
Parallel Computing 40 (2014) 309–327
Contents lists available at ScienceDirect

Parallel Computing

journal homepage: www.elsevier .com/ locate/parco
Auto-tuned nested parallelism: A way to reduce the execution
time of scientific software in NUMA systems
http://dx.doi.org/10.1016/j.parco.2014.03.011
0167-8191/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding author. Tel.: +34 868 88 4821; fax: +34 868 88 4151.
E-mail addresses: jcm23547@um.es (J. Cámara), jcuenca@um.es (J. Cuenca), luis.garcia@sait.upct.es (L.-P. García), domingo@um.es (D. Gimén
Jesús Cámara a, Javier Cuenca b,⇑, Luis-Pedro García c, Domingo Giménez a

a Departamento de Informática y Sistemas, Facultad de Informática, Universidad de Murcia, 30100 Murcia, Spain
b Departamento de Ingeniería y Tecnología de Computadores, Facultad de Informática, Universidad de Murcia, 30100 Murcia, Spain
c Servicio de Apoyo a la Investigación Tecnológica, Universidad Politécnica de Cartagena, 30203 Cartagena, Spain

a r t i c l e i n f o a b s t r a c t
Article history:
Available online 2 April 2014

Keywords:
Auto-tuning
Linear algebra
Performance modeling
NUMA
The most computationally demanding scientific problems are solved with large parallel
systems. In some cases these systems are Non-Uniform Memory Access (NUMA) multipro-
cessors made up of a large number of cores which share a hierarchically organized mem-
ory. The main basic component of these scientific codes is often matrix multiplication, and
the efficient development of other linear algebra packages is directly based on the matrix
multiplication routine implemented in the BLAS library. BLAS library is used in the form of
packages implemented by the vendors or free implementations. The latest versions of this
library are multithreaded and can be used efficiently in multicore systems, but when they
are used inside parallel codes, the two parallelism levels can interfere and produce a deg-
radation of the performance. In this work, an auto-tuning method is proposed to select
automatically the optimum number of threads to use at each parallel level when multi-
threaded linear algebra routines are called from OpenMP parallel codes. The method is
based on a simple but effective theoretical model of the execution time of the two-level
routines. The methodology is applied to a two-level matrix–matrix multiplication and to
different matrix factorizations (LU, QR and Cholesky) by blocks. Traditional schemes which
directly use the multithreaded routine of BLAS, dgemm, are compared with schemes com-
bining the multithreaded dgemm with OpenMP.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Nowadays, it is possible to find a parallel system in a personal computer, in a laptop, or even in a smartphone. Further-
more, the most important scientific computing platforms are built by connecting multicore nodes. On the other hand, the
complexity and the quantity of calculations required for the different scientific and engineering branches grows simulta-
neously with the improvement in computer technology. So, the design of scientific applications for these different platforms
must consider their parallel nature in order to obtain maximum performance [1].

The work necessary for optimizing a real code could take several weeks or months and it requires deep knowledge in
several disciplines, like computer architecture, programming and debugging tools, numerical analysis and mathematical
software. Furthermore, the optimization task performed for a specific platform need not be suitable, in principle, for other
platforms. Such a diverse working environment has led to important changes in the traditional way of optimizing the
ez).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.parco.2014.03.011&domain=pdf
http://dx.doi.org/10.1016/j.parco.2014.03.011
mailto:jcm23547@um.es
mailto:jcuenca@um.es
mailto:luis.garcia@sait.upct.es
mailto:domingo@um.es
http://dx.doi.org/10.1016/j.parco.2014.03.011
http://www.sciencedirect.com/science/journal/01678191
http://www.elsevier.com/locate/parco


310 J. Cámara et al. / Parallel Computing 40 (2014) 309–327
software for scientific calculations, with the goal of following the pace of both the user needs and the new hardware devel-
opments. In this context, different automatic optimization techniques have emerged as valuable tools that provide scientific
software with environment adaptation capacity. In this way, optimized code for each specific platform can be generated
automatically by means of software models or certain experimenting. Some projects where these techniques have been
applied are: ATLAS [2], with optimized computational kernels for dense linear algebra; SPARSITY [3], with kernels for sparse
linear algebra; FFTW [4], with an optimized implementation of the Fourier discrete transform; ABCLib-DRSSED [5], with rou-
tines for obtaining eigenvalues.

In most scientific and engineering problems, computations are carried out by using basic BLAS-type matrix routines [6].
Therefore, the improvement in the performance of scientific codes is achieved in many cases by the efficient use of these rou-
tines. The basic kernel of BLAS and of many scientific codes is the matrix multiplication, and the efficient development of other
higher-level linear algebra packages (LAPACK [7], ScaLAPACK [8], PLAPACK [9], HeteroScaLAPACK [10], PLASMA [11], etc.) is
directly based on that of the matrix multiplication routine. The BLAS library is used in the form of packages implemented by
the vendors (Intel MKL [12], IBM ESSL [13], etc.) or free implementations (ATLAS [2], Goto BLAS [14], etc.). The latest versions
are multithreaded and can be used efficiently in multicore systems, where it is easy to obtain parallel versions from sequential
codes using the shared-memory parallel programming environment OpenMP [15], and so scientific codes are currently being
developed in OpenMP versions. Usually one thread in an OpenMP program calls to a multithreaded BLAS routine, so obtaining
an implementation with nested parallelism. This two-level parallelism introduces more complexity in the program and makes
the efficient use of the matrix multiplication more difficult due to possible interactions between OpenMP and the threaded
BLAS. In [16] this interaction is empirically analyzed in order to design a model of the execution time in NUMA platforms
of this kernel with two-level parallelism (2L-dgemm). Now, our goal is to measure the influence of an auto-tuned two-level
parallel kernel, like 2L-dgemm, in the execution conditions of scientific software in NUMA platforms. Therefore, this paper
empirically analyzes the behaviour in NUMA systems of matrix factorizations by blocks, comparing implementations which
directly use the multithreaded dgemm routine of BLAS with nested parallelism schemes using 2L-dgemm.

We developed an Automatic Tuning System (ATS) for linear algebra routines in distributed memory environments [17].
The process performed by the ATS for each routine includes its design and installation. In the design phase, a theoretical
model of the execution time of the routine is built. During the installation phase, thanks to a small set of experiments, this
model becomes theoretical–experimental for the platform in use. Finally, in the execution phase, when the user decides to
solve a particular problem, the model is used to take the appropriate decisions on how to execute the routine. In this work,
an adaptation of this auto-tuning method to NUMA platforms is proposed in order to select automatically the number of
threads to use in these two levels of parallelism. This methodology is explained in detail through matrix multiplication
and LU factorization and, after that, it is shown how it can be extended to other linear algebra routines.

The rest of the paper is organized as follows. Section 2 briefly describes the characteristics of the systems and software
used in the experiments. The empirical analysis of the behaviour of the kernel matrix multiplication in different NUMA plat-
forms is presented in Section 3. An automatic tuning method based on modeling the execution time of linear algebra routines
on NUMA platforms is described in Section 4, and Section 5 illustrates the application of the method to the matrix multipli-
cation and an LU factorization. Section 6 shows some experimental results when the methodology is applied in different
computational systems with new matrix factorizations (QR and Cholesky). Finally, in Section 7 some related works are com-
pared with our approach, and in Section 8 the conclusions are summarized and some possible extensions of the work are
considered.

2. Execution environment

In this section the characteristics of the systems and software used in the experiments are briefly described.

2.1. Computational systems

Different NUMA platforms have been used throughout this work, and experimental results are shown for three of them
with different processors and number of cores ranging from 24 to 128. So, the conclusions will not be platform-dependent,
and a more general picture of the behaviour of the routines in that type of systems is obtained, so facilitating the prediction
for future, bigger systems. The platforms considered are shared-memory systems where the basic components are multicore
computers:

� Ben is part of the system Ben-Arabí of the Supercomputing Center of the Fundación Parque Científico of Murcia. It com-
prises a shared-memory system with 128 cores and 1.5 TB memory. It is an HP Integrity Superdome with NUMA archi-
tecture, based on a hierarchical composition with crossbar interconnection. Its architecture has two basic components:
the computers and two backplane crossbars. Each computer is an SMP with four CPUs dual core Itanium-2 and an ASIC
controller to connect the CPUs with the local memory and the crossbar commuters. The maximum memory bandwidth in
a computer is 17.1 GB/s and with the crossbar commuters 34.5 GB/s. So, access to the memory is non uniform and, fur-
thermore, when programs are run in this system, the user does not control where the threads are assigned, so there are
significantly different costs in the access to the shared-memory.



