
Speeding Up Exascale Interconnection Network

Simulations with the VEF3 trace Framework

Javier Cano-Canoa,∗, Francisco J. Andújarb, Francisco J. Alfaroa, José L.
Sáncheza

aComputing System Department, University of Castilla-La Mancha, 02071, Albacete,
Spain

bComputing System Department, Universidad de Valladolid, 47011, Valladolid, Spain

∗Correspondence to: Instituto de Investigación en Informática de Albacete, Campus
Universitario, 02071, Albacete, Spain.

Email addresses: javier.cano@uclm.es (Javier Cano-Cano),
fandujarm@infor.uva.es (Francisco J. Andújar), fco.alfaro@uclm.es (Francisco J.
Alfaro), jose.sgarcia@uclm.es (José L. Sánchez)

Preprint submitted to Parallel and Distributed Computing October 10, 2024

Abstract

Simulation is used to evaluate and validate the behavior and performance

of computing systems, in particular the interconnection network in the con-

text of high-performance computing. For the simulation to be performed,

the simulator program must be provided with a mechanism that generates

network traffic or workload. Although synthetic traffic has been widely used,

communication from real applications is a better and more representative

workload. With this kind of network workload, the simulations can become

slower, especially when simulating Exascale systems.

In this paper, we extend the VEF trace framework, originally designed for

feeding off-chip networks with MPI traffic, including new functionality related

to the on-chip communications and introducing improvements to speed up

the simulations. This way, the VEF framework allows to study the behavior

of Exascale interconnection networks with realistic traffic and in reasonably

short times.

Keywords:

Interconnection networks, Modeling and simulation tool, Exascale

workloads, Performance evaluation

2

1. Introduction

As it is well known, the interconnection network is a crucial subsystem

in high-performance computing (HPC) systems and data-centers (DCNs).

In a lot of these systems, to break the Exascale barrier in a few years is

expected. The world’s most powerful supercomputer is the Summit [1] from

DOE/SC/Oak Ridge National Laboratory, USA, which offers 201 PFLOPS

of peak performance. On the other hand, the International Data Corporation

(IDC) predicts that the Global Datasphere will grow from 33 Zettabytes (ZB)

in 2018 to 175 ZB by 2025 [2], which will make the requirements for storage

devices but also skyrocket. Although it is foreseeable that the number of

systems increases, it is does not do so in the same proportion as the amount

of data, and therefore the bandwidth requirements to access that data will

also be greater.

In this scenario, the performance of the interconnection network is crucial,

otherwise it would become the system bottleneck. Therefore, new design

proposals of the main aspects characterizing the interconnection network

must guarantee low latency overhead and high communication bandwidth.

Obviously, sometimes it is impossible to physically implement and test those

new proposals, so they must be evaluated and validated using software-based

tools, such as interconnection network simulators.

Interconnection network simulators have traditionally used synthetic traf-

fic as network workload. However, synthetic traffic is not the workload that

real multiprocess applications generate. In the last decades, the use of ap-

plication communication traces is becoming a common strategy to generate

the network workload and evaluate the system performance.

3

The first step regarding application communication traces is to obtain

the trace files. A profiling tool is required, as well as an adequate trace

format. VEF framework [3] defines a trace format and is capable of obtaining

and replaying trace files. VEF traces contain every communication an MPI

application generates during its execution. A fundamental characteristic of

VEF traces, which makes them different from the most trace systems, is

that they contain information about the relationship between communication

messages. Moreover, VEF traces can be used in any network simulator with

minimal effort.

Initially, the VEF framework was aimed for MPI communications, which

means that it was intended for off-chip interconnection networks. However,

nodes in Exascale systems will be composed of multiple cores, which allows

applying hybrid programming [4] so that the message passing model coexists

with the shared memory model. In this scenario, the applications will gener-

ate two types of messages: those due to the data transfer between nodes, and

those generated by the cache coherence protocols within the nodes. There-

fore, the communication trace files obtained when running these applications

should collect both the traffic between the nodes (off-chip network) and the

traffic between the cores in each node (on-chip network, NoC).

Authors presented an extension to the VEF framework that allows to also

collect the messages generated on the on-chip network [5]. At the moment,

the framework can be used to obtain and manage trace files from both off-

chip and on-chip networks, separately. The next step will be obtaining both

types of traffic at the same time when the applications generate them.

In this paper, further details on the new characteristics and improvements

4

of the framework are provided. Thus, it is explained how the framework

has been extended to reduce the execution differences with respect to the

previous one [5], and how intra NoC tile latencies and memory auto-mapping

have been introduced. Moreover, more details are given on all the updates

made to previous VEF trace format, the problems that led us to update that

format and a comparison with the new trace format in terms of speed up.

The related work has been extended and the evaluation section significantly

improved: new simulation scenarios, new updates in Gem5 full-system, more

results and performance metrics, and a discussion about how NoC trace files

combined with MPI trace files may feed Exascale simulators.

The rest of this paper is organized as follows: Section 2 reviews the related

work regarding simulation, trace files and tools. The VEF trace framework

is explained in Section 3, in which we talk about the VEF trace format

(Section 3.1), the profiling tool (Section 3.2) and the trace-replaying library

(Section 3.3). Section 4 shows the results obtained evaluating the trace model

accuracy and, finally, Section 5 presents some conclusions.

2. Related work

Simulation is commonly used to evaluate, verify and validate the behav-

ior and the performance of computing systems. Simulation can also help

to fine tune new techniques and proposals before implementing them in a

real system, significantly reducing its cost, since the cost of simulating is

significantly lower than the one of manufacturing a real design.

In the particular case of interconnection networks, during the last years

extensible, open-source frameworks have been developed, such as NS-3 [6],

5

OMNeT++ [7], SimGrid [8] or SST [9]. Some research groups have developed

simulators based on these frameworks, such as Sauron [10], which is based

on the OMNeT++ framework. Other research groups have developed their

own network simulators from scratch, such as BookSim [11] or Topaz [12].

Other efforts have been focused on the development of tools to save time

in the development, debugging and evaluation of network models, such as

the RAAP HPC tools [13].

An essential aspect in these simulators is how to provide the network

workload. Currently, the traffic generated by the execution of real applica-

tions, and recorded in trace files, is preferred to synthetic traffic.

Trace-driven simulation is not a recent topic in the HPC field, and there

exist several tools for capturing the traffic generated by applications. For in-

stance, MPI incorporates the profiling message interface (PMPI) to facilitate

the profiling and tracing of the MPI applications.

There are other instrumentation tools to profile MPI applications such as

VampirTrace [14], TAU [15], PARAVER [16] or Score-P [17]. These instru-

mentation tools are able to record every message sent from the processes and

to store the information following a well-defined format.

In the context of network on chips (NoCs), there are several simulators

proposed in the literature. Nostum [18] is a flexible NoC simulator focused

on communication primitives along loss-less switches, and it implements the

protocol stack for the link, the network and the session layers. Nirgam [19],

Noxim [20] and Sicosys [21] are general-purpose interconnection network sim-

ulators for multiprocessor systems. These simulators accurately model a wide

variety of router architectures and offer a lower computational cost, achieving

6

modularity, versatility and connectivity with other systems. Unfortunately,

these simulators obtain results using synthetic traffic or traditional non-self-

related trace files. In fact, the main shortcoming of these simulators is that

they do not simulate other components involved in a chip multi-processor

(CMP) architecture, as the memory system, the processing elements or the

interactions with the NoC. This means that these simulators offer lower ac-

curacy.

