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Abstract—This paper addresses the challenging problem of
fuzzy modeling in high-dimensional and large scale regression
datasets. To this end, we propose a scalable two-stage method for
obtaining accurate fuzzy models in high-dimensional regression
problems using approximate Takagi-Sugeno-Kang Fuzzy Rule-
Based Systems. In the first stage, we propose an effective Multi-
Objective Evolutionary Algorithm, based on an embedded genetic
Data Base learning (involved variables, granularities and a
slight lateral displacement of fuzzy partitions) together with an
inductive rule base learning within the same process. The second
stage is a post-processing process based on a second MOEA to
perform a rule selection and a fine scatter-based tuning of the
Membership Functions. Moreover, it incorporates an efficient
Kalman filter to estimate the coefficients of the consequent
polynomial functions in the Takagi-Sugeno-Kang rules. In both
stages, we include mechanisms in order to significantly improve
the accuracy of the model and to ensure a fast convergence in
high-dimensional regression problems.

The proposed method is compared to the classical ANFIS
method and to a well-known evolutionary learning algorithm
for obtaining accurate TSK systems in 8 datasets with different
sizes and dimensions, obtaining better results.

Index Terms—Accurate Fuzzy Modeling, Multi-Objective Ge-
netic Algorithms, Regression, High-Dimensional and Large-Scale
Problems.

I. INTRODUCTION

A good alternative for precise fuzzy modeling is the use of
the Takagi-Sugeno-Kang (TSK) Fuzzy Rule-Based Systems
(FRBSs) [1], [2]. The rule structure in TSK model is formed
by linguistic variables in the antecedent and a polynomial
function of the input variables in the consequent. This rule
structure involves the loss of interpretability to some degree,
although it allows the model to be more accurate which is a
good property for precise fuzzy modeling. However, due to
the large number of involved parameters and the necessity to
discover an appropiate structure for the obtained rule-based
model, this becomes a challenging problem when addressing
high-dimensional or large scale regression datasets [3], [4],
[5].

Moreover, the learning of premises and consequents is
usually done in different stages, even alternatively, due to
the high complexity of the involved search space. But ideally,

both parts (antecedents and consequents) should be obtained
together within the same process, since they are dependent on
each other.

Evolutionary Algorithms (EAs) are able to learn together
the antecedents and consequents of the TSK rules, but they
still have scalability problems in terms of computational time
and convergence in datasets with high number of variables
(high dimensional datasets) and/or with large amount of data
(large-scale datasets). In fact, this is one of the open topics
on the application of EAs to learn FRBSs, which are known
as Genetic Fuzzy Systems [6] in general and Multi-Objective
Evolutionary Fuzzy Systems [7] in particular, when consid-
ering Multi-Objective Evolutionary Algorithms (MOEAs) [8],
[9].

In this contribution, we present a scalable two-stage evolu-
tionary method for precise fuzzy modeling by TSK FRBSs.
In the first stage, we propose an effective MOEA, based on
an embedded genetic Data Base (DB) learning [6] (involved
variables, granularities and a slight lateral displacement [10]
of fuzzy partitions). The Rule Base (RB) is obtained within the
same process using an efficient ad-hoc algorithm to estimate
the coefficients of the TSK consequents. The proposed MOEA
includes some specific mechanisms to ensure a fast learning
of the candidate TSK FRBS structure. The second stage
is a post-processing process based on a second MOEA to
perform a rule selection and a fine scatter-based tuning of
the Membership Functions (MFs). Moreover, it incorporates a
new efficient hybridization of a Kalman filter [11] to estimate
the coefficients of the consequent polynomial functions, which
helps to significantly improve the performance of the model.
In both stages, we propose the use of MOEAs as a tool
to control the dimensionality of the models and the system
overfitting, but with the main global objective of obtaining
accurate models.

To show the advantages of the proposed method, it is tested
on 8 different problems with a number of variables ranging
from 2 to 40 and a number of samples ranging from 1056 to
22784. In addition, we compared our proposal against two
methods, the classical ANFIS method [12] and an evolu-
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tionary learning algorithm [13], in order to have some good
performance references. The results obtained demonstrate the
effectiveness of the proposed method in terms of accuracy, and
particularly in terms of scalability.

