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Abstract—Fuzzy modeling is one of the most known and used
techniques in different areas to emulate the behavior of systems
and processes. In most cases, as in data-driven fuzzy modeling,
these fuzzy models reach a high performance from the point
of view of accuracy, but from other points of view, such as
complexity or interpretability, the models can present a poor
performance.

Several approaches are found in the specialized literature to
reduce the complexity and improve the interpretability of the
fuzzy models. Here, a post-processing approach is taken into
account via the definition of the rules selection criterion that
aims to choose the most relevant rules according to the well-
known accuracy-interpretability trade-off. This criterion is based
on Orthogonal Transformations, here the QRP transformation
is taking into consideration, and its parameters are tuned ge-
netically. The main objective is to check the true significance,
drawbacks and advantages the firing matrix of the rules, that is
the foundation of the most usual approaches based on orthogonal
transformations for the complexity reduction of the fuzzy models.

A neuro-fuzzy system, FasArt (Fuzzy Adaptive System ART
based), and several case studies, data sets from the KEEL Project
Repository, are used to tune and check this approach. This
neuro-fuzzy system generates Mamdani fuzzy rule based systems
(FRBSs), each with its own particularities and complexities from
the point of view of fuzzy sets and rule generation. NSGA-II is
the MOEA tool used to tune the criterion parameters based on
accuracy-interpretability ideas.

Index Terms—Fuzzy Systems, Interpretability, Accuracy, Rule
Selection, Orthogonal Transformations, Genetic Algorithm

I. INTRODUCTION

Fuzzy modeling is one the most known approaches for a
wide range of problems. Data-driven rule based fuzzy models
have been used in several and very different scientific and
technical areas [1], [2], [3], [4], [5].

In general, the fuzzy models taken into consideration in real
world applications have been data-driven and rule based fuzzy
models due to their advantages: easy use and performance.
This performance has usually been evaluated on the basis
of the accuracy of the models, thus minimizing the error
between the real output an the estimated output generated by
the fuzzy models. But other aspects have not been taken into

consideration: complexity, interpretability, etc. Some of them
are base principles of fuzzy logic but these fuzzy models used
them as simple mathematical tools, losing their original fuzzy
meaning.

Complexity is a very usual index or measure, and it is
a problem in data-driven rule based fuzzy models, so the
reduction of this complexity permits important aspects of the
fuzzy models to be improved, gaining a better performance for
these models. The question is the way in which this complexity
reduction must be carried out [6], [7], [8], [9], [10], [11].

Here, the complexity reduction is carried out based on Or-
thogonal Transformations and accuracy-interpretability trade-
off, as this approach has traditionally been focused in most
works [12]. The goal of this work is a postprocessing approach
to simplify a rule-based fuzzy model based on a simple
Criterion of selection that is tuned by a genetic approach,
and, in this way, checks the possibilities and drawbacks of this
type of approach.

The paper is organized as follows: first, in Section II, a brief
description of alternative points of view about fuzzy modeling,
interpretability and accuracy are given. Also in this section, a
brief description of orthogonal transformation and, specially,
QR decomposition with column pivoting - QRP, are given, and
finally, several complexity and interpretability measures are
proposed. In Section III, a Criterion to select the best rules
is described. In Section IV the methodology used in this work
is described. Some experimental studies are carried out and
the main results obtained are discussed in Section V. Finally,
in Section VI, the most interesting conclusions obtained from
this work are set out.

II. FUZZY MODELING: ACCURACY VS.INTERPRETABILITY

Initially, two well known modeling approaches to generate
fuzzy rules are described in the technical and scientific litera-
ture [13], [14], [15]:

1) Precise Fuzzy Modeling, whose main goal is to obtain
as much accuracy as possible. In general, the models
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generated have a good accuracy but a low level of in-
terpretability. This modeling is popular with data-driven
knowledge but expert knowledge is also considered.

2) Linguistic Fuzzy Modeling, these models have a good
level of interpretability but poor accuracy. Here, know-
ledge from experts and from data guide the modeling
process.

Both approaches have their own drawbacks and advantages,
but there are several ways to deal with the generation of fuzzy
systems whose performance includes an adequate accuracy-
interpretability trade-off:
• Algorithms take into account the idea of accuracy-

interpretability during the generation of the fuzzy system.
i.e genetic fuzzy systems [14], [16].

• Orthogonal transformations where the interpretability is
improved by complexity reduction rules [12], [17], [18],
[19].

The orthogonal transformations, used traditionally, permit
relevant simplifications, but the loss of accuracy is also very
high. In most of the usual works about this topic and approach,
the accuracy-interpretability is not truly involved, and, in
addition, the experimental work is not sufficient to reach
relevant conclusions.

These orthogonal transformations are used for rule se-
lection/reduction in fuzzy modeling in two approaches [12]:
the range-revealing approach (Singular Value Decomposition
(SVD) or QRP) and those that evaluate the individual contri-
butions of the rules (Orthogonal Least Squares (OLS)).

