 projects, provided that projects of all399

the domains and sizes are included. We selected the SourceForge repository be-400

cause it is one of the most widely known, it is used in the context of open source401

software and it supplies useful metadata for projects.402

The classification of a project into a specific domain is not straightforward403

because there is no general schema available that is universally agreed. Therefore,404

we followed the classification proposed in (Tempero et al., 2010) in which the405

projects are distributed into four main domain categories (Table 1), each one406

containing a set of different sub-domains which are not used in this study. With407

respect to project size, the categories refer to the TLOC (total lines of code) written408

for the whole project. This methodology is the most commonly used in software409

sizing. In the dataset, the project size is divided into five categories from small410

to large, similarly to the study (Fontana et al., 2013a) of project classification.411

The categories are defined as follows: S (small) for projects where TLOC < 5, 000;412

5, 000 SM (small-medium) < 15, 000; 15, 000 M (medium) < 40, 000; 40, 000 413

ML (medium-large) < 100, 000; 100, 000 L (large) < 500, 000. This is an ordinal414

scale, but we are going to treat it as nominal.415

In order to classify the 24 projects into the 4 domains, we perform an inde-416

pendent survey with four of the five authors. This first round included a survey417

question for each project with the url of the project in SourceForge and asking for418

a rapid answer. After first round, a Kappa inter-rated agreement of 24 subjects419

and 4 raters was calculated 0.441 as moderate agreement with p� value = 0. An420

analysis of the survey’s answers shows that 9 of the projects have 4/4 coincidence421

and other 7 have 3/4 coincidence. The rest of the projects have 2, 1, 1 but one of422

the answers was "Can’t classify". The four authors open a discussion about "Can’t423

classify" answer that shows that some authors knows previously these projects but424

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

...Impact of Project Domain and Size Category on the Detection of God Class 11

other authors don’t. Just visiting the SourceForge page quickly was not enough.425

Hence, the second round starts with an open discussion and sharing more infor-426

mation on the projects. The agreement was achieved and the fifth author review,427

check and agree.428

Table 1 Domain categories and sub-domains.

Category Sub-domain

Software Development (Dev) Parsers/Generators/Makers, Testing, Integrated Devel-
opment Software (IDE),
Software Development Kit (SDK)

Application Software (App) Word Processor, Web Browser, Accounting, Graphic,
Player

Diagram Generator/Data Vi-
sualization (Vis)

Graphical User Interface (GUI) Design Tool

Client Server Software (Cli) Database, Application Server, Middleware, Content
Management System (CMS)

Table 2 Characteristics of the projects in the dataset. (App: Application Software; Dev: Soft-
ware Development; Vis: Diagram Generator/Data Visualization; Cli: Client Server Software;
L: Large; ML: Medium-Large; M: Medium; SM: Small-Medium; S: Small.)

Project name Domain Size Category (TLOC) NOC

jAudio-1.0.4 App L (117615) 416
JDistlib-0.3.8 App M (32081) 78
Freemind-1.0.1 Vis L (106396) 782
JCLEC-4-base Dev M (37575) 311
JasperReports-4.7.1 Dev L (350690) 1797
Java graphplan-1.0 Dev SM (1049) 50
SQuirreL SQL Client-3.7.1 Cli ML (71626) 1138
Mpxj-4.7 App L (261971) 553
KeyStore Explorer-5.1 Vis ML (83144) 384
Apeiron-2.92 App SM (8908) 62
DigiExtractor-2.5.2 App M (15668) 80
FullSync-0.10.2 App M (24323) 169
Angry IP Scanner-3.0 App M (19965) 270
OmegaT-3.1.8 App L (121909) 716
Plugfy-0.6 Dev S (2337) 28
Lucene-3.0.0 App ML (81611) 606
Matte-1.7 App ML (52067) 603
Ganttproject-2.0.10 App ML (66540) 621
sMeta-1.0.3 App M (30843) 222
JFreechart-1.0.X App L (206559) 499
xena-6.1.0 Dev ML (61526) 1975
JHotDraw-5.2 App M (17807) 151
pmd-4.3.x Dev ML (82885) 800
checkstyle-6.2.0 Dev ML (41104) 277

Table 2 provides, for each project, its name and version. This table also char-429

acterizes the projects in terms of domain and size category. The TLOC is included430

because it is used to obtain size category, while the number of classes (NOC) is431

included for further comparison with the number of god classes.432

In order to analyze the chosen projects, we carefully selected a source code433

analyzer tool that matched the following criteria: open source, measures Java434

source code and includes a high number of object-oriented metrics. The tool that435

best met these criteria and suited the needs of this study was RefactorIT version436

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

12 Khalid Alkharabsheh et al.

2.7 (https://sourceforge.net/projects/refactorit/). It uses semantic rules437

and produces a set of 30 metrics at the levels of project, package, class and method,438

but in our case we exclude the 14 method metrics because they are not relevant439

for our study. RefactorIT offers great functionality in terms of the management440

of the metrics profile and user interface. Also, it supplies a catalog of refactoring441

operations that assists in the maintenance process. RefactorIT is available in two442

forms: as an integrated plug-in of Eclipse or as a standalone desktop tool.443

The dataset requires a particular formalization so that it can be input into the444

machine learning classifiers. Each class in the dataset is represented by a row of445

19 variables (X1 to X19), see Table 3, widely used in the literature (Khomh et al.,446

2011; Kreimer, 2005; Maneerat and Muenchaisri, 2011) for design smell detection.447

Variables X1 to X16 involve numerical attributes which represent software metrics448

and include project (X1 . . . X5), package (X6 . . . X9) and class (X10 . . . X16).449

Some of these metrics are particularly related to god class characteristics such450

lack of cohesion (LCOM), number of attributes (NOA), and complexity (weighted451

methods per class, WMC).452

Table 3 Definition of variables.
Variable Metric Definition Level

X1 TLOC Total Lines of Code Project
X2 NCLOC Non-Comment Lines of Code Project
X3 CLOC Comment Lines of Code Project
X4 EXEC Executable Statements Project
X5 DC Density of Comments Project
X6 NOT Number of Types Package
X7 NOTa Number of Abstract Types Package
X8 NOTc Number of Concrete Types Package
X9 NOTe Number of Exported Types Package
X10 RFC Response for Class Class
X11 WMC Weighted Methods per Class Class
X12 DIT Depth in Tree Class
X13 NOC Number of Children in Tree Class
X14 DIP Dependency Inversion Principle Class
X15 LCOM Lack of Cohesion of Methods Class
X16 NOA Number of Attributes Class
Project level information (nominal scale)

Variable Information Value

X17 Project domain App, Dev, Cli, Vis
X18 Project size category L, ML, M, MS, S
Smell detection (binary)

Variable Design Smell According to

X19 God Class PMD, iPlasma, JDeodorant, Décor, Together

Variables X17 and X18 represent the two types of project context information453

(domain, size category) as factors. Finally, variable X19 represents the class label454

(god class or not) as a binary scale (true or false). Its value should be defined455

manually by a team of experts. However, it would be very costly, so we used456

a combination of five design smell detection tools which are very popular and457

cited in the literature according to the results of our systematic mapping study458

(Alkharabsheh et al., 2018), commonly employed in god class detection (Khomh459

et al., 2011; Lanza and Marinescu, 2007; Fontana et al., 2012a; Yamashita et al.,460

2015; Maiga et al., 2012b), which offer a feasible and repeatable way to analyze461

our dataset. The five tools are iPlasma (Marinescu et al., 2005), DECOR (Moha,462

2007), JDeodorant (Tsantalis et al., 2008), PMD (Copeland, 2005) and Together463

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

...Impact of Project Domain and Size Category on the Detection of God Class 13

(Borland, 2008). PMD and iPlasma use the same strategy, which is a metric-based464

strategy. Moreover, both tools use the same three metrics defined in Lanza &465

Marinescu (Lanza and Marinescu, 2007) strategy but with different thresholds.466

These three metrics are Weighted Methods per Class (WMC), Access to Foreign467

Data (ATFD), Tight Class Cohesion (TCC). The general strategy is defined as:468

WMC >= WMC_VERY_HIGH &&469

ATFD > FEW_ATFD &&470

TCC < TCC_VERY_LOW471

PMD considers, according to the coded rule obtained from Github (https://gi472

thub.com/pmd/pmd/blob/master/pmd-java/src/main/java/net/sourceforge/p473

md/lang/java/rule/design/GodClassRule.java):474

WMC_VERY_HIGH as 47,475

FEW_ATFD as 5, and476

TCC_VERY_LOW as 1/3477

iPlasma considers, according to (Mihancea and Marinescu, 2005):478

WMC_VERY_HIGH as 20,479

FEW_ATFD as 4, and480

TCC_VERY_LOW as 1/3481

JDeodorant, according to (Fokaefs et al., 2009), uses a hierarchical agglom-482

erative clustering algorithm on each class, obtaining clusters with attributes and483

methods of a class. This method could be named as feature (attribute and meth-484

ods) clustering analysis to find opportunities for “Extract class” refactoring.485

DECOR is rule based, as a mixture of semantic rules, metrics based rules,486

structural rules and association rules. DECOR generates the detection code au-487

tomatically from a definition of the anti-pattern expressed in a domain specific488

language (DSL) as shown in the rule card below, according to (Moha et al., 2010;489

Palomba et al., 2014b). The metric rules deal with Number of Methods Declared490

(NMD), Number of Attributes Declared (NAD) and LCOM5 (a version of Lack491

of Cohesion of Methods proposed by Henderson-Sellers). Compared with iPlasma492

and PMD, it is based in different types of rules, not just metrics and it not even493

uses the same metrics set.494

RULE_CARD: Blob {495

RULE: Blob {ASSOC: associated FROM: mainClass ONE496

TO: DataClass MANY}497

RULE: mainClass {UNION498

LargeClassLowCohesion499

ControllerClass}500

RULE: LargeClassLowCohesion {UNION501

LargeClass502

LowCohesion}503

RULE: LargeClass {(METRIC: NMD+NAD, VERY_HIGH, 20)}504

RULE: LowCohesion {(METRIC: LCOM5, VERY_HIGH, 20)}505

RULE: ControllerClass {UNION506

(SEMANTIC: METHODNAME,507

{Process, Control, Command,508

Manage, Drive, System}),509

(SEMANTIC: CLASSNAME,510

{Process, Control, Command,511

Manage, Drive, System})}512

RULE: DataClass {(STRUCT: METHOD_ACCESOR, 90)}513

};514

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

14 Khalid Alkharabsheh et al.

Together ControlCenter (Borland Together 12.6) calculates 55 quality assur-515

ance metrics for use in analyzing Java and C++ source code (Gronback, 2003).516

It includes Chidamber and Kemerer (CK) suite and it is also inspired in Lanza &517

Marinescu (LM). According to different papers in literature, Together’s god class518

detection (as shown manually in (Gronback, 2003)) is metric-based using a com-519

bination of different metrics, including LM and CK suites but, to the best of our520

knowledge (see for example (Li and Shatnawi, 2007b)), the precise strategy and521

thresholds used are not published.522

Note that in our data collection the god class labeling and the class metrics523

are independent, because the former is defined by these five detection tools as524

described before, while the laters are computed using RefactorIT. On the other525

hand, there is a lack of agreement on the detection (Paiva et al., 2017; Fernandes526

et al., 2016) and in the values of the metrics delivered by the different tools. This527

suggests that, although some of the software detection tools might use code metrics528

similar to the ones used by us, rarely are exactly the same metrics, calculated the529

same and used in the same way, so the probability of biasing in god class labeling530

is very low.531

All the tools support Java projects and the input data are the source code,532

while the output is text in different formats (CSV, TXT or XML). Also, most of533

the tools focus only on smell detection, except JDeodorant, which includes refac-534

toring operations that are performed after the design smells have been identified.535

Nearly all the tools have a GUI except PMD, which only provides a CLI (com-536

mand line interface). Some tools can be executed in different environments such537

as IDE plugins or standalone and generate metric reports. Table 4 summarizes538

the most important characteristics of each detection tool. In our experiment these539

five detection tools are used, each of which must be operated in its way, some540

adapting the project to be analyzed by the tool, obtaining and processing the541

result manually by the authors. The aspect named CLI value "No" (in Table 4)542

describes that the tool should be used throughout the graphical interface. The543

full dataset used in this study is available in XLS and CSV formats from https:544

//citius.usc.es/investigacion/datasets/project-nominal-information.545

Table 4 Characteristics of selected design smell detection tools.