The next section describes the general TSK fuzzy model
structure considered in this work. Section III presents the
proposed method describing its main characteristics and the
genetic operators considered. Sections IV and V shows the
experimental study and draws some conclusions.

II. TAKAGI-SUGENO-KANG FUZZY RULE-BASED
SYSTEMS

In [1], [2], Takagi and Sugeno proposed a fuzzy model
based on rules in which the antecedents are comprised of
linguistic variables and in which the consequent is not a
linguistic variable but a function of the input variables. These
kinds of rules present the following structure:

If X1 is A1 and . . . and Xn is An then
Y = p1 ·X1 + . . .+ pn ·Xn + p0,

,

where Xi are the system input variables, Y is the system output
variable, pi are real-values coefficients and Ai are fuzzy sets.
Such rules are called TSK fuzzy rules, in allusion to its creators
[2].

The output of a TSK FRBS considering a Knowledge Base
(KB) composed of m TSK rules is computed as the weighted
average of the individual rule output Yi, i = 1 . . .m:∑m

i=1
hi · Yi∑m

i=1
hi

,

with hi = T (A1(x1), . . . , An(xn)) being the matching degree
between the antecedent part of the ith rule and the current
system inputs x = (x1, . . . , xn), and with T being a t-norm.

TSK FRBSs have been applied successfully to a great
quantity of problems. The main advantage of these kinds of
systems is the fact of presenting a compact system equation
for estimating the parameters pi using classical methods, and
obtaining an accurate system, which can be very useful for
accurate fuzzy modeling.

On the other hand, instead of considering linguistic par-
titions, we could consider scatter partitions. The scatter ap-
proach is based on rules presenting the following structure:

Ri : If X1 is Ai1 and . . . and Xn is Ain then Y is Bi ,

where Ai and Bi are fuzzy sets specific to each fuzzy
rule. Approaches based on scatter partitions present interesting
advantages that make them very suitable for precise modeling
purposes:
• The expressive power of the rules that present their own

specificity in terms of the fuzzy sets involved in them,
thus introducing additional degrees of freedom in the
system.

• The number of rules is adapted to the complexity of the
problem, needing fewer rules in simple problems, and be-
ing able to use more rules if it is necessary. This is likely

to be of benefit in tackling the curse of dimensionality
when scaling to multidimensional systems.

In this contribution we focus on developing accurate TSK
fuzzy models based on scatter partitions, which can provide
more accurate solutions to different problems, especially real-
world high-dimensional and large-scale regression problems
with accuracy as the main requirement.

III. PROPOSED METHOD

This section presents the proposed two stage method for
regression problems with high number of variables and/or
examples. In the first stage, an effective MOEA is applied
to learn an initial DB, based on a fuzzy grid in order to obtain
zero-order TSK candidate rules and the second stage applies
an advanced post-processing MOEA for fine scatter-based
evolutionary tuning of MFs combined with a rule selection.
These algorithms incorporate some of the ideas of the fast and
scalable multi-objective genetic fuzzy system, FSMOGFSe [3],
for linguistic fuzzy modeling in complex regression problems.

In the following, we include a preliminary section describ-
ing a mechanism for error estimation in large-scale prob-
lems [3] and an adaptation of Wang and Mendel [14] method
(WM) for obtaining zero-order TSK rules. Then, sections III-B
and III-C present both stages of the proposed method.

A. Some mechanisms to address scalability and dimensionality

In this section, we present two mechanisms used in the
proposed algorithm. The first one is an error estimation mech-
anism used in both stages of the algorithm. This mechanism
avoids to use a big percentage of the examples for error com-
putation, estimating it from a reduced subset of the examples.
The second one is used only in the first stage to derive a set
of TSK zero-order rules as the RB generation process.