Another well-known NoC simulator is Garnet2.0 [22], included in the

Gem5 [23] full-system simulator. It provides different operation modes that

differ in microarchitectural details of the modelled on-chip router. Although

Garnet2.0 is an excellent tool due to its accuracy and inter-operability with

Gem5, it has some problems of scalability, a limited standalone functionality

and a reduced number of topologies. Furthermore, Gem5 is very slow be-

cause of the large number of simulated elements. Gem5 can capture memory

traces using Google protobuf encoding. Multiple works have been published

referring memory traces such as Elastic traces [24] and ElasticSimMATE [25].

Memory traces are very useful for memory researching, but the imple-

mentation of a cache coherence protocol is compulsory to replay these traces

on an arbitrary NoC simulator. This means that the simulations will take

more time to finish and the system will be more complex. More details about

memory traces and VEF traces are included in Section 2.1.

Netrace [26] uses a communication library that captures the dependencies

at system memory level into a trace file. However, the NoC is not simulated

when the trace file is generated and, therefore, the dependencies do not

include all interactions among the different components of a CMP system.

7

Moreover, these trace files are very limited to a particular processor and

memory system configuration.

Finally, regarding the trace file generation, there are a few available tools.

SynchroTrace [27] is an architecture-agnostic tool able to capture the inter-

actions between threads in a running application, taking into account almost

all the system components. Nevertheless, SynchroTrace requires a complex

trace replay framework including an Event Queue Manager, Thread Sched-

uler, etc. Moreover, SynchroTrace works at thread level, meaning that these

traces are not directly source/destination node traces.

In our opinion, previous trace files do not have the flexibility required to

be replayed on an arbitrary simulator. For this reason we created our own

trace file format, called VEF, and VEF-TraceLib, an open-source library

written in ANSI C, responsible for trace reading, dependency handling, task

execution management, and capable of feeding any network simulator [28, 3].

Some integration examples of VEF-TraceLib can be found in [29, 30, 31].

However, applications usually used to measure performance on NoCs do

not use MPI as communication library. Even if these applications use MPI,

to create/modify a communication-library-agnostic tool is a better approach.

We can take advantage of all existent VEF infrastructure for supporting

NoC simulators. We have a system-agnostic trace format and a trace-replay

library. Hence, we only need to get representative traces of NoC traffic, in

order to support on-chip and off-chip communications in the same framework.

2.1. VEF traces vs. memory traces

Gem5 includes a tracing mechanism called Elastic Trace, which captures

data and load/store order dependencies instrumenting a detailed out-of-order

8

processor model called DerivO3CPU. Elastic Trace is capable of tracking

dependency information inside the processor pipeline. Gem5 also includes

the Trace CPU model which plays back Elastic Trace files. The execution

time average error of Elastic Trace is between 7% and 17 % [24]. However,

the Elastic Trace system average speed up is 8x. The main drawback is that

to extract traces from multithread applications is not allowed. However,

one of the biggest advantages is that the configuration parameters may be

modified without losing more than a 17% of precision in terms of execution

time.

In order to solve the multithread applications problem, ElasticSimMATE

framework has been presented. The tool is compatible with both OpenMP

3.0 and POSIX thread APIs. Recording synchronization traces requires using

a specific Gem5 pseudo-instruction created for this purpose. This pseudo-

instruction requires to be inserted either manually or automatically by means

of an instrumented runtime system. These traces can be very useful for those

studies focusing on memory-system exploration, achieving an average speed

up of 5x [25]. The Elastic trace files are fast, accurate and portable.

On chip network simulators are very complex, since simulate a wide va-

riety of elements (e.g. on chip routers, links, routing protocols, power con-

sumption models, etc.) and in a very detailed way. Therefore, the simulation

time is very high. To replay Elastic trace files on an arbitrary NoC simu-

lator, the implementation of a cache coherence protocol is required, further

increasing the simulator complexity and simulation time. Furthermore, not

every communication included in the memory traces will end up in a network

packet. This information is useless for a NoC simulator, and will increase

9

the execution time and the final trace size. Memory access traces such as

Elastic traces are not a good option for NoC simulators, and a more specific

mechanism is required to obtain the traces.

VEF3 traces do not require a complete cache coherence protocol, and

moreover, the users do not need to know how these protocols work. These

trace files only include communications that could end up in a message

through the NoC. Therefore, VEF3 traces are a better option for NoC sim-

ulators than Elastic Traces or any other memory traces. Finally, as far as

we know, the only implementation of Elastic Traces has been done in Gem5.

This could mean that its integration in another simulator will be a time

consuming task.

3. VEF3 trace framework

We have developed a set of tools that allow us to obtain trace files contain-

ing the communication generated by applications running in large computing

systems, and to use them as workload in interconnection network simulators.

Initially, the VEF framework was aimed to MPI communications, and so it

was intended for off-chip networks. We have extended the framework func-

tionality and now to capture the communication generated by several threads

of the application running inside a computing multicore is also possible.

The main components of the framework are a profiler to obtain the traces,

a library to manage them and the trace format. All of them have had changes

up to the current version. For instance, the first trace format version (VEF)

only included point-to-point MPI communications, while collective MPI com-

munication was added in the second version (VEF2). The new VEF3 trace

10

format includes new message dependencies for speeding up the simulations.

In the following sections we offer details of the VEF framework, paying spe-

cial attention to the new improvements presented in this document.

3.1. VEF3 Self-Related traces

The VEF3 trace format is based on the VEF2 trace format [28]. Although

VEF traces were originally designed for MPI profiling purposes, modeling the

cache hierarchy communications is also possible using the VEF2 trace format

(see Section 3.1.5). Not only that: since we have developed a library [28] for

replaying VEF traces (VEF-TraceLib), we can use the same library to replay

both MPI traces and NoC traces. This way, we have extended the VEF trace

format to support on-chip communications, preserving the compatibility with

MPI VEF traces. A VEF3 trace is composed of two files, a .vef file (Section

3.1.1) and a .names file (Section 3.1.2).

3.1.1. Vef files

A VEF3 trace is a plain text file containing all the information needed to

model the communications between different MPI tasks or different elements

of the cache hierarchy. A trace comprises multiple records, being each line an

independent record. We can distinguish three kinds of records into the traces:

the trace header, the communicators, and the communication records.

1. Trace header. This is the first line in the file and contains basic trace

information. Its format is the following:

VEF3 nNodes nMsgs nCOMM nCollComm nLocalCollComm noRecvDep clock

where:

– VEF3 indicates the VEF trace format version.

11

– nNodes is the total amount of memory devices (L1 caches, L2 caches,

directories, etc) in NoC traces1. In MPI traces, this field indicates

the total number of MPI tasks.

– nMsgs is the number of point-to-point communication records.

– nCOMM is the number of MPI communicators. Since the commu-

nicators are not necessary for NoC traces, this field is set to “1” and

we only create a virtual communicator for all memory devices.

– nCollComm is the number of global collective communications, only

used for MPI traces and set to “0” for NoC traces.

– nLocalCollComm is the number of local collective communications,

only used for MPI traces and set to “0” for NoC traces.

– noRecvDep is a deprecated parameter maintained for compatibility.

– clock is the clock resolution measured in picoseconds. Since the trace

time fields are measured in a full-system simulator in cycles, is nec-

essary to calculate the cycles on an arbitrary NoC simulator. This

field has been included in VEF32.

2. Communicators, or COMMs, indicate communicators in the MPI trace.

They are not necessary in shared-memory communications, and for com-

patibility reasons, we add to each NoC trace a virtual communicator with

all possible destinations. Its format is the following:

C0 element0[element1...elementn−1]

1We will use “NoC traces” to refer to the trace files containing the communication the

NoC supports.
2For MPI traces, this field is the clock resolution of a POSIX clock (1 ns, i.e. 1000 ps).

