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Abstract

Computations based on density functional theory (DFT) are transforming various

aspects of materials research and discovery. However, the effort required to solve the

central equation of DFT, namely the Kohn-Sham equation, remains a major obsta-

cle for studying large systems with hundreds of atoms in a practical amount of time

with routine computational resources. Here, we propose a deep learning architecture

that systematically learns the input-output behavior of the Kohn-Sham equation and

predicts the electronic density of states, a primary output of DFT calculations, with

unprecedented speed and chemical accuracy. The algorithm also adapts and progres-

sively improves in predictive power and versatility as it is exposed to new diverse atomic

configurations. We demonstrate this capability for a diverse set of carbon allotropes

spanning a large configurational and phase space. The electronic density of states,
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along with the electronic charge density, may be used downstream to predict a variety

of materials properties, bypassing the Kohn-Sham equation, leading to an ultrafast and

high-fidelity DFT emulator.

Introduction

Density functional theory (DFT)1,2 has become an invaluable computational workhorse for

materials development and design. It has impacted a variety of fields ranging from energy

storage,3–5 catalysis,6,7 fuel production and chemical transformations,8,9 design of advanced

electronic and functional materials,10,11 and the understanding of materials behavior under

a variety of extreme conditions,12,13 to just name a few. DFT addresses the many-electron

many-nuclear problem of quantum mechanics through a series of approximations and leaps of

imagination and ingenuity, and ultimately involves solving the effective one-electron Kohn-

Sham equation.2 For a given configuration of atoms, the solutions of the Kohn-Sham equation

include the one-electron wavefunctions (or the electronic charge density), one-electron energy

spectrum (or the electronic density of states), atomic forces, potential energy, as well as a

variety of application-relevant equilibrium materials properties.

Despite its versatility and reach, DFT remains a laborious computational enterprise. It

requires high-performance computing hardware, robust and specialized software, and fairly

in-depth knowledge and expertise to execute the calculations in a credible manner. Even

with the availability of such resources, modern DFT ecosystems only allow the practical or

routine treatment of systems involving not more than a few hundreds of atoms per repeating

unit cell.

In order to accelerate the speed with which one may reliably predict application-relevant

properties of new materials, the community is beginning to focus attention on the creation

of “surrogate” models that can be much faster than a fresh and direct DFT calculation,

but mimics it in the accuracy. Such surrogate models are trained, using machine learning

algorithms, on a set of reference data produced by prior DFT calculations. The last decade
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has seen several successful examples of such predictive machine learning models applied to

a variety of materials properties and application spaces.14–25 In these efforts, a mapping

is established between atomic configurations and appropriate quantities of interest, such as

atomic forces, potential energies and a variety of materials or molecular properties of interest.

The primary bottleneck in DFT-based workflows is the computation of the electronic den-

sity of states (DOS) and charge density. Once computed, the DOS and charge density, owing

to their fundamental nature, may be used to determine the above listed other quantities of

interest at negligible cost. Thus, creation of a capability that can significantly speed up

the prediction of DOS and charge density will impart unprecedented efficiency to the overall

DFT workflow, and can lead to an ultrafast DFT emulator that can produce DFT-like output

with a high degree of verisimilitude. This manner of solving the electronic structure problem

will be a radical departure from attempting to directly solve the Kohn-Sham equation.

In this contribution, we mainly focus on the creation of an efficient deep learning capabil-

ity for the instantaneous prediction of the electronic DOS for a given configuration of atoms.

A neural network (NN) architecture is trained on a database of prior reference DFT com-

putations, and learns the relationship between the atomic configuration and the electronic

DOS. Specifically, the NN is designed to take as input the environment around an atom, i.e.,

the distribution of its neighbouring atoms, producing as output the corresponding atomic

DOS spectrum. The NN is trained such that the sum of the thus-predicted atomic DOS of

all atoms in the system is required to be equal to the correct total electronic DOS calculated

by DFT. As we will show here, this deep learning capability proves to be several orders of

magnitude faster than the parent DFT calculation. Moreover, the present development is

also a significant advance, both in terms of conceptual aspects and in terms of efficiency,

compared to a recipe we proposed recently.26 While this past work also utilized deep neural

networks to predict the DOS (and the electronic charge density), the training data consisted

of the projected DOS at each spatial grid point. As the typical ratio of the number of grid

points to the number of atoms in any system is about a million, the method of Ref. 26 leads
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to an enormous memory requirement (for the storage of the training data), and an enormous

amount of training and prediction time, hindering its use with large datasets.
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Figure 1: (a) Datasets used to train the models in this work. The number of atoms refers to
those in the repeating unit cell of each structure. (b) Main two principal components (PC)
of the mean atomic fingerprints of each configuration. (c) Snapshots of carbon allotropes
included in dataset 1 and in dataset 2, with red-colored atoms to identify the location of the
defects.

