2 Zones Thermodynamic Diagnosis model

NOMENCLATURE

ICE Ignition Combustion Engine

¢ specific heat (J/kgK)

f function

h specific enthalpy (J/kg)

m mass (kg)

p pressure (Pa)

g incoming heat per mass unit (J/kg)

g incoming heat flow per mass unite
(J/kgs)

Q incoming heat to the system (J)

Q incoming heat flow to the system (J/s)

R gas ideal constant (J/kgK)

t time (s)

T temperature (K)

u internal especific energy (J/kg)

U internal energy (J)

v specific volume (m®kg)

V volume (m®)

Y mass fraction (-)

Z number of species

Greek letters
a crankshatft angle (rd)
y specific heats ratio (-)

Subscripts

b burned

bb blow by

i number of one burned specie
in incoming to the system

out outgoing from the system
u unburned

Superscripts
* correction considering the species
dissociation

The 2 zones thermodynamic model distinguishes two differentiated zones, one zone of

the unburned mass m,,, and another zone corresponding to the burned mass m,,.

The hypotheses used to propose the diagnostic model are the following:

e Uniform pressure in all the combustion chamber, p.

e Uniform temperature in each zone, T, y T},.

e Ideal gas behavior depending on the composition of each zone is assumed, so

the equation pv = RT in each zone is applied.

e The unburned mass zone composition does not vary with temperature,
however, in the burned mass zone, the composition change is considered

because of the displacement of the CO2 dissociation reaction:

1
CO +502 =4 COZ

It is considered that the reaction is in equilibrium since in the moments in which there is
combustion the temperature of the burned mass is high. The appearance of CO in the

burned mass zone makes the chemical energy released in heat is lower.

e The heat transfer between the two zones does not exist, but there are heat

transfer between the walls and each zones, g,, and g,,.

¢ Only the closed valves process is taken account and without leakages.




The model is formulated starting from the energy conservation equation for open
systems with uniform properties, so that we have:

du dv

+ Q mout hout + mm hm

de ~ Plar
The internal energies and the enthalpies include the terms of formation and therefore
the heat flow corresponds exclusively to the heat transfer.

Expressing the above equation as a function of the intensive magnitudes, we arrive at
the following equation:
du dm (dm dv

Ev + Em) + Q — Mout Roue + Min hin

du dv dm
S m= _pam'i' Q _E(u‘}'pv) Moyt Nout + Min hin

du dv dm
E =D dtm+Q_d_h mout hout+mln hm

The specific enthalpy of the mass leaving the system is the same as that of the system,
h = hoyt-

In a system where only mass comes out: dm/dt = —ti,,: Y m;, = 0, so that:

du dv
“m=— m+ 1
dt Par dt Q (1)

In a system where only mass enters: dm/dt = m;, Y gy = O:

du B dv . dm(h B
T Pt Ot n =
du dv
Em: -p dtm+Q+mm(hm )
du dv m;
—=-p—+q+ m(hin—h) (2)

dt dt

In this case, the heat flow g is per unit mass that enters the system. The Eq. (1) and
Eq. ( 2 ) will apply to the unburned and burned areas respectively. The additional
equations used to close the problem are: the ideal gas state equation Eq. ( 3 ), which
can be applied to each zone:

pv =RT (3)

The volume conservation equation, in the case of an ICE, the volume is variable and
depends on the angle rotated by the crankshaft a:

|4
=@ (4)



The conservation equation of the total mass:

dm dmy, 4 dm,,
dt  dt dt

= —1ip (5)

where my;, is the “blow by” flow, i.e. the unburned mass lost from the combustion
chamber through the piston contour.

The specific variables internal energies and enthalpies are related to the temperature
through the thermal equations of the state of each zone, so for each zone, the specific
volume, the mass and the temperature (or in this case the specific internal energy) are
unknowns.

This system of 6 equations can be reduced to a system of only three differential
equations of the form

dy;
d—tl = f(y1,¥2,Y3)

in which the rest of the unknowns can be determined algebraically from the variables
v;. In this way the system can be integrated by numerical methods.