1) Mechanism for Error Estimation: In order to handle the
scalability problem in datasets with a large amount of data,
we propose to use a new mechanism presented in [3] for fast
error computation on large-scale datasets. This procedure is
based on taking a small percentage of the training examples
to estimate the error of new generated solutions. Once these
errors are estimated, only those solutions in the elite set (non
dominated solutions) are evaluated considering the whole set
of examples.

The subset of examples Ee for error estimation is obtained
by random selection of bre ∗mc examples in each generation.
Where re is the percentage of samples used to estimate the
error and m being the dataset size. Ifbre ∗ mc ≥ 1000 then
re = 1000/m, i.e., no more than 1000 examples will be
considered. Ee is fixed for a generation. After each generation
the examples are replaced by random selection from those
examples that were not used in the previous generation. In
this way, we promote a rotation of the selected examples.

2) An effective generation of TSK candidate rules: We
apply an adaptation of the WM method [14] in order to
obtain a whole KB from a given DB (a given set of linguistic
terms and their associated MFs definitions). In contrast to
WM, the consequents of the TSK rules are obtained with all



the coefficients with value 0 and the independent terms are
computed as the average of the examples covered by the rule
weighted by their matching.

This method in problems with a high number of variables
and/or examples can take a long time to derive thousands of
rules. To avoid this undesired situation, once it is integrated
within the MOEA of our first stage, a cropping criterion has
been added to the method. In this way, the method stops the
process if the RB reaches a limit of 100 rules and mark the RB
as incomplete. We propose a maximum number of 100 rules
for the rule cropping mechanism based on some empirical
trials, which showed no significant differences in models
obtained with more rules. Higher values or even those that
do not use cropping do not obtain significantly more accurate
solutions. To penalize incomplete solutions (which should
disappear during the evolution of the first stage MOEA), we
estimate the number of rules as the product of the number
of labels of the input variables and in the case of the Mean
Squared Error it is penalized with a fixed large error.

B. First stage: Initial KB learning
The proposed MOEA is based on the embedded genetic

DB learning [6] (used variables, granularities and lateral
displacements of fuzzy partitions [10]) which allows a fast
learning of the structure of the initial TSK FRBSs, reducing its
dimensionality and making use of some effective mechanisms
in order to ensure a fast convergence in high-dimensional and
large-scale regression datasets.

The following subsections describe the main features of the
proposed algorithm: coding scheme, objectives, initial pop-
ulation, crossover and mutation operators, incest prevention
mechanism and stopping condition.

1) DB Codification: A double coding scheme (C = CG +
CL) to represent both parts, granularity and translation pa-
rameters, is considered:
• Number of labels (CG): This part is a vector of integer

numbers with size N (with N representing the number of
input variables) in which the granularities of the different
variables are coded,

CG = (L1, . . . , LN ) .

Each gene Li represents the number of labels used by
the i-th variable and takes values in the set {2, . . . , 7}.
Additionally, it can take a value equal to 1 to determine
that the corresponding variable is not used.

• Lateral displacements (CL): In order to decrease the com-
plexity of the classic learning of parameters (3 parameters
per MF), we will follow an effective application [3] of
the 2-tuples representation scheme [10] that uses only one
displacement parameter per variable. See figure 1 for an
example of this kind of representation.
In this way, this part is a vector of real numbers with
size N in which the lateral displacements of the different
variables are coded [10]. In this way, the CL part has the
following structure (where each gene is the displacement
value of the fuzzy partition of the corresponding linguistic
variable and takes values from [−0.1, 0.1]),

CL = (α1, . . . , αN ) .

Fig. 1. Slight lateral displacement in [-0.1, 0.1].

2) Objectives: In order to evaluate a given individual, the
adaptation of the WM method (see subsection III-A2) is ap-
plied to the associated DB, in order to obtain the corresponding
RB. Once a complete KB is obtained the following objectives
are calculated:
• Minimize the Mean Squared Error (MSE):

MSE =
1

2 · |E|

|E|∑
l=1

(F (xl)− yl)2,

with |E| being the dataset size, F (xl) being the
output obtained from the FRBS decoded from a given
chromosome when the l-th example is considered and
yl being the known desired output.