As a demonstration of the present development, we train our NN to predict the total

electronic DOS of a variety of graphene-derived allotropes, including carbon nanotubes of

various types, fullerene molecules, as well as graphene and graphite. Specifically, as listed in

the tables of Figure 1(a), we created two different datasets, for which accurate reference DFT

calculations were done. We first trained the model using dataset 1, comprised of graphene,

graphite, C20, C40 and C60 fullerene molecules, and C(6,4), C(9,9) and C(8,0) single-walled

carbon nanotubes (SWCNT) with different chirality. To provide the NN with sufficient

examples of configurational diversity within the space of the above list of structures, 200

random snapshots of each of these structures from DFT-based molecular dynamics (MD)

runs at 300 K and 600 K were procured. From this set, 80 % of the configurations were used

for training and 20 % for validation. An additional separate test set of 20 configurations of

each structure was created to select the best performing model after cross-validation. Figure
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1(c) (left) shows some representative structures contained in dataset 1.

In order to test the generality of the model built out of dataset 1, and also to unambiguosly

demonstrate the ability to systematically improve the model through exposure to newer

environments, dataset 2 was considered. Dataset 2 is comprised of defects in graphene and

highly disordered structures. The considered graphene defects are Stone-Wales (SW), single-

vacancies (SV), and double-vacancies (DV). A representative set of such defected structures

are shown in Figure 1(c) (right). The highly disordered structures were procured from DFT-

MD runs at 2000 K. The train and test sets of dataset 2 were composed of a total of 830 and

83 configurations, respectively. Overall, the structural and topological diversity of the cases

included in the training data considered here is enormous relative to past studies. We choose

the vacuum energy as the global energy reference and the DOS of every atomic configuration

was aligned with respect to it. The DFT DOS curve is partitioned into 310 windows of 0.1

eV, from -30 eV to 1 eV.

To describe the atomic environment surrounding each atom in a machine-readable form,

we used the same set of permutation, translation, and rotation invariant fingerprints in-

troduced in our previous NN DOS protocol,26 but centered at each atom instead of at

grid points. The fingerprints consist of a hierarchy of scalar, vector, and tensor expressions

which capture the radial (scalar) and angular (vector and tensor) features of the surrounding

atomic environment. The fingerprints are based on a predefined set of Gaussian functions

with varying widths centered at every atom. Figure 1(b) shows the variation of the two

principal components (PC) of the fingerprint features for each type of the aforementioned

structures, spanning a large region of configurational space.

The atomic fingerprint vectors are provided as input layer for the NN, resulting in a

DOS per atom as the NN output. Addition of all the atomic DOS for a given configuration

results in the predicted total DOS. To ensure an accurate prediction of the Fermi level, the

cumulative sum is concatenated to the predicted total DOS. Owing to the variability in size

of the structures in the datasets, the prediction is normalized by the number of atoms in
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the configuration. This normalization ensures an equal contribution to the error metric from

each structure. Figure 2 provides a schematic view of the entire protocol.
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Figure 2: Overall scheme and workflow designed to compute the DOS of a given atomic
structure using deep NN with atom centered fingerprints. After the dataset is created, each
atom in an atomic structure is replaced by a fingerprint vector representing the surrounding
environment. These fingerprints are provided as input layers to the NN, resulting in a DOS
per atom as the output layer. All atomic DOS from the same atomic configuration are added
to obtain the total DOS. Once normalized, the DOS is concatenated to its cumulative sum
and validated against the DFT reference.

As we will demonstrate below, the NN DOS model predicts the electronic structure of sp2-

type carbon allotropes (metallic or semiconducting, and with or without a variety of defects

and significant disorder) with unprecedented accuracy and speed (relative to conventional

DFT computations). Owing to the flexibility of training afforded by the NN architecture,

model prediction performance can be systematically and continuously improved via persis-

tent exposure to newer varieties of configurational diversity. Further, the predicted DOS

allows for a precise evaluation of the contribution of the occupied energy levels to the total

energy of the system; a necessary step to achieving a machine learned DFT emulator.
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Methods

DFT Details

All the reference data calculations were performed using DFT-MD simulations using the

