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Abstract. This work presents several self-optimization strategies to
improve the performance of task-based linear algebra software on hetero-
geneous systems. The study focuses on Chameleon, a task-based dense
linear algebra software whose routines are computed using a tile-based
algorithmic scheme and executed in the available computing resources
of the system using a scheduler which dynamically handles data depen-
dencies among the basic computational kernels of each linear algebra
routine. The proposed strategies are applied to select the best values for
the parameters that affect the performance of the routines, such as the
tile size or the scheduling policy, among others. Also, parallel optimized
implementations provided by existing linear algebra libraries, such as
Intel MKL (on multicore CPU) or cuBLAS (on GPU) are used to exe-
cute each of the computational kernels of the routines. Results obtained
on a heterogeneous system composed of several multicore and multiGPU
are satisfactory, with performances close to the experimental optimum.

Keywords: autotuning · linear algebra · heterogeneous computing ·
task-based scheduling

1 Introduction

In recent years, the increasing heterogeneity of computational systems has made
the efficient execution of scientific applications a major challenge. Tipically, these
systems consist of a set of compute nodes made up of several parallel devices,
such as multicore processors, graphics accelerators, or programmable devices,
with a different number of processing elements and memory hierarchy levels
each. Thus, efficiently exploiting the computational capacity of the whole sys-
tem is not an easy task, and even more so in parallel. In many cases, tradi-
tional numerical algorithms need to be redesigned to perform the computations
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parallel and efficiently. The advances in the development of highly optimized
libraries have made it possible to tackle this problem, improving the overall
performance of the routines involved. In numerical dense linear algebra, several
libraries have been developed for specific parallel devices. The most commonly
used are PLASMA [7] or Intel MKL [10] for multicore processors, cuBLAS [13]
for NVIDIA GPUs or MAGMA [15] for multicore+GPU systems. Depending
on the problem to be solved, these libraries can be used in an isolated way
(for a specific device) or combined together when the workload is distributed
among the different parallel computing devices. Also, some of them are designed
to better exploit the different levels of parallelism of the architecture by using
vectorization or multi-threading features (such as Intel MKL) and others, such
as PLASMA, focus on using fine-grained parallelism to execute operations in
parallel, representing them as a sequence of small tasks that can be dynamically
scheduled. Regardless of the purpose of the library, they all provide reasonably
good performance without taking into account the values for a set of adjustable
parameters related to the hardware platform or the library routines themselves.
However, in order to exploit the whole system efficiently, it is also necessary to
search for the best values for these parameters.

In the literature, two general researching lines can be found that aim at this
objective. On the one hand, there are techniques based on an empirical search
supported heuristically by a certain knowledge of the platform architecture.
This autotuning approach was introduced by ATLAS [17] and its predecessor
PHiPAC [6]. On the other hand, code that is competitive with implementations
generated via empirical search could also be produced by analytical propos-
als [11], either modelling the behaviour of the hardware when the software is
executed [12] or, at higher level, modelling the performance of the software when
it is running on this hardware [8]. In addition, the emergence of heterogeneous
systems integrating accelerator devices with a wide variety of parallel architec-
tures, such as GPUs, has led to the development of proposals focused on how
to optimize linear algebra kernels for such platforms [4]. Also, hybrid methods
can also be found, such as applying a hierarchical autotuning method at both
hardware and software levels [9]. Similarly, wizard frameworks for developers
have emerged, such as BOAST [16], which aim to minimise the effort of migrat-
ing high-performance computing kernels between platforms of different nature
by providing an embedded domain-specific language to describe the kernels and
their possible optimization.

The working scenario differs when the software includes a set of compo-
nents that work together to execute the routines. This is the case for task-
based libraries, which are of interest in the field of high-performance computing.
This work focuses on Chameleon [1], a task-based dense linear algebra software
for heterogeneous architectures. This library is based on the Sequential Task
Flow (STF) paradigm and runs on top of a runtime system, which dynami-
cally distributes and executes the tasks (basic computational kernels) among
the available computing resources (multicore or GPUs) using a Directed Acyclic
Graph (DAG) of tasks. Since the execution of tasks is handled by the runtime



670 J. Cámara et al.

system, the self-optimization strategies proposed to select the best values for the
adjustable parameters should be extended to consider, in addition, the config-
urable scheduling parameters.