J. Cámara et al. / Parallel Computing 40 (2014) 309–327 311
� Saturno belongs to our research group at the University of Murcia. It is a server SYS-8026B-TRF 2U supermicro, with 4
nodes Intel six-core NEHALEM-EX 6C E7530, so a total of 24 computing cores, and 32 GB of memory. Our aim by including
this machine in the study has been to test our proposal in a small platform where the differences between the access
times to the different memory locations are smaller than in the other platforms, making it more difficult to obtain impor-
tant improvements with any automatic method.
� Joule belongs to the University Jaume I of Castellon. It is a NUMA system with 64 cores, 4 AMD Opteron 6276 (16 cores)

processors, 2.3 GHz, and 64 GB of shared-memory. The theoretical and experimental basis of our proposal was set on the
two above platforms. Therefore, our aim by including this machine in the experimental study is to show the viability of
the proposal in another platform with a different architecture.

Hyperthreading is disabled in Ben and Joule, so it has been disabled in Saturno to ensure comparable results.
2.2. The software

Two different implementation schemes of matrix factorizations by blocks are compared: traditional schemes directly
using the multithreaded dgemm routine of BLAS, and improved schemes, using 2L-dgemm, with nested parallelism, where
the matrices A and B 2 Rn�n can be multiplied with two-level parallelism by generating q OpenMP threads, where each mul-
tiplies a block of adjacent rows of matrix A by matrix B, and by establishing a number of threads (p) to be used in the matrix
multiplication in each OpenMP thread. Nested parallelism must be allowed with the environment variable OMP_NESTED =
true or the function omp_set_nested (1). In both cases, the kernel used in the experiments is the double precision routine
dgemm of BLAS. Similar results are also obtained with basic routines in different libraries (MKL, ATLAS and Goto BLAS). In
Section 6, the results shown are those obtained with the BLAS implementation of the Intel MKL toolkit version 10.2 in
Ben and Saturno and 10.3 in Joule. Additional tests are performed with other libraries, and a summary appears in Section 7.
This library is multithreaded, and parallelism can be achieved merely by calling the routine with the desired number of
threads, which can be established with the environment variable MKL_NUM_THREADS or in the program with the function
mkl_set_num_threads. When dynamic parallelism is enabled (with the environment variable MKL_DYNAMIC = true or
in the program with the function mkl_set_dynamic(1)), the number of threads to use in the execution of the dgemm rou-
tine is decided by the system, and this is less than or equal to that established. To enforce the use of the number of threads
indicated, the dynamic parallelism must be turned off (MKL_DYNAMIC = false or mkl_set_dynamic (0)).

The C compiler used was Intel icc version 11.1 in Ben, 12.0 in Saturno and 12.1 in Joule. Two-level parallelism is achieved
by generating a number of OpenMP threads and by calls to the multithread BLAS library. The compiler optimization used was
-O3.
3. Motivation: previous computational results

There are some software packages like MKL that are perfectly adapted to multithreading execution on generic multicore
platforms, but when they run on large NUMA systems the performance achieved is far from the maximum achievable for not
very large problems with many cores. Normally the routines of these libraries are called inside parallel programs, so they
have two parallelism levels, one corresponding to the parallelism of program calling the routines and the other the intrinsic
parallelism in the routines the program calls. Different numbers of threads can be used at the two parallelism levels, and the
sizes of the matrices the basic routines work with can be not very large given the distribution of data between the threads at
the program level. So, the low performance of the basic routines when working with not very large volume of data propa-
gates to the whole program. To alleviate this problem, an autotuning methodology for selection of the number of threads to
use at each parallelism level can be used. The methodology should take the decisions on the basis of the sizes of the sub-
problems generated for each thread in the program and the efficiency of the basic routines when working with this volume
of data.

So, we begin by analyzing the behaviour of the dgemm MKL routine when it is executed in NUMA systems. Fig. 1 shows the
speed-up achieved when varying the matrix size and the number of threads. The sizes used in the experiments are small in
comparison with the memory of the computational systems, but the routine will be used inside parallel programs, where the
data are divided to be assigned to different threads, which will work with smaller amounts of data. The optimum numbers of
threads, which the lowest execution time is achieved with, changes from one platform to another due to running restrictions
and to the characteristics of the systems, and the maximum speed-up is far from the number of cores in the system and is
achieved with a number of threads lower than the number of cores, which indicates that in a parallel code calling the matrix
multiplication routine it could be preferable to use two level parallelism and to select the number of threads to use in the
basic routine and the number of OpenMP threads.

Figs. 2 and 3 show the speed-up achieved with different combinations of OpenMP and MKL threads and with the dynamic
selection of MKL threads enabled and disabled. It seems that the number of MKL threads dynamically selected (Fig. 2) is just
one when more than one OpenMP threads are running, so the dynamic selection of threads by MKL does not work when
there is an upper parallel level, like OpenMP. On the other hand, when the number of MKL threads is established in the pro-
gram by disabling the dynamic selection option (Fig. 3), bigger speed-ups are obtained. So, when a large number of cores is



 0

 5

 10

 15

 20

 25

sp
ee

d-
up

threads MKL

Ben

8214623618

n=1000
n=3000
n=5000

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

sp
ee

d-
up

threads MKL

Saturno

2 4 6 8 12 24

n=500
n=1500
n=3500

Fig. 1. Speed-up obtained with multithreaded MKL in NUMA systems (Ben and Saturno), varying the matrix size and the number of threads.

312 J. Cámara et al. / Parallel Computing 40 (2014) 309–327
available, it seems a good option not to use dynamic selection of threads in MKL and to select a tuned combination of threads
at the two parallelism levels.

Similar speed-up behaviors have been observed with this basic routine in other libraries like ATLAS and Goto BLAS
(a summary of them is shown in Section 7). For this reason, the main experimental support for the general explanation of
our proposal (Section 4) was performed with MKL toolkit (Sections 5 and 6).
4. Automatic tuning of a routine

For each routine, the core of our Automatic Tuning System (ATS) contains an execution time model of the routine. The
model includes the characteristics of the platform (hardware + basic installed libraries) like system parameters (SP), and
a set of algorithmic parameters (AP), whose values should be appropriately chosen by the ATS in order to reduce the execu-
tion time of the routine [17]:
Texe ¼ f ðSP;n;APÞ ð1Þ
The general process of automatic optimisation of routines following this methodology entails three phases:



 0

 5

 10

 15

 20

 25

sp
ee

d-
up

threads OMPxMKL

Ben, dynamic selection of MKL threads

1x32 2x16 4x8 8x4 16x2 32x1

n=1000
n=3000
n=5000

 0

 2

 4

 6

 8

 10

 12

 14

sp
ee

d-
up

threads OMPxMKL

Saturno, dynamic selection of MKL threads

1x24 2x12 3x8 4x6 6x4 8x3 12x2 24x1

n=500
n=1500
n=3500

Fig. 2. Speed-up obtained in NUMA systems (Ben and Saturno), varying the matrix size, the number of OpenMP and MKL threads with dynamic selection of
MKL threads.

J. Cámara et al. / Parallel Computing 40 (2014) 309–327 313
� A design phase, where the theoretical model of the execution time is synthesized by the routine designer.
� An installation phase, where the SP values are estimated experimentally for the platform where the installation is

performed.
� An execution phase, where the AP values are selected automatically in order to reduce the execution time.