Tool DECOR JDeodorant iPlasma PMD Together

Version 1.0 5.0.13 6.1 5.3.2 12.6.0
Type Open

source
Open source Open source Open

source
Commercial

Strategy Rule-
based
(mix)

Clustering
analysis

Metrics-
based

Metrics-
based

Metrics-based

Language Java Java Java, C++ Java, C,
C++

Java, C++, C#

Refactoring No Yes No No No
Environment Standalone Eclipse

Plug-in
Standalone Eclipse

Plug-in,
Standalone

Eclipse Plug-in

Metrics Report No No Yes No Yes
Inputdata Source

code
Source code Source code Source code Source code,

UML
Outputdata Textual Textual Textual, Vi-

sual
Textual Textual

Commandline No No No Yes No

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

...Impact of Project Domain and Size Category on the Detection of God Class 15

Each single tool is not perfect, and specifically it is widely known in the liter-546

ature that they are prone to detect false god classes. Additionally, each detection547

tool usually performs better on its own developing context, defined by the types of548

project used, experience of the experts who designed the tool, etc. However, com-549

bining several detection tools in a committee with an adequate fusion policy for550

the outputs of the tools may enhance the detection performance. Specifically, by551

requiring less tools to detect a god class, the undetected god class rate is expected552

to reduce. Conversely, by requiring more tools to detect a god class, false detection553

rate is expected to reduce, specially considering the low agreement among tools.554

In fact, we performed a manual analysis of cases labeled as god class, with extreme555

policies of 4 and more tools and 5 tools coinciding in detection. In the first case,556

we found 10% of false positives (8 cases out of 79) while, in the second, 4% (only557

one case, particularly strange, out of 24). These values are low compared to those558

reported for these tools in other studies (Moha and Guéhéneuc, 2007; Fontana559

et al., 2011). We develop several experiments using different policies to combine560

the god class detection tools (e.g., a logical AND/OR of the five tools). These561

experiments also evaluate whether the influence on the god class detection of the562

information concerning the project context is consistent throughout the different563

policies.564

Figure 1 shows the distribution of god classes detected over the dataset (24565

projects) by the selected detection tools. The bubbles in the figure represent the566

number of god classes detected in each project by each tool. The two upper bub-567

ble rows represent the “Logical AND” of all the tools, i.e., the number of god class568

identified simultaneously by the 5 tools, and the “Logical OR” of all tools, i.e.,569

the god classes identified by some tool, in other words, by one tool and more.570

The largest number of god classes was detected by JDeodorant, which is an open571

source tool, while the lowest number was detected by Together, which is a com-572

mercial tool. The majority of god classes were detected in projects that mostly573

belonged to the App domain and/or had a L size category, such as OmegaT-574

3.1.8, Lucene-3.0.0, GanttProject-2.0.10, Xena-6.1.0, Jasperreport-4.7.1, JAudio-575

1.0.4 and JFreeChart-1.0.x. For the same project, different god class detection576

results were obtained by different tools. Studying the agreement between the five577

selected detection tools, a Fleiss’ Kappa test provides a Kappa value of 0.202, which578

means poor agreement among the five tools, with a p-value of 0, which means that579

the differences between the five tools are statistically significant. Therefore, there580

exists a lack of agreement among the tools, which may be caused by the variety581

of techniques, algorithms and metric thresholds used by the tools.582

From Table 5, it can be seen that the god classes are distributed among differ-583

ent categories of the investigated project context information. Since well-designed584

projects are expected to have zero or few god classes, in our dataset this label585

is low-populated, so the classification problem is unbalanced. For example, the S586

size category only includes one god class, because small-size projects should not587

include more than one or two god classes. In general, there exists a positive rela-588

tion between the number of classes and the number of detected god classes in the589

same category (domain or project size), although there are some exceptions. For590

example, the ML size category has 6,404 classes and 758 god classes, while the L591

category that has 4,762 classes but 967 god classes. This behavior also happens592

considering projects instead of classes. The row labeled Correlation in Table 5593

reports the correlations between the number of total classes and the number of god594

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

16 Khalid Alkharabsheh et al.

Fig. 1 God class distribution over the dataset using the selected tools.

Table 5 Distribution of god classes among different nominal categories (N.Cat.) requiring one
and more tools, two and more tools, three and more tools, four and more tools and five tools.
Correlations between the number of god classes and the number of classes over the domain
and size categories are also reported. The last line reports the number of projects, classes, god
classes and god class percentages of the whole dataset for each number of tools.

#God Classes

N.Cat. Project Class �1-tool

(%)
�2-tools

(%)

�3-tools

(%)

�4-tools

(%)

5-tools

(%)

Dev 7 5238 695 (13.3) 155 (2.9) 42 (0.8) 3 (0.1) 0 (0)
App 14 5046 1085

(21.5)
321 (6.4) 171 (3.4) 70 (1.4) 23 (0.5)

Vis 2 1165 89 (7.6) 43 (3.7) 18 (1.5) 3 (0.3) 1 (0.1)
Cli 1 1138 89 (0.8) 20 (1.8) 8 (0.7) 3 (0.3) 0 (0)
Correlation 0.93 0.85 0.69 0.54 0.53
L 6 4762 967 (20.3) 326 (6.8) 158 (3.3) 48 (1) 13 (0.3)
ML 8 6404 758 (11.8) 165 (2.6) 62 (1) 27 (0.4) 11 (0.2)
M 7 1281 198 (15.5) 36 (2.8) 15 (1.2) 2 (0.2) 0 (0)
SM 2 112 34 (30.4) 12 (10.7) 4 (3.6) 2 (1.8) 0 (0)
S 1 28 1 (3.6) 0 (0) 0 (0) 0 (0) 0 (0)
Correlation 0.93 0.80 0.74 0.84 0.94
Whole

dataset

24 12,587 1,958
(15.5)

539 (4.3) 239 (1.9) 79 (0.6) 24 (0.2)

classes for each number of tools: their high positive values show that the latter595

generally raises with the former. The unbalance between god classes and non-god596

classes is also clear in this table (the god class percentages never overcome 30.4%,597

10.7%, 3.6%, 1.8% and 0.5% for each number of tools used simultaneously to detect598

the smell). The last row of Table 5 reports the total number of projects, classes599

and god classes and the percentage of god classes, for each combination policy600

(� 1 tool, � 2 tool and so on). These percentages never overcome 16%, and they601

decrease very fast with the number of tools required to label a class as god class,602

increasing very much the classification unbalance.603

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

...Impact of Project Domain and Size Category on the Detection of God Class 17

3.3 Methodology604

In this section we describe the experimental methodology, based on the use of605

several supervised classifiers to predict the presence of god class design smell . This606

methodology includes several steps which are related to the following research607

question (RQ):608

RQ: Does the project context information, specifically project domain and size609

categories, influence on the detection of the god class design smell?610

Firstly, we identify god class design smell using a detection tool (DECOR,611

JDeodorant, iPlasma, PMD, and Together), listed in the section 3.2. Our prob-612

lem is modeled as a two-class classification problem: label 0 corresponds to “nor-613

mal class” and label 1 corresponds to “god class”. We use the classifiers listed on614

the section 3.1 to learn this classification problem. In order to build each classi-615

fier, the dataset is randomly splitted into a training set (60%), a validation set616

(20%) and a testing set (20%). Specifically, five randomly splitted groups of train-617

ing/validation/test sets are generated (keeping the relative populations of both618

classes in each set), and the classifier performance is averaged over the five tri-619

als. Note that, since different policies of combining detection tools are considered,620

each policy creates a different god class labeling, and thus a different dataset. In621

each trial, the training set is used to train the classifiers and the validation set622

is used to select appropriate values for their tunable hyper-parameters (e.g., the623

spread of Gaussian kernel for LibSVM), listed in section 3.1. The hyper-parameter624

values are selected to provide the best average classification performance over the625

5 validation sets. Finally, the classifier, trained on the 5 training sets using the626

selected values for the tunable hyper-parameters, runs on the 5 test sets, and the627

final performance is the average over these test sets.628

The classification performance is measured by the Cohen Kappa (Blackman629

and Koval, 2000) statistic, in %, which measures the agreement between the true630

label and the one predicted by the classifier discarding the agreement by chance631

(e.g., caused by class unbalance, when all the patterns are classified in the majority632

class). This property has led us to select kappa over other statistics because the633

information in our problem is strongly unbalanced. The interpretation of Kappa634

values, denoted by K, which range from �100% to 100%, is as follows: excellent635

(80% < K < 100%), good (60% < K < 80%), moderate (40% < K < 60%), fair636

(20% < K < 40%) and poor (K < 20%). According to this interpretation, in our637

study, we consider the classifier we built is good when the Kappa value is greater638

than 40%. The value of K is calculated as:639

K = 100
a� e
s� e

, a = TN + TP, s = TN + FP + FN + TP (1)

e =
(TN + FP)(TN + FN) + (FN + TP)(FP + TP)

s
(2)

where TN, FP, FN and TP are the number of true negatives, false positives,640

false negatives and true positives, respectively, and positives correspond to God641

Class. Note that K is always equal or lower than accuracy. The Matthews correla-642

tion coefficient (MCC, also in %) is another performance measure of the quality of643

binary classifications that is used to evaluate the classifiers (Matthews, 1975). The644

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

18 Khalid Alkharabsheh et al.

MCC has been evaluated in all the experiments, but for brevity we report mainly645

the Kappa values, although both measurements lead to the same conclusions.646

In our experiments, we use the Wilcoxon rank sum test (Hollander et al., 2013)647

to evaluate the difference between the Kappa (resp. MCC) values achieved by the648

eight classifiers in two cases, e.g. with and without project context information.649

The null hypothesis of this test is that Kappa (resp. MCC) values in both cases650

come from distributions with equal mean. When the p-value is below (resp. above)651

0.05, this hypothesis can be rejected (resp. cannot be accepted), so the difference652

between cases is (resp. is not) statistically significant. The test also allows hy-653

pothesis such as “one distribution is greater than or equal to the other”, but the654

procedure for rejecting the hypothesis is the same. This test is evaluated in R by655

the wilcoxsign_test function of the coin package which also provides a Z-factor656

that divided by
p
N , where N is the number of pairs of data, provides the effect657

size (notated by r) in whose interpretation we use the criteria widely accepted in658

the literature (Cohen, 2013): small effect size means 0.1 r < 0.3; moderate is659

0.3 r < 0.5; and large is 0.5 r. These performance measures and this sta-660

tistical test are widely used in the literature for similar purposes (Maneerat and661

Muenchaisri, 2011; Hall et al., 2011; Fontana et al., 2012a, 2013b; Di Nucci et al.,662

2018).663

The current study is organized in six steps (Figure 2). The first four steps are664

applied on the whole dataset, while the last two divide the dataset in different665

project domains (step 5) and size categories (step 6).666

Fig. 2 Steps of the experimental work.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