In previous approaches used to tune the Chameleon library [2], the val-
ues of several adjustable parameters (block size and scheduling policy) were
selected to get the best asymptotic performance for the whole set of problem
sizes. In a preliminary comparative study carried out with the Cholesky rou-
tine on multicore CPU and CPU+multiGPU systems, the best overall values
selected for these adjustable parameters have been {nb = 512, sched = “eager ”}
and {nb = 576, sched =“dmdas”}, respectively. However, the performance of
the routine improves when the values are properly selected for each problem
size, as shown in Fig. 1. By default, Chameleon considers a fixed value for these
adjustable parameters regardless of the problem size, which leads to a loss in
performance as the problem size increases. With the asymptotic values, instead,
there is a loss in performance for small problem sizes. Therefore, these results
demonstrate the importance of having a self-optimization process that allows to
overcome the performance shortcomings offered by both approaches.
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Fig. 1. Performance obtained on multicore CPU (left) and CPU+multiGPU (right)
systems with the Cholesky routine of Chameleon when using the default values for the
adjustable parameters (default), the overall values (asymptotic) and the best values
selected (tuned) with the self-optimization methodology.

These first pieces of evidence together with other preliminary results [3] have
led to undertake this work of developing a collaborative framework that jointly
addresses two self-optimization methodologies: on the one hand, at installation
time by using a training engine and, on the other hand, at execution time through
the use of the dynamic task-based scheduling provided by Chameleon. The train-
ing engine can use different search strategies depending on the number and type
of the adjustable parameters: routine parameters (block size and inner block
size), system parameters (number and type of computing resources) and schedul-
ing parameters (policies used by the runtime system). With this approach, at
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installation time, a performance map of the routine is obtained and stored in a
database. After that, at execution time, this information is used to quickly make
better decisions for any specific problem to be solved.

The rest of the paper is organized as follows. Section 2 shows the general
scheme of execution of a linear algebra routine in Chameleon. In Sect. 3, the
self-optimization methodology for selecting the best values of a set of adjustable
parameters when working with task-based libraries is presented. Section 4 shows
the experimental study carried out with different routines of Chameleon when
applying the proposed methodology. Finally, Sect. 5 concludes the paper and
outlines future research lines.

2 The Chameleon Library

As mentioned, this paper focuses on Chameleon, a task-based dense linear alge-
bra software that internally uses StarPU [5], a runtime system to dynamically
manage the execution of the different computational kernels on the existing
hybrid computing resources.

Figure 2 shows the steps to execute a linear algebra routine of Chameleon
using the StarPU runtime system. As Chameleon is derived from PLASMA,
each routine is computed by following a tile-based algorithm. First, the tasks
to compute each of the data tiles in the matrix layout are created based on
the STF paradigm and the DAG is generated with dependencies between them.
These tasks correspond to the basic algebraic operations (called kernels) involved
in the computation of the routine and act on different blocks of data, whose size
depends on the value specified for the tile size (nb in the Figure). Then, the
tasks are scheduled using one of the scheduling policies provided by StarPU and
executed on the available computing resources using efficient implementations of
the basic kernels, such as those provided by the Intel MKL and cuBLAS libraries.
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Fig. 2. Execution of a linear algebra operation in Chameleon using StarPU.
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3 Self-optimization Methodology

This section describes the proposed self-optimization methodology for selecting
the best values for the adjustable parameters that affect the performance of the
routines in task-based libraries. Figure 3 shows the general operation scheme. It
consists of three main phases: selection of the search strategy, training of the
routine with the selected strategy for different problem sizes and values for the
set of parameters, and evaluation of the performance obtained by the routine
using a different set of problem sizes.