In general, to perform a basic arithmetic operation inside a routine, the probability of finding the operands in the CPU
closest memory (first cache levels) is proportional to the data locality of the algorithm implemented in this routine. For this
reason, in [17,20], the averaged time to perform a basic arithmetic operation (including memory access time) is kept within a
specific parameter kroutine, in a simple but effective way of taking into account the data locality of the routine.

Since our methodology estimates the parameters values obtained at installation time, it is likely that the system state
(CPU load and network traffic) at the moment the routines are to be used will be quite different than at installation time.
This may lead to the use of inaccurate parameters and then to execution times far from the optimum. Therefore, we have
not considered the interference with other programs running in the system. This would difficult even more to obtain a sim-
ple-satisfactory model, and so the executions have been carried out in exclusion. The adaptation of the methodology to
changing environments can be studied in a near future, as we did in homogeneous and heterogeneous clusters [18].



 5

 10

 15

 20

 25

 30

sp
ee

d-
up

threads OMPxMKL

Ben

1x32 2x16 4x8 8x4 16x2 32x1

n=1000
n=3000
n=5000

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

sp
ee

d-
up

threads OMPxMKL

Saturno

1x24 2x12 3x8 4x6 6x4 8x3 12x2 24x1

n=500
n=1500
n=3500

Fig. 3. Speed-up obtained in NUMA systems (Ben and Saturno), varying the matrix size, the number of OpenMP and MKL threads without dynamic selection
of MKL threads.

314 J. Cámara et al. / Parallel Computing 40 (2014) 309–327
In this work, from this general scheme, an adaptation is necessary of the ATS to the particular characteristics of large
NUMA platforms, where there is a shared RAM memory space but with non uniform data access time. In this way, the exe-
cution time model of each routine (Eq. (1)) must cover this circumstance, where in each arithmetic operation the access time
depends not only on the routine data locality, but also on the relative position in the shared memory space of the data and on
the processor where the operation is performed. These data may or may not be in the local memory (RAM + cache) closest to
the processor that operates with them, and it must be taken into account that the interconnection network could be non
homogeneous, so these data could be at different distances from the processor that needs them. Therefore, the access time
must be modeled with a distributed vision of the memory, from the point of view of the processor that performs the
operation, with a first location level formed by the local memory of this processor and a series of location levels formed
by the local memory of the processors that are at different distances in the interconnection network.1 To do so, the system
parameter representing the arithmetic cost in Eq. 1 will be substituted by a set of parameters corresponding to different
memory levels-allocations, whose number and influence in the model will be experimentally calculated.
1 In this proposal we use the term ‘‘memory location level’’ to refer to the distance in the NUMA intraconection network from the computing core to the
memory node where these data are allocated; that is, for a given computing core, the first level corresponds to the data allocated in local memory of this core
node, the second level to the data allocated in another node, but directly connected with this core node, . . . This terminology should not be confused with the
typical architectural memory levels (cache L1, L2, L3, main memory, secondary memory).



-

-

-

Fig. 4. Life-cycle of a Self Optimized Linear Algebra Routine (SOLAR) for NUMA platforms.

J. Cámara et al. / Parallel Computing 40 (2014) 309–327 315
Our proposal focuses on auto-tuned routines that will be used by non expert users. These users do not know either the
characteristics of the NUMA platforms or how to drive the mapping of the threads in the cores, or how to indicate the allo-
cation of data for the threads. For these reasons, to design the execution time model, we suppose an automatic placement of
the threads as packed as possible and an optimal allocation of the data as close as possible to the cores used for the threads,
that is, an exclusive use of the platform by our routines.

It is important to emphasize that the models proposed in this work do not aim to detail the architectural behavior of the
routines, but are just used to predict the execution time of these routines in different situations, with different values for
some adjustable parameters. Therefore, the main goal is to design the models as simply as possible to be a versatile tool
to select appropriate values for the parameters. In this work, optimized basic routines (MKL, ATLAS, . . .) are integrated in
higher level OpenMP codes. Therefore, the only algorithmic parameter considered has been the number of threads because
other possible optimizations, like tile or block sizes, are included in those basic routines.

4.1. Life-cycle of an auto-tuned routine

In this subsection, the design, installation and execution of a self-optimized linear algebra routine (SOLAR) for NUMA
platforms is described step by step, following the scheme in Fig. 4. Details of the joint design-installation process for routines
in NUMA platforms are discussed in the next section with the matrix multiplication and a LU factorization.

4.1.1. Design phase
This process is performed by the designer of the linear algebra routine (LAR designer) only once. The main tasks are:

� The LAR is created if a new library is being designed. Otherwise, it is not necessary.
� The complexity of the LAR is studied, obtaining an analytical model of its execution time similar to that of Eq. (1), but in

the NUMA case the number of memory levels influencing the behaviour of the routine will be experimentally obtained in
the installation phase.
� Each SP is modeled with an equation where the influence of the distributed structure of the memory on the data access

time is reflected.
� The SOLAR_Manager is created. This is the engine of the auto-tuned routine. It is in charge of managing all the information

and it is also the interface with the exterior of the SOLAR. At installation time, it will extract the information about the
memory structure of the platform and it will give the order to estimate the SP values. At execution time, using the ana-
lytical model, it will decide the values for the AP and, finally, it will call the LAR.



316 J. Cámara et al. / Parallel Computing 40 (2014) 309–327
4.1.2. Installation phase
When the system manager starts the installation process of a SOLAR in a specific platform he calls to the SOLAR_Manager

that performs the following tasks:

� Information about the influence of memory allocation in the routine is obtained by executing the LAR for a fixed size, n,
and different numbers of threads, p. From the experimental times and the basic execution time model of the routine (Eq.
(1)), the value for its general basic system parameter kLAR is calculated directly. This value should remain relatively con-
stant along each range of p that corresponds to each location level of the memory, which allows estimation of the values
for the various location levels of the memory, L, and the number of cores that have a similar access speed to each level,
c1; . . . ; cL.
� The theoretical models of the SP are tuned according to the memory structure of the platform. In this way, the submodel

for each system parameter now reflects the different data access time, depending on the location level where they are
found.
� The value for each basic SP is obtained for each location level (1, . . . ,L) with executions of the LAR for a fixed problem size,

n, and a number of threads, p, that corresponds to each level (p 6 c1; c1 < p 6 c2; . . . ; cL�1 < p 6 cL).

4.1.3. Execution phase
When a SOLAR is called to solve a problem of size nR, the SOLAR_Manager carries out the following tasks:

� Using the Model of the LAR, with n ¼ nR, the SOLAR_Manager looks for the combination of AP values that, taking into
account the SP values calculated at installation time, provide the lowest execution time.
� Finally, the LAR is called with the problem size nR and the Optimum AP values selected previously.

5. Adaptation of the auto-tuning methodology for linear algebra routines in NUMA systems

This section describes the adaptation for NUMA systems of the proposed auto-tuning methodology. The adaptation is
explained in detail for the matrix multiplication, and then for a higher-level routine (an LU factorization) which uses the
two-level matrix multiplication as basic component.

5.1. The matrix multiplication

5.1.1. Design phase
In this phase, the complexity of the dgemm routine is studied, obtaining an analytical model of its execution time. This

model has to be as simple as possible for it to be a versatile tool to select the most appropriate values for its adjustable
parameters.

First, taking just the MKL routine dgemm without considering the possibility of generating OpenMP threads, the model of
the execution time is:
Tdgemm ¼
2n3

p
kdgemm ð2Þ
where n is the problem size (we consider square matrices for simplicity), p is the number of threads that work together in the
operation performed by the MKL routine dgemm, and kdgemm is a system parameter that corresponds to the time to carry out a
basic operation (addition or multiplication) between two double precision numbers inside dgemm. The value of kdgemm

includes the time to load the operands from the memory, perform the operation in the CPU and store the result. These oper-
ands may be in different RAM memory locations of the platform, with different access times from the thread that performs
each basic operation. Therefore, the kdgemm value can be modeled as a weighted average between two values kdgemm NUMA and
kdgemm M1 :
kdgemm ¼ akdgemm NUMAðpÞ þ ð1� aÞkdgemm M1
ð3Þ
where kdgemm NUMA is the time to perform the operation when the operands are in any memory location of the NUMA plat-
form; and kdgemm M1 is the time to perform the operation when the operands are in the memory location closest to the core.