The derivatives of the unknowns to be cleared are: the temporal variation of the burned
mass, dm,/dt, the internal energy of the burned, du,/dt, and the internal energy of
the unburned, du, /dt.

Calculation of dm,/dt
Applying equations to each system Eq. (1) and EQ. ( 2)
For the area of unburned products:

du, dvy,

ar = P (¢)
For the area of burned products, the incoming mass m, = dm,/dt :

duy dvy . dmy (hy — hy)

2= —p_2 —_ Do u 7 7
dt P Tt gy my, (7)
Applying to each system the Eq. ( 3 ) and deriving with respect to time
dP dvy, dT,
il ¥y =R —% 8
ac vt P Ru dt (8)
dP dvb dTb
il b, =R, L 9
art g P =Ry (9)

The derivatives of the temperature must be replaced by derivatives of the internal
energy, for which the ideal gas hypothesis is used. The application in the area without
burning is immediate as the composition does not change, and therefore:



du, du,dT, dT,
dat  dr dt | ar

However, in the burned area it is necessary to take into account the possibility of

variation of the composition. To obtain an expression of dT,/dt as a function of the

internal energy, where Z is the number of species and Y; the mass fraction of species i,

the internal energy must be expressed as a function of that of each species and each

one of them treat it with an ideal gas:

i=Zp
up = Z Up; Ypi
i=1
duy & d dy,
Up Z( Up; bi )
b _ Dy oy 2B
dt 2 dr b gy Ui
=1
i=Zp
dub _ z (dubi dTb " aYbi dTb E)Ybi dp )
d ~ L \dT, a7 aT, dt Wi T g e M
i=
i=Zp i=Zp
dub _ Z dTb (dubi Y aYbi ) aYbi dp
dt ~ Zude \a1, T ar, )T L Tap dc '
i=1 i=1
i=Zp i=Zp
dub _ dTb z (dubi Y. + aYbi ) dp aYbi
dt  dt Za\dr, PP ar, M) Tar L Tap W
i=1 =1
Defining
ey 2y, & oy
* Up; bi bi
Cop = z <_Ybi +—ubi> =Cyp t+ Z = Upi
w = £ \ar, "7, £, 9T,

Due to specific internal energies of each species are independent on pressure:

iZZb

oy i
dp Ly Op '
dub . dTb Oub dp

dt e T op de
Then:

duy
dl, 1 du, 9p dp

dt ¢, dt ¢, dt

Substituting dT/dt in Eq. (8 ) and Eq. (9):

dp dv, Ry duy

hata Tty =Y 10
ac T g P Cpy dt (10)



duy,

dp dvy, Ry du, Rb%dp (11)

= VUp + 5 P = * s

dt dt Cpp dt c,p dt
Calling:

. G+ Ry
"= Cob
Then:
d Bub dvb dub

P( . ) .

_ —-1)— Y = —1)—=

ac\"r ; )ap AT s =D

From the Eq. ( 4 ), separating the total volume V =1V, +V},,, and using the specific
volume v =V/m:

dm,, dvy, dm,, dvy,
b b U _t = 12
o U + L + 7 U + 7 M f(a) (12)

Doing the same for Eq. (5), m = my, + my, — myy:

dm,, dm,
b My 13
dt dr b (13)

Substituting Eq. (6 ) in Eq ( 8):

dp dvu _ Ru ( dvu . )

ac T ae ~ou VP ar T Gu
dvy, R, dv, dp R,
(1 _> M, IR, T 14
dt ( Cou dr PP ac T Cou u (14)

Substituting Eq. (7 ) in Eq. (11):

%(vb +K,) + % = S;Z (‘P% + %hun:bhb)
b pyy — C;f;b (=) = =2 (v, + (; - 1)1—1:’) + %c‘zb
Sy~ =) = = gmy (v + (3 - )52) + 220 (15)
Substituting Eq. ( 14 ) in Eq. (12):
Oy + S my + Ty, 4, (—%p’]—y CWR;yu 4u) = F(@)