...Impact of Project Domain and Size Category on the Detection of God Class 19

Step 1. In this step we look at the following question RQ.S1: Is the performance667

of classifiers affected by the use of project context information? We simplify this668

preliminary study considering only the criterion of one tool and more for god class669

labeling because the problem of unbalanced information is less severe. In order to670

answer RQ.S1, we train, validate and test the eight classifiers using all numeric671

variables (X1, . . . , X16, see Table 3) with and without the project context infor-672

mation (domain X17 and size category X18). There are two null hypotheses for673

step 1: HKappa

0 (resp. HMCC
0) is that Kappa (resp. MCC) achieved by the clas-674

sifiers without using project context information is greater or equal than using it,675

since our alternative hypothesis is that the performance of the classifiers improves676

using project context information. The comparison is performed according to the677

experimental methodology explained above. For the following steps, we select the678

configuration (with or without project context information) which provides the679

best classification performance (Kappa and MCC) over all the classifiers, accord-680

ing to a Wilcoxon test comparing the performances with and without project681

context information.682

Step 2. Here, the question to explore is RQ.S2: Do we use unnecessary informa-683

tion which complicates the analysis without influence on the results? As in step 1,684

we use again one and more for god class labeling. First, we analyze the correlated685

variables, such as NOT (X6) and NOTc (X8), developing a test whose null hy-686

pothesis HNOT
0 is that classifiers achieve similar performance with and without the687

NOT variable. Two additional experiments train linear regressors with and with-688

out project context information in order to find co-linear variables. Finally, the689

importance of the variables X1, . . . , X16 and of the project context information is690

estimated, and a set of important variables is selected and compared to the whole691

set of variables. Three tests are developed: 1) the null hypothesis HALL,IMP+PCI

0692

is that classifiers achieve equal Kappa using all the variables (ALL) and using693

the important variables (IMP) plus project context information (PCI); 2) the null694

hypothesis HALL,IMP

0 is that classifiers achieve equal Kappa using all variables695

and using only the important variables (IMP); and 3) the HIMP,IMP+PCI

0 is that696

classifiers achieve the same Kappa using important variables plus project context697

information and using just important variables. The best configuration (all vari-698

ables, important variables or important variables plus project context information)699

is selected for the next step.700

Step 3. Since the god classes represent a small fraction of the available classes,701

their detection can be considered an unbalanced classification problem. The syn-702

thetic minority over-sampling technique (SMOTE) (Chawla et al., 2002) is a pop-703

ular oversampling method for unbalanced classification problems. This method704

balances both labels by creating artificial training patterns of the minority label705

(in our case, god class), in the set used to train the classifiers. The step 3 investi-706

gates RQ.S3: Is the SMOTE technique useful to reduce the unbalance problem? A707

first experiment evaluates the null hypothesis HSMOTE
0 . It states that classifiers,708

using one and more tools as labeling criterion, achieve greater or equal Kappa709

without SMOTE than with it.710

Step 4. This step investigates RQ.S4: What effect does god class labeling have711

on our problem? This question is analyzed from two angles. First, RQ.S4.1: Is the712

classifier performance influenced by the labeling policy? Second, RQ.S4.2: Does the713

project context information increase the classifier performance in all the labeling714

policies? When classes are labeled as god class by one and more design smell715

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

20 Khalid Alkharabsheh et al.

detection tools, it is expectable to have a high (resp. low) rate of false positives716

(resp. negatives). The increase in the number of tools required to label a class as717

god class change these rates and leads to a reduction in the number of god classes,718

so the classification problem becomes even more unbalanced. In order to take this719

fact into account, we develop experiments with different policies to combine the720

outputs of the detection tools. Specifically, we considered that a god class must be721

detected by two and more tools, by three and more tools, by four and more tools,722

and by the five tools (i.e., a logical AND of the five tools). To answer RQ.S4.1,723

we evaluate how these labelings influence the classifier performance. In order to724

answer RQ.S4.2, we compare the classifier performance without and with project725

context information using each of the previous alternative god class labelings. The726

null hypotheses of the tests associated to each experiment are listed in Table 6:727

hypotheses Hi
0, with i = 2, . . . , 5, and HiC

0 , with i = 1, 3, 4, 5, correspond to728

RQ.S4.1, while HiW
0 , with i = 1, . . . , 5, correspond to RQ.S4.2.729

Step 5. The steps 5 and 6 look separately at each of the parameters of the project730

context information. First, we check RQ.S5: Can we discard the influence of project731

domain (X17) in classifiers performance? In order to measure its impact on the732

god class detection, each classifier is trained using 60% of the classes of domain733

Dev, and validated for parameter tuning using 20% of its classes. We select Dev for734

training because it is the only domain whose classes belong to all the available size735

categories (SM, M, ML and L), so the project size is not expected to bias the results736

of this experiment. Afterwards, the classifier is tested: 1) using the remaining 20%737

of the classes from the same Dev domain; 2) using the classes in the App domain;738

3) using the classes in the Vis domain; and 4) using the classes in the Cli domain.739

The objective of this experiment is to check whether the classifier performance is740

different on the classes of the same domain (Dev) used during training and for741

the remaining domains, in which case the classification is strongly influenced by742

the domain information. For example, assuming that domain is not relevant for743

god class detection, a classifier trained for domain Dev should behave similarly744

on the remaining 20% of Dev classes and on the classes of domains App, Cli and745

Vis. Otherwise, we must assume that the domain information is relevant. Because746

we do not use the entire dataset in this step, we selected one and more tools and747

two and more tools as god class labeling criteria, because they provide more cases748

and because, as we will see in section 4.1, step 4 shows that the project context749

information improves the results with any criteria. The null hypotheses using one750

and more tools are that classifiers, trained using classes of domain Dev, achieve751

greater or equal performance in classifying classes from the App, Cli and Vis752

domains than with their own training domain, Dev. These hypotheses are denoted753

HDA1
0 , HDC1

0 , HDV 1
0 respectively. Using two and more tools, the corresponding754

null hypotheses are denoted as HDA2
0 , HDC2

0 and HDV 2
0 .755

Step 6. Analogously to the previous step, we investigate RQ.S6: Can we discard756

the influence of project size (X18) in classifiers performance? In order to answer757

this question, the classifiers are trained (resp. validated for parameter tuning) using758

60% (resp. 20%) classes of size ML. Analogously to the previous step, we selected759

ML because it is the only size that contains classes of all the domains (App, Cli,760

Dev and Vis), in order to avoid that project domain may bias this experiment.761

The trained classifiers are tested: 1) using the remaining 20% of classes of size ML;762

2) using classes of size SM; 3) using classes of size M; and 4) using classes of size763

L. Thus we evaluate whether the classifier performance is influenced by the class764

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

...Impact of Project Domain and Size Category on the Detection of God Class 21

Table 6 Null hypotheses of step 4 (PCI stands for project context information).

Name Meaning
Classifiers achieve equal Kappa without PCI using One&More and using . . .

H
2
0 Two&More tools

H
3
0 Three&More tools

H
4
0 Four&More tools

H
5
0 Five tools

Classifiers achieve equal Kappa with PCI using Two&More and using . . .
H

1C
0 One&More tools (C means “context”)

H
3C
0 Three&More tools

H
4C
0 Four&More tools

H
5C
0 Five tools
Classifiers achieve greater or equal Kappa without PCI than with it using . . .

H
1W
0 One&More tools (W means “with and without”)

H
2W
0 Two&More tools

H
3W
0 Three&More tools

H
4W
0 Four&More tools

H
5W
0 Five tools

size. The same labeling criterion (one and more tools, and two and more tools)765

as in the previous step was taken for the same reasons. The null hypotheses with766

one and more tools are that classifiers, trained using size category ML, achieve767

greater or equal Kappa testing with projects classes in size category L (HML,L,1
0),768

size category M (HML,M,1
0), and size category SM (HML,SM,1

0), respectively, than769

with their own training size category, ML. With two and more tools, the analogous770

null hypotheses are denoted as HML,L,2
0 , HML,M,2

0 and HML,SM,2
0 .771

4 Result and Discussion772

The results of the steps 1-6 described in the previous section are presented here.773

Section 4.1 compares the classification results with and without project context774

information (step 1), with the whole variables and only important variables (step775

2), with and without SMOTE (step 3) and with several policies of tool combination776

as oracle (step 4). Sections 4.2 and 4.3 discuss the experiments in steps 5 and 6777

of the methodology performed for each factor (project domain and size category)778

independently.779

4.1 Training Classifiers With the Whole Dataset780

The left panel of Figure 3 plots the Kappa achieved by the classifiers with and781

without factors (blue and red lines, respectively), sorted by decreasing values,782

according to step 1 in the methodology. Excepting NB, with project context in-783

formation the classifiers achieve higher Kappa (the red line is about 3% above the784

blue line). Therefore, the project context information, domain and size category785

(X17 and X18) have a positive influence on god class detection. The best Kappa786

(above 60%) is achieved by RF using project context information. An asymptotic787

Wilcoxon-Pratt signed-rank test, and the same test with continuity correction,788

compare the Kappa values with and without the project context factors. The null789

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

22 Khalid Alkharabsheh et al.

hypotheses HKappa

0 can be rejected, with p-value 0.007812 (r =0.8416), assum-790

ing the alternative hypothesis “Kappa values are greater using project context791

information”, so the difference is statistically significant with a large effect size792

(r>0.5), which evidences that the project context information influences god class793

detection. The null hypotheses with MCC, HMCC
0 , is also rejected, with p-value794

0.01043. This is an example that Kappa and MCC lead to the same conclusion.795

For brevity, henceforth only p-values of tests applied on Kappa will be reported.796

40

45

50

55

60

65

K
a

p
p
a
 (

%
)

RF RC
LibSVM J48

JRip IBK NB
SMO

WithNominal

WithoutNominal

Fig. 3 Left: Kappa values of classifiers with and without project context information, sorted
by decreasing Kappa values of the former to increase visibility. Right: Kappa values with all
the variables, important variables and project context information, and important variables,
sorted by decreasing values of the former.

Table 7 Kappa values (in %) achieved by the classifiers with all the variables (first row) and
removing the NOT variable (second row).

RF RC J48 JRip IBK NB SMO LibSVM

All variables 63.08 57.37 57.91 56.77 50.18 48.88 54.49 56.88
Without NOT 63.04 62.25 58.17 55.85 50.66 48.75 54.70 56.44

Table 8 Null hypotheses, p-values and effect size r of the tests in step 2.

p-value (effect size r)

Null hypothesis Wilcoxon Test Wilcoxon-Pratt

H
ALL,IMP+PCI
0 0.7422 (0.1485) 0.6744 (0.1485)

H
ALL,IMP
0 0.05469 (0.6931) 0.04995 (0.6931)

H
IMP+PCI,IMP
0 0.01562 (0.8416) 0.01729 (0.8416)

Step 2 of methodology identifies the group of important input variables, dis-797

carding multi-collinearity problems that lead to misleading in the classification798

results using the whole input variable set. For example, some variables might be799

related to each other from the first view, such as TLOC, CLOC, NCLOC or project800

size (see Table 3 above for the meaning of variables). However, in RefactorIT the801

sum of CLOC plus NCLOC is not equal to TLOC due to blank lines. Besides,802

the project size is given by the criterion defined in (Fontana et al., 2012a) and803

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

...Impact of Project Domain and Size Category on the Detection of God Class 23

Table 9 Confusion matrix, Kappa and MCC (in %) of the best classifier (RF) using all input
variables including project context information (PCI), left part, using SMOTE (S) with one
and more tools, right part.