In this work, range-revealing methods are used, so the fuzzy
model can be written as a linear regression problem [19]:

y = P ∗ θ + e (1)

SVD is used to determine the effective rank of the rule firing
matrix (P ). This can be expressed as:

pi(x) =

∏N

j=1
Aij(xj)∑M

k=1

∏N

j=1
Akj(xj)

(2)

where x = [x1, .., xN ]T is the input vector, Ai1, ...AiN are
fuzzy sets defined in the antecedent space and M is the number
of rules of the fuzzy model. The most important rules are those
whose singular values are higher.

The QRP approach can produce a rule ordering without an
rank estimation. Here, QRP is directly applied to P, obtaining a
permutation matrix [20]: The QR decomposition of P is given
by P ∗Π = Q∗R, where Π ∈ <M∗M is a permutation matrix,
Q ∈ <N∗M has orthogonal columns and R ∈ <M∗M is upper
triangular, such that

R =

[
R11 R12

0 Rkk

]
(3)

The diagonal values of R are called R−values (|R(kk)|) [17],
which track the singular values σ(P ), so the most active and
least redundant rules are those whose R-values are higher [19]
in the original fuzzy rule space.

III. RULE SELECTION BASED ON QRP TRANSFORMATIONS
AND GENETIC ALGORITHM: A Criterion

The objective of this work is to try to check the orthogonal
transformations, in this case QRP. To reach this goal, a simple
Criterion is defined in order to address the post-processing
rule selection based on the relevance of each rule, then some
conclusions about orthogonal transformations can be reached.
In this case QRP and its R-values, in decreasing order, have
been considered for this approach.

The main problem in the use of orthogonal transformations
for rule ordering and selection is the selection Criterion. The
goal of this work is to select rules automatically based on the
percentage of R-values associated with the selected rules. This
selection must be guided by a good trade-off between accuracy
and interpretability.

A. Rule Selection: a Criterion

In order to address the post-processing rule selection, with
the aim of reducing the complexity of the fuzzy model while
preserving most of its accuracy, the next Criterion has been
proposed:

Given a fuzzy rule model whose complexity is to be reduced
by rule selection, the rules to be taken into consideration in
the new fuzzy model are those rules associated to R-values
whose aggregation is greater than a threshold value, β. In
this way, most of the behavior (and variability) of the rules
is theoretically preserved:

Given a set of n fuzzy rules, each one associated with an
R-value, and given Rnormi the normalized R-value of the rule
i, such that

Rnormi
=

R− valuesRulei∑j=n
j=1 R− valuesRulej

then

Rule1, .., Rulek ∈ ReducedModel

if

i=k∑
i=1

Rnormi ≥ β, k ≤ n

where

β = Percentage of information (rules)

B. Accuracy and Interpretability Measures

The accuracy and interpretability measures considered in
this work are defined in [21]. The accuracy of the model is
measured through its Mean Squared Error (MSE) (Eq. 4):

MSE =
1

N

N∑
i=1

(Yi − Y ′i )2 (4)

The interpretability measure is a set of simple indexes
based on similarity and complexity. In both cases, a lower
value has a positive influence on reducing the complexity



and improving the interpretability of the fuzzy models. These
indexes are:
• Compactness or Number of rules.
• Similarity amongst rules.
• Redundancy of the fuzzy rule set.
• Incoherency of rules.
• Completeness or No-Coverage.
¿From these indexes, the function to measure the inter-

pretability is (Eq. 5)

InterC = ArithmeticMean(
λnr ∗RuleNumbernor, λs ∗ Similaritynor,
λr ∗Redundancynor, λi ∗ Incoherencynor,
λnc ∗NoCoveragenor)

λj ∈ (0, 1)

(5)

Here, λj = 1 because it gives equal weight to all indexes,
and the normalization is (Eq. 6):

Indexnor =
IndexCurrent−IndexOriginal

IndexCurrent
(6)

C. Genetic Algorithm and Neuro-Fuzzy Systems

A genetic algorithm and a neuro-fuzzy system are used in
this work to check and analyze the proposal.

The well-known multi-objective evolutionary algorithm
NSGA-II [22] is taken into account in this work. Two fitness
functions from MSE and InterC are used to reach a fuzzy
model with a good accuracy-interpretability trade-off. A third
fitness is used to penalize smaller R-values corresponding to
less active and more redundant rules, such that,

PenaltyR−values = n
√∏n

i=1 1−Rnormi
(7)

and a restriction is imposed to ensure an adequate percentage
of information (rules).

Neuro-Fuzzy systems are very popular approaches to gen-
erate fuzzy rule based systems, taking advantage of the
learning capacity of Artificial Neural Networks (ANN) and
the explanatory capacity of Fuzzy Logic. In this work, the
neuro-fuzzy system FasArt [23], [24] has been used, which
is a neuro fuzzy system based on the Adaptive Resonance
Theory (ART). FasArt introduces an equivalence between the
activation function of each FasArt neuron and a membership
function. In this way, FasArt is equivalent to a Mamdani fuzzy
rule-based system with: Fuzzification by single point, Inference
by product, and Defuzzification by average of fuzzy set centers.
A full description of this model can be found in [23] and [24].