And applying Eq. ( 13):



dmy, dvy, dm,y, dp vy, R, . )
dmy, dvy . dp v, Ry |
dvy, dp v, R, . dmy, )
= uEqu_CpupQu_ at wp — ) + f(a) + 1y, (16)

Substituting Eq. (16 ) in Eq. ( 15):

dp Yy R, . dmb ;
* ———Q,—— (W, —v) +fla) + m
pyb< udtp]/u Cou P u dt b u f bb
dmb Rb Rb .
= - - 1 -
dt c;‘;b( ) mb (vb + ) ) Gy &
Clearing dmy, /dt :
dmy, [ Ry .
7(& (hy — hp) + Py (vp — Uu))
y;dp Ry v dp O
=myvy, —— — — +pyp(f(a) +m )+ (v+y*—1—>
“ iy dt cuuVuQ” prs(f b »+ 0 )ap
R, 0
—= @
Cop
dm, TV %d—zz - C—”y—bQu + pyp (f (@) + 1) + 42 dt Em, (vb + (-1 b) l; Qv
- R
dt 2 (hs — hy) + 0¥y (v, — )
Cob

d_p y_;; aub _ ﬁy_; A Rb A ) * .
=% (muvu et my (v + (v, - 1) F2) (Cpu T2 Qu + g Qo ) + Y5 (f (@) + Titpy)

2o (hy — hy) + Py, —v)
vb

dm,,
dt

dm _ i—p (muvu]): +my, (vb +(;-1) au")) (V“y YiQu + *b Qb) + pyi(f (@) + 1)

R
dt CTb (hy — hy) + PYp y(vp — 1)
vb

(17)

Using the expression of y,,

dmb C(?Z (muvu; +my (Vb +p—-1D Bub)> - (Yuy_ Y5 Qu + (i — 1)Qb) +pYp (d‘;( @) + mbb)

dt }/b(uu - ub) + (hu - hb)

The denominator of Eg. ( 17 ) does not take values close to zero even if the masses of
burned or unburned are small or null. This is a great advantage when integrating the
differential equation in the areas where combustion starts or ends.



Calculation of du,,/dt:
From Eq. (6)

dv, duu_l_'
Poae = Tar T M

And substituting this term in Eq. ( 10 ):

dp du, . R, duy

T a T T A

Clearing du,, /dt:

dt dar v Yu

Calculation of du,/dt:
Case inwhich my, = 0
HYPOTHESIS

When the burned mass is very small, m, = 0, the burned products are at adiabatic
flame temperature is assumed, so that h,, = hy,

Uy + PV = Up TPV

Uy, + RuTu = Uy + RbTb

du, 4 R, du, duy, N Ry du, dp
dt ¢y dt dt ¢, dt Pdt

du d
dub_)’ud_gl‘*'Kpd_lt)
dt Vs
So, when m,, = 0:
du, (dp . dp\ 1 .
= (Gt woog) o =0
du, (dp A\ 1 .
W—<E(Uu+Kp)+Qu)y_; my =0 (19)

Case in which my, >0

In Eqg. (16 ) clearing:



dvb 1 dp Uy Ru . dmb
7 T Qu———WWp —v) +f(@)+m
dt mb My dtPYy CpuD b~ V)t f bb

And substituting this term in Eq. (7 ):

dup _ p| dpv, R, . dmy dmy, (hy — hy)
dt my e dtpy, Cou P u dt Wy = vu) + (@) + 10y | + 0 + 7= dt m—b
duy 1 |dpv,m, Ry, _ dm b .
at ~ m, [dt T o Qe O g P@s =m0+ (= )] P (F(@) + i)

du dm, (u, —u dpv,m 1 dV(a
dy _ 2y (=~ 1) _ b v “+—<C Qu+Qb> ( @
pu

dt — dt m, dt Yum, Mp dt +mbb) m, >0 (20)