• Minimize the Number of Rules (NR), to control the
dimensionality.

• Maximize the medium coverage degree of the examples,
to control overfitting.

3) Initial Gene Pool: The initial population will be com-
prised of two different subsets of individuals:
• In the first subset, each chromosome has the same number

of labels for all the system input variables. In order to
provide diversity in the CG part, these solutions have been
generated by considering all the possible combinations
in the input variables, i.e., from 2 labels to 7 labels.
Additionally, for each of the these combinations two
copies are included with different values in the CL part.
The first one with random values in [−0.1, 0.0] and the
second one with random values in [0.0, 0.1]. If there is
no space for these solutions, they are included from the
smallest granularities (the most interesting combinations
in principle) to the highest possible ones.

• In the second subset, we generate random solutions in or-
der to completely fill the population (values in {2, . . . , 7}
for CG and values in [−0.1, 0.1] for CL).

Finally, except in the cases of problems with less than three
input variables, an input variable v is removed at random,
Lv = 1. This action is repeated until no more than 5 variables
remain in all the individuals. This process is applied to all the
individuals in the population in order to avoid the generation
of solutions that make no sense (because of their exorbitant
number of rules).

4) Crossover and Mutation Operators: The crossover op-
erator depends on the part of the chromosome to which it
is applied. A crossover point is randomly generated and the
classical crossover operator is applied to this point for the CG



part. The Parent Centric BLX (PCBLX) operator [15], which
is based on BLX-α, is applied to the CL part.

In this way, four new individuals are obtained by combining
the two offspring generated from CG with the two offspring
generated from CL. For each of them, the mutation oper-
ator is applied with probability Pm. The mutation operator
decreases by 1 the granularity in a gene g selected at random
(Lg = Lg−1) or randomly determines a higher granularity in
{Lg + 1, . . . , 7} with the same probability. No decreasing is
performed when it provokes DBs with only one input variable.
The same gene is also changed at random in CL. Finally, after
considering mutation, only the two most accurate individuals
are taken as descendants.

5) Incest Prevention and Stopping Condition: An incest
prevention mechanism has been included in the CL parts
by following the concepts of CHC [16], to maintain the
population diversity and avoid premature convergence. Only
parents whose hamming distance divided by 4 is greater than
a threshold is crossed. Because it uses a real encoding scheme
in CL, each gene is transformed into gray code with a fixed
number of bits per gene (BGenes). This threshold value is
initialized as follows: L = (#GenesCL ∗ BGene)/4, where
#GenesCL is the number of genes in the CL part. The
algorithm ends when a maximum number of evaluations are
reached or when L is below zero.

C. Second stage: post-processing (rule selection, fine tuning
of MFs and one-order consequent coefficients learning)

Once a complete zero-order TSK KB is obtained in the
first stage, a post-processing MOEA is applied to perform
a tuning of MFs and a rule selection, which will help to
significantly improve the accuracy. To this end, we present
a new MOEA for accurate TSK FRBSs tuning and rule se-
lection based on a previous MOEA, namely SPEA2E/E [17],
[18]. The new proposed MOEA includes the error estimation
procedure, described in III-A1. Further, a least-squares-based
iterative mechanism has been integrated to allow consequent
parameters adaptation accordingly to the system evolution.

The following subsections describe the main components of
the post-processing MOEA.

1) Coding Scheme and Objectives: A triple coding scheme
for classical tuning (CT ), rule selection (CS) and coefficients
of the consequents (CC) is used: C = CT + CS + CC

• Tuning of MFs (CT ): in this part a real coding is used
where we consider the parameters of all the MFs per rule
individually,
Ci = (. . . , ai1, b

i
1, c

i
1, . . . , a

i
N ′ , biN ′ , ciN ′ , . . .), i =

1, . . . ,m,
with aij , b

i
j and cij being the definition points of the j-th

MF of the i-th rule, with N ′ being the number of input
variables determined in the first stage and with m being
the number of initial rules.

• Rule selection (CS): consists of binary-coded strings
with size m. Depending on whether a rule is selected
or not, values ‘1’ or ‘0’ are respectively assigned to the
corresponding gene.

