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Abstract
In this paper, we study ad-nilpotent elements in Lie algebras arising from semiprime
associative rings R free of 2-torsion.With the idea of keeping under control the torsion
of R, we introduce a more restrictive notion of ad-nilpotent element, pure ad-nilpotent
element, which is a only technical condition since every ad-nilpotent element can be
expressed as an orthogonal sum of pure ad-nilpotent elements of decreasing indices.
This allows us to be more precise when setting the torsion inside the ring R in order
to describe its ad-nilpotent elements. If R is a semiprime ring and a ∈ R is a pure
ad-nilpotent element of R of index n with R free of t and

(n
t

)
-torsion for t = [ n+1

2 ],
then n is odd and there exists λ ∈ C(R) such that a−λ is nilpotent of index t . If R is a
semiprime ring with involution ∗ and a is a pure ad-nilpotent element of Skew(R, ∗)

free of t and
(n
t

)
-torsion for t = [ n+1

2 ], then either a is an ad-nilpotent element of R of
the same index n (this may occur if n ≡ 1, 3 (mod 4)) or R is a nilpotent element of R
of index t + 1, and R satisfies a nontrivial GPI (this may occur if n ≡ 0, 3 (mod 4)).
The case n ≡ 2 (mod 4) is not possible.
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1 Introduction

Herstein’s theory of rings, which started in 1954 in [19] (see also the influential works
[20,32]), is the study of nonassociative objects in associative prime and semiprime
rings perhaps with involution or in rings with well-behaved idempotents that provide
a context rich enough for the theory to be satisfactorily developed. Among the main
contributors, apart from Herstein itself, we can also cite Posner, Lanski, Montgomery,
Martindale and Miers, and Brešar and Beidar.

Herstein’s theory developed into several similar but different branches: the study of
sets with an additional nonassociative structure, as Lie and Jordan ideals (e.g., [31]),
culminating in the development of GPI theory [5]; the study of special conditions
(e.g., commuting map) on special maps (e.g., generalized derivations) over special
sets (e.g., Jordan ideals), in which strong knowledge is gained about the map or the
ring (e.g., commutativity) through the a priori weaker properties of the map (e.g.,
[7,15,25,33]); and the determination of the structure of nonassociative maps, as Lie
homomorphisms and derivations (e.g., [2–4]), culminating in the development of the
theory of functional identities [6]. It is to this last branch of Herstein’s theory that our
paper belongs, centering on the structure of nilpotent derivations, which have been
broadly studied since the 1960s. In 1963, Herstein proved that for any ad-nilpotent
element a of index n in a simple ring R of characteristic zero or greater than n,
there exists some λ in the center of R such that a − λ is nilpotent. Furthermore, he
showed that the index of nilpotence of such element is not greater than [ n+1

2 ], see
[21, Theorem in p. 84]. Herstein’s result was extended by Martindale and Miers in
1983 ([28, Corollary 1]) to prime rings of characteristic greater than n by making use
of the extended centroid of R. In 1978, Kharchenko obtained in [23] an important
result: All algebraic derivations of prime rings of characteristic zero are inner for
certain elements in an overring; he extended this result to torsion-free semiprime rings
in 1979, see [24]. In 1983, Chung and Luh stated that the index of nilpotence of
a nilpotent derivation on a semiprime ring of characteristic zero is always odd (see
[12,13]), and in 1984 Chung, Kobayashi and Luh [14] proved that if R is semiprime
and char R = p > 2 then the index of nilpotence of a nilpotent derivation is of the form
n = as ps + as+1 ps+1 + · · · + al pl where 0 ≤ s ≤ l, the ai are nonnegative integers
less than p, as is odd, and as+1, . . . , al are even. Moreover, Chung in 1985 proved,
for prime rings of characteristic zero, that a nilpotent derivation is inner and induced
by a nilpotent element of an overring, see [11]. In 1992, with different techniques,
Grzeszczuk showed that any nilpotent derivation in a semiprime ring with minimal
restrictions on its characteristic is an inner derivation in a semiprime subring of the
right Martindale ring of quotients of R and is induced by a nilpotent element in such
subring, see [18, Corollary 8] and its generalization by Chuang and Lee in [10, §3].

Two important examples of Lie algebras appear when working with rings R with
involution ∗, the Lie algebra of skew-symmetric elements K := Skew(R, ∗) and the
derived Lie algebra [K , K ]/([K , K ] ∩ Z(R)). The nilpotent derivations of the skew-
symmetric elements of prime rings with involution were studied by Martindale and
Miers in the 1990s. In this case, if R has zero characteristic and is not an order in
a 4-dimensional central simple algebra, for every inner derivation ada with adna = 0
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there exists an element λ in the extended centroid of R such that either (a−λ)[ n+1
2 ] = 0

or the involution is of the first kind and a[ n+1
2 ]+1 = 0, see [29, Main Theorem]. This

result was partially extended to semiprime rings by Lee in 2018. In his main result,
he proved that if R is semiprime with involution and has no n!-torsion, then for any
a ∈ K with adna(K ) = 0 there exist λ and a symmetric idempotent ε in the extended

centroid of R such that (εa − λ)[ n+1
2 ]+1 = 0, see [26, Theorem 1.5].