RF (PCI) RF (S,� 1 tool)

Non-GC GC Non-GC GC
Non-GC 80.17 2.79 78.49 4.47
GC 7.16 9.89 5.68 11.37

Kappa(%) MCC(%) Kappa (%) MCC (%)
60.86 61.76 63.08 63.14

not by RefactorIT. In fact, the Pearson correlation between TLOC and NCLOC804

is 0.90. However, other variables are more correlated, such as NOT and NOTc805

(0.99),X6 and X8 resp., because most types are concrete (see Table 3). Table 7806

reports the Kappa achieved by the classifiers with and without the NOT variable.807

The values are very similar for all the classifiers (a Wilcoxon test gives a p-value of808

0.7422, and 0.6744 when asymptotic with continuity correction is applied). Thus,809

the null hypothesis HNOT
0 can not be rejected and the difference is not statis-810

tically significant, which means that indeed the variable NOT can be excluded,811

but the dependence between NOT and NOTc is not a problem for classification.812

The correlations between NOC (X13) and NOT, and between NOC and NOTc,813

are lower (0.94). The remaining correlations between variables are below 0.9. On814

the other hand, we trained two linear regressors, with and without project context815

information, and we checked that the coefficients of both linear models are finite,816

so the collinearity problems are not very important.817

Additionally, we determined the importance of each variable using the rminer818

package (Cortez, 2015) written in the R statistical computing language. Specif-819

ically, we selected as important variables those which importance, given by the820

Importance function of the rminer package, overcomes 0.5. Ten variables were se-821

lected: WMC, EXEC, RFC, TLOC, NOTc, DIT, NOA, NCLOC, DC and CLOC.822

The variables NOT and NOC were excluded due to their high correlations with823

NOTc, which was included. Surprisingly, the nominal variables size category and824

domain achieved low importance values and were also excluded. The reason is825

that Importance ranks variables according to its relevance, but variables with low826

relevance (domain and size among others, in this case) can still influence on the827

god class detection, as step 1 evidenced. The right panel of Figure 3 shows the828

classifier performance using all the variables, the important ones plus the project829

context information and only the important variables. A slightly better perfor-830

mance is achieved using the whole input set (blue line), followed very closely by831

the important variables with project context information (green line), and the832

worst Kappa values are achieved by the case of using just important variables833

without project context information (red line). Although the addition of project834

context information (green line) works similarly to the whole input set, the reduc-835

tion in performance caused by feature selection, alongside with the low number836

(16) of features, suggests to keep all the variables for the next experiments. The837

differences between Kappa values of blue and green, blue and red, and green and838

red lines where analyzed with both a Wilcoxon and a Wilcoxon-Pratt test with839

continuity correction, used to avoid data tie warnings. Table 8 shows the null840

hypothesis, p-value and effect size (r) of each test. The difference between all the841

features (ALL) and the important features (IMP) with project context information842

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

24 Khalid Alkharabsheh et al.

(PCI), denoted as IMP+PCI, is not significant (first row). This suggests that the843

use of PCI avoids a high performance reduction compared to all features, although844

the effect size is small (r< 0.3 in line 1 of Table 8). The difference between ALL845

and IMP (second row) is significant, so removing PCI the performance (Kappa)846

degrades significantly (IMP). Finally, the difference between PCI+IMP and IMP847

is also significant, so the PCI raises significantly the performance compared to848

IMP, in the last two cases with large effect size. These three tests evidenced that849

domain information brings the difference between the best performance (achieved850

with ALL or PCI+IMP, which are not significantly different) and alternatives851

without PCI such as IMP, which is significantly different with lower performance.852

The left part of Table 9 reports the average confusion matrix over the 5 trials,853

the Kappa and MCC (both in %) achieved by the best classifier (RF) using all the854

variables. The diagonal values are high, but the percentage of non-detected god855

classes (false negatives) is relatively high (7.16%) compared to the percentage of856

god classes correctly detected (9.89%) although the false positive percentage is low857

(2.79%). The Kappa and MCC are high (60.86% and 61.76%, respectively). Since858

the performance degrades using the selected important features, in the following859

steps the experiments will use the whole set of metrics.860

The experiment of step 3 develops classification using SMOTE to balance both861

classes in the training set. Figure 4 shows that most classifiers obtained slightly862

better performances when the training set is balanced, excepting RC, LibSVM863

and IBK. The right part of Table 9 reports the confusion matrix of RF, which864

achieves the best Kappa, using SMOTE with one and more tools. Compared to865

the left part, the percentage of true positives is raised from 9.89% to 11.37%, whole866

the false negatives reduces from 7.16% to 5.68%. However, the false positive arise867

from 2.79% to 4.47%, while Kappa and MCC raise slightly. The conclusion of the868

experiment is that classifiers only perform slightly better using SMOTE, because869

the difference between classifications with and without SMOTE is not statistically870

significant. A Wilcoxon test comparing both collections of Kappa values gives a871

p-value (resp. r value) of 0.1719 (resp. 0.3722), above 0.05 and a moderate effect872

size, between 0.3 and 0.5, so the hypothesis HSMOTE
0 of that performance without873

SMOTE is greater or equal to with it can not be rejected. However, given that class874

unbalancing will increase in the following experiments, the SMOTE method will875

be applied in order to achieve the best, although realistic, available performance.876

According to step 4, we also developed experiments considering alternative877

class labels where a class is considered god class only when it is labeled as god878

class by: 1) three and more tools; 2) four and more tools; and 3) five tools. The879

objective of these experiments is to analyze the classifiers behavior related to the880

number of tools required to label a class as god class. Obviously, the more tools881

required to label a god class, the lower number of god classes, so the classification882

problem will be more unbalanced and the performance is expected to be reduced.883

From Table 5, the god classes vary from 15.55% of the classes with one and more884

tools to 0.19% with five tools. In other words, requiring less tools to detect a god885

class (e.g., by performing a logical OR of the tool outputs) the undetected god886

class rate is reduced, while requiring more tools (e.g., by performing an logical887

AND of the tool outputs) the false god class rate is reduced. In order to check this888

false positive reduction, a manual analysis of the god class detected was performed889

with the criteria of 4 tools and more and in the case of 5 tools. In the first analysis890

we detect 8 false positives among the 79 god classes and, in the second one, there891

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

...Impact of Project Domain and Size Category on the Detection of God Class 25

40

45

50

55

60

65

70

K
a
p
p
a
 (

%
)

RF J48 RC
LibSVM JRip

SMO IBK NB

WithSMOTE

WithoutSMOTE

Fig. 4 Kappa values of classifiers with project context information using one and more tools
with and without SMOTE, sorted by decreasing blue values.

is only one case, particularly strange, among 24 god classes, as mentioned in the892

introduction to the study design.893

Figure 5 reports the Kappa of the different classifiers using the whole variables894

without (left panel) and with (right panel) project context information, SMOTE895

and one tool and more, two tools and more, three tools and more, four tools and896

more and five tools. The classifier’s sortings by decreasing Kappa are very similar897

in both panels, being RC and RF the bests, followed by J48 and JRip. The Kappa898

values with one and more tools (black line) is the highest in the left plot, while899

the Kappa with two and more tools (blue line) is the highest in the right plot.900

Inside each panel, a comparison among lines shows that Kappa degrades when901

the number of tools is increased. This degradation is faster without project context902

information (left plot) than with it (right plot). In fact, in the left plot the black,903

blue, red and gray lines are fairly separated, while in the right plot the blue, black904

and red lines are very near, the gray line is near them for the best classifiers, and905

the performance degrades dramatically with five tools (green line). This graceful906

degradation of Kappa on the right plot with increasing number of tools supports907

the positive contribution of project context information to the god class detection.908

The Wilcoxon test comparing the difference between the best series and the others909

in each panel produce similar results. By comparing in the left panel the best910

line (black) with the other lines, which gives p-values below 0.05 (statistically911

significant difference) and large effect size (r > 0.5) for red, gray and green lines912

are 0.007812, with r =0.8911 for H3
0 , H4

0 and H5
0 , which are rejected (the values913

are equal because all the points in each series are below the black line). In the914

right panel, the differences between the blue line (the best one) and the others are915

statistically significant for red, gray and green lines, with the same p and r values916

as in the left panel for H3C
0 , H4C

0 and H5C
0 , respectively, which are rejected, so917

these lines are clearly different. In both plots, blue, black and red lines achieve the918

best Kappa values. This suggests that using four and more and five tools (gray919

and green lines) reduces too much the number of god classes, leading to severely920

unbalanced problems where the conclusions of our study would be biased by the921

low classification performance.922

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

26 Khalid Alkharabsheh et al.

Comparing both figures, which share the vertical scale, Kappa is higher on923

the right plot (i.e., with project context information) for each line, and the dif-924

ferences are statistically significant using One&More, Two&More, Three&More925

and Four&More tools and test has large effect size, with p-values (r) of 0.01172926

(0.7921), 0.003906 (0.8911), 0.007812 (0.8416), 0.007812 (0.8416), respectively, for927

the null hypotheses H1W
0 , H2W

0 , H3W
0 and H4W

0 . The difference is not statistically928

significant with five tools, probably due to the strong unbalance problem, with p-929

value (r) of 0.05323 (0.5707), using a Wilcoxon-Pratt test due to ties, for H5W
0 ,930

which can not be rejected. Nevertheless, the p-value is too close to 0.05.931

Therefore, the following experiments are developed using one and more tools932

and two and more tools labeling policies.933

Fig. 5 Left panel: Kappa values of classifiers without project context information using
SMOTE with one and more tools, two and more tools and so on. Right panel: Kappa val-
ues of classifiers with project context information using SMOTE with one and more tools, two
and more tools and so on. Classifiers are sorted by decreasing Kappa of the best line.

4.2 Influence of Project Domain934

We conducted the experiment described in step 5 of the methodology using935

SMOTE and applying both criteria (one and more tools, two and more tools)936

separately on the domain category in order to test again the influence of domain937

information on the god class detection. Figure 6 shows the Kappa achieved by938

the classifiers when they are: 1) trained and tuned using Dev category (using 60%939

and 20% of Dev classes, respectively); 2) tested using the remaining 20% of Dev940

classes (black line), and using also the classes of App, Cli and Vis categories using941

one and more tools (left panel) and two and more tools (right panel). According942

to the left panel, the highest Kappa values are obtained in almost all the clas-943

sifiers on the Dev category (SMO, LibSVM and NB are exceptions). Using the944

Wilcoxon test, the performance of the classifiers on the Dev domain in which they945

are trained is significantly superior to that obtained when used on the other App,946

Cli and Vis domains, presenting in all cases low p-values and large effect sizes (r):947

0.01172 (0.792118), 0.01953 (0.7426) and 0.01953 (0.7426). Thus, their respective948

null hypotheses HDA
0 , HDC

0 and HDV
0 are rejected.949

Table 10 (two left parts) reports the confusion matrix achieved by RF training950

and testing with Dev classes with one and more tools, and with two and more951

tools: the Kappa value using one and more tools (62.43%) is lower than the value952

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

...Impact of Project Domain and Size Category on the Detection of God Class 27

in the right part of Table 9 (63.08%), so despite of training and testing with classes953

of the same domain (Dev), the results are worse than using the whole dataset.954

Fig. 6 Left: Kappa values of classifiers with domain information using one and more tools
with SMOTE. Right: same plot using two and more tools. Classifiers are sorted by decreasing
Kappa of the domain Dev.