The a factor is a heuristic approximation obtained experimentally to represent the weight of the parameter kdgemm NUMA in
the total kdgemm. It can be considered directly proportional to the use each one of the p threads makes of data assigned initially
to any of the other ðp� 1Þ threads. This factor can be considered inversely proportional to the reusing data degree of the
routine, because the data reusing increases the possibility of finding the operating data in the closest location memory of
each core (dgemm accesses an order of n2 data to perform an order of n3 operations, so, the reusing degree will be
n3=n2 ¼ n, and obviously, other routines have different degrees):
a ¼ min 1;
pðp� 1Þ

n

� �
ð4Þ



J. Cámara et al. / Parallel Computing 40 (2014) 309–327 317
Therefore, the model collects how the data locality of the routine influences on its execution time with p threads. For this
heuristic value, when the matrix size increases a tends to zero, and the data are considered distributed in the memory close
to the threads (value kdgemm M1 on Eq. (3)), and when the number of threads increases and the matrix size is not very large a
tends to one, so the memory allocation of the data has more influence.

On the other hand, the parameter kdgemm NUMAðpÞ can be divided in a set of submodels depending on the number of location
levels of the memory. For a platform with L location levels (the location levels are detected experimentally in the installation
phase), where cl cores have a similar access speed to the level l, with 1 6 l 6 L, then kdgemm NUMAðpÞ can be modeled as:

if 0 < p 6 c1:
kdgemm M1
else if c1 < p 6 c2:
c1kdgemm M1
þ ðp� c1Þkdgemm M2

p

else if c2 < p 6 c3:
c1kdgemm M1 þ ðc2 � c1Þkdgemm M2 þ ðp� c2Þkdgemm M3

p

In general, if cL�1 < p 6 cL:
P
ðcl � cl�1Þkdgemm Ml

þ ðp� cL�1Þkdgemm ML

p
ð5Þ
For example, if c2 < p 6 c3, for a specific thread t situated in the core x, from each p data accessed by t to operate with them,
c1 data will be in the closest local memory (first location level), ðc2 � c1Þ in the following level, that is, distributed along the
ðc2 � c1Þ cores that share the second location level with x, but not the first level. Finally, the rest of the p data, ðp� c2Þ, will be
at the third location level from the point of view of core x.

At this point, it is possible to model the complete routine that uses two-level parallelism by generating q threads OpenMP,
with each one multiplying a block of adjacent rows of matrix A by the matrix B, and by establishing a number of threads (p)
to be used in the matrix multiplication in each OpenMP thread. With P ¼ q� p, the model is:
T2L dgemm ¼
2n3

P
k2L dgemm ð6Þ
The model for the parameter k2L dgemm is as described previously for kdgemm, but taking into account that now a total of
P ¼ q� p threads are interacting globally instead of only p:
k2L dgemm ¼ ak2L dgemm NUMAðP;pÞ þ ð1� aÞkdgemm M1
ð7Þ
with:
a ¼ min 1;
PðP � 1Þ

n

� �
ð8Þ
and where the model for the parameter k2L dgemm NUMA is:
k2L dgemm NUMAðP; pÞ ¼
n2

q kdgemm NUMAðpÞ þ n2kdgemm NUMAðPÞ
n2

q þ n2
ð9Þ
that is, an average between kdgemm NUMA when p threads are working with n2=q data and kdgemm NUMA when P threads are work-
ing with n2 data. This is because p threads are interacting with the data of matrix A (each one of the q sets of p threads shares
one of the q blocks of adjacent rows of A inside each dgemm call. Each of these blocks has n2=q data), whereas with the data of
matrix B the total P threads are interacting (all the p threads inside each of the q dgemm calls access the complete matrix B,
that is, n2 data).

Finally, as described previously for the one-level version (Eq. (5)), with x threads, if cL�1 < x 6 cL; kdgemm NUMAðxÞ is:
P
ðcl � cl�1Þkdgemm Ml

þ ðx� cL�1Þkdgemm ML

x
ð10Þ
5.1.2. Installation phase
Information about the interaction between the data allocation of the algorithm and the memory structure of the platform

is experimentally obtained when obtaining the values of L and c1; . . . ; cL. Hence, this phase complements the design phase
and the theoretical model is not completed until the installation finished. The routine dgemm is executed for a fixed size,
n, and different numbers of threads, p. With the experimental times obtained and the basic execution time model of the



Table 1
Installation phase in Ben: obtaining information about the memory location levels, n ¼ 1000.

Number of threads p Measured execution time Tdgemm (s) kdgemm ¼ pTdgemm=2n3 (ms) Memory location levels

1 0.390 0.20 1
4 0.096 0.19
8 0.048 0.19

12 0.045 0.27 1,2
24 0.024 0.29
32 0.015 0.24

36 0.078 1.41 1,2,3
50 0.056 1.39
64 0.044 1.41

68 0.056 1.89 1,2,3,4
98 0.035 1.72

128 0.028 1.79

318 J. Cámara et al. / Parallel Computing 40 (2014) 309–327
routine (Eq. (2)), the kdgemm value is calculated. This value will remain relatively constant along each range of p that corre-
sponds to each location level of the memory, which allows estimation of the values for L and c1; . . . ; cL.

In Ben, the SOLAR_Manager experimentally obtains (Table 1) 4 allocation levels for the data managed by the routine in
the memory hierarchy, L = 4, with c1 ¼ 8; c2 ¼ 32; c3 ¼ 64 and c4 ¼ 128. Therefore, the model for the SP kdgemm NUMA can be
tuned for this platform, according to the number of threads, p, as:

If 0 < p 6 8:
kdgemm M1
else if 8 < p 6 32:
8kdgemm M1 þ ðp� 8Þkdgemm M2

p

else if 32 < p 6 64:
8kdgemm M1 þ 24kdgemm M2 þ ðp� 32Þkdgemm M3

p

else if 64 < p 6 128:
8kdgemm M1
þ 24kdgemm M2

þ 32kdgemm M3
þ ðp� 64Þkdgemm M4

p
ð11Þ
Similarly, 4 location levels are obtained for the routine in Saturno (Table 2), with c1 ¼ 6; c2 ¼ 12; c3 ¼ 18 and c4 ¼ 24. It
is important to consider that in this platform the differences between these levels are smaller than in Ben. The model for
kdgemm NUMA can be tuned for this platform, according to the number of threads, p, as:

If 0 < p 6 6:
kdgemm M1
else if 6 < p 6 12:
6kdgemm M1 þ ðp� 6Þkdgemm M2

p

else if 12 < p 6 18:
6kdgemm M1 þ 6kdgemm M2 þ ðp� 12Þkdgemm M3

p

else if 18 < p 6 24:
6kdgemm M1 þ 6kdgemm M2 þ 6kdgemm M3 þ ðp� 18Þkdgemm M4

p
ð12Þ
When a routine is installed in a specific platform, the SP values to calculate are kdgemm M1 ; . . . ; kdgemm ML . The SOLAR_Manager
performs the estimation of the values of these system parameters by executing the routine dgemm for a fixed problem size, n
(preferably with a small n because we are estimating the cost for routines which will be used inside parallel codes also to
reduce the installation time) and different number of threads. With these execution times and using the basic model of



Table 2
Installation phase in Saturno: obtaining information about the memory location levels, n ¼ 1000.

Number of threads p Measured execution time Tdgemm (s) kdgemm ¼ pTdgemm=2n3 (ms) Memory location levels

1 0.286 0.14 1
6 0.047 0.14

7 0.043 0.15 1,2
12 0.025 0.15

13 0.026 0.17 1,2,3
18 0.018 0.16

19 0.019 0.19 1,2,3,4
24 0.016 0.19

J. Cámara et al. / Parallel Computing 40 (2014) 309–327 319
the routine (Eq. (2)), the successive values of kdgemm for the different location levels of the memory will be obtained (Tables 1
and 2). Finally, taking into account the values of c1; . . . ; cL and using the corresponding equations of the model for kdgemm NUMA

(Eqs. (11) and (12)), the values of kdgemm M1 ; . . . ; kdgemm ML are calculated (Tables 3 and 4).
At this point, the initial theoretical model of the execution time of the routine 2L-dgemm (Eqs. (11) and (12)) has become

an empirical–theoretical model, thanks to this experimental estimation of the SP values (Tables 3 and 4).