IV. TUNING THE Criterion: METHODOLOGY

The methodology of this work is focused on tuning the
Criterion of selection proposed in III-A and its parameter (β).
To reach this goal, the methodology used is made up of four
general steps:

1) Initial model generation.
For each data set to be considered, two cases of fuzzy
models are generated by FasArt: compact and complex.

2) Tuning of the Criterion, β parameter, by MOEA for
each fuzzy model

This is based on the accuracy-interpretability trade-off
and the R-values associated of the fuzzy rules.
The β parameter is tuned for each fuzzy model data set,
in three representative points of the Pareto Front ([6]):
• The most interpretable model: Best InterC (BI).
• The most accurate model: Best Acc (BA).
• The balanced interpretability-accuracy model: Bal-

anced InterC −Acc (BIA).
Here, the multi-objetive genetic algorithm uses the three
fitness functions of Eq. 8 and the restriction of Eq. 9:

max(Accuracy) = min(MSE)
max(Interpretability) = min(InterC)
max(Penalty) = max(PenaltyR−values)

(8)

β ∈ [60%− 85%] (9)

The fitness functions involve the accuracy-
interpretability trade-off and penalize smaller R-values,
which correspond to less active and more redundant
rules. The restriction is imposed to preserve an adequate
percentage of information (rules). In this work, a first
run of the MOEA with the two first functions was
carried out in order to estimate the restriction range of
Eq. 9.

3) Generalization of Criterion: Generation of the β pa-
rameter from β′is.
Taking into consideration the particular tuning obtained
for each fuzzy model, a general range of β is carried out
for cross-validation:

1: for Criterion = 1 do
2: for Model = Compact:Complex do
3: for Accur-Interpret Point=BI:BA:BIA do
4: for N datasets do
5: All possible combinations of 2/3 of data

set, each one with its β (β′is), are done:
β’s training.

6: For each combination, the mean and me-
dian are done, obtaining new β’s (2*num-
combination).

7: MSE and InterC are calculated with
these new β’s, for 2/3 and the remaining
1/3: β’s test.

8: The mean of MSE and InterC are done.
9: The best accuracy (min(MSE)) and the

best interpretability (min(InterC)) are se-
lected and each one has a β associated
obtaining two c.

10: The final β is obtained to find the
mean/median of these two β’s. This
midpoint gives a good accuracy-
interpretability trade-off .

11: end for
12: end for
13: end for
14: end for



TABLE I
DATA SETS FROM KEEL PROJECT

data sets Variables Records

Plastic Strength (PLA) 3 1650

Quake (QUA) 4 2178

Electrical Maintenance (ELE) 5 1056

Abalone (ABA) 9 4177

Stock prices (STP) 10 950

Weather Ankara (WAN) 10 1609

Weather Izmir (WIZ) 10 1461

Mortgage (MOR) 16 1049

Treasury (TRE) 16 1049

4) Checking the Criterion: Accuracy and interpretabil-
ity based on the Criterion and its parameter β.

1: for Criterion = 1 do
2: for Model = Compact:Complex do
3: for Accur-Interpret Point=BI:BA:BIA do
4: for datasets = 1 to N do
5: Calculation of MSE and InterC
6: end for
7: end for
8: end for
9: Analysis of results

10: end for

V. EXPERIMENTS: RESULTS AND ANALYSIS

The proposal described in previous sections is checked
using nine data sets from the KEEL project 1 (Table I) [25],
[26].

In accordance with the methodology described in section
IV:

1) Two types of base fuzzy models are generated by Fas-
Art for each data set: Model1-Compact and Model2-
Complex.

2) MOEA has been run using several options and the best
results (based on best MSE and InterC) have been ob-
tained combining the three fitness functions formulated
in Eq. 8 with the restriction of Eq. 9.
In this work, all the genetic operators are used in their
default options:
• Tournament without replacement for selection. Tour-

nament size = 2.
• Simulated binary for crossover. Crossover probabil-

ity = 0.9.
• Polynomial for mutation. Mutation probability =

0.1.
From here, the β’s obtained for MOEA for each data set
are shown in Table II.
These β’s of Table II are used to tune a general β by
cross validation, as described in point 3 of section IV,
then the best accuracy and interpretability are obtained
for the β’s shown in Table III.
The final value of β, so the final tuning of the Criterion,
is obtained by taking the mean/median of these two

1http://sci2s.ugr.es/keel/data setss.php

TABLE II
PERCENTAGE OF β OBTAINED FOR MOEA WITH THREE FITNESS

FUNCTIONS AND RESTRICTION β ∈ [60%− 85%] (%)