Vienna Ab Initio Simulation Package (VASP).27,28 The exchange-correlation functional was

modelled using the Perdew-Burke-Ernzerhof approximation29 and the ion-electron interac-

tion was modelled using projector-augmented wave (PAW) potentials.30 We employed a

Monkhorst-Pack grid31 with a density of 0.03 Å
−1

to sample the Brillouin zone. A plane

wave basis set with kinetic energy cutoff of 800 eV was used. The chosen kinetic energy cut-

off and k-point sampling converged the total energy to less than 1 meV per atom. Grimme’s

D2 vdW correction was included.32 A Gaussian smearing of 0.2 eV was used. The MD sim-

ulations were performed in the NVT ensemble, with a time step of 1 fs. All structures were

thermalized for 500 time steps at the desired temperature (300 K, 600 K, and 2000 K) and

the snapshots were taken from the subsequent thermalized simulations spanning 2 ps.

Fingerprint Details

The scalar fingerprint for a given atom, i, is expressed as the sum over the number of

Gaussian functions (k) of width σk,

Sk = ck

N∑
j=1

exp

(−R2
ij

2σ2
k

)
fc(Rij) (1)

where ck is the normalization constant defined as
(

1√
2πσk

)3
, Rij the distance between atom

j and the center atom i, and fc(Rij) a cutoff function defined as 0.5
[
cos
(
πRij

dc

)
+ 1
]

for

Rij ≤ dc, and equal to 0 for Rij > dc. In this work, we employed 18 different Gaussian

widths, on a logarithmic scale (base 10) from 0.25 to 6.0 Å, with a cutoff distance of dc = 7Å.
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The vector and tensor components are defined as

V α
k = ck

N∑
j=1

rαij
Rij

exp

(−R2
ij

2σ2
k

)
fc(Rij) (2)

Tαβk = ck

N∑
j=1

rαijr
β
ij

R2
ij

exp

(−R2
ij

2σ2
k

)
fc(Rij) (3)

where α and β represent the x, y or z components of the radial vector between atoms i and

j. While Sk is rotational invariant, V α
k and Tαβk are variant, but can be combined into four

rotational invariant expressions,

Vk =

√
(V x

k )2 + (V y
k )2 + (V z

k )2 (4)

Tk = T xxk + T yyk + T zzk (5)

T ′k = T xxk T yyk + T yyk T zzk + T xxk T zzk − (T xyk )2 − (T yzk )2 − (T xzk )2 (6)

T ′′k = det
(
Tαβk

)
(7)

Therefore, for each width there are five features. We employed 18 different widths,

providing a feature vector for each atom with 90 components.

Neural Network Architecture and Performance

The number of hidden dense layers and nodes per layer were optimized to five with the first

four with 300 neurons each and the last one with 312. After the last dense layer, there is

a 1D convolution layer with three filters of size 3, resulting in 1D vectors of size 310, equal

to the number of energy windows used to discretize the reference DOS curve. Finally, the
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average value of the three 1D vectors for each bin is selected as the output for the value of

each energy window in the DOS. The final 1D Convolution layer is included to introduce

the correlation between adjacent points and ensure a smooth shape in the predicted atomic

DOS. Details on the performance of the NN with different number of dense layers can be

found on the Supporting Information (SI).

The activation function used for each dense layer as well as for the final 1D convolution

layer is rectified linear unit (ReLU). To prevent over-fitting, a L2 regularizer with 0.1 was

used in each hidden layer. A dropout rate of 0.1 was also included for the hidden layers,

meaning that for every pass, each node in the layer has a 10% probability of not being

active. The benefit of including the dropout is twofold. First, during training, it acts as a

regularization technique to reduce over fitting and second, during prediction, it allows for

an evaluation of the uncertainty in such prediction. The latter technique of activating the

dropout during prediction is known as Monte Carlo dropout.33,34

We used Keras35 with Tensorflow backend to implement the NN DOS model. A mini-

batch training of 30 with random sampling was employed along with Adam optimizer with

a learning rate of 0.0001 and momentum vectors β1 = 0.9 and β2 = 0.999. The RMSE was

employed as the objective function.

We compare the computational performance of DFT and our NN DOS model, for a given

graphene configuration of 128 atoms. DFT employs 3615 s to solve the Kohn-Sham equation

and calculate the DOS on a Broadwell node with 28 cores and 128 GB of RAM. On the

other hand, the NN requires only 5 s on a Tesla P100-PCIe GPU with 16 GB of RAM. Out

of that time, the fingerprinting process requires 3 s, while the DOS prediction only takes 2 s.