5.1.3. Execution phase
Finally, in the execution phase, when the user wants to solve a specific problem with size n, the SOLAR_Manager takes the

model of the routine, with the SP values calculated for this platform and the value n, and directly selects the most appropri-
ate values for the AP, that is, the number of OpenMP threads, q, and MKL threads, p, between a set of possible combinations.
Therefore, the overhead of this automatic selection of the AP values is negligible in terms of the total execution time of the
routine.

5.2. Automatic tuning of a higher-level routine: LU factorization by blocks

In this subsection, the application of the methodology to high level routines that use an auto-tuned kernel is described. An
LU factorization is used to illustrate the methodology, and the experimental section also shows results with the QR and
Cholesky factorizations when the same methodology is applied to them. The LU factorization has the same scheme as the
LAPACK routine dgetrf that uses the MKL kernels dgemm, dtrsm and dgetf2. Two versions are compared: the version with
a more standard scheme, that calls directly to the kernel dgemm from the BLAS implementation of the MKL package, and a
version with an improved scheme, that calls to 2L-dgemm, adapted to NUMA platforms. The rest of the LU routine is
unaltered.

5.2.1. Design phase
As with the matrix–matrix multiplication, the model for the LU factorization by blocks is described by the routine

designer:
Tblu ¼
2n3

3P
kxdgemm þ

bn2

P
kdtrsm þ

b2n
3P

kdgetf 2 ð13Þ
Table 3
Installation phase in Ben: obtaining specific system parameter values.

Memory location level, i Number of threads, p kdgemm Mi

1 0 < p 6 8 0.19
2 8 < p 6 32 0.33
3 32 < p 6 64 1.44
4 64 < p 6 128 1.90

Table 4
Installation phase in Saturno: obtaining specific system parameter values.

Memory location level, i Number of threads, p kdgemm Mi

1 0 < p 6 6 0.14
2 6 < p 6 12 0.16
3 12 < p 6 18 0.18
4 18 < p 6 24 0.19



320 J. Cámara et al. / Parallel Computing 40 (2014) 309–327
where n is the problem size (dimension of the matrices), b is the computing block size, P is the number of threads, kxdgemm is a
system parameter that corresponds to the time to carry out a basic operation (addition or multiplication) between two
double precision numbers inside the matrix–matrix multiplication, so it corresponds to kdgemm (Eq. (3)) if the kernel used
is that provided by MKL directly, or to k2L dgemm (Eq. (7)) if the proposed two-level kernel is used. Finally, kdtrsm and kdgetf 2

are the system parameters that correspond to the time to carry out a basic operation (addition or multiplication) between
two double precision numbers inside the kernels dtrsm and dgetf2.

5.2.2. Installation phase
The experimental process to obtain the information about the memory structure of the platform has been previously per-

formed in the installation process of the matrix–matrix multiplication, so all the information about the memory location lev-
els is calculated just once and can then be used by the other routines. When tuning the submodel of the general SP kdgemm (Eq.
(3)) or k2L dgemm (Eq. (7)), the basic SP values to calculate would be kdgemm M1 ; . . . ; kdgemm ML . The SOLAR_Manager of this routine
can reuse the information obtained by the SOLAR_Manager of dgemm when this kernel was installed. The same operation can
be performed to obtain the information for the other two general SP kdtrsm and kdgetf 2, with their respective kernels.

5.3. Execution phase

A user invokes the LU routine in order to solve a specific problem with size n in a platform. Then, the SOLAR_Manager
takes the experimental-theoretical model of the routine, with the SP values calculated for this platform and the value n,
and selects the most appropriate number of OpenMP threads, q, and MKL threads, p, from a set of possible combinations.
6. Experimental results

The methodology explained with the matrix multiplication and the LU factorization can be extended to different linear
algebra routines, with different basic libraries and in different computational systems. First, experimental results obtained
with these two routines and the two systems so far considered are shown, then, complementary experiments in another
platform and with new matrix factorizations (QR and Cholesky) are described. In the next section (related work) a brief com-
parison with other basic libraries is included.

We have not considered the interference with other programs running on the system because this would make it even
more difficult a simple-satisfactory model of the execution time [18]. Therefore, all the executions have been carried out
alone.

For each experiment, five executions were carried out, and the minimum and maximum execution times discarded. Then
the average of the remaining values is used.

6.1. Experiments with the matrix multiplication

In order to test the goodness of our proposal we look at the general vision of the behaviour of the matrix multiplication
routine provided by this model. Figs. 5 and 6 show a comparison between the execution time of the routine 2L-dgemm and
the time predicted by the model with MKL as basic library. The model does not predict the behaviour of the routine exactly,
and this was not its goal, rather it captures the tendencies of the execution time when the AP values change. The model col-
lects the general growing and decreasing tendency of the time for different configurations of number of OpenMP threads, q,
and MKL threads, p. This quality means the proposed methodology can take a general vision of the behaviour of the routine
to decide appropriate values for the algorithmic parameters, q and p, that minimize the execution time.

Table 5 shows a comparison of different execution times obtained for different problem sizes in Ben and Saturno. The
different columns correspond to the minimum time that could be obtained ideally with a perfect MKL oracle (MKL-ORA) that
always generates the optimum two-level threads configuration (OpenMP �MKL) in any situation (including the possibility
of using only MKL threads and just one OpenMP thread); the time obtained on generating as many MKL threads as cores
available in the platform (MKL-AC); the time obtained with MKL with dynamic selection of threads activated (MKL-dyn);
and the time obtained with the two-level thread configuration selected by our auto-tuning system in the execution phase
(MKL-ATS). Our aim with the MKL-ATS is to improve automatically the efficiency that a normal user can obtain using
MKL (MKL-AC or MKL-dyn), and we get execution times close to those with the MKL ideal execution (MKL-ORA).

In the bigger platform, Ben, it can be appreciated that the automatic selection of the AP values with the proposed auto-
tuning method (MKL-ATS) always outperforms what a non-expert user could obtain (A non-expert user could decide to use
the MKL routine with as many threads as available cores in the platform, MKL-AC, or to use the auto-tuning engine provided
by MKL, MKL-dyn). In all the cases, MKL-ATS obtains execution times very close to those obtained with a perfect oracle for
MKL (An MKL oracle would have the difficult task of guessing the optimum combination of number of OpenMP and MKL
threads from 1 to 128, the number of available cores of the platform). However, in Saturno the situation is a bit different.
Here, the model has an excellent behaviour, following the tendencies of the execution time (Fig. 5). However, due to the
simplicity of this platform, where the differences between the memory locations are smaller than in the other platform,
it is more difficult to obtain significant benefits in either case (MKL-ORA or MKL-ATS).



 2
 4

 6
 8

 10
 12

 5
 10

 15
 20

 0
 0.02
 0.04
 0.06
 0.08
 0.1

 0.12
 0.14

Saturno, n=1000

experimental time
modelled time

OpenMP threads

MKL threads

 2
 4

 6
 8

 10
 12

 5
 10

 15
 20

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

Saturno, n=2000

experimental time
modelled time

OpenMP threads

MKL threads

 2
 4

 6
 8

 10
 12

 5
 10

 15
 20

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Saturno, n=3000

experimental time
modelled time

OpenMP threads

MKL threads

Fig. 5. Comparison of the execution time and the modeled time of the 2L-dgemm, in the platform Saturno with MKL the basic library for different problem
sizes.