Fig. 3. Self-optimization methodology for task-based linear algebra libraries.
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3.1 Selecting the Search Strategy

In task-based libraries, the performance of the routines depends mainly on the
values selected for three subsets of adjustable parameters, AP :

– Routines Parameters, RP : block size and inner block size.
– System Parameters, SP : number and type of computing resources.
– Scheduling Parameters, SchP : scheduling policy used by the runtime system.

In order to find the best values for these AP , it is necessary to make use of
search strategies. Nevertheless, the strategy chosen will be determined by the
number of AP considered and the way it is conducted (exhaustive or guided).
The proposed self-optimization methodology includes several search strategies
to select the best values for RP :

– Exhaustive_NB: the routine is executed by varying the block size, nb, for
each problem size, n. As a result, the execution time and the performance
obtained for each (n, nb) is stored.

– Exhaustive_NB+IB: the routine is executed by varying the block size, nb,
for each problem size, n, by increasing the value of the inner block size, ib,
until it reaches the value of the current block size. As a result, the execution
time and the performance obtained for each (n, nb, ib) is stored.

– Guided_NB: the routine is executed starting with the first problem size
and the first block size considered, nb1, whose value is increased until the
performance decreases. The process continues with the next problem size (in
ascending order), taking as starting point the value of nb for which the best
performance was obtained for the previous problem size. Then, a bidirectional
search is performed on the nb value (with increasing and decreasing values)
until the performance obtained worsens the one obtained so far. The process
then continues with the remaining problem sizes. As a result, for each problem
size, the execution time and the performance obtained with the best value
for nb is stored.

– Guided_NB+IB_2D: the routine is executed starting with the first prob-
lem size and the first block size considered, (n1, nb1), and the inner block size,
ib, is increased until the value of nb1 is reached or the performance obtained
worsens the one obtained so far. To prevent the process from falling into a
local minimum, a percentage value is used as tolerance to decide if the search
continues to the next value of ib. The process then continues with the next
value of nb for the same problem size, taking as starting point the ib value
with which the best performance was obtained for the previous block size.
Then, a bidirectional search is performed on the ib value (with increasing
and decreasing values) using the percentage value considered until the per-
formance decreases or the value of nb is reached. Once the search has finished
for the last value of nb, the execution time and the performance obtained
with the best pair (nb, ib) for the current problem size is stored. Next, the
following problem size is selected (in ascending order) and the search pro-
cess is repeated for ib, starting with the first block size, nb1, and the best ib
obtained for the previous problem size.
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– Guided_NB_1D+IB_2D: the routine is executed in a similar way to
the previous strategy, but when the process moves to the next problem size,
it uses as starting point the best (nb, ib) values obtained for the previous
problem size. The percentage value is also used to prevent the process from
stalling at a local minimum, but only when varying the inner block size, ib.

– Guided_NB_2D+IB_2D: the routine is executed in a similar way to
the previous strategy, but when the process moves to the next problem size,
the bi-directional search is applied both in the block size, nb, and the inner
block size, ib, taking as starting point the best (nb, ib) values obtained for
the previous problem size. Again, the percentage value is used, but in this
case for both the bidirectional search of nb and ib.

In addition, the system parameters (SP ) can be considered. By default, the
Chameleon library only uses the CPU cores available on the system. Thus, a
non-expert user might consider using all the computing resources in the system.
However, this does not always offer the best performance. Therefore, a search
strategy should be used to select the appropriate number of GPUs and CPU
cores to use for each problem size. The proposed strategy consists of adding
computing resources in increasing order of computational capacity by applying
at each step a guided strategy to select the best values of the routine parameters
(RP ) for the first problem size considered. Then, the process continues with the
next problem size, using as a starting point the best values obtained for the RP
for the previous problem size and keeps adding new computing resources as long
as the performance does not worsen the one obtained so far.

The same idea can be applied to select the best values for the scheduling
parameters (SchP ). In this case, the parameter to consider in the Chameleon
library is the scheduling policy used by the runtime system. Therefore, the search
strategy will consist of selecting the best one among those offered by StarPU.
This strategy can be used in conjunction with the previous one if the best values
for all AP have to be obtained.