• Coefficients of the consequents (CC): This is a vector
of real numbers with size (N ′ + 1) ∗ m in which the
coefficients of the consequent polynomial function for
each TSK rule are encoded,
CC = (. . . , pi1, . . . , p

i
N ′ , p0, . . .), i = 1, . . . ,m.

This stage of the algorithm considers the same three objec-
tives presented in section III-B2.

2) Initial Gene Pool: The initial population is obtained with
all individuals having all genes with value ‘1’ in CS . In the
CT part, the initial DB is included as an initial solution and
the remaining individuals are randomly generated maintaining
their values within their respective variation intervals.

Finally, the CC part of the first individual includes the
consequents obtained in the first stage. Then, we apply only
one iteration of the standard Kalman filter to the initial
individual on the reduced subset of examples Ee in order to
obtain the estimated coefficients. The remaining individuals
are initialized with these same coefficients. We do not use
the Kalman filter to obtain the coefficients for all individuals,
because it would significantly increase the computational time
of the algorithm. In the next subsection, we present a different
way to integrate the Kalman filter to apply it through evolution.

3) Crossover and Mutation Operators: The BLX-0.5 [19]
crossover is applied to obtain the CT part of the offspring.
The binary part CS is obtained based on the CT parts (MF
parameters) of the corresponding parents and offspring [20],
[18]. The parent with the closest distance to the offspring in the
CT values of the corresponding rule is the one that determines
whether this rule is selected or not for the offspring by directly
copying its value in CS for the corresponding gene (see [18]
for more information on this operator).

The CC part is obtained by directly copying its values from
the parent with the closest distance in CS to the offspring. In
this way, the coefficients are only inherited from the closest
parent since, actually, they will be mainly learned through the
integrated efficient Kalman filter proposed in the following
section.

The mutation operator is only applied in the CS part and this
favors rule extraction since mutation is only engaged to remove
rules. A rule is removed at random whether this operator is
applied.

4) Efficient application of the Kalman filter: Kalman fil-
ter [11] is a classic technique to estimate the coefficients of
the consequent polynomial function in the TSK rules. This
technique obtains good results in training, but usually presents
overfitting, and therefore bad results in test. To avoid this
undesired situation, only a small percentage of samples (the
same percentage used to estimate errors, see section III-A1)
is used to estimate the coefficients of the TSK rules. In this
sense, once a new solution is generated by crossover and
mutation, and evaluated on the small percentage of examples,
if the estimated error is the best error until this moment,
which means it would be non dominated and therefore it
will be evaluated in the whole set of examples, the Kalman
filter is applied in the same subset of examples to obtain



the corresponding consequent parameters before this whole
evaluation. This way working provides a validation mechanism
for the obtained coefficients since they should also work on
the examples not used by the Kalman filter. We do not use
the Kalman filter to obtain the coefficients for all individuals,
because it would significantly increase the computational time
of the algorithm.

Further, in order to save much more time and in order to
make it converge together with MFs and rules (by selection),
only one iteration of the Kalman filter is run each time.
Thus, the Kalman filter is only initialized at the beginning
of the algorithm and at restarting, so that the coefficients are
progressively improved for those combinations of MFs and
rules that continuously promote more accurate solutions. This
is possible due to the kind of process (post-processing) which
does not change the system structure and by considering that
not selected rules are not activated by examples (matching 0)
to apply the filter.

5) Restarting: This mechanism is applied when the thresh-
old value L is below zero (L is set to its initial value). The
restarting operator is applied by including the best individual
for each objective. The remaining individuals take the values
of the most accurate individual in the CS part and values gen-
erated at random in the CT part one iteration of the standard
Kalman filter are applied on the most accurate individual to
obtain the CC part of the remaining individuals, which are
initialized with these coefficients in their corresponding CC

parts. Additionally, it regenerates the default rule, taking into
account examples whose coverage is under 0.2, for the best
individual in the MSE objective.