Applying the second criterion (god class is detected by two and more tools, right955

part of Figure 6), the Kappa values are clearly lower than using one and more tools,956

but for domain Dev (black line) they overcome again the other domains for five of957

eight classifiers. This seems to confirm the influence of the project domain category958

on the god class detection. However, using two and more tools the Kappa values959

achieved by NB, SMO and LibSVM for domains App and Vis (blue and gray lines960

in the right panel of Figure 6) overcome the corresponding Dev values. We will see961

in the next subsection that this effect also happens, even with more intensity, with962

the project size category and NB, although this classifier, alongside with SMO and963

LibSVM, achieve the globally worst Kappa values (see subsection 5.3). The specific964

Kappa and MCC values are reported by rows 3-10 of Table 11 using SMOTE and965

two and more tools and varying the domain category (first two rows report the966

Kappa and MCC values using all the classes with project context information).967

Training with Dev domain, RF achieves the best result (Kappa 50.66%) on Dev968

testing, but NB outperforms this value for App (57.25%). Besides, the best Kappa969

for Cli and Vis are achieved by NB and SMO (21.05% and 44.99%, respectively),970

with values lower than Dev and App. The Wilcoxon test evaluates as significantly971

greater, with large size effects, the performance of classifiers in the ML domain than972

in the App and Cli domains with p-values and effect size (r) of 0.03906 (0.6436)973

and 0.003906 (0.003906) respectively, so their null hypotheses HDA2
0 and HDC2

0974

are rejected, while HDV 2
0 (Vis domain) is not rejected (p =0.125, r =0.4456). In975

this domain, the performance overcomes the Dev domain for classifiers NB, SMO976

and LibSVM because they perform poorly on the training domain (Kappa below977

40%). On the other hand, we find particularly strange the performance of NB in978

domains App and Vis because it is often suboptimal in the remaining experiments,979

so its reliability in this case should be low.980

For each of the remaining categories (App, Cli and Vis) we repeated the pre-981

vious experiment but training the classifiers with domain categories other than982

Dev. For category App, we trained and tuned the classifiers using 60% and 20% of983

classes, respectively, and tested using the remaining 20% of the App classes. After-984

wards, these classifiers are tested using the Cli, Dev and Vis classes. The process985

was repeated training with Cli and Vis instead of App, using one and more tools.986

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

28 Khalid Alkharabsheh et al.

Table 10 Confusion matrix, Kappa, and MCC (in %) of the best classifier (RF, JRip) using
all the input variables and SMOTE (S): training and testing with Software Development (Dev)
domain with one tool and more (1T) and two tools and more (2T); training and testing with
Medium Large (ML) size with 1T and 2T.

RF(Dev, S, 1T) RF(Dev, S, 2T) RF(ML, S, 1T) JRip(ML, S, 2T)

Non-
GC

GC Non-
GC

GC Non-
GC

GC Non-
GC

GC

Non-
GC

83.18 3.37 95.82 1.03 84.80 3.27 95.51 1.92

GC 4.94 8.5 1.68 1.47 4.83 7.09 1.5 1.08

Kappa
(%)

MCC(%) Kappa
(%)

MCC (%) Kappa
(%)

MCC (%) Kappa
(%)

MCC (%)

62.43 62.59 50.66 62.53 59.3 59.10 36.91 37.07

Table 11 Kappa (K) and MCC (in %) achieved by each classifier using SMOTE and two and
more tools: with all project context nominal variables (upper part); training with Dev domain
and testing with the domain categories (middle part); training with ML size and testing with
the size categories (lower part). Best values are in bold.

Classifier RF RC J48 JRip IBK NB SMO LibSVM

AllNominal-K(%) 64.67 65.55 56.1 61.72 60.44 56.03 46.25 60.21
AllNominal-MCC(%) 64.94 65.96 61.76 60.56 59.59 51.46 47.64 60.25
Dev-K (%) 50.65 47.36 44.3 46.91 45.71 38.28 38.26 31.08
Dev-MCC (%) 51.02 47.76 44.34 47.73 45.75 47.14 43.57 32.17
App-K (%) 20.95 19.29 31.09 39.61 28.07 57.25 15.96 15.68
App-MCC (%) 28.52 26.72 34.32 41.76 31.25 60.45 27.76 22.91
Cli-K (%) 5.33 7.6 7.79 20.46 15.22 21.05 2.82 11.39
Cli-MCC (%) 5.56 7.7 7.9 21.32 16.47 32.94 4.44 11.43
Vis-K (%) 29.49 25.97 31.66 41.73 18.98 41.21 44.99 44.06
Vis-MCC (%) 30.84 27.38 32.49 41.92 19.36 50.1 51.61 45.85
ML-K (%) 35.56 36.5 33.51 36.91 30.49 27.98 18.04 22
ML-MCC (%) 36.91 37.73 33.58 37.07 30.47 36.98 21.03 26.68
L-K (%) 23.52 23.02 30.11 32.58 30.3 57.48 28.29 11.67
L-MCC (%) 31.61 30.43 33.92 35.14 33.78 60.63 36.78 19.63
M-K (%) 15.53 15.32 22.97 28.29 24.41 59.39 8.22 20.67
M-MCC (%) 26.26 25 26.41 33.22 27.35 63.42 18.78 30.71
SM-K (%) 28.62 28.62 29.87 40.48 41.46 68.89 13.97 21.55
SM-MCC(%) 40.83 40.83 36.25 46.49 45.02 69.47 27.36 34.76

The results (not included here for brevity) showed that the Kappa values achieved987

by the classifiers trained with Dev category overcome the Kappa values achieved988

training with App, Cli or Vis categories. A possible explanation may be that these989

categories do not include information about some project size categories, so they990

depend on size as well as domain.991

4.3 Influence of Project Size992

In the experiment of step 6 we selected the ML size category for the classifier993

training, while the test was conducted using the ML, SM, M and L categories.994

We follow the same strategy of step 5 replacing the Dev domain category by the995

ML size category, because it includes classes from App, Cli, Dev and Vis, so it996

should not be so influenced as the other size categories by the project domain.997

We also applied both criteria of detecting the god class (one and more tools, and998

two and more tools). The left panel of Figure 7 shows the Kappa values of each999

classifier testing with ML category (black line) and the remaining size categories1000

using one and more detection tools. The black line overcomes the remaining lines,1001

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

...Impact of Project Domain and Size Category on the Detection of God Class 29

which evidences that the size factor should also be taken into account in god class1002

detection. The only exception is classifier NB, which overcomes ML for L and SM1003

size categories. Using one and more tools, the differences between ML and the other1004

size categories are statistically significant, and the Wilcoxon test gives p-values (r1005

values) of 0.01562 (0.8416), 0.007812 (0.8911), 0.01562 (0.8416) for L, M and SM1006

lines, respectively, so the corresponding null hypotheses HML,L,1
0 , HML,M,1

0 and1007

HML,SM,1
0 are rejected. The third confusion matrix in Table 10 is achieved by RF,1008

which is the best classifier training and testing with ML size category and using one1009

and more tools. The value of Kappa (59.3%) is lower than the one achieved using1010

Dev (first confusion matrix in the same table), which empirically shows that the1011

ML category is not so significant for sizes as Dev category for domains. The rates1012

of false positives and negatives (3.27% and 4.83%, respectively) are only slightly1013

lower than their corresponding Dev values, so the worse behavior is explained by1014

the low number of god classes for ML categories compared to Dev domain, and by1015

the low true positive rate (7.09%) compared to Dev (8.5%) in Table 10.1016

Fig. 7 Left panel: Kappa values achieved by the classifiers testing with ML and the other size
categories using one and more tools with SMOTE. Right panel: Kappa values of classifiers with
size information using two and more tools using SMOTE. Classifiers are sorted by decreasing
Kappa of the ML size category.

However, in the right panel (with two and more tools) of Figure 7 the black1017

line only overcomes the other lines for three classifiers, and for the remaining five1018

classifiers (JRip, IBK, NB, LibSVM and SMO) their lines are near or above the1019

black line, so the classifiers achieve equal or better Kappa testing on size categories1020

different to the one used for training. The Kappa values of NB in sizes L, M and1021

SM are specially high compared to ML, refusing our thesis that performance must1022

be higher in the training size category. However, the NB is one of the classifiers1023

which achieves globally the lowest Kappa values (see subsection 5.3). Therefore,1024

using two and more tools the results do not seem influenced by the project size1025

category. The confusion matrix of JRip, which is the best classifier training and1026

testing with ML size categories and two and more tools, is showed by Table 101027

(right part): the Kappa value (36.91%) is much lower than using Dev domain1028

category (50.66%, second matrix in the same table), and the difference between1029

ML and Dev is much higher using two and more tools (50.66 – 36.91= 13.75) than1030

using one and more tools (62.43 – 59.3 = 3.13). This means that the increase on1031

the classification unbalance caused by requiring two and more tools (from Table 5,1032

god class percentages are 15.5% and 4.3% using � 1 and � 2 tools, respectively)1033

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

30 Khalid Alkharabsheh et al.

affects more the significance of the ML size category than of the Dev domain1034

category.1035

The specific values of Kappa and MCC training with ML size classes and testing1036

with ML and the remaining sizes are reported by rows 11-18 of Table 11. Again,1037

these values support the comments of the previous paragraph, because using two1038

and more tools the influence of size category it is not so clear as in the domain1039

category case, and we cannot establish that ML is significantly greater than L,1040

M and SM. The p-values and effect size (r) are 0.2305 (0.297), 0.09766 (0.4951)1041

and 0.4727 (0.0495), respectively, on a Wilcoxon test, so the corresponding null1042

hypotheses HML,L,2
0 , HML,L,2

0 and HML,SM,2
0 can not be rejected. The reason1043

of this lower influence of the size on the results, compared to domain, may be1044

the ordinal nature of the size category. Besides, the criterion to label a class with1045

a given size category is not so crisp as with domain categories. Analyzing the1046

classifier Kappa and MCC for each size category and two and more tools (lower1047

block of Table 11), the RC achieves the best Kappa (37.73%) testing with ML,1048

but NB is the best for the other size categories with higher Kappa values (57.48%,1049

59.39% and 68.89% for L, M and SM, respectively), so the god class detection1050

works better testing on size categories other than the training size category.1051

Analogously to the domain case, we trained classifiers with the L, M and SM1052

categories separately, testing them with the same and different size categories1053

and one and more tools. The classifiers trained on these categories exhibited lower1054

performance than those trained with ML size category (the results are not included1055

here for brevity). This arises that results are better when only one factor (in this1056

case, the project size) is taken into account.1057

5 Replication1058

In this section a replication of Step 1 of the previous study is presented. The1059

general RQ applies, and particularly the specific Step 1 question RQ.S1 is adapted1060

as RQ.S1.rep.1061

RQ.S1.rep: Is the performance of classifiers affected by the use of project1062

context information? using a new dataset in which a human labeling policy has1063

been followed?1064

We use exactly the same null hypotheses HKappa

0 for Step 1 of the previous1065

study: is Kappa achieved by the classifiers without using project context informa-1066

tion greater or equal than using it?1067

The Machine Learning techniques are the same used in the previous study.1068

The rest of the steps in the methodology do not apply because of the nature of1069

the dataset labeling. The new data collection is described in the next subsection.1070

5.1 Data collection1071

The new dataset is generated on the basis of a dataset available in the current1072

literature and previously used in (Pecorelli et al., 2019, 2020).1073

This dataset consists of manually validated code smells instances of 125 releases1074

of 13 projects. The original dataset (F. et al., 2019) is modified in order to 1)1075

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

...Impact of Project Domain and Size Category on the Detection of God Class 31

select a release of each project; 2) select god class labeling; 3) include the project1076

context information (domain and size category), and 4) include the metrics used1077

in the study described in Section 3. The new dataset is available at the same url1078

mentioned before: https://citius.usc.es/investigacion/datasets/project-1079

nominal-information.1080

The release of each project was selected using the one with more god classes.1081

In our case has no sense to work with different releases of the same project because1082

we are interested in study the influence of the project context and this is the same1083

from one release to other.1084

Table 12 shows a description of the dataset collected in this replication and1085

the number of god classes labeled in each project.1086

Table 12 Characteristics of the projects in the replication dataset. (Dev: Software Devel-
opment; Vis: Diagram Generator/Data Visualization; Cli: Client Server Software; XL: Very
Large; L: Large; ML: Medium-Large; M: Medium.)