12

where:

– CO is the COMM identifier composed of the character “C” followed

by a unique natural number, in this example “0”.

– [element0...elementn−1] are the memory device identifiers. For ex-

ample, cache L1 inside node 0 could have identifier 1. The identifiers

assignation is responsibility of the simulator.

3. Communication records. They contain the communications generated

by the MPI tasks or the cache hierarchy elements. Each record contains

its dependency relationship with other communication records. There

are two types of these records: point-to-point communications records,

and collective communication records. We focus on the point-to-point

communication records3. The format of these records is the following:

ID src dst length Dep dTime IDdep

where:

– ID is the message identifier, unique for each message.

– src is the source memory device identifier in NoC traces or it is the source

task identifier in MPI traces.

– dst is the destination memory device identifier in NoC traces or it is the

source task identifier in MPI traces.

3Note that, although we do not use the collective records in NoC traces, the VEF trace

format has the capability of modeling multicast operations. This is an extra advantage

of the VEF trace format, since it will allow us to reproduce communications of another

cache coherence protocol that performs multicast operations. For more information about

collective operations, see [28].

13

– length is the size of the message measured in bytes.

– Dep is the type of dependency between records. Section 3.1.3 explains

this in detail.

– dTime is the injection time or the dependency time, measured in cycles.

– IDdep is the record identifier on which the current record depends on.

Table 1 shows an example of a .vef file. Note that each trace section is

delimited and annotated on the right side.

3.1.2. Names files

The reason to have this file separated from the .vef file is because on

the original VEF format, every process is a task that can be distinguished

with a natural number (ID). In on-chip communications there are several

memory devices communicating (L1, L2, etc.) with each other and we cannot

accurately distinguish them. For example, the ID 1 could be a L1, L2, DMA,

etc., in short, could be any memory device. However, if we take a look to the

.names file we can know what memory device is represented with the ID 1.

In order to preserve compatibility and be able to know the relationship

between IDs and memory devices, we decided to add this file to each trace

with this information. Furthermore, these files can be very useful to map

memory devices in network interfaces (NI) during the trace replay process.

The .names file contains the following information:

– NODES:n:m is the first file line. It shows the total amount of memory

devices (n) and the latencies in cycles between any memory device

attached to the same NoC tile (m), being n and m natural numbers.

14

– id:element n, being id the memory device ID, shown in the .vef file as

source (src) or destination (dst). element indicates the kind of memory

device, being the most common possibilities: L1Cache, L2Cache, Di-

rectory and DMA. Finally, n indicates to which NoC tile the memory

device was attached on the simulation that generated the trace.

Table 2 shows an example of a .names file. Note that this file is associated

with the .vef file shown in Table 1.

Table 1: VEF3 sample trace (.vef)

VEF3 50 29 1 0 0 0 1000 // Header

C0 0 1 2 3 4 5 ... // Comms.

0 0 18 8 4 17 -1 /* Comm.

1 0 18 8 5 0 0 (send and

3 18 0 8 6 2 0 receive

4 18 0 72 6 2 1 messages)*/

5 0 18 8 2 2 3

6 0 18 8 2 2 4

7 0 17 8 5 2 6

8 0 17 8 5 0 7

Table 2: VEF3 sample trace (.names)

NODES:50:2 // Header

0:L1Cache 0 /* Identifier

1:L1Cache 1 (Memory devices

... with their associated

17:L2Cache 1 Ids and NoC tile) */

18:L2Cache 2

...

47:Directory 15

48:DMA 0

49:DMA 1

3.1.3. Dependency types

The field Dep is probably the most relevant field in the communication

records. This field allows the VEF traces to be self-related, and indicates

the condition that must be satisfied to process the following record in the

workflow of each memory device. The dependency types are the following4:

0: Independent records: they correspond to the first messages sent

by the memory devices or MPI tasks. These records do not depend on

4Note that dependency types have the same behavior either on MPI or NoC traces.

15

other records and are processed at the cycle dT ime, being IDdep = −1.

1: Send dependency: the record can be processed when a previous

message, whose identifier is specified in IDdep, is sent by the current

device/task. The processing of this record is programmed dT ime cycles

after the IDdep message was sent.

2: Receive dependency: the current record can be processed after a

message generated by another memory device or MPI task, whose

identifier is specified in IDdep, is received by the current memory de-

vice/task. During the simulation, when the previous record is pro-

cessed, two things happen with the current record:

– The waited message has been received. In this case, the process-

ing of the record is programmed dT ime cycles after the IDdep

message was received.

– The message has not been received. In this case, the execution of

the memory device/task is stopped until the message is received.

Then, the processing of the current record is programmed dT ime

cycles after the reception of the desired message.

3: Group dependency: the current record can be processed after a pre-

vious collective communication has finished. Only used in MPI traces.

4: Independent records and trigger: as the first dependency value,

this record does not depend on a previous record and is also a “trigger

message”. A message is a “trigger” message when the receiver has a

record that depends on the reception of this message.

5: Send and trigger: send dependency and trigger message.

6: Receive and trigger: receive dependency and trigger message.

16

7: Group dependency and trigger: the current record shows a group

dependency and is a trigger message. Only used in MPI traces.

Note that the dependencies from 4 to 7 were not considered in the previ-

ous version of the VEF2 trace format. These dependencies have been added

in the VEF3 trace format to speed up the replay process. In the previous

version, when a message is received, VEF-TraceLib checks if this reception

triggers a new message. This checking was performed for all received mes-

sages, regardless of whether a new message was triggered or not. This is

because, without these new dependencies, the system has no information

about future messages, forcing to check all the messages that could poten-

tially satisfy its dependency in the current simulation cycle. With these new

dependencies, we significantly speed up the trace replay process. More details

about this issue are given in Section 3.1.5 .

3.1.4. Example

Let us consider the VEF3 trace chunk shown in Table 1, corresponding

to a 16 NoC tiles system running an application. After reading the trace

header and the .names file (Table 2), we know the relationship between IDs

and memory devices, the number of memory devices and the clock resolution.

Figure 1 shows the communication visual representation. Let us analyse

the activity assuming that a message can be delivered in two cycles to any

memory device; a memory device can process and reply a received message in

the same cycle; and a memory device can deliver two simultaneous messages.

The first and second messages can be sent in cycle 17. The message 0

is independent (IDdep = -1) and is sent in the cycle indicated in the field

17

dTime. Since the message 1 has a send dependency with the previous one,

once the message 0 is sent, the message 1 is delivered as well.

0:L1Cache_0 18:L2Cache_2 17:L2Cache_1

0,1

3,4

5,6
7,8

0

4

8

12

16

20

24

28

32

id

Idle Status

Processing data/info

Message

Figure 1: Communication between the three caches of the trace example.

Two cycles later, in cycle 19, the messages 0 and 1 arrive at the cache L2 in

NoC tile 2 (18:L2 Cache2). The messages 3 and 4 have a receive dependency

with the messages 0 and 1, respectively. Therefore, the messages 3 and 4

are sent two cycles later, because the cache needs these cycles to process the

received messages. Messages 5 and 6 are in the same situation than messages

3 and 4. Hence, in cycle 25 they are delivered and received in cycle 27.

The message 7 has a send dependency with the message 6, which is sent in

the cycle 25. Therefore, the message 7 is sent two cycles later. The message

8 has a send dependency with the message 7 that does not have processing

cycles, so is sent in the same cycle as the message 7.