Themain goal of this paper is to deepen into the description of ad-nilpotent elements
of K for semiprime rings. In the spirit of Martindale and Miers’ result [29, Main
Theorem], we will obtain different results about the form of an ad-nilpotent element
of K of index n depending on the equivalence class of n modulo 4. To get such results
in the semiprime context, we introduce a new concept, that of pure ad-nilpotence.
We say that an ad-nilpotent element a of index n in L := R− or K is pure if λa
remains ad-nilpotent of the same index for every λ in the extended centroid such that
λa �= 0. This is just a technical condition, since every ad-nilpotent element of R− can
be expressed as an orthogonal sum of pure ad-nilpotent elements of the central closure
R̂ of R with decreasing indices of ad-nilpotence.

As a first step, we focus on ad-nilpotent elements of R. In this case, under the
hypothesis of pure ad-nilpotence, the condition on the torsion of the ring can be
weakened when compared with the result of Lee in [26, Theorem 1.3]:

Theorem 4.4 Let R be a semiprime ring with no 2-torsion, and let a ∈ R be a
pure ad-nilpotent element of R of index n. Let t := [ n+1

2 ] and suppose that R is free
of

(n
t

)
-torsion and t-torsion. Then n is odd and there exists λ ∈ C(R) such that a − λ

is nilpotent of index n+1
2 .

When dealing with ad-nilpotent elements of K , we can again split them into orthog-
onal sums of pure ad-nilpotent elements in Skew(R̂, ∗) with decreasing indices. We
study each of these pure pieces and get precise descriptions of them depending on the
equivalence class of their indices of ad-nilpotence modulo 4.

Theorem 5.6 Let R be a semiprime ring with involution ∗ and free of 2-torsion, let
R̂ be its central closure, and let a ∈ K be a pure ad-nilpotent element of K of index
n > 1. If R is free of

(n
t

)
-torsion and t-torsion for t := [ n+1

2 ] then:
(1) If n ≡ 0 (mod 4) then at+1 = 0, at �= 0 and at Kat = 0. Moreover, there exists

an idempotent ε ∈ H(C(R), ∗) such that εa = a and the ideal generated by at is
essential in ε R̂. In addition ε R̂ satisfies the GPI at xat yat = at yat xat for every
x, y ∈ ε R̂.

(2) If n ≡ 1 (mod 4) then there exists λ ∈ Skew(C(R), ∗) such that (a − λ)t = 0 (a
is an ad-nilpotent element of R of index n).

(3) It is not possible that n ≡ 2 (mod 4).
(4) If n ≡ 3 (mod 4) then there exists an idempotent ε ∈ H(C(R), ∗) making

a = εa + (1 − ε)a ∈ R̂ such that:

(4.1) If εa �= 0 then εat+1 = 0, εat �= 0 and εatkεat−1 = εat−1kεat for every
k ∈ Skew(R̂, ∗). The ideal generated by εat is essential in ε R̂ and ε R̂ satisfies
the GPI at xat yat = at yat xat for every x, y ∈ ε R̂.

(4.2) If (1−ε)a �= 0 then there existsλ ∈ Skew(C(R), ∗) such that ((1−ε)a−λ)t =
0 ((1 − ε)a is a pure ad-nilpotent element of R̂ of index n).
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In particular, for all n > 1 there exists λ ∈ Skew(C(R), ∗) such that (a − λ)t+1 = 0,
(a − λ)t−1 �= 0.

From these two results describing pure ad-nilpotent elements of R and of K we
easily recover Lee’s results [26, Theorem 1.3 and Theorem 1.5]. Furthermore, we also
describe ad-nilpotent elements ofLie algebras of the form R/Z(R) and K/(K∩Z(R)),
andof their derivedLie algebras [R, R]/([R, R]∩Z(R)) and [K , K ]/([K , K ]∩Z(R)).

2 Preliminaries

In this paper, we will be dealing with rings R with or without involution ∗, free of 2-
torsion. When R has an involution ∗, we will consider the subsets of skew-symmetric
elements K := Skew(R, ∗) and symmetric elements H := H(R, ∗). We will also
be dealing with Lie algebras. As usual, a Lie algebra L over a ring of scalars � is a
�-module with an anticommutative bilinear product [ , ] satisfying the Jacobi identity.
Recall that the adjoint map determined by any x ∈ L is adx (y) := [x, y] for every
y ∈ L . Typical examples of Lie algebras come from the associative setting: if R is an
associative algebra over a ring of scalars �, then R with product [x, y] := xy − yx is
a Lie algebra denoted by R−, and if R has an involution ∗ then K is a Lie subalgebra
of R−.