Project name Domain Size Category (TLOC) NOC (GCs)
ant-rel-1.8.3 L (119256) Dev 1473 6
argouml-VERSION_0_14 L (199075) Vis 1373 2
cassandra-cassandra-1.1.0 L (110712) Cli 699 2
apache-wicket-1.4.11 L (174033) Dev 1568 4
derby-10.3.3.0 XL (535187) Cli 1746 24
hadoop-release-0.2.0 M (34662) Dev 327 2
hsqldb-2.2.0 L (254014) Cli 590 11
incubator-livy-0.6.0-incubating L (130696) Cli 1016 6
nutch-release-0.7 ML (50578) Cli 532 0
qpid-0.18 L (189271) Cli 2172 6
xerces-Xerces-J_1_4_2 L (150445) Dev 489 6
eclipse-R3_4 L (423423) Dev 5061 25
elasticsearch-v0.19.0 L (315619) Cli 1395 2
Total 18441 96

The classification in domains was conducted in the same way the previous1087

study. In this case, no agreement was reach in first round with incubator-livy and1088

hadoop projects. In second round with open discussion was detected a problem1089

with the url describing the incubator-livy project and an agreement was reached1090

after the four authors consult the same project documentation. No agreement was1091

reached in the case of hadoop in second round. Two hadoop experts external to this1092

study. Both indicates the same classification and finally the agreement was reached1093

taking into account the experts opinion. The fifth author, as in the previous study,1094

review, check and agree.1095

5.2 Results and discussion of the replication1096

The classifiers used in the previous experiments (see Table 3 in section 3.2) are1097

applied on the dataset described in Subsection 5.1, including the project context1098

information.1099

Figure 8 (left panel) shows that the best Kappa values are obtained over the1100

classifiers trained with the project context information, although several of them1101

achieve values below 40%. In this dataset the number of god classes labeled by1102

human experts are 96 of a total of 18,441 classes, which represents 0.52% of true1103

positives. This percentage is slightly lower than the one using 4 tools and more and1104

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

32 Khalid Alkharabsheh et al.

higher than using 5 tools and more in out dataset (see Table 5). The degradation1105

shown in the Kappa achieved by the classifiers with and without project context1106

information in step 4 of our methodology led us to discard this labeling in our1107

final analyses. We also applied the classifiers after a re-sampling with SMOTE,1108

achieving similar results.1109

The Figure 8 (right panel) shows that the average performance decreases with1110

the number of god classes marked by the labeling policy (one, two, three, four1111

and five tools and more, and human). In all the policies, the blue box plot (with1112

project context information) is above the red box plot (without project context1113

information). Using the human labeling (right end of the plot), the blue (resp. the1114

red) box plot is similar to (resp. much higher than) using 4 tools and more. The1115

Kappa ranges achieved by the different classifiers (i.e., the box plot height) also1116

change by reducing the number of god class. When we have enough examples all1117

the algorithms offer consistently close results (narrow box plots), but when the1118

true examples are reduced the Kappa obtained by the different algorithms are1119

more arbitrary with larger ranges (wider box plots). In addition, the god classes1120

are not distributed across all the categories used in previous experiments, so only1121

the initial analysis has been carried out with all the information.1122

In order to review the question RQ.S1.rep (is the performance of classifiers af-1123

fected by the use of project context information?) over the human labeled dataset,1124

we conducted a new Wilcoxon test on the Kappa values of the figure. The null hy-1125

pothesis is that the classifiers trained without project context information achieve1126

Kappa greater than or equal to those trained with project context information.1127

The p-value 0.2734 of this test does not allow us to reject the null hypothesis and1128

assume the relevance of the project context information in improving the perfor-1129

mance of the classifiers, although the effect size of the test is moderate (r=0.2475).1130

This also happened using 5 tools and more, despite classifiers with better Kappa1131

(excepting RC) achieve higher Kappa trained with project context information1132

(see Figure 8, left panel). Looking at the right panel of Figure 8, the Kappa1133

achieved using project context information is always greater than or equal to the1134

one achieved without project context information. This is confirmed by a Wilcoxon1135

test defined by the null hypothesis: the average performance of all the algorithms1136

without using project context information is higher or equal than when using it?1137

This test provides a p-value of 0.015 with a large effect size (r=0.78).1138

5.3 Joint analysis by classifier1139

Table 13 reports the Kappa median and mean, and Friedman rank (Demšar, 2006)1140

of each classifier, calculated over all the experiments developed in the paper. The1141

first row labels the classifier positions given by their Friedman rank. The RF1142

achieves the best position, which corresponds to the lowest rank (2.6), which means1143

that RF is between positions 2 and 3 in average over all the experiments. Note that1144

RF achieves the best Kappa in most experiments (see e.g. Figures 3, 4, 5, excepting1145

Four&More and Five tools, left panels of Figures 6 and 7), and the only exceptions1146

are experiments with severe class unbalance (right panels in Figures 6 and 7). The1147

RF also achieves the best Kappa median (51.0%) and mean (45.5%), tied with1148

JRip (Table 13). A group of classifiers with ranks between 3.6 and 4.4 includes1149

RC, JRip, J48 and LibSVM. Another group includes NB and IBK (with ranks1150

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

...Impact of Project Domain and Size Category on the Detection of God Class 33

Fig. 8 Left panel: Kappa achieved by classifiers with and without project context information
using the god class identification of human experts, sorted by decreasing blue values. Right
panel: box plot of Kappa for values of classifiers with (blue) and without (red) project context
information with labeling polices one and more tools (1T) and so on, and with human labeling
(H).

5.4-5.5), while SMO achieves the worst rank, with the lowest performance. Please1151

note that the classifiers with the best performance (and lower ranks) are those1152

that support, in the previous experiments, our hypothesis that project context1153

information is important for god class detection. Conversely, those classifiers with1154

lower ranks (e.g. NB, IBK and SMO) are the ones which support in a lower degree1155

these hypotheses and exhibit erratic behavior.1156

Table 13 Kappa median and mean, and Friedman rank achived by each the classifier over all
the experiments.

Position 1 2 3 4 5 6 7 8
Method RF RC JRip J48 LibSVM NB IBK SMO
Median 51.0 48.7 46.9 44.3 49.6 48.1 45.7 43.3
Mean 45.5 44.3 45.5 43.3 42.4 42.8 40.6 34.8
Rank 2.6 3.6 3.6 4.1 4.4 5.4 5.5 6.8

6 Threats to Validity1157

This section discusses threats to the validity in the context of the conducted ex-1158

periments. Construct validity is concerned with the relationship between theory1159

and observation. Internal validity relates to any negative effects on the experi-1160

ment design, while external validity relates to the significance of the experiment1161

outcomes.1162

6.1 Construct Validity1163

The selection of the tools and techniques are probably the main threat to the con-1164

struct validity of the experiment. Firstly, we selected five software tools DECOR,1165

PMD, JDeodorant, Together and iPlasma which allow god class detection, work1166

with Java projects extracted from the SourceForge repository, are available for1167

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

34 Khalid Alkharabsheh et al.

us and are widely used in the literature. These tools are completely independent1168

because they are developed by different research groups in Software Engineering.1169

Secondly, the metrics are evaluated using RefactorIT, a software tool which is in-1170

dependent from the previous ones and is widely used in the literature. We did not1171

use several tools for metric evaluation because, although their metric values and1172

the classifier performance for god class detection might differ among tools, the con-1173

clusions of the experiments (e.g., influence of the project context information for1174

god class detection) should be similar. Thirdly, we selected a collection of classi-1175

fiers representing the current state-of-the-art, so it is not expectable that classifiers1176

excluded from this collection exhibit a behavior different to our experiments. Fi-1177

nally, the distribution of projects among domains may seem biased at first glance,1178

given the low number of projects in domains Cli and Vis. However, note that this1179

unbalance reflects the natural distribution of projects across domains, because1180

the selection of projects was random. Therefore, selecting an artificial balanced1181

distribution would not be realistic, biasing the results of the experimentation for1182

sure.1183

6.2 Internal Validity1184

The main threat to internal validity relates to the lack of consensus in the literature1185

on the correct definition of the god class design smell . We managed this threat1186

by using a committee of five different god class detection tools (open source and1187

commercial), which are based on different detection strategies, to label each class1188

as god class or not. Some of these tools, such as DECOR, include the definition1189

of the anti-pattern god class which generates the detection code automatically1190

from a definition of the anti-pattern expressed in a DSL and considering different1191

heuristics.1192

We used several policies to combine the single labels in order to increase the1193

reliability of the committee label (e.g., to avoid false god class labels), and to1194

evaluate how the conclusions of the experiments hold for each policy (step 4 in our1195

methodology). Since the results (e.g., the influence of project context information)1196

are consistent among policies (except requiring � 4 tools, due to the low god class1197

rate), it is expectable that these results would also be consistent with a manual1198

god class labeling issued by an expert, but such an experimentation falls outside1199

the scope of the current work.1200

Another threat is related to the low number of god classes, which leads to1201

an unbalanced classification problem. We minimized the impact of this unbalance1202

on god class detection using a well-known oversampling technique called SMOTE1203

(step 3 in our methodology). The last threat involves the potential relations of1204

dependence and redundancy among class metrics, alongside with the irrelevance1205

of some metrics for god class detection, a threat that is already analyzed in step1206

2. With respect to project context information (domain and size category), whose1207

relevance for god class detection is explored in the current work, the threat involves1208

the subjectivity of the project categorization in terms of domain and size, and the1209

bounds in the number of categories. To overcome this threat in relation to the1210

domain categories, we used the same classification as (Fontana et al., 2013a),1211

which was initially proposed by (Tempero et al., 2010) for the Qualitas Corpus.1212

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

...Impact of Project Domain and Size Category on the Detection of God Class 35

As regards the size categories, we considered in the current work the ones defined1213

by (Fontana et al., 2013a).1214

6.3 External Validity1215

Some decisions taken during the experiment construction might constrain the gen-1216

eralization of results. All the software tools used for god class detection worked1217

with Java projects, specifically from the SourceForge repository, so we restricted1218

to the open source SourceForge projects due to availability reasons. We randomly1219

selected projects from the repository until there is at least one project of each1220

domain and size category, achieving a collection which represents the distribution1221

of projects in the repository. The experiments involved a high number of classes1222

of each domain and size, although the number of projects is low for some domains1223

and sizes, and this might be another threat to the validity of the conclusions. As1224

a threat to generalization it is possible that other results arises when experiment-1225

ing with projects of other domains, age, and not open source. Nevertheless, the1226

exploratory study results are promising. Hence, a large-scale study that avoid this1227

generalization threats should be developed. Finally, the experiments can be hardly1228

extrapolated to other design smells, because the selected tools or the metrics used1229

may not be adequate to detect the new design smells. Besides, other problems sim-1230

ilar to class unbalance might appear for other design smells, which would require1231

an specific analysis.1232

7 Conclusion and Future Work1233

In this work, we study the influence of two factors related to the project con-1234

text information on the automatic detection of god class design smell . Specifi-1235

cally, we aimed to investigate whether machine learning classifiers increase their1236

performance for god class detection when some project context information, i.e.1237

domain and size category, is included. To this end, we designed an exploratory but1238

broad study to ascertain whether these two project factors are relevant to eight1239

well-known classifiers, and whether they would affect the effectiveness agreement1240

(Kappa) of the classification outcomes. In order to evaluate whether the conclu-1241

sions depend on the classifier, we selected a collection of classifiers including the1242

support vector machine with Gaussian kernel, the k-nearest neighbor classifier, the1243

C4.5 decision tree, association rules with reduced error pruning, sequential min-1244

imal optimization, naive Bayes classifier, random committee and random forest.1245

For the experiments, we created a large dataset consisting of 12,587 classes from 241246

Java software projects with different size categories and domains. We selected five1247

commonly used design smell detection tools to automatically detect the god classes1248

in the dataset, and developed an analysis of the class metrics importance for fea-1249

ture selection. Since the classification problem is unbalanced by nature, we used1250

the synthetic minority over-sampling technique (SMOTE) in order to increase the1251

classifier performance. We also studied the validity of our experiments considering1252

several labeling policies to combine the five software tools for god class detection.1253