In each stage of the algorithm (between restarting points),
the number of solutions in the external population considered
to form the mating pool is progressively reduced, by focusing
only on those with the best accuracy. To do that, the solutions
are sorted from the best to the worst (considering accuracy as
criterion) and the number of solutions considered for selection
is reduced progressively from 100% at the beginning to 50%
at the end of each stage. It is done by taking into account the
value of L. In the last evaluations when restart is disabled, this
mechanism for focusing on the most accurate solutions (the
most difficult objective), is also disabled in order to obtain
a wide, well-formed Pareto front, from the most accurate
solutions to the most interpretable ones.

IV. EXPERIMENTS AND ANALYSIS OF RESULTS

To evaluate the effectiveness of the proposed approach in
high-dimensional and large-scale regression datasets, we have
used 8 real-world problems with different numbers of variables
and cases, covering a range from 2 to 40 input variables and
from 1056 to 22784. Table I sums up the main characteristics
of the different problems considered in this study and shows
the link to the KEEL project webpage [21] from which they
can be downloaded.

The methods considered for the experimental study are:
• ANFIS [12] is a neural FRBS to obtain global semantics-

based TSK FRBSs. This classical method obtains very

TABLE I
DATASETS CONSIDERED FOR THE EXPERIMENTAL STUDY

Problem Abbr. Variables Cases
Plastic Strength PLA 2 1650
Electrical Maintenance ELE 4 1056
Abalone ABA 8 4177
Weather Izmir WIZ 9 1461
Weather Ankara WAN 9 1609
House-16H HOU 16 22784
Pole Telecommunications POLE 26 14998
Ailerons AIL 40 13750

Available at http://www.keel.es/

accurate FRBSs, thanks to gradient descent and least
squares estimation mechanisms.

• LEL-TSK [13] obtains highly accurate local semantics-
based TSK rules. This well-known two-stage evolutionary
algorithm based on MOGUL (a methodology to obtain
Genetic FRBSs under the Iterative Rule Learning ap-
proach) has been developed to consider the interaction
between input and output variables as a way to increase
the accuracy of the obtained models.

• MOEA-TSK proposed here for precise fuzzy modeling.
LEL-TSK method is available in http://www.keel.es/ and

considered the error as the sole objective. The values of the
parameters considered by LEL-TSK [13] are those proposed
by the authors of the method and the number of evaluations is
over 100000. In the case of ANFIS method [12] the parameters
considered are: 5 labels per variable, 100 iterations, 0.1 step
size, 0.9 and 1.1 as degrees of decrease and increase the step
size, respectively.

In the case of the MOEA proposed method (MOEA-TSK)
based on the well-known SPEA2 [22], we have considered
an external population size of 61 and a proportion of 1/3
rounded to 200 as standard population size. The remaining
parameters for them are: a maximum of 100,000 evaluations,
0.2 as mutation probability (crossover is always applied in
SPEA2), 30 bits per gene for the Gray codification, re = 0.2
for the fast error computation technique, and the set {2, . . . , 7}
as possible numbers of labels in all the system variables for
the learning approaches.

In all the experiments, we adopted a 5-fold cross-validation
model, i.e., we randomly split the dataset into 5 folds, each
containing 20% of the patterns of the dataset, and used four
folds for training and one for testing 1. For each of the five
partitions, we executed six trials of the algorithms (6 different
seeds). For each dataset, we therefore consider the average
results of 30 runs. In the case of the proposed method, the
average values are calculated considering the most accurate
solution from each obtained Pareto front.

The results obtained by the studied methods are shown in
Table II. This table is grouped in columns by algorithms and
it shows the average of the results obtained by each algorithm
in all the studied datasets. For each one, the first column

1The corresponding data partitions (5-fold) for these
datasets are available at the KEEL project webpage [21]:
http://sci2s.ugr.es/keel/datasets.php

http://www.keel.es/
http://www.keel.es/
http://sci2s.ugr.es/keel/datasets.php


TABLE II
AVERAGE RESULTS OF THE ANALIZED METHODS.