J. Cámara et al. / Parallel Computing 40 (2014) 309–327 321



 1
 2

 3
 4

 5
 6

 7
 8

 9
 10

 20
 40

 60
 80

 100
 120

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

Ben, n=1000

experimental time
modelled time

OpenMP threads

MKL threads

 1

 2

 3

 4

 5

 6

 20
 40

 60
 80

 100
 120

 0

 0.5

 1

 1.5

 2

 2.5

 3

Ben, n=2000

experimental time
modelled time

OpenMP threads

MKL threads

 1

 2

 3

 4

 5

 6

 20
 40

 60
 80

 100
 120

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

Ben, n=5000

experimental time
modelled time

OpenMP threads

MKL threads

Fig. 6. Comparison of the execution time and the modeled time of the 2L-dgemm, in the platform Ben with MKL the basic library for different problem sizes.

322 J. Cámara et al. / Parallel Computing 40 (2014) 309–327



Table 5
Matrix–matrix multiplication kernel. Minimum time obtained generating the optimum number of threads (MKL-ORA), time obtained when generating as many
MKL threads as available cores in the platform (MKL-AC), time obtained with MKL with dynamic selection of threads activated (MKL-dyn), and finally, time
obtained using 2L-dgemm with the thread configuration (between brackets) selected by our auto-tuning system (MKL-ATS). Times in seconds.

Size MKL-ORA MKL-AC MKL-dyn MKL-ATS

Saturno
1000 0.014 0.044 0.049 0.016 (1� 18)
2000 0.059 0.146 0.145 0.059 (2� 12)
3000 0.119 0.141 0.146 0.127 (2� 12)
4000 0.203 0.221 0.241 0.208 (2� 12)
5000 0.251 0.335 0.333 0.306 (2� 12)

Ben
1000 0.024 0.091 0.098 0.012 (2� 8)
2000 0.07 0.39 0.40 0.07 (4� 16)
3000 0.23 0.82 0.81 0.23 (4� 16)
4000 0.59 1.40 1.41 0.74 (4� 32)
5000 1.12 2.11 2.10 1.44 (4� 32)

J. Cámara et al. / Parallel Computing 40 (2014) 309–327 323
6.2. Experiments with the LU factorization

Table 6 shows a comparison of different execution times obtained with the LU factorization for different problem sizes in
the different platforms. The entries in the columns have the same meaning as in Table 5. It can be appreciated that, in gen-
eral, the time obtained with the automatic selection of the AP values with the proposed auto-tuning method is always lower
than that obtained using only the MKL routine with as many threads as available cores in the platform, or when MKL dynam-
ically selects the number of threads (the two default options for a non-expert user). In Saturno the differences in the execu-
tion times for the different configurations are small, as befits the size and complexity of this platform. In Ben, the times with
the auto-tuning method are very close to those obtained with a perfect oracle of MKL, which would have the hard task of
selecting the optimum combination of OpenMP and MKL threads, between 1 and 128. In this platform, the differences with
the default options (MKL-AC and MKL-dyn) are quite significant. So, in large systems, like Ben, the advantage of an auto-
tuning methodology is more apparent.

6.3. Experiments with the QR and the Cholesky factorizations

In the previous subsections, experimental results obtained with the two routines and the two systems so far considered
have been described. In this subsection, in order to show that this methodology can be extended to other linear algebra
Table 6
LU factorization by blocks. Minimum time obtained when generating the optimum number of threads (MKL-ORA), time obtained generating as many MKL
threads as cores available (MKL-AC), time obtained with MKL with dynamic selection of threads (MKL-dyn), time obtained with the two-level thread
configuration selected by our auto-tuning system (MKL-ATS). Times in seconds.

Size MKL-ORA MKL-AC MKL-dyn MKL-ATS

Saturno
1000 0.06 0.06 0.06 0.12
2000 0.12 0.20 0.12 0.15
3000 0.26 0.26 0.27 0.33
4000 0.54 0.76 0.62 0.59
5000 0.88 1.00 0.98 0.88
6000 1.44 1.44 1.46 1.49
7000 1.98 2.19 2.22 1.98
8000 2.76 3.14 3.07 2.76
9000 4.00 4.42 4.50 4.00

10000 5.17 5.30 5.27 5.17

Ben
1000 0.06 0.34 0.35 0.25
2000 0.17 0.79 0.70 0.42
3000 0.54 2.14 2.13 0.85
4000 0.95 3.39 3.35 1.32
5000 1.64 6.36 6.32 2.21
6000 2.63 8.32 8.34 2.83
7000 3.84 10.20 10.25 4.55
8000 5.19 14.49 14.45 5.39
9000 6.95 20.21 20.35 7.30

10000 8.12 22.28 22.21 8.70



324 J. Cámara et al. / Parallel Computing 40 (2014) 309–327
routines and in different computational systems, complementary experiments in an additional medium size platform, Joule,
and with new matrix factorizations, QR and Cholesky, are shown.

Tables 7 and 8 show a comparison of different execution times obtained with these factorizations for different problem
sizes. The entries in the columns have the same meaning as in Table 5. We can observe that in a small size platform like
Saturno, the tuning possibilities are limited and so MKL-ORA does not obtain significant improvements regarding MKL-
AC. However, it can be appreciated that, in general, the time obtained with the automatic selection of the AP values with
the proposed auto-tuning method (MKL-ATS) is always lower than that obtained by a normal user generating as many
threads as cores available in the platform (MKL-AC).
Table 7
QR factorization by blocks. Minimum time obtained when generating the optimum number of threads (MKL-ORA), time obtained generating as many MKL
threads as cores available (MKL-AC), time obtained with the two-level thread configuration selected by our auto-tuning system (MKL-ATS). Times in seconds.

Size MKL-ORA MKL-AC MKL-ATS

Saturno
1000 0.10 0.18 0.14
2000 0.46 0.52 0.46
3000 1.14 1.21 1.21
4000 2.15 2.15 2.19
5000 3.61 3.61 4.00
6000 5.40 5.40 5.40
7000 7.78 7.78 7.78
8000 10.64 10.85 10.64
9000 14.57 14.88 14.57

10000 19.47 19.80 19.47

Joule
1000 0.21 0.47 0.18
2000 0.42 0.84 0.42
3000 1.18 1.43 1.18
4000 2.33 2.68 2.51
5000 4.01 3.92 4.23
6000 5.77 5.97 6.37
7000 6.69 8.60 8.37
8000 9.83 13.10 11.70
9000 14.27 15.90 14.27

10000 19.86 21.35 19.86

Table 8
Cholesky factorization by blocks. Minimum time obtained when generating the optimum number of threads (MKL-ORA), time obtained generating as many
MKL threads as cores available (MKL-AC), time obtained with the two-level thread configuration selected by our auto-tuning system (MKL-ATS). Times in
seconds.

Size MKL-ORA MKL-AC MKL-ATS

Saturno
1000 0.03 0.36 0.15
2000 0.09 0.24 0.15
3000 0.23 0.31 0.28
4000 0.45 0.54 0.49
5000 0.88 0.93 0.89
6000 1.45 1.56 1.46
7000 2.20 2.27 2.27
8000 3.10 3.23 3.20
9000 4.36 4.50 4.36

10000 5.96 6.12 6.00

Joule
1000 0.06 0.33 0.09
2000 0.16 0.59 0.30
3000 0.40 0.93 0.67
4000 0.79 1.44 1.28
5000 1.23 2.08 2.08
6000 1.83 3.27 2.88
7000 2.82 4.35 3.73
8000 4.06 5.79 5.25
9000 5.24 7.70 6.64

10000 6.84 9.93 8.42



J. Cámara et al. / Parallel Computing 40 (2014) 309–327 325
In a medium size platform like Joule, the tuning potential grows, so a MKL perfect oracle could obtain a clearer improve-
ment in the execution time. Therefore, in this platform, the proposed auto-tuning method can perform a most useful task,
reducing the default user execution time by about 10% in QR factorization and about 20% in Cholesky.
7. Related work