According to the Kappa values, in our first experiment with the whole dataset and1254

only one labeling policy (one tool and more), the null hypothesis HKappa

0 of that1255

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

36 Khalid Alkharabsheh et al.

performance without project context information is greater or equal than with it1256

is rejected. This evidences the influence of project context information in this case,1257

giving a positive answer to the research question RQ.S1. When analyzing whether1258

we use unnecessary information (RQ.S2), we discarded collinearity between vari-1259

ables that make then usefulness. We also analyzed the variable importance to1260

see if some variable is not useful for god class detection, but surprisingly the1261

project context information was identified as low important. However, when an-1262

alyzing their influence through the null hypotheses HALL,IMP+PCI

0 , HALL,IMP

01263

and HIMP,IMP+PCI

0 , each comparing the performance using the groups of vari-1264

ables indicated in their names, we found that the selection of the most important1265

features only degrades significantly the results when the project context informa-1266

tion is excluded. Thus, all the available information must be considered useful,1267

giving a negative answer to the RQ.S2.1268

Since the god class detection is an unbalanced classification problem, we used1269

SMOTE to balance the training set. Although we can see in Figure 4 that the1270

performance increases slightly, the null hypotheses HSMOTE
0 of that performance1271

without SMOTE is greater or equal to with it can not be rejected. As a conse-1272

quence, we cannot obtain empirical evidence of the usefulness of the technique in1273

this case, giving a negative answer to RQ.S3.1274

In the step 4 of our methodology we reviewed the influence of god class labeling1275

policies, specifically of the number of tools required to identify a god class, on1276

the classification performance, since the class unbalancing increases when more1277

tools are required. Through the null hypotheses listed in Table 6 we compare the1278

classifier performances achieved by the best policy and by the others. We found1279

that the same hypothesis are rejected with (H3
0 , H4

0 and H5
0) and without (H3C

0 ,1280

H4C
0 and H5C

0) project context information so the RQ.S4.1 (do the labeling policy1281

influences the performance?) can be answered positively because the performance1282

of the classifiers changes strongly from using 3 tools and more regardless the project1283

context information is used or not.1284

Regarding RQ.S4.2 (does the project context information increase the classifier1285

performance in all the labeling policies?), the answer is also positive, because the1286

null hypotheses that performance without project context information is greater1287

or equal than with project context information is rejected in all the labeling poli-1288

cies (HiW
0 , with i = 1, . . . , 4) excepting with five tools (H5W

0) due to the huge1289

class unbalancing. This analysis is complemented with the study carried out on1290

the replication with the second dataset labeled by human experts. In this case the1291

hypothesis about the influence of the project context information on the perfor-1292

mance of the classifiers could not be confirmed. This study also shows that the1293

average performance of classifiers with project context information is better than1294

without project context information. Finally, the average performance of the al-1295

gorithms and their dispersion is consistent with the degradation observed in Step1296

4 when the number of god classes is reduced.1297

Finally, when the project domain and size categories are studied separately, the1298

performance of the classifiers is reduced for domain categories that were not present1299

in the classifier training. This effect is weaker for size categories when a labeling1300

policy requiring two and more god class detection tools is applied. In both cases, we1301

observe changes in the classifiers performance, so we cannot rule out the influence1302

of these parameters and questions RQ.S5 (can we discard the influence of project1303

domain on the classifiers performance?) and RQ.S6 (the analogous for project1304

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

...Impact of Project Domain and Size Category on the Detection of God Class 37

size) are answered negatively. Therefore, we conclude that project domain and1305

size are important for detecting the design smell in the context of the classes that1306

are analyzed through machine learning classifiers, and they should be taken into1307

account in future works to obtain a more accurate god class detection. However,1308

the project domain exhibits stronger influence compared to project size, whose1309

influence is not so clear using two and more tools for god class identification. The1310

weakness of the influence of nominal project size may be affected by also using1311

project size as an ordinal feature. In fact, step 2 points out TLOC as one of the1312

most important characteristics.1313

We have seen how project context information influences all the experiments:1314

RQ.S1, RQ.S2 and RQ.S4 reflect that performance changes significantly when1315

considering the project context information regardless of the labeling used, except1316

for the most extreme situation (five tools and more labeling policy); besides, RQ.S51317

and RQ.S6 also show that influence of domain and size can not be discarded1318

independently for each factor. Consequently, the research question RQ (does the1319

project context information influence the god class detection?) can be answered1320

positively.1321

Taking these factors (project domain and size category) into account is part of1322

adaptation to the context which should be investigated in a more general sense in1323

future work, including other project context information. Project domain is well1324

known before starting the project development but size category is particularly1325

interesting to be researched in future work combined with methods for predicting1326

project size category before starting the project. This can help developers from1327

the very beginning to adequate god class detection to the project context.1328

Considering classifiers, the random forest and random committee achieve the1329

best performance in most experiments, exhibiting stable and consistent behav-1330

iors. On the contrary, sequential minimal optimization and naive Bayes report the1331

poorest performances with lack of agreement to the other classifiers.1332

Regarding other project context factors that can influence on detection there1333

are some possibilities to study such as the software development process, as vari-1334

ous authors suggests. Although in (Crespo et al., 2006) the influence of the type1335

of software such as application, framework, library was analyzed and found no1336

evidence of this project characteristic on relative metric’s thresholds. Neverthe-1337

less, an specific and larger study can be conducted in order to check whether it1338

influences in design smell detection, including SPLs as another type of software1339

construction to analyze. It is also important to study the presence of automatically1340

generated parts of software in some projects and how can it influences in design1341

smell detection.1342

In addition to the former, our future work will focus on replicating the experi-1343

ments reported in this work, using different datasets labeled by experts involving1344

professional developers and QAs from the industry in identifying true god classes.1345

We also believe that our findings can guide developers to better focus their efforts1346

to identify other design smells.1347

References1348

Alkharabsheh K, Crespo Y, Manso E, Taboada J (2016a) Comparación de her-1349

ramientas de detección de design smells. In: Jornadas de Ingeniería del Software1350

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

38 Khalid Alkharabsheh et al.

y Bases de Datos, pp 159–1721351

Alkharabsheh K, Crespo Y, Manso E, Taboada J (2016b) Sobre el grado de acuerdo1352

entre evaluadores en la detección de design smells. In: Jornadas de Ingeniería1353

del Software y Bases de Datos, pp 143–1571354

Alkharabsheh K, Crespo Y, Manso E, Taboada J (2018) Software Design Smell1355

detection: a systematic mapping study. Software Quality Journal DOI 10.1007/1356

s11219-018-9424-8, URL http://dx.doi.org/10.1007/s11219-018-9424-81357

Alves TL, Ypma C, Visser J (2010) Deriving metric thresholds from benchmark1358

data. In: Proceedings of the 2010 IEEE International Conference on Software1359

Maintenance, IEEE Computer Society, ICSM ’10, pp 1–10, DOI 10.1109/ICSM1360

.2010.56097471361

Azadi U, Fontana FA, Taibi D (2019) Architectural smells detected by tools: A1362

catalogue proposal. In: Proceedings of the Second International Conference on1363

Technical Debt, IEEE Press, TechDebt ’19, p 88–97, DOI 10.1109/TechDebt.21364

019.000271365

Azeem MI, Palomba F, Shi L, Whang Q (2019) Machine learning techniques for1366

code smell detection: A systematic literature review and meta-analysis. Infor-1367

mation and Software Technology 108:115–1381368

Bekkar M, Djemaa DK, Alitouche DA (2013) Evaluation measures for models1369

assessment over imbalanced data sets. Journal of Information Engineering and1370

Applications 3(10)1371

Blackman N, Koval J (2000) Interval estimation for Cohen’s kappa as a measure1372

of agreement. Statistics in Medicine 19(5):723–7411373

Borland (2008) Together. http://www.borland.com/together1374

Brown WH, Malveau RC, McCormick HW, Mowbray TJ (1998) AntiPatterns:1375

refactoring software, architectures, and projects in crisis. John Wiley & Sons,1376

Inc.1377

Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP (2002) SMOTE: synthetic1378

minority over-sampling technique. J Artif Intel Res 16:321–3571379

Choinzon M, Ueda Y (2006) Detecting defects in object oriented designs using1380

design metrics. In: J. Conf. on Knowledge-Based Software Engineering, pp 61–1381

721382

Cohen J (2013) Statistical power analysis for the behavioral sciences. Academic1383

press1384

Copeland T (2005) PMD applied. Centennial Books1385

Cortez P (2015) A tutorial on using the rminer r package for data mining tasks.1386

Tech. rep., Univ. do Minho. Escola de Engenharia1387

Counsell S, Mendes E (2007) Size and frequency of class change from a refactoring1388

perspective. In: Int. Conf. on Software Evolvability, pp 23–281389

Crespo Y, López C, Marticorena R (2006) Relative thresholds: Case study to in-1390

corporate metrics in the detection of bad smells. In: Proceedings of 10th ECOOP1391

Workshop on Quantitative Approaches in Object-Oriented Software Engineer-1392

ing, Universita della Svizzera italiana Press, pp 109–1181393

Demšar J (2006) Statistical comparisons of classifiers over multiple data sets. J1394

Mach Learn Res 7:1–30, URL http://dl.acm.org/citation.cfm?id=1248541395

7.12485481396

Di Nucci D, Palomba F, Tamburri DA, Serebrenik A, De Lucia A (2018) Detecting1397

code smells using machine learning techniques: are we there yet? In: Intl. Conf.1398

on Software Analysis, Evolution and Reengineering, pp 612–6211399

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

...Impact of Project Domain and Size Category on the Detection of God Class 39

F P, D DN, C DR, A DL (2019) A large empirical assessment on the role of data1400

balancing in machine-learning-based code smell detection - online appendix.1401

URL https://figshare.com/s/5da162e21b8d54fbfce81402

Fernandes E, Oliveira J, Vale G, Paiva T, Figueiredo E (2016) A review-based1403

comparative study of bad smell detection tools. In: Proc. 20th Intl. Conf. on1404

Evaluation and Assessment in Software Engineering, p 181405

Fokaefs M, Tsantalis N, Chatzigeorgiou A, Sander J (2009) Decomposing object-1406

oriented class modules using an agglomerative clustering technique. In: 20091407

IEEE International Conference on Software Maintenance, pp 93–101, DOI 10.11408

109/ICSM.2009.53063321409

Fontana FA, Mariani E, Mornioli A, Sormani R, Tonello A (2011) An experience1410

report on using code smells detection tools. In: Intl. Conf. on Software Testing,1411

Verification and Validation Workshops, pp 450–4571412

Fontana FA, Braione P, Zanoni M (2012a) Automatic detection of bad smells in1413

code: An experimental assessment. J Object Technology 11(2):5–11414

Fontana FA, Braione P, Zanoni M (2012b) Automatic detection of bad smells in1415

code: An experimental assessment. Journal of Object Technology 11(2):5:1–38,1416

DOI 10.5381/jot.2012.11.2.a51417

Fontana FA, Ferme V, Marino A, Walter B, Martenka P (2013a) Investigating1418

the impact of code smells on system’s quality: An empirical study on systems1419

of different application domains. In: Intl. Conf. on Software Maintenance, pp1420