Model1 Best InterC Balanced InterC − Acc Best Acc

PLA1 63.6 68.7 70.9

QUA1 61.8 63.7 68.2

ELE1 79.1 75.3 84.0

ABA1 78.0 68.7 74.4

STP1 72.5 76.7 82.4

WIZ1 67.3 66.2 74.8

WAN1 64.3 67.8 68.8

MOR1 69.8 74.0 78.8

TRE1 68.7 72.6 78.4

Model2 BestInterC BalancedInterC − Acc BestAcc

PLA2 69.0 68.7 70.5

QUA2 64.5 64.1 63.1

ELE2 66.3 72.0 81.0

ABA2 63.1 63.0 66.0

STP2 74.8 72.3 72.8

WIZ2 64.6 66.7 67.8

WAN2 61.6 63.4 63.9

MOR2 74.0 74.5 76.2

TRE2 68.8 74.1 79.0

TABLE III
PERCENTAGE OF β OBTAINED FOR THE BEST MSE AND THE BEST

InterC (%)

Model1 Best InterC Balanced InterC − Acc Best Acc

Best MSE 72.1 73.3 78.8

Best InterC 65.7 68.0 72.6

Model2 Best InterC Balanced InterC − Acc Best Acc

Best MSE 69.6 72.2 74.6

Best InterC 64.6 65.4 66.9

TABLE IV
FINAL β’S (%)

Best InterC Balanced InterC − Acc Best Acc

Model1 68.9 70.7 75.7

Model2 67.1 68.8 70.8

β’s in order to obtain a compromise between the best
accuracy point and the best interpretability point. The
final β’s are shown in Table IV.

3) MSE and InterC are calculated for nine data sets,
selecting the percentage of R-values corresponding to
the final β’s (Table IV).

To see the results obtained for MSE and InterC with
their indexes of accuracy and interpretability, each study case
is done with the new β’s and the results are shown in the
following subsections.

A. Performance of the Fuzzy Models

Table V summarizes the main performance aspects of the
base fuzzy models generated. The indexes shown in the tables
are the squared error for training (MSEtra) and the test
(MSEtst), the rule number (RN ), the similarity (S), the
redundancy (R), the incoherency (I) and the percentage of
completeness (C).

The performance of these base fuzzy models are matched
with Wang & Mendel Models in [6]. In general, the complex
models show a higher accuracy, while the compact models
have a similar performance in some cases, and in others are
a little more accurate or a little worse (see Table VI). The
highlighted values mean that the performance (NR/MSE) in
the FasArt models is greater than in Wang & Mendel.



TABLE V
PERFORMANCE OF THE FASART FUZZY MODELS

Model MSEtra MSEtst RN S R I C(%)

PLA1 6.553 6.553 14 0.204 0 0 100

PLA2 2.498 2.498 143 0.144 0.001 0.008 100

QUA1 0.071 0.071 20 0.225 0 0.005 90.4

QUA2 0.040 0.040 310 0.255 2e-4 0.002 100

ELE1 158937 158938 25 0.212 0 0.007 100

ELE2 55102 55103 145 0.291 0.008 0.001 97.6

ABA1 8.861 8.861 36 0.342 0 0.005 100

ABA2 5.176 5.176 305 0.330 4e-4 0.001 100

STP1 3.948 3.948 15 0.266 0 0 100

STP2 0.432 0.432 165 0.187 0 3e-4 100

WIZ1 15.208 15.208 26 0.317 0 0 100

WIZ2 3.737 3.737 118 0.377 0 0 100

WAN1 19.516 19.514 32 0.285 0 0 100

WAN2 4.060 4.044 391 0.358 0 0 100

MOR1 0.146 0.146 30 0.338 0 0 100

MOR2 0.071 0.071 101 0.290 4e-4 4e-4 100

TRE1 0.234 0.234 23 0.306 0 0 100

TRE2 0.138 0.138 62 0.288 0 0 100

TABLE VI
WANG & MENDEL [6] VS NEURO-FUZZY SYSTEMS.

Compact Wang & Mendel [27] FasArt (Model 1)

Models RN MSEtra MSEtst RN MSEtra MSEtst

PLA 14.8 6.868 7.114 14 6.553 6.553

QUA 53.6 0.0516 0.0534 20 0.071 0.071
ELE 65 115212 115868 25 158937 158938
ABA 68 16.814 16.844 36 8.861 8.861

STP 122.8 18.148 18.084 15 3.948 3.948

WIZ 104.8 13.888 14.736 26 15.208 15.208
WAN 156 32.126 32.786 32 19.516 19.514

MOR 77.6 1.97 1.946 30 0.146 0.146

TRE 75 3.272 3.262 23 0.234 0.234

Complex Wang & Mendel [6] FasArt (Model 2)

Models NR MSEtra MSEtst NR MSEtra MSEtst

PLA 14.8 6.868 7.114 143 2.498 2.498

QUA 53.6 0.0516 0.0534 310 0.040 0.040

ELE 65 115212 115868 145 55102 55103

ABA 68 16.814 16.844 305 5.176 5.176

STP 122.8 18.148 18.084 165 0.432 0.432

WIZ 104.8 13.888 14.736 118 3.737 3.737

WAN 156 32.126 32.786 391 4.060 4.044

MOR 77.6 1.97 1.946 101 0.071 0.071

TRE 75 3.272 3.262 62 0.138 0.138

Thus, these fuzzy models can be simplified in order to reach
better and less complex fuzzy models using a more adequate
accuracy-interpretability trade-off based on this proposal.