3.2 Training the Routines

In the training phase, the routines are executed in the system by varying the
values of the AP for each input problem size according to the selected search
strategy. This phase is run only once for each routine and set of problem sizes.
As a result, the selected values for the AP together with the problem size, n, and
the performance obtained (in million floating point operations per second) are
stored in a database for further use. As will be shown in the experiments, guided
strategies will considerably reduce the training time of the routines compared to
the use of exhaustive ones.

3.3 Validating the Methodology

Once the routines have been trained with a set of problem sizes and varying the
values for the AP , the proposed methodology can then be validated. To do so,
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a validation set of problem sizes is used. As shown in Fig. 3, both an empirical
and a simulated approach can be considered:

– Empirical: the routine is executed for each problem size, n, of the validation
set using the best AP values stored in the database for the problem size
closest to n.

– Simulated: for each problem size, n, both the AP values and the codelets
of the computational kernels involved in the routine are obtained from the
database to be used by SimGrid [14] to predict the performance. The codelets
are automatically created for each basic kernel during the training phase and
store performance data related with the execution of each basic kernel for the
values used for the problem size and the routine parameters.

Finally, to check the goodness of the decisions taken (AP values), the perfor-
mances obtained are compared with those that would have been obtained if an
exhaustive search for the best AP values would have been carried out directly
for each problem size in the validation set.

4 Experimental Study

The experimental study focuses mainly on two representative Chameleon rou-
tines: the LU and QR factorizations, although some results will also be shown
for the Cholesky routine. We consider the LU routine without pivoting because
the one with pivoting is not available in Chameleon as the cost of finding the
pivot and executing the swap cannot be efficiently handled. Since both the LU
and QR routines are implemented by following a tile-based algorithmic scheme,
the impact of the block size on performance will be analyzed. In addition, the
inner block size will be also considered, since LU and QR routines uses it to
perform the matrix factorization.

The experiments are conducted with the search strategies described in
Sect. 3.1 to select the best values of the different adjustable parameters (RP ,
SP , SchP ). First, the RP values are selected. Next, the SP values and finally,
the SchP values. Training times are also analyzed and an example of validation
for the proposed methodology is shown.

The heterogeneous platform used consists of five hybrid computing nodes,
but the experiments have been performed on jupiter, the most heterogeneous
one, which is composed of 2 Intel Xeon hexa-core CPUs (12 cores) and 6 NVIDIA
GPUs (4 GeForce GTX590 and 2T C2075). Also, the Intel MKL and the cuBLAS
library are used to run the basic computational kernels scheduled by the runtime
system on multicore and GPUs, respectively.

In the experiments, the following set of problem sizes {2000, 4000, 8000,
12000, 16000, 20000, 24000, 28000} and block sizes {208, 256, 288, 320, 384, 448,
512, 576} are used. The values chosen for the block sizes are a representative
subset of those that allow to improve the performance of the gemm kernel for
the problem sizes considered. This kernel covers most of the computing time
of the routines under study, therefore, the impact of the block sizes selected
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for this kernel will have an impact on the overall performance of the routines.
Nevertheless, the study could have been carried out with any other set of values.

4.1 Selecting the Routine Parameters

As shown in Fig. 3, the selection of the best values for the RP is carried out
during the training phase and then stored in the database. Depending on the
search strategy used, the values selected for the RP may differ, but also the
time needed to obtain these values. The study will focus on selecting the best
values for the block size and the inner block size in the LU and QR factorization
routines by applying the search strategies described in Sect. 3.1.

First, the study is carried out with the LU factorization routine. Figure 4 (top
left) shows the training time (in seconds) for each problem size when using the
Exhaustive_NB+IB strategy, with a total of 6 h and 10min. Figure 4 (top right),
on the other hand, shows the pair (nb, ib) with which the best performance is
obtained for each problem size. It is noted that for problem sizes above 8000, the
best value for nb always corresponds to the largest value considered in the set of
block sizes. In contrast, the values selected for ib are small and vary between 16
and 56 depending on the selected block size.