Albeit the comparison limitations due to the different architectures used, the achieved speed

up is several orders of magnitude. Furthermore, it is worth noting the quadratic scaling (at

best) of modern DFT codes with system size as opposed to the linear scaling of NN.

As a final note, we performed a baseline comparison with the model in Ref. 26 by training

and testing our model on the same aluminum configurations from the study. The accuracy
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of the prediction is similar for both models: the R2 reported in Ref. 26 is 0.9992, whereas

in with our model is 0.9996. The major improvement is on the training time: Ref. 26

reported 5-6 hours (also on a GPU), whereas our NN DOS model only required 10 minutes.

Additionally, the prediction time is further reduced with our protocol due to the atomic

fingerprint (3 s) as opposed to the grid-point fingerprint in Ref. 26, requiring 20 s.

Results and Discussion
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Figure 3: DFT DOS (blue) and predicted NN DOS (red) for test configurations of (a)
graphene, (b) graphite, (c) C60, and the SWCNTs of (d) C(9,9) and (e) C(8,0). The DFT
and NN Fermi levels calculated as the cumulative integral of the DOS curves are included
as vertical dashed blue and red lines, respectively. The vertical dashed green line indicates
the vacuum energy used as the global energy reference. The uncertainty in the Fermi level
prediction is marked by the dashed pink vertical lines. (f) Histogram of the Fermi level
difference between DFT and the NN prediction.

Figure 3 summarizes the results of the model trained and tested on dataset 1. From

a 5-fold cross-validation, the predicted DOS curves have a mean root-mean-square-error

(RMSE) per atom of 0.0192 states/eV with a standard deviation of 0.0004 states/eV, and

a mean R2 = 0.9756 with a standard deviation of 0.0012. Using the separate test set from
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dataset 1, we selected the best performing NN model, with R2 = 0.977, RMSE= 0.0188

states eV−1/atom, and 1% highest error (HE) of 0.0716 states eV−1/atom. These accurate

metrics are reflected in figure 3 where the NN DOS (red curve) follows very closely the

reference DFT DOS (blue curve). Likewise, the calculated Fermi level from the cumulative

integral of NN DOS (dashed red line) coincides with the DFT Fermi level (dashed blue line).

The dashed pink vertical lines represent the uncertainty in the predicted Fermi level. More

information on the evaluation of the uncertainty can be found in the SI.

Besides an accurate DOS prediction, quantities such as bandgap requires a precise calcu-

lation of the Fermi level from the predicted DOS. Figure 3 (f) displays the histogram of the

error in the calculated Fermi level between the DFT DOS and the NN DOS, for dataset 1.

The results follow a Gaussian distribution with a standard deviation of 0.15 eV. The number

of instances with a higher error drastically decays after ±0.2 eV, with maximum values up

to −0.47 eV. Albeit such good results, it is worth mentioning that the Fermi level is a very

sensitive quantity, especially in cases with bandgaps, where very small deviations from the

total number of electrons can shift the Fermi level to the other side of the bandgap.

Systematic Improvement with New Cases

Transferability to new environments along with a capability for systematic improvement

are essential for a NN model in a field of ever growing datasets and need to explore newer

configurational environments. As such, first we decided to test the NN trained on dataset 1

(Model 1) on the test configurations of dataset 2, and afterwards evaluate the improvement

in the predictions once the model is trained on both datasets. Figure 4(a)(b) (grey) shows

the results for the mean RMSE of predicted DOS and mean absolute error in the Fermi level

calculation. The results on dataset 1 are included as a comparison baseline. As expected

when using machine learning models on unseen cases, the performance of Model 1 on dataset

2 is worse than on dataset 1, for both the graphene defects, DS 2 (Defects), and for the highly

disordered structures, DS 2 (2000 K). However, given the considerable difference between
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the atomic environments and types of carbon hybridization between dataset 1 and dataset

2 (see SI), the results are still surprisingly good. Nevertheless, the model can be extended

and improved by training on both datasets 1 and 2 resulting in Model 2, figure 4(a)(b) (dark

red). The drastic error decrease on dataset 2 along with the slight error reduction on dataset

1 illustrates the capability of the model for systematic improvement as the dataset size is

expanded with entirely new information. In addition, the specific atom-based NN allows to

study the atomic DOS of specific atoms, and learns the chemical changes introduced to the

electronic structure of the system by these defects (see SI for an example).
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Figure 4: (a)(b) Transferability and systematic improvement of the NN DOS on dataset 2
(DS 2): defects on graphene and highly disordered structures at 2000 K. Mean RMSE (a)
and mean absolute error in the Fermi level calculation (b) for Model 1 trained on dataset
1 (DS 1) (grey) and for Model 2 trained on both datasets (dark red). Parity plots for the
contribution to the total energy from the NN DOS using Model 1 (c) and Model 2 (d). The
error bars represent the standard deviation obtained from the uncertainty in the predicted
NN DOS.