B. Reducing the complexity of the Fuzzy Models: Results and
Analysis

The analysis of the results is organized according to the
compact base fuzzy models and the complex base fuzzy
models. In both cases, the values of MSE and InterC with
their indexes are presented.

1) Compact Models: Table VII shows the averaged results
obtained by the characteristic models considered in this work
over 5 runs for each case study considered. Specifically, the
table shows the mean squared error for the test, MSEtst, and
the mean of the proposed index InterC , for each one of the
three characteristic models taken into account: BI, BIA and
BA. The first line shows the initial/original model (I) and the
second line shows the improved model performance (F).

Tables VIII, IX and X show the mean values of some
individual indexes for the final β’s: the mean squared error
for training (MSEtra) and testing (MSEtst), the mean rule
number (RN ), the mean similarity (S), the mean redundancy

TABLE VII
PERFORMANCE OF THE IMPROVED COMPACT FUZZY MODELS

Best InterC Balanced InterC − Acc Best Acc

Model1 MSEtst InterC MSEtst InterC MSEtst InterC

PLA1(I) 6.553 0.241 6.553 0.241 6.553 0.241

PLA1(F) 12.589 0.152 12.589 0.152 12.256 0.155

QUA1(I) 0.071 0.265 0.071 0.265 0.071 0.265

QUA1(F) 0.051 0.188 0.044 0.190 0.045 0.199

ELE1(I) 158938 0.244 158938 0.244 158938 0.244

ELE1(F) 992076 0.132 749610 0.137 641352 0.152

ABA1(I) 8.861 0.269 8.861 0.269 8.861 0.269

ABA1(F) 10.916 0.190 9.521 0.194 8.070 0.202

STP1(I) 3.948 0.253 3.948 0.253 3.948 0.253

STP1(F) 14.162 0.153 13.538 0.156 13.538 0.156

WIZ1(I) 15.208 0.263 15.208 0.263 15.208 0.263

WIZ1(F) 103.700 0.173 100.041 0.177 88.800 0.182

WAN1(I) 19.514 0.257 19.514 0.257 19.514 0.257

WAN1(F) 60.108 0.172 57.658 0.176 27.359 0.181

MOR1(I) 0.146 0.268 0.146 0.268 0.146 0.268

MOR1(F) 5.045 0.162 4.106 0.161 3.707 0.167

TRE1(I) 0.234 0.261 0.234 0.261 0.234 0.261

TRE1(F) 3.987 0.135 3.839 0.137 3.288 0.149

TABLE VIII
RESULTS OBTAINED WITH COMPACT FASART BEST InterC β=68.9 %

Model1 MSEtra MSEtst RN S R I C(%)

PLA1(I) 6.553 6.553 14.00 0.204 0.000 0.000 100

PLA1(F) 12.586 12.589 8.00 0.187 - - 100

QUA1(I) 0.071 0.071 20.00 0.225 0.000 0.005 90.4

QUA1(F) 0.051 0.051 7.80 0.365 - 0.000 81.7

ELE1(I) 158937 158938 25.00 0.212 0.000 0.007 100

ELE1(F) 861883 992077 11.00 0.213 - 0.000 99.1

ABA1(I) 8.861 8.861 36.00 0.342 0.000 0.005 100

ABA1(F) 10.944 10.916 15.40 0.411 - 0.009 89.8

STP1(I) 3.948 3.948 15.00 0.266 0.000 0.000 100

STP1(F) 13.787 14.162 5.80 0.280 - - 90.0

WIZ1(I) 15.208 15.208 26.00 0.317 0.000 0.000 100

WIZ1(F) 101.24 103.70 10.20 0.333 - - 85.8

WAN1(I) 19.516 19.514 32.00 0.285 0.000 0.000 100

WAN1(F) 60.101 60.108 11.60 0.371 - - 87.4

MOR1(I) 0.146 0.146 30.00 0.338 0.000 0.000 100

MOR1(F) 4.993 5.045 9.00 0.368 - - 86.0

TRE1(I) 0.234 0.234 23.00 0.306 0.000 0.000 100

TRE1(F) 3.829 3.987 6.80 0.291 - - 91.1

TABLE IX
RESULTS OBTAINED WITH COMPACT FASART BALANCED InterC −Acc

β=70.7 %

Model1 MSEtra MSEtst RN S R I C(%)