As shown, the exhaustive search strategy provides good performances,
but the training time is high. To reduce it, the guided search strategies
(Guided_NB+IB_2D and Guided_NB_2D+IB_2D) are used to select the
best values for nb and ib. Figure 4 (middle left) shows the training time (in
seconds) spent for each problem size, and Fig. 4 (middle right) shows the per-
formance obtained with the (nb, ib) values selected by the Guided_NB+IB_2D
search strategy. In this case, the total time spent is 32min. Similarly, Fig. 4
(bottom) shows, respectively, the training time (in seconds) and the perfor-
mance obtained with the Guided_NB_2D+IB_2D strategy for each problem
size. Now, the training time spent is only 6min, less than the required by
the Guided_NB+IB_2D strategy and much less than the 6 h required by the
Exhaustive_NB+IB.

Next, the same study is carried out with the QR factorization routine for
the same set of problem and block sizes. Figure 5 (top left) shows the train-
ing time (in seconds) for each problem size when using the Exhaustive_NB+IB
strategy. The time is about 29 h and 57min, which is longer than in the LU
routine because the LU factorization does not perform pivoting (as indicated
before). Figure 5 (top right) shows the performance obtained for each problem
size when using the best (nb, ib) values. Again, for problem sizes above 8000,
the best value for the block size, nb, always corresponds to the largest value con-
sidered in the set of block sizes. However, the values selected for ib are sligthly
higher than the ones selected for the LU routine, varying from 72 to 160. Next,
the Guided_NB+IB_2D and Guided_NB_1D+IB_2D search strategies are
applied to reduce the training time. Figure 5 (middle left) shows the time spent
(in seconds) for each problem size, and Fig. 5 (middle right) shows the results
obtained when using the Guided_NB+IB_2D strategy. In this case, the time
spent is 8 h and 24min, 64% less than the exhaustive one. Similarly, Fig. 5 (bot-
tom left) shows the training time (in seconds) for each problem size, and Fig. 5
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(bottom right) shows the performance and the (nb, ib) values obtained for each
problem size when using the Guided_NB_1D+IB_2D strategy. Now, the time
spent is 87min, 86% and 97% less than using the Guided_NB+IB_2D and
Exhaustive_NB+IB_2D strategies, respectively.

Finally, Fig. 6 shows a comparison of the performance results obtained for the
LU and QR routines when using the exhaustive and guided search strategies.
In Fig. 6 (left) it is observed that the performance obtained by the LU routine
with the guided search strategies overlaps with that obtained using the exhaus-
tive search. A similar behaviour is observed in Fig. 6 (right) for the QR routine,
especially when the Guided_NB_1D+IB_2D strategy is used and the problem
size increases. Therefore, the use of guided strategies will allow to obtain sat-
isfactory performance results with the selected RP values and with reasonable
training times.

4.2 Selecting the System and Scheduling Parameters

Besides the routine parameters, there are a set of AP whose values may be
selected during the training phase to further improve the performance. In task-
based libraries, such as Chameleon, the number and type of computing resources
to use and the scheduling policy used by the dynamic task scheduler can be
specified when executing a routine. Since the experiments are performed on a
heterogeneous node, both the number of CPU cores and GPUs will be consid-
ered. In addition, as the execution of the computational kernels of the routines
is handled at run-time by StarPU, which decides how to manage the execu-
tion of the kernels on the different computing resources of the system, different
scheduling policies are considered. Some of them (such as dm, dmda or dmdas)
use the information from the codelets generated during the training phase. Other
policies, however, are only based on priorities (such as eager and random), the
load of task queues (such as ws and lws) or the availability of the computing
resources. Therefore, the proposed methodology could be also applied to select
the best values for the system parameters as well as the best scheduling policy
among all those offered by StarPU.