3.1.5. From VEF2 to VEF3

As stated at Section 3.1, the VEF3 trace format is an extension of VEF2

trace format, originally designed for MPI profiling. The first version of the

trace format only includes the point-to-point communications, being added

the collective communication in the second version. However, this trace

18

format is not as efficient as desired and, because of that, we had to improve

it.

The main problem regarding the VEF2 trace format is the strategy fol-

lowed by the trace-replay library (VEF-TraceLib) to update the record de-

pendencies after receiving a message. In VEF-TraceLib, each memory de-

vice/task has its own message window. The message window takes n com-

munication records from the trace file, that are loaded in main memory and

processed by VEF-TraceLib to determine if they have to be sent. When a

communication record is used, it is removed from the message window and

the library loads a new message and this process is repeated until the trace

file end is reached. When a message arrives at its destination, the simulator

notifies the message arrival to VEF-TraceLib. Then, the library goes through

the arrival message window until: a) it finds a record that depends on the

received message; b) the library checks the entire window message without

finding a dependent record. In case b), a “false fail” can happen. That is,

the received message triggers a new record, but this record has not yet been

read from the trace file and added to the message window. In this case, the

simulation will fail after a while.

Therefore, two problems appear; i) to properly adjust the size of the

message window; ii) the amount of time spent cycling through the messages

window increases proportionally with the message window size. Problem

i) can be solved by increasing the window size as much as the computer

memory allows us, but the simulation will take much more time, which is

against of the trace-driven simulation goal. However, problem ii) cannot be

solved because it is a consequence of the problem i). For this reason, we

19

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

bodytrack

canneal

dedup

fluidanim
ate

freqm
ine

vips
raytrace

S
p
e
e
d
-U

p

Benchmark

Speedup-simdev
Speedup-simsmall

Figure 2: Speed-up of VEF3 versus VEF2 trace file format.

decided to update the trace format in order to solve these problems.

The new VEF3 trace format includes the dependencies 4 to 7, detailed in

Section 3.1.3. These new dependencies provide the trace-replay library with

more knowledge about the trace. Therefore, when a message is received,

VEF-TraceLib only updates the message window if the received message is

marked as a trigger-message, speeding up the trace-driven simulation.

We have carried out several experiments in order to determine if the VEF3

format improves the simulation time. We have extracted some traces from

benchmark applications in the VEF3 trace format and we have downgraded

them to the VEF2 trace format. After that, we have run simulations using

both traces, measured the simulation times and checked the speed up.

We have chosen the Parsec 3.0 benchmark suite to perform our experi-

ments. More details about the benchmarks can be found in Section 4.1.

Figure 2 shows the speed up achieved on each application. The best case

is vips with the input simsmall achieving a speed up of 44.01x. The worst

case is raytrace with the input simdev achieving a speed up of 1.029x.

20

The message window has been fixed to 500,000 messages in order to make

a proper comparison between different applications and inputs. Note that in

Figure 2 there is a selection of Parsec 3.0 benchmark applications. However,

there are enough benchmark programs to extract conclusions about the VEF2

versus the VEF3 trace formats.

3.2. VEF3 profiler

To obtain the traces, we need a tool capable of capturing the network

traffic generated by an application. In the case of NoC traces, our tool is a

modified version of Gem5. We have chosen Gem5 because it is one of the

most detailed full system simulators, is well documented and has a great user

and developer community.

Since the message generation in shared-memory communication systems

depends on the cache coherence protocol, we have implemented a sniffer

interface on it. We have chosen MOESI CMP directory because it is a very

popular cache coherence protocol on CMP systems. However, any cache

coherence protocol can be easily modified to include the sniffer. Figure 3

shows a generic sniffer schema on which we base our trace sniffer. Each

memory device has two tiny gray rectangles attached, representing sniffer

links. The sniffer system is composed of:

– Sniffer engine: tracks every message sent or received, computes times,

handles dependencies and stores the final trace into a file.

– Sniffer link: included inside each memory device, it communicates ev-

ery message to the sniffer engine. Two kinds of sniffer links can be

distinguished: send and receive sniffer links.

21

Before a message is sent or received, the sniffer analyzes the message, finding

out the source and destination information, determining the dependencies

with other messages and calculating how many cycles have been necessary

for the system to process the information according to those dependencies.

We could also capture the messages at network level. However, using this

approach, the source and destination of a message are defined in terms of

NIs instead of cache devices. In other words, NIs hide this information due

to the packing process. By capturing the traffic at the cache hierarchy level,

we achieve more flexibility during the trace replay process, since the cache

devices can be mapped to NIs as desired.

Once the application finishes its execution, the sniffer stores all the infor-

mation following the VEF3 format.

CPU 1

CacheL2

ICacheL1 DCacheL1

Directory

CPU n

CacheL2

ICacheL1 DCacheL1

Directory

Link Link

Link

Link

Link

Link

Link Link

Link

Link

Link

Link

Interconnection network

Figure 3: Generic sniffer diagram.

Data Stucture Initialization

Region of Interest

__parsec_roi_begin()

__parsec_roi_end()

Save Results Free Memory

reset_stats();
VEF_enable();

dump_stats();
VEF_disable();

Figure 4: Execution block of modified

applications.

3.2.1. Sniffer switching

During a full system simulation, many things happen before the paral-

lelized code of the simulated application starts to be executed. If we want

to obtain its communication trace, we face two possibilities; i) to capture all

the traffic from the beginning of the simulation; ii) to switch on the sniffer

22

in the most representative application region.

We have developed both options because this allows us much more flex-

ibility. The first option is easy to be developed, but the second one is more

complicated. In order to develop the second option, we took advantage of

a Gem5 special instruction called M5ops [32], that allows us to change the

simulation state inserting these instructions in the application source code.

Moreover, including these special instructions into our applications, we can

perform specific actions like setting a checkpoint, resetting the stats, dumping

the stats into a file, etc. Taking advantage of this feature, we extend the set of

M5ops instructions including two new ones: VEF enable and VEF disable,

which enable and disable the sniffer, respectively.

The next step is to modify the applications in order to include the new

M5ops instructions into the source code. As we point out in Section 4.1, we

have chosen the Parsec 3.0 benchmark suite. We decided to place our new

M5ops instructions inside the source code of the Parsec 3.0 profiling library

because every benchmark application uses this library to be executed. This

strategy avoids to place the new instructions in every benchmark application.

Figure 4 shows where and how the new M5ops instructions are placed,

as well as other instructions used for managing the statistics collected until

the application reaches the VEF disable instruction. Each application of

the Parsec benchmark suite defines a Region of Interest (ROI), that repre-

sents the computationally intensive and parallelized phase of the application,

ignoring the initialization and the shutdown phase. These different phases

are delimited in the source code by the Hooks library. For this reason, we

have included the new M5ops instructions in the Hooks library: we can in-

23

sert these instructions in all the applications making minimal changes in the

benchmark source code.

After building the Parsec benchmark suite inside the simulated operating

system on Gem5, it is possible to record the communications and to collect

accurate statistics only during the ROI phase. Using both the trace and the

statistics obtained, we have the possibility to evaluate our sniffer model.

3.3. VEF-TraceLib

VEF-TraceLib is the library responsible for replaying the VEF traces and

it can be integrated in any interconnection network simulator. The library

allows to simulate multiple VEF traces, add traces to the simulation on

the fly, to allocate any task/memory devices to any NI and manage all the

task/memory device activities transparently to the simulator, which only

receives requests for sending messages between two different NIs. Note that,

although NoC traces and MPI traces are obtained using different tools, both

kind of traces can be used in the same simulation.