PLA1(I) 6.553 6.553 14.00 0.204 0.000 0.000 100

PLA1(F) 12.586 12.589 8.00 0.187 - - 100

QUA1(I) 0.071 0.071 20.00 0.225 0.000 0.005 90.4

QUA1(F) 0.044 0.044 8.00 0.368 - 0.000 81.7

ELE1(I) 158937 158938 25.00 0.212 0.000 0.007 100

ELE1(F) 700522 749610 11.80 0.208 - 0.000 99.5

ABA1(I) 8.861 8.861 36.00 0.342 0.000 0.005 100

ABA1(F) 9.521 9.521 16.00 0.414 - 0.008 89.8

STP1(I) 3.948 3.948 15.00 0.266 0.000 0.000 100

STP1(F) 13.359 13.538 6.00 0.285 - - 90.4

WIZ1(I) 15.208 15.208 26.00 0.317 0.000 0.000 100

WIZ1(F) 97.331 100.041 10.60 0.334 - - 85.8

WAN1(I) 19.516 19.514 32.00 0.285 0.000 0.000 100

WAN1(F) 57.762 57.658 12.40 0.372 - - 87.8

MOR1(I) 0.146 0.146 30.00 0.338 0.000 0.000 100

MOR1(F) 4.090 4.106 10.00 0.369 - - 89.5

TRE1(I) 0.234 0.234 23.00 0.306 0.000 0.000 100

TRE1(F) 3.735 3.839 7.00 0.289 - - 91.1

(R), the mean incoherency (I) and the mean percentage of
completeness (C%).

These tables show that the interpretability is always im-
proved, while the accuracy is only improved sometimes. This is
because the selection of rules with orthogonal transformations
is done by removing the rules whose R-values are smaller, but



TABLE X
RESULTS OBTAINED WITH COMPACT FASART BEST Acc β=75.7 %

Model1 MSEtra MSEtst RN S R I C(%)

PLA1(I) 6.553 6.553 14.00 0.204 0.000 0.000 100

PLA1(F) 12.230 12.256 8.20 0.188 - - 100

QUA1(I) 0.071 0.071 20.00 0.225 0.000 0.005 90.4

QUA1(F) 0.045 0.045 9.00 0.366 - 0.000 82.0

ELE1(I) 158937 158938 25.00 0.212 0.000 0.007 100

ELE1(F) 561249 641352 13.60 0.211 - 0.000 99.7

ABA1(I) 8.861 8.861 36.00 0.342 0.000 0.005 100

ABA1(F) 8.202 8.070 18.00 0.401 - 0.007 89.8

STP1(I) 3.948 3.948 15.00 0.266 0.000 0.000 100

STP1(F) 13.359 13.538 6.00 0.285 - - 90.4

WIZ1(I) 15.208 15.208 26.00 0.317 0.000 0.000 100

WIZ1(F) 87.841 88.800 12.20 0.323 - - 88.3

WAN1(I) 19.516 19.514 32.00 0.285 0.000 0.000 100

WAN1(F) 27.809 27.359 14.20 0.368 - - 90.9

MOR1(I) 0.146 0.146 30.00 0.338 0.000 0.000 100

MOR1(F) 3.594 3.707 11.00 0.373 - - 90.4

TRE1(I) 0.234 0.234 23.00 0.306 0.000 0.000 100

TRE1(F) 3.147 3.288 8.20 0.301 - - 91.1

Rule ordering x-axis: [10 1 9 3 2 7 14 11 5 8 12 4 6 13]

Fig. 1. Selected Rules for MOEA in PLA1

these R-values provide accuracy to the system, as can be seen
in Figure 1.

This table shows the rules selected by MOEA in the case
of a data set (in this example PLA1 with 14 rules) for the
three points (BI, BA and BIA). In the x-axis are the rules
from highest to lowest importance (from left to right), as the
R-values, and the vertical axis is the percentage of times that
MOEA selects each rule. Thus, 0.5 means that a rule has been
selected for 50% of the time.

Figures 2, 3 and 4 show similar selections for Model1 with
other data sets. In all cases, it can be seen that the rules
associated to small R-values are selected, even in the best Acc
point.

2) Complex Models: Table XI shows the averaged results
obtained by the characteristic models considered in this work
over 5 runs for each case study considered. As compact
models, the table shows the mean squared error for the test,
MSEtst, and the mean of the proposed index InterC , for each
one of the three points: BI, BIA and BA.