Table 1 shows the values obtained for the Cholesky routine for a set of prob-
lem sizes. The GPU IDs are displayed to show the order in which they are chosen
by the search strategy described in Sect. 3.1, as the scheduler assigns tasks to
computing resources following a scheme based on priorities and dependencies
between the data required by the different computational kernels, but it does
not take into account the computational capacity of these resources. The results
show how an appropriate selection of all the adjustable parameters (block size,
number of CPU cores and number of GPUs, and scheduling policy) allows to
obtain a performance improvement between 10% and 50% with respect to that
obtained by the Chameleon library with the default running configuration. Also,
the selected values differ for most problem sizes, hence the importance of using a
self-optimization methodology that allows to select the best AP values for each
problem size to improve the performance of the routines.
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Fig. 4. LU factorization. Training time (left, in seconds) for each problem size when
using the exhaustive (top left) and guided (middle and bottom) search strategies, and
performance obtained (right) with each strategy when using the best (nb, ib) values
for each problem size.
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Fig. 5. QR factorization. Training time (left, in seconds) for each problem size when
using the exhaustive (top left) and guided (middle and bottom) search strategies, and
performance obtained (right) with each strategy when using the best (nb, ib) values
for each problem size.
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Fig. 6. Comparison of the performance obtained for the LU (left) and QR (right)
routines of Chameleon with the selected (nb, ib) values for each problem size when
using the exhaustive and guided search strategies.

Table 1. Performance obtained (in GFlops) with the Cholesky routine of Chameleon
for each problem size using the best values for the block size and the system parameters
(number of CPU cores and number of GPUs) together with the best scheduling policy.

n nb Cores GPU-IDs Scheduling
Policy

Tuned
Performance

Default
Performance

Improvement
(%)

1000 208 12 {} eager 47 23 51
2000 208 9 {1,5,0} lws 143 93 35
4000 288 7 {1,5,0,2,3} ws 374 312 17
6000 320 6 {1,5,0,2,3,4} dmdas 590 530 10
8000 320 6 {1,5,0,2,3,4} dmdas 734 662 10

4.3 Validating the Methodology

Once the routines have been trained in the heterogeneous system and the best
values for the AP have been stored in the database, the proposed methodology
should be validated. As shown in Fig. 3, the validation process can be done
in an empirical or simulated way. In both cases, the main goal is to show the
performance obtained by the routine when the information stored in the database
is used to select the values of the AP for a given problem size. The selection of
the AP values is carried out based on the performance information stored for
the closest problem size to the current one. Next, the routine is executed (or
simulated) with the selected values.

Table 2 shows the results obtained with the QR routine of Chameleon using
the empirical approach. A different set of problem sizes from the one used for the
previously trained routine is considered to analyze how far the selected values for
the AP and the performance obtained are from the experimental optima. It is
noted that only two selected values slightly differ from the optimum ones, but its
impact on performance is negligible. Therefore, it proves that the methodology
works as expected and could be applied to other linear algebra routines.
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Table 2. Performance comparison for the QR routine of Chameleon when using the
values for nb and ib selected by the methodology for each problem size vs. using the
optimal ones after training the routine.

Autotuned Optimal Variation

n nb ib GFlops nb ib GFlops %
10000 512 112 399 512 112 399 0
14000 576 128 507 512 128 508 0
18000 576 160 573 576 160 573 0
22000 576 160 610 576 160 610 0
26000 576 160 626 576 192 626 0

5 Conclusions

This work presents a methodology to self-optimize task-based libraries, such as
Chameleon. A set of strategies to search the best values for different adjustable
parameters have been applied during the training phase to several linear algebra
routines, such as the Cholesky, LU and QR factorizations.

On the one hand, the impact on performance of certain parameters of the
routines, such as the block size and the inner block size, is analysed. The pro-
posed search strategies allow to obtain good performance, reducing even the
training time of the routines by guiding the search for the optimal values of
these parameters. Also, additional adjustable parameters have been considered,
such as the number of computing resources of the heterogeneous platform and
the scheduling policy of the runtime system, showing the importance of properly
selecting the value of each of them to further reduce the execution time of the
routines. Our intention is to extend this work by using the SimGrid simulator in
the training and validation phases of the proposed methodology to analyze the
potential benefits of its use, as well as to integrate the hierarchical autotuning
approach proposed in [9] within the Chameleon library.
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