As we exposed in our previous work [5], using VEF-TraceLib2.4, results

obtained are accurate enough, but in a few applications there are still sig-

nificant differences in the network throughput. These differences are caused

by the intra-messages in VEF-TraceLib2.4. An intra-message is a message

between two memory devices attached to the same NI (e.g. L1 and L2 caches

of the same NoC tile). The intra-messages are managed by VEF-TraceLib2.4

and the network simulator has no knowledge of these messages.

Therefore, in the simulation using VEF-TraceLib2.4 + Garnet2.0, Garnet

has no information about the intra-messages, but Garnet takes into account

these messages in the Gem5 simulation. For this reason, there are significant

24

throughput differences if the number of intra-messages is high enough.

In order to improve the trace-replay accuracy and facilitate the use of the

library, we have updated VEF-TraceLib2.4 to VEF-TraceLib2.5 including

intra NoC tile latencies and memory devices auto-mapping.

3.3.1. Intra NoC tile latencies

VEF-TraceLib1.0 was originally developed for off-chip networks. In these

systems, the MPI communications between tasks mapped in the same node

do not require to use the off-chip network. For this reason, these commu-

nications must be managed by VEF-TraceLib1.0. Since we do not want to

implement a complex NoC (remember that our main objective is to speed up

the simulation), we implement a “perfect” network inside VEF-TraceLib1.0.

This model is only composed of a fixed bandwidth configurable by the user.

VEF-TraceLib1.0 simply uses this fixed bandwidth and the message size to

calculate the number of cycles required to deliver this message in the NoC.

However, this “perfect” network does not model the behavior of the

intra-messages in the Gem5 simulation, generating significant differences be-

tween the full-system and the trace-driven simulation. To smooth the intra-

messages impact, we have implemented new configuration options that take

control of the intra NoC tile latencies in the new version VEF-TraceLib2.5.

Currently, the latency information can be set from multiple sources:

– “Perfect” network with a fixed bandwidth (intra NoC tile of previous

library versions).

– From .names files generated by our modified Gem5 version (see Section

3.1.2). In Gem5, the link latencies cannot be configured separately;

this is, every link in the system always has the same latency value.

25

Hence, the latency between all the intra NoC tile memory devices is

set to the same value, which is indicated in the .names file.

– Setting latencies manually when configuring VEF-TraceLib2.5 at the

start of the simulation. Users can manually define each latency between

any given memory device. This method provides a lot of flexibility

allowing almost any latency configuration.

– From a default latency value. If the intra NoC tile latencies mode is

enabled, we set a default value of 1 cycle on each memory device.

These changes aim to reduce full-system versus trace-driven simulation

differences. Note that our goal is to speed up simulations maintaining the

accuracy with respect to the full-system execution.

3.3.2. Memory devices auto-mapping

As we briefly explained in Sections 3.1.2 and 3.2, memory devices have to

be mapped into NIs. This is because in a NoC simulation memory devices

are not simulated, but only the interconnection devices (switches, arbiters,

buffers, etc.). VEF-TraceLib takes care of them managing their messages.

However, VEF-TraceLib needs to know which memory device is connected

to each NoC tile or NI.

Using the previous VEF-TraceLib versions, the final user was the respon-

sible of mapping each memory device in the desired NI. The new library

version, VEF-TraceLib2.5, brings the possibility to auto-map memory de-

vices, replicating the same configuration used in the full-system simulation.

The auto-mapper reads the .names files to know where the memory devices

were mapped in the full-system simulation. The only exception are DMA

26

devices, since these particular memory devices are always mapped into NI

0, matching with the Gem5 DMA mapping policy. Manual mapping is still

available, allowing any mapping desired by the user.

3.3.3. Integration of VEF-TraceLib in Gem5

One of our objectives is to check the accuracy of the NoC trace model

and for that we compare it against full-system executions (Section 4), com-

paring the statistics obtained for the network simulator Garnet in both sce-

narios. For this purpose, we have developed a trace reader inside Gem5 using

VEF-TraceLib2.5. The main drawback of this proposal is that messages in

Garnet cannot be sent between NIs directly. Instead, they have to follow

the same shared-memory approach employed in the full-system. In order to

solve this issue, we based our reader on the system used by Gem5 to gener-

ate synthetic traffic. This system is composed of the custom cache coherence

protocol called Garnet standalone [33] and a CPU model which generates

the network workload. Figure 5 shows how a message is sent from Core 0 to

Core 1 using the cache hierarchy and the shared-memory philosophy.

Figure 5: Garnet standalone mechanism to send messages to NoC tiles.

27

Hence, we have included VEF-TraceLib2.5 inside the new CPU model.

Every cycle, the CPU model asks the library if there are new messages to be

sent, delivering these messages following the Garnet standalone mechanism.

When a message reaches its network destination, Garnet communicates the

reception to the CPU model, and VEF-TraceLib2.5 processes the received

message. More detailed information about the integration of VEF-TraceLib

in other simulators can be found in [3].

4. Experiments and results

The aim of this section is to highlight the acceleration in trace-based

simulations due to the improvements introduced in the VEF framework. It

is also important to check the accuracy of the trace-based simulations and

therefore we have compared the results obtained when trace files are used

in the interconnection network simulator with the ones obtained from full-

system simulations.

Next, we show the obtained results, but previously we indicate the sce-

narios considered and the modifications in Gem5 to develop the experiments.

4.1. Simulation scenario

We have used our custom Gem5 version to generate and replay the VEF3

traces files. We have not used checkpoints to run the experiments. This is

because we faced some problems to reuse checkpoints when a change in any

aspect (i.e. topology) was required.

We have used a modified version of the Parsec 3.0 benchmark suite to

perform our experiments. Parsec 3.0 is one of the most famous set of ap-

plications for NoC benchmarking. Moreover, this benchmark suite is user-

28

friendly, including a manager to abstract the specific use of each application

and a profiling library, called Hooks.

In all the experiments, we have configured Gem5 and Garnet2.0 using

the parameters shown in Table 3 as baseline (default parameters). We have

performed a series of experiments in which we have changed just one pa-

rameter and ran a collection of Parsec 3.0 benchmark programs. The sets of

experiments are the following:

• Topology mesh XY + link width 672 bits + default parameters

• Topology torus + link width 672 bits + default parameters

• Topology mesh XY + link width 128 bits + default parameters

• Topology torus + link width 128 bits + default parameters

Table 3: Parameters used in the experiments (default parameters).

Parameter Value Parameter Value

Ruby-clock 1GHz Number of L1 caches 16

sys-clock 1GHz Number of L2 caches 16

cpu-clock 1GHz Number of directories 16

Network model Garnet2.0 Number of nodes 1

Topology size 4x4 Number of NoC tiles per node 16

Kernel version 3.4.112 Memory model Ruby

Routing Algorithm DOR CPU model DerivO3CPU

As we pointed out in Section 3.3, VEF-TraceLib2.5 is now the responsible

for the mapping strategy. Therefore, this is not longer a user concern. In

the experiments, each memory device is attached to the same NoC tile it was

connected in the full-system simulation. However, we have only simulated

one memory device on the trace-driven simulation (it is required, as we have

29

explained in Section 3.3.3 for sending and receiving packets through the net-

work). This means that in trace-driven simulations, no matter if the source

of a given message is an L1, L2, etc.. It will be dispatched from the L1 of

the same NoC tile, just as in the full-system simulations. Hence, the L1 port

is multiplexed among all memory devices in the NoC tile.

The NoC router in trace-driven simulations has at most 5 ports, 1 port for

connecting the L1 and 4 ports for connecting with neighbor routers, although

border and corner NoC routers on the mesh topology only have 4 and 3 ports,

respectively.