The first line shows the initial/original model (I) and the
second line shows the improved model performance (F) for

Rule ordering x-axis: [6 9 4 1 3 20 5 7 19 16 11 12 10 8 14 15 2 18 17 13]

Fig. 2. Selected Rules for MOEA in QUA1

Rule ordering x-axis: [4 9 7 11 5 3 2 1 15 14 6 8 10 12 13]

Fig. 3. Selected Rules for MOEA in STP1

Rule ordering x-axis: [17 19 10 2 13 11 22 23 8 18 20 14 15 6 9 5 12 3 4 7 1 21 16]

Fig. 4. Selected Rules for MOEA in TRE1



TABLE XI
PERFORMANCE OF THE IMPROVED COMPLEX FUZZY MODELS

Best InterC Balanced InterC − Acc Best Acc

Model2 MSEtst InterC MSEtst InterC MSEtst InterC

PLA2(I) 2.498 0.231 2.498 0.231 2.498 0.231

PLA2(F) 8.471 0.081 8.355 0.083 8.391 0.088

QUA2(I) 0.040 0.251 0.040 0.251 0.040 0.251

QUA2(F) 0.051 0.115 0.045 0.118 0.039 0.121

ELE2(I) 55103 0.265 55103 0.265 55103 0.265

ELE2(F) 1079317 0.100 1063736 0.103 1035999 0.123

ABA2(I) 5.176 0.266 5.176 0.266 5.176 0.266

ABA2(F) 6.669 0.157 6.686 0.161 6.715 0.166

STP2(I) 0.432 0.238 0.432 0.238 0.432 0.238

STP2(F) 12.957 0.131 12.529 0.132 11.793 0.135

WIZ2(I) 3.737 0.275 3.737 0.275 3.737 0.275

WIZ2(F) 18.279 0.175 17.644 0.177 17.326 0.180

WAN2(I) 4.044 0.272 4.044 0.272 4.044 0.272

WAN2(F) 9.992 0.147 9.866 0.146 9.298 0.149

MOR2(I) 0.071 0.258 0.071 0.258 0.071 0.258

MOR2(F) 3.622 0.146 3.458 0.149 3.311 0.153

TRE2(I) 0.138 0.258 0.138 0.258 0.138 0.258

TRE2(F) 3.916 0.158 3.713 0.158 3.138 0.161

TABLE XII
RESULTS OBTAINED WITH COMPLEX FASART BEST InterC β=67.1 %

Model2 MSEtra MSEtst RN S R I C(%)

PLA2(I) 2.498 2.498 143.00 0.144 0.001 0.008 100

PLA2(F) 8.538 8.471 38.20 0.137 0.001 0.000 100

QUA2(I) 0.040 0.040 310.00 0.255 0.000 0.002 100

QUA2(F) 0.050 0.051 89.40 0.260 0.000 0.002 97.5

ELE2(I) 55102 55103 145.00 0.291 0.008 0.001 97.6

ELE2(F) 910201 1079317 39.20 0.188 0.011 0.001 97.2

ABA2(I) 5.176 5.176 305.00 0.330 0.000 0.001 100

ABA2(F) 6.570 6.669 120.40 0.339 0.001 0.001 95.0

STP2(I) 0.432 0.432 165.00 0.187 0.000 0.000 100

STP2(F) 12.654 12.957 55.20 0.254 - 0.002 93.6

WIZ2(I) 3.737 3.737 118.00 0.377 0.000 0.000 100

WIZ2(F) 18.037 18.279 36.60 0.424 - - 86.0

WAN2(I) 4.060 4.044 391.00 0.358 0.000 0.000 100

WAN2(F) 8.575 9.992 134.00 0.357 - - 96.4

MOR2(I) 0.071 0.071 101.00 0.290 0.000 0.000 100

MOR2(F) 3.090 3.622 37.40 0.320 0.001 0.000 96.2

TRE2(I) 0.138 0.138 62.00 0.288 0.000 0.000 100

TRE2(F) 4.054 3.916 22.80 0.321 - - 90.0

these three characteristic models.
Tables XII, XIII, XIV show the mean and individual values

for some indexes considered for the final β’s: the mean
squared error for training (MSEtra) and testing (MSEtst),
the mean rule number (RN ), the mean similarity (S), the
mean redundancy (R), the mean incoherency (I) and the mean
percentage of completeness (C%).

These tables show that the interpretability is always im-
proved, while the accuracy is only improved for one data set
and for the best Acc point. This is normal because complex
models have an original high precision.

However, the accuracy is also reduced by the rule selection,
and this is connected with orthogonal transformations: the
firing matrix used to obtain the R-values only takes into
account the antecedents of the rules. Thus, there are important
rules for the accuracy of the system which are removed. These
rules can correspond to small R-values and Figures 1, 2, 3
and 4 show these drawbacks: rules with small R-values are
selected by the MOEA to provide accuracy and to obtain a
good interpretability-accuracy trade-off.