In recent years several groups have been working on the design of highly efficient parallel linear algebra libraries. These
groups work in different ways: optimizing the library in the installation process for shared memory machines [2] or for mes-
sage-passing systems [20]; analyzing the adaptation of the routines to the conditions of the system at a particular moment
[21]; using poly-algorithms [22] and poly-libraries [23]; and redesigning LAPACK for platforms based on multi-core proces-
sors [11] and for heterogeneous/hybrid architectures [19]. A number of auto-tuning approaches are focused on modeling the
execution time of the routine to optimize. The approach chosen by FAST [24] is an extensive benchmark followed by a poly-
nomial regression to find optimal parameters for different routines in homogeneous and heterogeneous environments.
Vuduc et al. [25] apply the polynomial regression in their methodology to decide the most appropriate version from variants
of a routine. They also introduce a black-box pruning method to reduce the enormous implementation spaces. In the FIBER
approach [26] the execution time of a routine is approximated by fixing one parameter (problem size) and varying the other
(unrolling depth for an outer loop). A set of polynomial functions of grades 1 to 5 are generated and the best is selected. The
values provided by these functions for different problem sizes are used to generate another function where the second
parameter is now fixed and the first is varied. Tanaka et al. [27] introduce a new method, Incremental Performance Param-
eter Estimation, in which the estimation of the theoretical model by polynomial regression is started from the least sampling
points and incremented dynamically to improve accuracy. Initially, they apply it on sequential platforms and seek just one
algorithmic parameter. Lastovetsky et al. [28] reduce the number of sampling points starting from a previous shape of the
curve that represents the execution time. They also introduce the concept ‘‘speed band’’ as the natural way to represent the
inherent fluctuations in the speed due to changes in load.

In most scientific and engineering problems, computations are carried out by using basic matrix routines of BLAS type.
Therefore, the improvement in the performance of scientific codes is achieved in many cases by the efficient use of those
routines. In this context, different automatic optimization techniques emerge as valuable tools that provide scientific
software with environment adaptation capacity. Some projects where these techniques have been applied are: Intel MKL
[12], IBM ESSL [13], etc. or free implementations (ATLAS [2], Goto BLAS [14], etc.). By way of illustration, a comparison of
Table 9
LU factorization by blocks. Time obtained using the dgemm kernel from different basic libraries (MKL, ATLAS, GotoBLAS).
Times in seconds.

Size MKL ATLAS GotoBLAS

Saturno
1000 0.22 0.13 0.02
2000 0.25 0.04 0.08
3000 0.35 0.93 0.20
4000 0.73 1.57 0.38
5000 1.09 2.38 0.66
6000 1.65 3.67 1.07
7000 2.44 4.97 1.63
8000 3.46 6.60 2.76
9000 4.83 8.85 3.26

10000 5.90 10.88 4.39

Table 10
QR factorization by blocks. Time obtained using the dgemm kernel from different basic libraries (MKL, ATLAS, GotoBLAS).
Times in seconds.

size MKL ATLAS GotoBLAS

Saturno
1000 0.21 0.30 0.08
2000 0.48 1.24 0.34
3000 1.13 2.87 0.87
4000 2.22 4.86 1.79
5000 3.94 7.66 3.24
6000 6.63 11.38 5.37
7000 10.31 16.25 8.23
8000 15.00 22.42 11.87
9000 21.25 29.95 16.46

10000 28.84 38.86 22.21



Table 11
Cholesky factorization by blocks. Time obtained using the dgemm kernel from different basic libraries (MKL, ATLAS,
GotoBLAS). Times in seconds.

Size MKL ATLAS GotoBLAS

Saturno
1000 0.25 0.15 0.01
2000 0.21 0.74 0.06
3000 0.35 1.41 0.19
4000 0.50 2.46 0.48
5000 0.95 3.34 0.95
6000 1.55 4.36 1.65
7000 2.39 5.67 2.59
8000 3.26 7.18 3.84
9000 4.50 9.14 5.36

10000 6.18 11.42 7.32

326 J. Cámara et al. / Parallel Computing 40 (2014) 309–327
the execution time in the platform Saturno of LU, QR and Cholesky, using the basic dgemm kernel from MKL, ATLAS and Goto
BLAS is shown in Tables 9–11. The performance obtained using dgemm from ATLAS is clearly inferior to that when MKL or
Goto BLAS are used to solve these factorizations in this platform.

However, it was not our aim to compare the performance obtained with these basic libraries, but to study optimization
techniques when efficient multithread matrix multiplications are used in higher level routines in NUMA systems. We have
used MKL toolkit in this work, but it is equally possible to use other libraries installed in the platform.
8. Conclusions

It is necessary to adjust the running conditions of scientific software to the specific characteristics of NUMA platforms if
we want to obtain performance close to the optimum. In these platforms, the memory is physically distributed among the
computing nodes. These conditions entail different values for the access times to the data involved in the calculations,
depending on the computing core that performs the operation and the localization of the data in the memory. An auto-tun-
ing methodology for linear algebra routines in NUMA systems has been shown, and a LU factorization by blocks with similar
scheme that dgetrf routine of LAPACK library has been used to illustrate the methodology. This routine has as main basic
computation kernel the matrix–matrix multiplication. A comparison of two versions has been carried out: the version with a
more standard scheme, that call directly to the kernel dgemm from the BLAS implementation of the MKL package, and a ver-
sion with an improved scheme, that calls to 2L-dgemm, adapted to NUMA platforms. The kernel 2L-dgemm is built on the
basis of two levels of parallelism, with a first level constituting OpenMP threads and a second level that corresponds to
the parallelism intrinsic on the MKL routine dgemm. The objetive of this two-level parallelism is to obtain a better correspon-
dence between the threads and the distributed structure of the memory of NUMA platforms.

In the experiments in platforms with a large number of cores, an improvement is obtained with respect to the use of MKL
parallelism. So, taking this into consideration, a reduction in the execution time of scientific codes, which use matrix mul-
tiplications or linear algebra routines based on them intensively, can be achieved by adequately selecting the threads to be
used in the solution of the problem. This selection is performed automatically by the auto-tuning system proposed in this
work. The experiments show, for NUMA platforms, the usefulness of two levels of parallelism where the number of threads
for each level is selected automatically by the proposed methodology of automatic tuning.

This methodology, which is explained in detail with the matrix multiplication and the LU factorization, can also be
extended to different linear algebra routines. Complementary experiments with QR and Cholesky factorizations are shown.

We are currently working on applying an experimental version of our auto-tuning methodology to PLASMA [19], where it
is more complicated to design an execution time model of the routines because this framework is based on asynchronous,
out of order scheduling of operations.

Acknowledgments

This work was supported by the Spanish MINECO, as well as by European Commission FEDER funds, under grant
TIN2012-38341-C04-03. The authors would like to thank Enrique S. Quintana-Ortí from the High Performance Computing
& Architectures group at the University Jaume I for granting us access to their Joule computing platform, and acknowledge
the computer resources and assistance provided by the Supercomputing Centre of the Scientific Park Foundation of Murcia.

References

[1] S. Akhter, J. Roberts, Multi-Core Programming, Intel Press, 2006.
[2] R.C. Whaley, A. Petitet, J. Dongarra, Automated empirical optimizations of software and the ATLAS project, Parallel Comput. 27 (1–2) (2001) 3–35.
[3] E.J. Im, K. Yelick, R. Vuduc, Sparsity: optimization framework for sparse matrix kernels, Int. J. High Perform. Comput. Appl. 18 (1) (2004) 135–158.

http://refhub.elsevier.com/S0167-8191(14)00041-6/h0050
http://refhub.elsevier.com/S0167-8191(14)00041-6/h0050
http://refhub.elsevier.com/S0167-8191(14)00041-6/h0055
http://refhub.elsevier.com/S0167-8191(14)00041-6/h0060


J. Cámara et al. / Parallel Computing 40 (2014) 309–327 327
[4] M. Frigo, S.G. Johnson, The design and implementation of FFTW3, Proc. IEEE 93 (2) (2005) 216–231 (Special issue on Program Generation, Optimization,
and Platform Adaptation).