Note that in these experiments we have used the DerivO3CPU CPU

model, that allows to get the most detailed experiments which are aimed to

compare the full-system execution with the trace-driven execution.

We have performed the experiments choosing the inputs simdev and sims-

mall because they take a reasonable simulation time and their traffic work-

loads are enough to study the trace model accuracy.

4.2. Custom Gem5

Compared to our previous Gem5 version [5] we have included some new

features required to develop these experiments. Firstly, the torus topology

has been implemented. We took Mesh XY as baseline and managed to add

the additional links, creating this new topology. The routing protocol is based

on shortest path given weighted links, where vertical links have a weight of

2 and horizontal links have a weight of 1 [22].

Secondly, VEF-TraceLib2.5 includes functions for obtaining basic infor-

mation about the trace execution: total amount of sent bytes, number of sent

messages, throughput, etc. Moreover, these functions offer statistics about

30

the intra-messages. In order to improve the overall statistics, we have com-

bined the statistics offered by VEF-TraceLib2.5 and Garnet2.0 to be aware

of intra NoC tile traffic.

4.3. Results

In order to check the accuracy of the trace-based simulations, we have

compared the packet latency and the throughput obtained when trace files are

used in the two simulation models considered (i.e. using Gem5+Garnet2.0

and TraceLib+Garnet2.0). In the case of packet latency, we have recorded

the latency of each packet for the two simulation models and calculated the

differences. Figure 6 shows results on the average of all differences.

 0.00390625

 0.015625

 0.0625

 0.25

 1

bodytrack

canneal

dedup
fluidanimate

freqmine

raytrace

vips

D
if
f.
 o

f
p

a
ck

e
t

la
te

n
ci

e
s

(%
)

Mesh

Simdev-672
Simsmall-672

Simdev-128
Simsmall-128

 0.00390625

 0.015625

 0.0625

 0.25

 1

bodytrack

canneal

dedup
fluidanimate

freqmine

raytrace

vips

D
if
f.
 o

f
p

a
ck

e
t

la
te

n
ci

e
s

(%
)

Mesh

Simdev-672
Simsmall-672

Simdev-128
Simsmall-128

 0.00390625

 0.0078125

 0.015625

 0.03125

 0.0625

 0.125

 0.25

 0.5

 1

bodytrack

canneal

dedup
fluidanimate

freqmine

raytrace

vips

D
if
f.
 o

f
p

a
ck

e
t

la
te

n
ci

e
s

(%
)

Torus

Simdev-672
Simsmall-672

Simdev-128
Simsmall-128

 0.00390625

 0.0078125

 0.015625

 0.03125

 0.0625

 0.125

 0.25

 0.5

 1

bodytrack

canneal

dedup
fluidanimate

freqmine

raytrace

vips

D
if
f.
 o

f
p

a
ck

e
t

la
te

n
ci

e
s

(%
)

Torus

Simdev-672
Simsmall-672

Simdev-128
Simsmall-128

Figure 6: Latency differences between full-system and trace-driven simulation.

Throughput values for each simulation model have been obtained every

10,000 packets received by the NIs, and also the differences have been ob-

tained. Figure 7 shows data on the average of all differences.

As it can be seen in both figures, the average differences in latency and

31

throughput are expressed as a percentage. The absolute values of both met-

rics for all configurations have been included as supplementary material.

 0.03125

 0.0625

 0.125

 0.25

 0.5

 1

 2

 4

 8

bodytrack

canneal

dedup
fluidanimate

freqmine

raytrace

vips

D
if
f.
 o

f
th

ro
u
g

h
p

u
t

(%
)

Mesh

Simdev-672
Simsmall-672

Simdev-128
Simsmall-128

 0.03125

 0.0625

 0.125

 0.25

 0.5

 1

 2

 4

 8

bodytrack

canneal

dedup
fluidanimate

freqmine

raytrace

vips

D
if
f.
 o

f
th

ro
u
g

h
p

u
t

(%
)

Mesh

Simdev-672
Simsmall-672

Simdev-128
Simsmall-128

 0.125

 0.25

 0.5

 1

 2

 4

 8

bodytrack

canneal

dedup
fluidanimate

freqmine

raytrace

vips
D

if
f.
 o

f
th

ro
u
g

h
p

u
t

(%
)

Torus

Simdev-672
Simsmall-672

Simdev-128
Simsmall-128

 0.125

 0.25

 0.5

 1

 2

 4

 8

bodytrack

canneal

dedup
fluidanimate

freqmine

raytrace

vips
D

if
f.
 o

f
th

ro
u
g

h
p

u
t

(%
)

Torus

Simdev-672
Simsmall-672

Simdev-128
Simsmall-128

Figure 7: Throughput differences between full-system and trace-driven simulation.

In Figure 6 we can observe that only one case exceeds 1% for average

difference, which is a very positive result. In the case of throughput the

differences are slightly higher, but always less than 5.42%. These results are

better than that obtained for Elastic traces, which are in the range 7-17%.

On the other hand, no dependence is observed on the accuracy results,

neither on the aspects of the network considered (topology, size of the network

and link width) nor on those related to the applications (application and

input size). This means, at least from this point of view, that there are not

significant differences between the two simulation models.

Therefore, the differences in terms of two important network performance

metrics are negligible and so we conclude the trace-based network simulator

behavior is almost equal to the full-system.

The main source of differences, either latency or throughput, is caused by

intra-messages, which are messages that have to be sent to memory devices

32

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

bodytrack

canneal

dedup
fluidanimate

freqmine

raytrace

vips

D
if
f.
 o

f
R

O
I
C

y
cl

e
s

(%
)

Mesh

Simdev-672
Simsmall-672

Simdev-128
Simsmall-128

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

bodytrack

canneal

dedup
fluidanimate

freqmine

raytrace

vips

D
if
f.
 o

f
R

O
I
C

y
cl

e
s

(%
)

Mesh

Simdev-672
Simsmall-672

Simdev-128
Simsmall-128

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

bodytack

canneal

dedup
fluidanimate

freqmine

raytrace

vips

D
if
f.
 o

f
R

O
I
C

y
cl

e
s

(%
)

Torus

Simdev-672
Simsmall-672

Simdev-128
Simsmall-128

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

bodytack

canneal

dedup
fluidanimate

freqmine

raytrace

vips

D
if
f.
 o

f
R

O
I
C

y
cl

e
s

(%
)

Torus

Simdev-672
Simsmall-672

Simdev-128
Simsmall-128

Figure 8: Difference of cycles on ROI section using the trace-driven simulation.

included in the same NoC tile. Since these messages do not require to be

sent through the NoC tile NI, these intra-messages are internally managed

by VEF-TraceLib2.5 when the trace files are replayed.

Intra-messages also have dependencies that must be satisfied before mov-

ing to the next message. For example, in a given time x VEF-TraceLib2.5

finds an intra-message m5 with 4 processing cycles, and the next message is

an inter-message m6, that has a send dependency with m5. VEF-TraceLib2.5

will guarantee that m6 will not be sent before x + 4 cycles. Hence, intra-

message latencies must be configured in a proper way in order to reduce

these differences. In these experiments we have used the latency and the

clock frequency provided by .names files and the .vef header, respectively.

Even so, there are still some differences between trace–driven and full–

system models. For instance, in the full-system simulations each memory

device has its own port to the router while in the trace-based simulations

there is only one shared port for L1, L2 and Directory. Despite that, the

differences are low, and in many cases insignificant.

In addition, for checking accuracy in terms of metrics such as latency

33

and throughput, it is also interesting to do it considering the ROI execution.