260–2691421

Fontana FA, Zanoni M, Marino A, Mantyla MV (2013b) Code smell detection:1422

Towards a machine learning-based approach. In: Int. Conf. on Software Main-1423

tenance, pp 396–3991424

Fontana FA, Ferme V, Zanoni M, Yamashita A (2015) Automatic metric thresholds1425

derivation for code smell detection. In: IEEE/ACM 6th International Workshop1426

on Emerging Trends in Software Metrics (WETSoM), IEEE Computer Society,1427

Los Alamitos, CA, USA, pp 44–53, DOI 10.1109/WETSoM.2015.141428

Fontana FA, Mäntylä MV, Zanoni M, Marino A (2016) Comparing and experi-1429

menting machine learning techniques for code smell detection. Empirical Soft-1430

ware Engineering 21(3):1143–11911431

Fourati R, Bouassida N, Abdallah H (2011) A metric-based approach for anti-1432

pattern detection in UML designs. Computer and Information Science pp 17–331433

Fowler M, Beck K (1999) Refactoring: improving the design of existing code.1434

Addison-Wesley Professional1435

Gronback RC (2003) Software remodeling: Improving design and implementation1436

quality, using audits, metrics and refactoring in borland together controlcenter.1437

Tech. rep., A Borland White Paper1438

Guggulothu T, Moiz SA (2020) Code smell detection using multi-label classifica-1439

tion approach. Software Quality Journal 28:1063–10861440

Hall T, Beecham S, Bowes D, Gray D, Counsell S (2011) Developing fault-1441

prediction models: What the research can show industry. IEEE Software1442

28(6):96–991443

Hassaine S, Khomh F, Guéhéneuc YG, Hamel S (2010) Ids: an immune-inspired1444

approach for the detection of software design smells. In: Intl. Conf. Quality of1445

Information and Communications Technology, pp 343–3481446

Herbold S, Grabowski J, Waack S (2011) Calculation and optimization of thresh-1447

olds for sets of software metrics. Empirical Software Engineering 16(6):812–841,1448

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

40 Khalid Alkharabsheh et al.

DOI 10.1007/s10664-011-9162-z1449

Hollander M, Wolfe DA, Chicken E (2013) Nonparametric statistical methods, vol1450

751. John Wiley & Sons1451

Khomh F, Vaucher S, Guéhéneuc YG, Sahraoui H (2011) BDTEX: A GQM-based1452

Bayesian approach for the detection of antipatterns. J Systems and Software1453

84(4):559–5721454

Kreimer J (2005) Adaptive detection of design flaws. Electronic Notes in Theoret-1455

ical Computer Science 141(4):117–1361456

Lanza M, Marinescu R (2007) Object-oriented metrics in practice: using software1457

metrics to characterize, evaluate, and improve the design of object-oriented sys-1458

tems. Springer Science & Business Media1459

Li W, Shatnawi R (2007a) An empirical study of the bad smells and class error1460

probability in the post-release object-oriented system evolution. J Systems and1461

Software 80(7):1120–11281462

Li W, Shatnawi R (2007b) An empirical study of the bad smells and class error1463

probability in the post-release object-oriented system evolution. Journal of Sys-1464

tems and Software 80(7):1120–1128, DOI https://doi.org/10.1016/j.jss.2006.10.1465

0181466

Linares-Vásquez M, Klock S, McMillan C, Sabané A, Poshyvanyk D, Guéhéneuc1467

YG (2014) Domain matters: Bringing further evidence of the relationships1468

among anti-patterns, application domains, and quality-related metrics in java1469

mobile apps. In: Proceedings of the 22Nd International Conference on Program1470

Comprehension, ACM, ICPC 2014, pp 232–243, DOI 10.1145/2597008.25971441471

Liu H, Liu Q, Niu Z, Liu Y (2016) Dynamic and automatic feedback-based thresh-1472

old adaptation for code smell detection. IEEE Transactions on Software Engi-1473

neering 42(6):544–558, DOI 10.1109/TSE.2015.25037401474

López Nozal C (2012) Design defects detection based on code metrics (in spanish).1475

PhD thesis, Dpto. Informática, Universidad de Valladolid, URL https://www.1476

educacion.gob.es/teseo/mostrarRef.do?ref=10030021477

Maiga A, Ali N, Bhattacharya N, Sabane A, Gueheneuc YG, Aimeur E (2012a)1478

Smurf: A svm-based incremental anti-pattern detection approach. In: Intl. Conf.1479

on Reverse engineering, pp 466–4751480

Maiga A, Ali N, Bhattacharya N, Sabané A, Guéhéneuc YG, Antoniol G, Aïmeur1481

E (2012b) Support vector machines for anti-pattern detection. In: Intl. Conf.1482

Automated Software Engineering, pp 278–2811483

Maneerat N, Muenchaisri P (2011) Bad-smell prediction from software design1484

model using machine learning techniques. In: Intl. J. Conf. on Computer Science1485

and Software Engineering, pp 331–3361486

Marinescu C, Marinescu R, Mihancea PF, Wettel R (2005) iPlasma: An integrated1487

platform for quality assessment of object-oriented design. In: Intl. Conf. Software1488

Maintenance - Industrial and Tool Volume, pp 77–801489

Matthews BW (1975) Comparison of the predicted and observed secondary struc-1490

ture of t4 phage lysozyme. Biochimica et Biophysica Acta (BBA)-Protein Struc-1491

ture 405(2):442–4511492

Mihancea PF, Marinescu R (2005) Towards the optimization of automatic de-1493

tection of design flaws in object-oriented software systems. In: Ninth Euro-1494

pean Conference on Software Maintenance and Reengineering, pp 92–101, DOI1495

10.1109/CSMR.2005.531496

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

...Impact of Project Domain and Size Category on the Detection of God Class 41

Mistrik I, Soley R, Ali N, Grundy J, Tekinerdogan B (eds) (2015) Software Quality1497

Assurance: In Large Scale and Complex Software-intensive. Morgan Kaufmann1498

Moha N (2007) Detection and correction of design defects in object-oriented de-1499

signs. In: Conf. on Object-oriented Programming Systems and Applications1500

companion, pp 949–9501501

Moha N, Guéhéneuc YG (2007) DECOR: a tool for the detection of design defects.1502

In: Intl. Conf. on Automated Software Engineering, pp 527–5281503

Moha N, Gueheneuc YG, Duchien L, Le Meur AF (2010) Decor: A method for1504

the specification and detection of code and design smells. IEEE Transactions on1505

Software Engineering 36(1):20–361506

Morales R, Soh Z, Khomh F, Antoniol G, Chicano F (2017) On the use of develop-1507

ers’ context for automatic refactoring of software anti-patterns. J Systems and1508

Software 128:236–2511509

Mori A, Vale G, Viggiato M, Oliveira J, Figueiredo E, Cirilo E, Jamshidi P, Kastner1510

C (2018) Evaluating domain-specific metric thresholds: An empirical study. In:1511

Proceedings of the 2018 International Conference on Technical Debt, ACM,1512

TechDebt ’18, pp 41–50, DOI 10.1145/3194164.31941731513

Munro MJ (2005) Product metrics for automatic identification of "bad smell"1514

design problems in java source-code. In: Intl. Conf. Software Metrics, pp 15–151515

Paiva T, Damasceno A, Figueiredo E, Sant’Anna C (2017) On the evaluation of1516

code smells and detection tools. Journal of Software Engineering Research and1517

Development 5(1):71518

Palomba F, Bavota G, Di Penta M, Oliveto R, De Lucia A (2014a) Do they really1519

smell bad? a study on developers’ perception of bad code smells. In: Intl. Conf.1520

on Software maintenance and evolution, pp 101–1101521

Palomba F, Lucia AD, Bavota G, Oliveto R (2014b) Anti-pattern detection: Meth-1522

ods, challenges, and open issues. In: Memon A (ed) Advances in Computers,1523

vol 95, Elsevier, chap 4, pp 201–238, DOI https://doi.org/10.1016/B978-0-12-1524

800160-8.00004-81525

Palomba F, Bavota G, Di Penta M, Oliveto R, Poshyvanyk D, De Lucia A (2015)1526

Mining version histories for detecting code smells. IEEE Transactions on Soft-1527

ware Engineering 41(5):462–4891528

Pecorelli F, Palomba F, Di Nucci D, De Lucia A (2019) Comparing heuristic and1529

machine learning approaches for metric-based code smell detection. In: Proceed-1530

ings of the 27th International Conference on Program Comprehension, IEEE1531

Press, ICPC ’19, p 93–104, DOI 10.1109/ICPC.2019.000231532

Pecorelli F, Di Nucci D, De Roover C, De Lucia A (2020) A large empirical as-1533

sessment of the role of data balancing in machine-learning-based code smell1534

detection. Journal of Systems and Software 169, DOI https://doi.org/10.1016/1535

j.jss.2020.1106931536

Peiris M, Hill JH (2014) Towards detecting software performance anti-patterns1537

using classification techniques. ACM SIGSOFT Software Engineering Notes1538

39(1):1–41539

Powers D (2011) Evaluation: from precision, recall and f-measure to roc, informed-1540

ness, markedness and correlation. Intl J of Mach Learning Technol 2(1):37–631541

Rapu D, Ducasse S, Gîrba T, Marinescu R (2004) Using history information to1542

improve design flaws detection. In: Conf. on Software Maintenance and Reengi-1543

neering, pp 223–2321544

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

42 Khalid Alkharabsheh et al.

Rasool G, Arshad Z (2015) A review of code smell mining techniques. J Software:1545

Evolution and Process 27(11):867–8951546

Riel AJ (1996) Object-oriented design heuristics, vol 335. Addison-Wesley Reading1547

Santos JA, de Mendonça MG, Silva CV (2013) An exploratory study to investi-1548

gate the impact of conceptualization in god class detection. In: Intl. Conf. on1549

Evaluation and Assessment in Software Engineering, pp 48–591550

Santos JAM, Rocha-Junior JB, Prates LCL, do Nascimento RS, Freitas MF,1551

de Mendonça MG (2018) A systematic review on the code smell effect. Journal1552

of Systems and Software 144:450 – 4771553

Shatnawi R (2015) Deriving metrics thresholds using log transformation. J Soft-1554

ware: Evolution and Process 27(2):95–1131555

Simons C, Singer J, White DR (2015) Search-based refactoring: Metrics are not1556

enough. In: Barros M, Labiche Y (eds) Search-Based Software Engineering,1557

Springer International Publishing, pp 47–611558

Tahvildar L, Kontogiannis K (2004) Improving design quality using meta-pattern1559

transformations: a metric-based approach. J Software: Evolution and Process1560

16(4-5):331–3611561

Tempero E, Anslow C, Dietrich J, Han T, Li J, Lumpe M, Melton H, Noble1562

J (2010) The qualitas corpus: A curated collection of Java code for empirical1563

studies. In: Asia Pacific Software Engineering Conf., pp 336–3451564

Tsantalis N, Chaikalis T, Chatzigeorgiou A (2008) Jdeodorant: Identification and1565

removal of type-checking bad smells. In: Intl. Conf. on Software Maintenance1566

and Reengineering, pp 329–3311567

Tufano M, Palomba F, Bavota G, Oliveto R, Di Penta M, De Lucia A, Poshyvanyk1568

D (2015) When and why your code starts to smell bad. In: Intl. Conf. on Software1569

Engineering-Volume 1, pp 403–4141570

Vale G, Fernandes E, Figueiredo E (2019) On the proposal and evaluation of1571

a benchmark-based threshold derivation method. Software Quality Journal1572

27(1):275–306, DOI 10.1007/s11219-018-9405-y1573

Witten IH, Frank E, Hall MA, Pal CJ (2016) Data Mining: Practical machine1574

learning tools and techniques. Morgan Kaufmann1575

Yamashita A, Moonen L (2013) Exploring the impact of inter-smell relations on1576

software maintainability: An empirical study. In: Intl.Conf. on Software Engi-1577

neering, pp 682–6911578

Yamashita A, Zanoni M, Fontana FA, Walter B (2015) Inter-smell relations in1579

industrial and open source systems: A replication and comparative analysis. In:1580

Intl. Conf. on Software Maintenance and Evolution, pp 121–1301581

Zhang M, Hall T, Baddoo N (2011) Code bad smells: a review of current knowledge.1582

J of Software: Evolution and Process 23(3):179–2021583

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