ANFIS LEL-TSK MOEA-TSK
Problem NR MSEtra MSEtst NR MSEtra MSEtst R/V MSEtra MSEtst

PLA 10 1.053 1.151 66 1.032 1.188 19.2/2 1.057 1.136
ELE 20 1653 2103471 45 2928 3752 36.9/4 2270 3192
ABA - - - 107 2.040 2.412 23.1/4.2 2.205 2.392
WAN - - - 123 0.709 1.632 48/4.7 0.701 1.189
WIZ - - - 116 0.700 2.227 29.1/4 0.729 0.944
HOU - - - - - - 30.5/5 8.29E+08 8.64E+08
POLE - - - - - - 46.3/6.3 57.96 61.02
AIL - - - - - - 48.4/6 1.394E-08 1.506E-08

shows the average number of rules (NR), the second and
third columns show the average MSE in training and test data
(Tra./Tst.). Further, since the proposed algorithm is able to
reduce the number of used variables, we also show the average
number of variables together with the rules (R/V ).

No values are shown for ANFIS and LEL-TSK in sev-
eral datasets since the large number of variables and cases
provoked memory overflow errors after several hours running
(some memory issues were improved in these methods to solve
this problem, which helped to show results in at least some of
the datasets with more than 8 variables, but it was impossible
to run them in more complex problems).

Analyzing the results shown in Table II, we can draw the
following conclusions:
• ANFIS [12] and LEL-TSK [13] methods obtain very

accurate results on training, which usually leads them to
present overfitting and very bad test errors.

• The proposed method presents quite simple solutions
(less number of variables and rules) without significant
overfitting. This method obtains the best results on test
error in all the studied datasets.

With respect to scalability it is very important to analyze
the running times of the different methods (these times were
obtained in an Intel Core 2 Quad Q9550 2.83GHz, 8 GB
RAM by using only one of the four cores). Table III shows
the running times of the different algorithms. ANFIS [12]
and LEL-TSK [13] algorithms can take a significant amount
of time in problems when the number of variables and/or
instances becomes high. These algorithms can not run in high-
dimensional datasets, because the large number of variables
and cases provoked memory overflow errors.

TABLE III
AVERAGE TIME OF A RUN OF THE DIFFERENT METHODS

Problem ANFIS LEL-TSK MOEA-TSK
PLA 0:01:00 0:18:12 0:03:09
ELE 0:00:16 0:02:01 0:01:01
ABA 2:41:04 0:28:55
WAN 1:41:19 0:47:12
WIZ 1:29:14 0:19:33
HOU 5:07:58
POLE 4:40:22
AIL 5:26:30

In order to depict the dependencies with respect to the
number of variables and cases in the different datasets, Fig-
ure 2 includes three graphics representing the running times

when the datasets are sorted by number of variables, by
number of cases/examples or by the result of multiplying
them (variables × examples). The times of these algorithms
(ANFIS and LEL-TSK) in the datasets where they are not
applicable have been estimated from the time in ABA (4000
examples approximately) by assuming a lineal progression of
the time when more examples are considered. In the case of the
proposed method, the times needed are quite good by taking
into account that the X axis in these graphics considers a
discrete representation with practically the double of variables
for each of the last three datasets but the times increase in a
very good proportion.

To sum up, the results show that the proposed algorithm
makes it able to obtain the best results within a reasonable
time (which is not highly affected in complex problems).

V. CONCLUSION

This work presents a scalable two-stage multi-objective
genetic algorithm for precise fuzzy modeling of scatter-based
TSK FRBSs in high-dimensional and large-scale regression
problems.

The proposed method has been compared to two well
recognized methods, ANFIS [12] and a related evolutionary
learning algorithm (LEL-TSK [13]), in 8 problems with
different numbers of samples and variables, showing better
results in accuracy within a reasonable computation computing
time. MOEA-TSK has shown that it is able to obtain very
accurate models avoiding overfitting on test error. Moreover,
the scalability of the proposed method is also a key charac-
teristic, which is able to solve problems with 40 variables or
more than 2200 cases in a fast way (still reasonable for an
evolutionary-based approach).
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