This is the computation-intensive part of the application, in which the most

messages will be generated because, on the one hand, the consistency of the

data in the caches must be kept, and, on the other hand, because there will

be more failures in the caches.

Figure 8 shows the percentage of difference between trace-driven and

full-system simulations on total cycles executing the ROI section of each

application. The difference is never greater than 4.25%. The best case is

raytrace using the simdev input, mesh topology and link width of 128 bits,

with a difference of 0.036%. The worst case is vips using simdev, torus

topology and link width of 128 bits with a difference of 4.25%.

 1

 4

 16

 64

 256

 1024

 4096

bodytrack

canneal

dedup
fluidanimate

freqmine

raytrace

vips

S
p

e
e
d

-U
p

Mesh

Simdev-672
Simsmall-672

Simdev-128
Simsmall-128

 1

 4

 16

 64

 256

 1024

 4096

bodytrack

canneal

dedup
fluidanimate

freqmine

raytrace

vips

S
p

e
e
d

-U
p

Mesh

Simdev-672
Simsmall-672

Simdev-128
Simsmall-128

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

bodytrack

canneal

dedup
fluidanimate

freqmine

raytrace

vips

S
p

e
e
d

-U
p

Torus

Simdev-672
Simsmall-672

Simdev-128
Simsmall-128

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

bodytrack

canneal

dedup
fluidanimate

freqmine

raytrace

vips

S
p

e
e
d

-U
p

Torus

Simdev-672
Simsmall-672

Simdev-128
Simsmall-128

Figure 9: Simulation speed up using the trace-driven simulation.

Another main objective pursued with the improvements introduced in the

VEF trace framework is the reduction of the total simulation time. Figure

9 shows the speed up achieved in each of the configurations considered. The

simulation time is reduced in an important factor which ranges from 7x to

3392x. This means that some simulations that with the full-system would

34

take days, can be completed with the trace-based system in a few hours, and

even minutes.

This simulation time reduction has great relevance, and is essential when

simulating Exascale systems, where the interconnection network can be com-

posed of hundreds of thousands of nodes.

Table 4: Trace file sizes and total number of messages for the traces obtained for the mesh

topology with link width of 672 bits.

Benchmark Input Size (MB) Number of messages

Dedup Simsmall 2440 82,138,304

Fluidanimate Simsmall 490 17,098,687

Freqmine Simsmall 332 11,866,998

Raytrace Simsmall 201 7,240,623

Vips Simsmall 3643 122,451,603

Bodytrack Simdev 193 7,027,735

Canneal Simdev 12 458,358

Dedup Simdev 250 9,046,777

Fluidanimate Simdev 141 5,118,125

Freqmine Simdev 263 9,524,430

Raytrace Simdev 12 437,716

Vips Simdev 298 10,773,892

When simulating large systems using trace-based model, an important

aspect to consider is the trace files size. That size can be very large and its

handling can slow down the simulations. Several strategies can be followed

so that this is not a problem. We comment briefly on this issue, using the

trace file data used in this work.

Table 4 shows the file size in MBs and the total number of messages

35

for each trace generated in mesh topology with link width of 672 bits. We

obtain similar values for the rest of configurations considered. We consider

these file sizes are not too large given the tremendous amount of messages.

Note that trace files are ASCII encoded plain text. However, trace files may

be compressed, which will reduce the total trace file size keeping the same

number of messages. We have tested the size reduction just by compressing

dedup using simsmall input with GNU tar 1.28 [34] getting a total file size

of 592MB.

5. Conclusions

VEF trace framework provides tools to obtain and manage file traces

containing the off- and on-chip communication generated for applications

running in large computing systems. VEF traces can be used on any inter-

connection network simulator with minimal effort. A essential characteristic

of VEF traces is that they contain information about the relationship between

communication messages, making the simulations much more realistic.

36

We present several improvements related mainly to the on-chip commu-

nications, which significantly speed up the simulations and increase their

accuracy. Thus, on the one hand, when using different applications and in-

puts from the Parsec 3.0 benchmark suite, the simulation time using VEF

traces is reduced in a great factor which ranges from 7x to 3392x.

On the other hand, and to check the accuracy of the trace-based simu-

lations, we have compared the results obtained using Gem5+Garnet2.0 and

TraceLib+Garnet2.0. The results show that differences, for instance, in terms

of packet latency and throughput respect to the full-system applications ex-

ecution are 5.42% in the worst-case scenario.

It is also important to note that collecting on-chip communication at the

cache hierarchy level offers greater possibilities in the cache device mapping

process, achieving, in this way, more flexibility during the trace replay process

in any interconnection network simulator. Other improvements introduced

in the framework are related to the auto-mapping the memory devices into

NIs, managing intra-messages and more accurate simulation statistics.

Finally, to point out that VEF trace framework allows us to capture

messages from both off-chip and on-chip networks, for now separately, and

our next objective is to capture both types of traffic that an application

generates when is running on an Exascale system.

Acknowledgment

This work has been supported by the Junta de Comunidades de Castilla-La

Mancha, European Commission (FEDER funds) and MICINN under projects SB-

PLY/17/180501/000498 and RTI2018-098156-B-C52 respectively. It is also co-

financed by the University of Castilla-La Mancha and FEDER funds under project

37

2019-GRIN-27060. Javier Cano-Cano is also funded by the MINECO under FPI

grant BES-2016-078800.

References

References

[1] Summit oak ridge national laboratory’s next high performance supercom-

puter, http://tiny.cc/m8pc3y, (Accessed February 16, 2019).

[2] D. Reinsel, J. Gantz, R. John, Data age 2025, The Digitization of the World:

From Edge to Core. Available at: http://tiny.cc/m5pc3y.

[3] F. J. Andújar, J. A. Villar, J. L. Sánchez, F. J. Alfaro, J. Escudero-Sahuquillo,

An open-source family of tools to reproduce MPI-based workloads in inter-

connection network simulators, The Journal of Supercomputing (2016) 1–28.

[4] R. Rabenseifner, G. Hager, G. Jost, Hybrid MPI/OpenMP parallel program-

ming on clusters of multi-core SMP nodes, in: Parallel, Distributed and

Network-based Processing, 2009 17th Euromicro International Conference on,

IEEE, 2009, pp. 427–436.

[5] J. Cano-Cano, F. J. Andújar, F. J. Alfaro, J. L. Sánchez, Vef3 traces: To-

wards a complete framework for modelling network workloads for exascale

systems, in: 2018 IEEE 4th International Workshop on High-Performance In-

terconnection Networks in the Exascale and Big-Data Era (HiPINEB), 2018,

pp. 32–39.

[6] G. F. Riley, T. R. Henderson, The ns-3 network simulator, in: Modeling and

tools for network simulation, Springer, 2010, pp. 15–34.

38

http://tiny.cc/m8pc3y

[7] A. Varga, et al., Omnet++ user manual, OMNeT++ Discrete Event Simu-

lation System. Available at: http://www. omnetpp. org/doc/manual/usman.

html.

[8] H. Casanova, A. Giersch, A. Legrand, M. Quinson, F. Suter, Versatile, scal-

able, and accurate simulation of distributed applications and platforms, Jour-

nal of Parallel and Distributed Computing 74 (10) (2014) 2899–2917.

[9] A. F. Rodrigues, K. S. Hemmert, B. W. Barrett, C. Kersey, R. Oldfield,

M. Weston, R. Risen, J. Cook, P. Rosenfeld, E. CooperBalls, et al., The

structural simulation toolkit, SIGMETRICS Performance Evaluation Review

38 (4) (2011) 37–42.