3) Global Analysis: In general, the results show the advan-
tages and some of the drawbacks obtained when orthogonal
transformation are applied to the firing matrix of the fuzzy

TABLE XIII
RESULTS OBTAINED WITH COMPLEX FASART BALANCED InterC −Acc

β=68.8 %

Model2 MSEtra MSEtst RN S R I C(%)

PLA2(I) 2.498 2.498 143.00 0.144 0.001 0.008 100

PLA2(F) 8.418 8.355 40.00 0.136 0.001 0.000 100

QUA2(I) 0.040 0.040 310.00 0.255 0.000 0.002 100

QUA2(F) 0.049 0.045 93.80 0.259 0.000 0.001 97.5

ELE2(I) 551024 55103 145.00 0.291 0.008 0.001 97.6

ELE2(F) 859980 10637365 41.20 0.192 0.012 0.001 97.2

ABA2(I) 5.176 5.176 305.00 0.330 0.000 0.001 100

ABA2(F) 6.569 6.686 125.80 0.339 0.001 0.001 95.0

STP2(I) 0.432 0.432 165.00 0.187 0.000 0.000 100

STP2(F) 11.898 12.529 57.20 0.252 - 0.002 93.9

WIZ2(I) 3.737 3.737 118.00 0.377 0.000 0.000 100

WIZ2(F) 17.303 17.644 38.40 0.425 - - 86.4

WAN2(I) 4.060 4.044 391.00 0.358 0.000 0.000 100

WAN2(F) 7.894 9.866 139.60 0.352 - - 97.9

MOR2(I) 0.071 0.071 101.00 0.290 0.000 0.000 100

MOR2(F) 2.994 3.458 39.00 0.322 0.001 0.000 96.3

TRE2(I) 0.138 0.138 62.00 0.288 0.000 0.000 100

TRE2(F) 3.780 3.713 23.80 0.317 - - 91.0

TABLE XIV
RESULTS OBTAINED WITH COMPLEX FASART BEST Acc β=70.8 %

Model2 MSEtra MSEtst RN S R I C(%)

PLA2(I) 2.498 2.498 143.00 0.144 0.001 0.008 100

PLA2(F) 8.362 8.391 42.20 0.134 0.001 0.000 100

QUA2(I) 0.040 0.040 310.00 0.255 0.000 0.002 100

QUA2(F) 0.040 0.039 99.40 0.258 0.000 0.001 97.5

ELE2(I) 55102 55103 145.00 0.291 0.008 0.001 97.6

ELE2(F) 790187 1035999 43.20 0.189 0.011 0.002 97.2

ABA2(I) 5.176 5.176 305.00 0.330 0.000 0.001 100

ABA2(F) 6.576 6.715 132.80 0.336 0.001 0.001 95.4

STP2(I) 0.432 0.432 165.00 0.187 0.000 0.000 100

STP2(F) 11.003 11.793 59.80 0.254 - 0.002 94.2

WIZ2(I) 3.737 3.737 118.00 0.377 0.000 0.000 100

WIZ2(F) 16.882 17.326 40.40 0.421 - - 86.5

WAN2(I) 4.060 4.044 391.00 0.358 0.000 0.000 100

WAN2(F) 7.379 9.298 146.40 0.349 - - 98.1

MOR2(I) 0.071 0.071 101.00 0.290 0.000 0.000 100

MOR2(F) 2.808 3.311 41.00 0.319 0.001 0.000 96.3

TRE2(I) 0.138 0.138 62.00 0.288 0.000 0.000 100

TRE2(F) 3.194 3.138 24.80 0.316 - - 91.2

rule based model: a high reduction of the complexity, so the
levels of interpretability under fuzzy criteria are increased (see
Tables VII and XI).

However, on the other hand, the model accuracy is de-
creased in most of the cases. This reduction of the accuracy
can be highly relevant due to the hard simplification achieved
by orthogonal transformations. This happens, even taking into
consideration the most relevant rules based on their R−values.
The cause for this is: some of the rules removed correspond to
the smaller R-values, or those near to zero, and these R-values
correspond to non active and redundant rules. Redundant rules,
however, can significantly contribute to the output system.

This can be shown by looking at the selection of rules that
MOEA carries out according to the restrictions commented in
point 2 of section IV: although smaller R-values are penalized,
the algorithm continues to select some of the small R-values,
to provide the system with accuracy (see Figures 1 to 4).

VI. CONCLUSIONS

This work deals with the complexity reduction of fuzzy
models via Orthogonal Transformations, QRP: The goal is to
check the limitations of the traditional application of this type
of transformation to the firing matrix of a fuzzy model. In



order to check this, a Criterion for fuzzy rule selection has
been defined based on R-values, and its parameter has been
tuned by a MOEA. This tuning has been carried out taking
into consideration the accuracy-interpretability trade-off.

In all cases, interpretability has been improved considerably.
The number of rules is always reduced, to 70% in some
cases, and the rest of the indexes defined to measure the
interpretability are also reduced in most cases.

However, in most cases, there is a loss of accuracy. This
is due to the fact that orthogonal transformations for rule
reduction are usually based on a firing matrix (P ) involving
the rule antecedent [19], [12]. The rules associated with the
smaller R-values are removed because they are considered not
relevant, but these rules usually provide a better accuracy.

In this work, the R-values for rule selection are obtained
from the firing matrix (P ). The results show that this matrix
is not sufficient for this selection of rules because the rules
associated with the small R-values are removed, and some of
these rules can be important to obtain a good accuracy.

Future work is focused on a more realistic ”firing matrix”,
or index-values for rule selection, considering other elements
of the fuzzy models such as the inference mechanism or
consequents.
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