[5] T. Katagiri, K. Kise, H. Honda, T. Yuba, ABCLib DRSSED: a parallel eigensolver with an auto-tuning facility, Parallel Comput. 32 (3) (2006) 231–250.
[6] J. Dongarra, J.D. Croz, S. Hammarling, R.J. Hanson, An extended set of fortran basic linear algebra subroutines, ACM Trans. Math. Software 14 (1988) 1–

17.
[7] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J.D. Croz, A. Grenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, D. Sorensen, LAPACK User’s

Guide, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1995.
[8] L.S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, W.C. Whaley,

ScaLAPACK User’s Guide, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1997.
[9] R.A. van de Geijn, Using PLAPACK, The MIT Press, 1997.

[10] R. Reddy, A.L. Lastovetsky, HeteroMPI + ScaLAPACK: towards a ScaLAPACK (dense linear solvers) on heterogeneous networks of computers, in: HiPC,
2006, pp. 242–253.

[11] A. Buttari, J. Langou, J. Kurzak, J. Dongarra, A class of parallel tiled linear algebra algorithms for multicore architectures, Parallel Comput. 35 (1) (2009)
38–53.

[12] Intel MKL web page, <http://software.intel.com/en-us/intel-mkl/>.
[13] IBM ESSL web page, <http://www-03.ibm.com/systems/software/essl/index.html>.
[14] K. Goto, R.A. van de Geijn, Anatomy of high-performance matrix multiplication, ACM Trans. Math. Software 34 (3) (2008) 1–25.
[15] OpenMP web page, <http://openmp.org/wp/>.
[16] J. Cuenca, L.P. García, D. Giménez, Improving linear algebra computation on NUMA platforms through auto-tuned nested parallelism, in: 20th

EUROMICRO Workshop on Parallel, Distributed and Networked Processing, IEEE, 2012, pp. 66–74.
[17] J. Cuenca, D. Giménez, J. González, Architecture of an automatic tuned linear algebra library, Parallel Comput. 30 (2) (2004) 187–220.
[18] J. Cuenca, L.P. García, D. Giménez, J. Dongarra, Processes distribution of homogeneous parallel linear algebra routines on heterogeneous clusters, in:

Proceedings of the HeteroPar’05, 2005.
[19] E. Agullo, J. Demmel, J. Dongarra, B. Hadri, J. Kurzak, J. Langou, H. Ltaief, P. Luszczek, S. Tomov, Numerical linear algebra on emerging architectures: the

PLASMA and MAGMA projects, J. Phys.: Conf. Ser. 180 (2009).
[20] J. Cuenca, D. Giménez, J. González, Towards the design of an automatically tuned linear algebra library, in: 10th EUROMICRO Workshop on Parallel,

Distributed and Networked Processing, IEEE, 2002, pp. 201–208.
[21] A. Petitet, S. Blackford, J. Dongarra, B. Ellis, G. Fagg, K. Roche, S. Vadhiyar, Numerical libraries and the grid, Int. J. High Perform. Appl. Supercomput. 15

(2001) 359–374.
[22] A. Skjellum, P.V. Bangalore, Driving issues in scalable libraries: polyalgorithms, data distribution independence, redistribution, local storage schemes,

in: Seventh SIAM Conf. on Parallel Proc. for Scientific, Computing, 1995, pp. 734–737.
[23] P. Alberti, P. Alonso, A. Vidal, J. Cuenca, L.P. García, D. Giménez, Designing polylibraries to speed up linear algebra computations, Int. J. High Perform.

Comput. Network. 1 (1–3) (2004) 75–84.
[24] E. Caron, F. Desprez, F. Suter, Parallel extension of a dynamic performance forecasting tool, Scalable Comput.: Pract. Exp. 6 (1) (2005) 57–69.
[25] R. Vuduc, J.W. Demmel, J. Bilmes, Statistical models for automatic performance tuning, in: Proceedings of the International Conference on

Computational Science, ICCS, 2001, pp. 117–126.
[26] T. Katagiri, K. Kise, H. Honda, T. Yuba, FIBER: A generalized framework for auto-tuning software, Springer LNCS 2858 (2003) 146–159.
[27] T. Tanaka, T. Katagiri, T. Yuba, d-Spline based incremental parameter estimation in automatic performance tuning, in: Proceedings of the PARA’06,

2006, pp. 3–13.
[28] A. Lastovetsky, R. Reddy, R. Higgins, Building the functional performance model of a processor, in: Proceedings of the SAC’06, 2006, pp. 23–27.

http://refhub.elsevier.com/S0167-8191(14)00041-6/h0065
http://refhub.elsevier.com/S0167-8191(14)00041-6/h0065
http://refhub.elsevier.com/S0167-8191(14)00041-6/h0070
http://refhub.elsevier.com/S0167-8191(14)00041-6/h0075
http://refhub.elsevier.com/S0167-8191(14)00041-6/h0075
http://refhub.elsevier.com/S0167-8191(14)00041-6/h0080
http://refhub.elsevier.com/S0167-8191(14)00041-6/h0080
http://refhub.elsevier.com/S0167-8191(14)00041-6/h0080
http://refhub.elsevier.com/S0167-8191(14)00041-6/h0085
http://refhub.elsevier.com/S0167-8191(14)00041-6/h0085
http://refhub.elsevier.com/S0167-8191(14)00041-6/h0085
http://refhub.elsevier.com/S0167-8191(14)00041-6/h0090
http://refhub.elsevier.com/S0167-8191(14)00041-6/h0090
http://refhub.elsevier.com/S0167-8191(14)00041-6/h0095
http://refhub.elsevier.com/S0167-8191(14)00041-6/h0095
http://software.intel.com/en-us/intel-mkl/
http://www-03.ibm.com/systems/software/essl/index.html
http://refhub.elsevier.com/S0167-8191(14)00041-6/h0100
http://openmp.org/wp/
http://refhub.elsevier.com/S0167-8191(14)00041-6/h0105
http://refhub.elsevier.com/S0167-8191(14)00041-6/h0105
http://refhub.elsevier.com/S0167-8191(14)00041-6/h0105
http://refhub.elsevier.com/S0167-8191(14)00041-6/h0110
http://refhub.elsevier.com/S0167-8191(14)00041-6/h0115
http://refhub.elsevier.com/S0167-8191(14)00041-6/h0115
http://refhub.elsevier.com/S0167-8191(14)00041-6/h0120
http://refhub.elsevier.com/S0167-8191(14)00041-6/h0120
http://refhub.elsevier.com/S0167-8191(14)00041-6/h0120
http://refhub.elsevier.com/S0167-8191(14)00041-6/h0125
http://refhub.elsevier.com/S0167-8191(14)00041-6/h0125
http://refhub.elsevier.com/S0167-8191(14)00041-6/h0130
http://refhub.elsevier.com/S0167-8191(14)00041-6/h0130
http://refhub.elsevier.com/S0167-8191(14)00041-6/h0135
http://refhub.elsevier.com/S0167-8191(14)00041-6/h0140
http://refhub.elsevier.com/S0167-8191(14)00041-6/h0140
http://refhub.elsevier.com/S0167-8191(14)00041-6/h0140
http://refhub.elsevier.com/S0167-8191(14)00041-6/h0145

	Auto-tuned nested parallelism: A way to reduce the execution time of scientific software in NUMA systems
	1 Introduction
	2 Execution environment
	2.1 Computational systems
	2.2 The software

	3 Motivation: previous computational results
	4 Automatic tuning of a routine
	4.1 Life-cycle of an auto-tuned routine
	4.1.1 Design phase
	4.1.2 Installation phase
	4.1.3 Execution phase


	5 Adaptation of the auto-tuning methodology for linear algebra routines in NUMA systems
	5.1 The matrix multiplication
	5.1.1 Design phase
	5.1.2 Installation phase
	5.1.3 Execution phase

	5.2 Automatic tuning of a higher-level routine: LU factorization by blocks
	5.2.1 Design phase
	5.2.2 Installation phase

	5.3 Execution phase

	6 Experimental results
	6.1 Experiments with the matrix multiplication
	6.2 Experiments with the LU factorization
	6.3 Experiments with the QR and the Cholesky factorizations

	7 Related work
	8 Conclusions
	Acknowledgments
	References