[10] P. Yebenes, J. Escudero-Sahuquillo, P. J. Garcia, F. J. Quiles, Towards model-

ing interconnection networks of exascale systems with omnet++, in: 2013 21st

Euromicro International Conference on Parallel, Distributed, and Network-

Based Processing, IEEE, 2013, pp. 203–207.

[11] N. Jiang, D. U. Becker, G. Michelogiannakis, J. Balfour, B. Towles, D. E.

Shaw, J. Kim, W. J. Dally, A detailed and flexible cycle-accurate network-

on-chip simulator, in: 2013 IEEE International Symposium on Performance

Analysis of Systems and Software (ISPASS), IEEE, 2013, pp. 86–96.

[12] P. Abad, P. Prieto, L. G. Menezo, V. Puente, J.-Á. Gregorio, et al., Topaz:

An open-source interconnection network simulator for chip multiprocessors

and supercomputers, in: 2012 IEEE/ACM Sixth International Symposium

on Networks-on-Chip, IEEE, 2012, pp. 99–106.

[13] G. Maglione-Mathey, P. Yebenes, J. Escudero-Sahuquillo, P. J. Garcia, F. J.

Quiles, Combining openfabrics software and simulation tools for modeling

39

infiniband-based interconnection networks, in: 2016 2nd IEEE International

Workshop on High-Performance Interconnection Networks in the Exascale

and Big-Data Era (HiPINEB), IEEE, 2016, pp. 55–58.

[14] M. S. Müller, A. Knüpfer, M. Jurenz, M. Lieber, H. Brunst, H. Mix, W. E.

Nagel, Developing scalable applications with vampir, vampirserver and vam-

pirtrace., in: PARCO, Vol. 15, Citeseer, 2007, pp. 637–644.

[15] S. S. Shende, A. D. Malony, The TAU parallel performance system, The

International Journal of High Performance Computing Applications 20 (2)

(2006) 287–311.

[16] V. Pillet, J. Labarta, T. Cortes, S. Girona, Paraver: A tool to visualize and

analyze parallel code, in: Proceedings of WoTUG-18: transputer and occam

developments, Vol. 44, IOS Press, 1995, pp. 17–31.

[17] A. Knüpfer, C. Rössel, D. an Mey, S. Biersdorff, K. Diethelm, D. Eschweiler,

M. Geimer, M. Gerndt, D. Lorenz, A. Malony, et al., Score-p: A joint perfor-

mance measurement run-time infrastructure for periscope, scalasca, tau, and

vampir, in: Tools for High Performance Computing 2011, Springer, 2012, pp.

79–91.

[18] Z. Lu, R. Thid, M. Millberg, E. Nilsson, A. Jantsch, NNSE: Nostrum network-

on-chip simulation environment, Proc. of SSoCC.

[19] L. Jain, B. Al-Hashimi, M. Gaur, V. Laxmi, A. Narayanan, NIRGAM: a

simulator for NoC interconnect routing and application modeling, in: Design,

Automation and Test in Europe Conference, IEEE, 2007, pp. 16–20.

[20] V. Catania, A. Mineo, S. Monteleone, M. Palesi, D. Patti, Noxim: an open, ex-

tensible and cycle-accurate network on chip simulator, in: Application-specific

40

Systems, Architectures and Processors (ASAP), 2015 IEEE 26th International

Conference on, IEEE, 2015, pp. 162–163.

[21] V. Puente, J. A. Gregorio, R. Beivide, Sicosys: an integrated framework for

studying interconnection network performance in multiprocessor systems, in:

Parallel, Distributed and Network-based Processing, 2002. 10th Euromicro

Workshop on, IEEE, 2002, pp. 15–22.

[22] N. Agarwal, T. Krishna, L.-S. Peh, N. K. Jha, Garnet: a detailed on-chip

network model inside a full-system simulator, in: Performance Analysis of

Systems and Software, 2009. ISPASS 2009. IEEE International Symposium

on, IEEE, 2009, pp. 33–42.

[23] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,

J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, et al., The Gem5 simula-

tor, ACM SIGARCH Computer Architecture News 39 (2) (2011) 1–7.

[24] R. Jagtap, S. Diestelhorst, A. Hansson, M. Jung, Exploring system perfor-

mance using elastic traces: Fast, accurate and portable, in: Embedded Com-

puter Systems: Architectures, Modeling and Simulation (SAMOS), 2016 In-

ternational Conference on, IEEE, 2016, pp. 96–105.

[25] A. Nocua, F. Bruguier, G. Sassatelli, A. Gamatie, Elasticsimmate: A fast

and accurate gem5 trace-driven simulator for multicore systems, in: Recon-

figurable Communication-centric Systems-on-Chip (ReCoSoC), 2017 12th In-

ternational Symposium on, IEEE, 2017, pp. 1–8.

[26] J. Hestness, B. Grot, S. W. Keckler, Netrace: dependency-driven trace-based

network-on-chip simulation, in: Proceedings of the Third International Work-

shop on Network on Chip Architectures, ACM, 2010, pp. 31–36.

41

[27] S. Nilakantan, K. Sangaiah, A. More, G. Salvadory, B. Taskin, M. Hemp-

stead, Synchrotrace: synchronization-aware architecture-agnostic traces for

light-weight multicore simulation, in: Performance Analysis of Systems and

Software (ISPASS), 2015 IEEE International Symposium on, IEEE, 2015, pp.

278–287.

[28] F. J. Andújar, J. A. Villar, J. L. Sánchez, F. J. Alfaro, J. Escudero-Sahuquillo,

VEF traces: a framework for modelling MPI traffic in interconnection network

simulators, in: Cluster Computing (CLUSTER), 2015 IEEE International

Conference on, IEEE, 2015, pp. 841–848.

[29] P. Yébenes, J. Escudero-Sahuquillo, P. J. Garćıa, F. J. Quiles, Straightforward

solutions to reduce hol blocking in different dragonfly fully-connected inter-

connection patterns, The Journal of Supercomputing 72 (12) (2016) 4497–

4519.

[30] F. Zahn, S. Lammel, H. Fröning, Early experiences with saving energy in

direct interconnection networks, in: 2017 IEEE 3rd International Workshop

on High-Performance Interconnection Networks in the Exascale and Big-Data

Era (HiPINEB), IEEE, 2017, pp. 33–40.

[31] F. J. Andujar, S. Coll, M. Alonso, J.-M. Martinez, P. Lopez, F. J. Alfaro,

J. L. Sanchez, R. Martinez, Analyzing topology parameters for achieving

energy-efficient k-ary n-cubes, in: 2018 IEEE 4th International Workshop on

High-Performance Interconnection Networks in the Exascale and Big-Data

Era (HiPINEB), IEEE, 2018, pp. 24–31.

[32] M5ops homepage, http://gem5.org/M5ops, (Accessed May 22, 2018).

42

http://gem5.org/M5ops

[33] Garnet Standalone homepage, http://www.gem5.org/Garnet_standalone,

(Accessed May 22, 2018).

[34] Tar gnu project free software foundation, https://www.gnu.org/software/

tar, (Accessed February 5, 2019).

43

http://www.gem5.org/Garnet_standalone
https://www.gnu.org/software/tar
https://www.gnu.org/software/tar

	Introduction
	Related work
	VEF traces vs. memory traces

	VEF3 trace framework
	VEF3 Self-Related traces
	Vef files
	Names files
	Dependency types
	Example
	From VEF2 to VEF3

	VEF3 profiler
	Sniffer switching

	VEF-TraceLib
	Intra NoC tile latencies
	Memory devices auto-mapping
	Integration of VEF-TraceLib in Gem5

	Experiments and results
	Simulation scenario
	Custom Gem5
	Results

	Conclusions