Total Energy Contribution

The culminating goal of utilizing machine learning to emulate and dramatically accelerate

DFT is to bypass the computationally expensive Kohn-Sham equation by directly predicting

the electronic structure. To realize this vision, the electronic structure prediction requires

highly accurate results of both the eigenvalues and the charge density in order to compute
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the total energy as,2,26

E = 2

Ne/2∑
i

εi − EH [ρ(r)] + Exc[ρ(r)] −
∫
δExc[ρ(r)]

δρ(r)
dr + En−n (8)

where, ρ, Ne, EH , Exc, En−n are the charge density, number of electrons, Hartree energy,

exchange-correlation energy and nuclear-nuclear interaction energy, respectively. εi is the

eigenvalue of the i-th Kohn-Sham orbital. In Eq. (8), the first term 2
∑Ne/2

i εi can be

written in terms of the DOS as,

2

Ne/2∑
i

εi =

∫ EF

−∞
DOS(ε)εdε (9)

while the remaining terms are known functions of the charge density (for a given level of

theory).

As a final assessment of the DOS prediction model, we evaluate the accuracy of the

contribution to the total energy from the predicted DOS and Fermi level using Equation

9. Figures 4 (c)(d) display the parity plots of the predicted energy contribution compared

to the reference energy contribution calculated from the DFT DOS and Fermi level. The

performance of Model 1 on both datasets is displayed in figure 4(c). Model 1 successfully

predicts the total energy contribution with a mean absolute error (MAE) of 0.033 eV/atom,

below the chemical accuracy threshold of 0.043 eV/atom (1 kcal/mol). Nonetheless, the

results on graphene with defects and highly disordered structures at 2000 K display a decay

in accuracy with a MAE of 0.112 eV/atom and 0.082 eV/atom, respectively. However, this

lower accuracy can be mainly ascribed to some specific structure types which present a more

significant challenge to Model 1 due to different carbon hybridizations or to more significant

disorder in the geometry of the system (see SI). Nevertheless, once the NN is trained on

both datasets, the resulting Model 2 outperforms Model 1 for all the datasets, all of them

considerably below the chemical accuracy threshold (see figure 4(d)). More detailed results

can be found in the SI. These successful results outline the promising capability of our NN
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DOS model within the envisaged DFT emulator.

Conclusions

In summary, we have developed a NN DOS predictor which outperforms DFT in compu-

tational time by several orders of magnitude while preserving chemical accuracy. Despite

the myriad of diverse structures and topologies of carbon considered (albeit within generic

sp2-type environments), the model is flexible enough to perfectly adapt to every atomic en-

vironment and to systematically improve the predictions as the dataset is expanded to new

chemical spaces. A very promising outcome, owing to the linear scaling of NN with the

system size, is the deployment of the DOS prediction model on extremely large systems,

impractical with conventional DFT or any available electronic structure code.

Going forward, we plan on exploiting the capabilities of the NN DOS model in two parallel

but interconnected pathways. First, to profit from the performance and scaling of the model

for large systems, we will develop a NN DOS predictor to provide ’immediate’ access to the

electronic structure of complex polymeric structures composed of sp, sp2 and sp3 hybridiza-

tions, and multiple elements. To achieve such a goal we will extend the model to include

multi-elemental systems starting with hydrocarbons, and progressively expand to polymers

with increasing chemical complexity. Second, to continue work towards DFT emulation we

will couple our NN DOS predictor along with a charge density predictor to calculate the

total energy of the system following Eq. 8. The former pathway will subsequently feed off

of the latter, allowing for molecular dynamics simulations of polymers which preserve DFT

accuracy and provide information on the electronic structure at each step, all within short

computational times.

Despite the outstanding results of the present model, a promising avenue for improvement

is the development of alternate fingerprint representations in the form of NNs instead of

hand-crafted features. While the fingerprints employed in the present work provide very
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good results, such hand-crafted features may impose a bias, limiting the mapping between

the structure and the DOS. By eliminating some of those constraints and allowing the NN

to find the best mapping, a further increase in accuracy, versatility, and transferability is

expected. Promising representations to be considered will employ spherical and icosahedral

convolutional NNs within an approach that still preserves the permutation, translation, and

rotation invariance of the atomic structure.
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