2.1 A ring R is semiprime (resp. ∗-semiprime) if for every nonzero ideal (resp. ∗-
ideal) I of R, I 2 := {∑i xi yi | xi , yi ∈ I } �= 0, and it is prime (resp. ∗-prime) if
I J := {∑i xi yi | xi ∈ I , yi ∈ J } �= 0 for every pair of nonzero ideals (resp. ∗-ideals)
I , J of R. It is well known that a ring R is prime if and only if aRb �= 0 for arbitrary
nonzero elements a, b ∈ R, and it is semiprime if and only if it is nondegenerate, i.e.,
aRa �= 0 for every nonzero element a ∈ R. Moreover, if R has an involution, the
notions of semiprimeness and ∗-semiprimeness coincide.

An ideal Iα of a ring R (resp. with involution ∗) is prime (resp. ∗-prime) if R/Iα is a
prime (resp. ∗-prime) ring. If R is a semiprime ring then there exists a family of prime
ideals {Iα}α∈� such that

⋂
α∈� Iα = {0} and therefore R can be seen as a subdirect

product of prime rings. Similarly, if R is a semiprime ring with involution ∗, there
exists a family of ∗-prime ideals {Iα}α∈� such that

⋂
α∈� Iα = {0} and therefore R

can be seen as a subdirect product of ∗-prime rings.
Moreover, if R is semiprime and free of n-torsion then the intersection of all prime

ideals Iα such that R/Iα is free of n-torsion is zero (notice that the intersection of all
prime ideals Iα such that R/Iα has n-torsion contains the essential ideal nR). With
the same argument, we also have that semiprime rings without m and n-torsion are
subdirect products of prime rings with no m nor n-torsion.

2.2Given an ideal I of R, the annihilator of I in R is the set AnnR(I ) := {z ∈ R | z I =
I z = 0}. The annihilator of an ideal I of R is an ideal of R. Moreover, when R is
semiprime AnnR(I ) = {z ∈ R | z I z = 0} and an ideal I of R is essential (for every
nonzero ideal J of R, I ∩ J �= 0) if and only if AnnR(I ) = 0.

2.3 Given a ring R, we define a permissible map of R as a pair (I , f ) where I is an
essential ideal of R and f is a homomorphism of right R-modules. For permissible
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maps (I , f ) and (J , g) of R, define a relation ≡ by (I , f ) ≡ (J , g) if there exists an
essential ideal K of R, contained in I ∩ J , such that f (x) = g(x) for all x ∈ K . It is
easy to see that this is an equivalence relation. The quotient set Qr

m(R) will be called
the right Martindale ring of quotients of R. If R is a semiprime ring, then Qr

m(R) has a
ring structure coming from the addition of homomorphisms and from the composition
of restrictions of homomorphisms, see [5, Chapter 2]:

• [I , f ] + [J , g] := [I ∩ J , f + g],
• [I , f ] · [J , g] := [(I ∩ J )2, f ◦ g].

Note that if R is a semiprime ring then the map f : R → Qr
m(R) defined by f (r) :=

[R, λr ], where λr : R → R is defined by λr (x) := r x , is a monomorphism of
associative rings, i.e., R can be considered as a subring of its right Martindale ring
of quotients. Moreover every subring S of Qr

m(R) which contains R is semiprime
because every nonzero ideal of S has nonzero intersection with R.

The symmetric Martindale ring of quotients of R is defined as

Qs
m(R) := {q ∈ Qr

m(R)| ∃ an essential ideal I of R such that q I + I q ⊂ R}

(if R has an involution one can replace the filter of essential ideals by the filter of
essential ∗-ideals in the definition of the symmetric Martindale ring of quotients,
see [1, p. 858-859].) If R is semiprime then Qs

m(R), which is a subring of Qr
m(R)

containing R, is also a semiprime ring.
When R has an involution ∗, this involution can be extended to Qs

m(R) as follows:
for any q ∈ Qs

m(R), let I be an essential ∗-ideal such that q I + I q ⊂ R. Then
q∗ := [I , f ] where f (y) := (y∗q)∗ for any y in the essential ∗-ideal I (see [5,
Proposition 2.5.4]).

The extended centroid C(R) of a semiprime ring R is defined as the center of
Qs

m(R). The extended centroid of a prime ring is a field (see [5, p. 70]), the set of
symmetric elements of the extended centroid of a ∗-prime ring is again a field (see
[1, Theorem 4(a)]), and the extended centroid of a semiprime ring is a commutative
and unital von Neumann regular ring (see [5, Theorem 2.3.9(iii)]). In particular, if R
is semiprime, C(R) is a semiprime ring without nilpotent elements.

The central closure of R, denoted by R̂, is defined as the unital subring of Qs
m(R)

generated by R and C(R), i.e., R̂ := C(R)R + C(R), and can be seen as a C(R)-
algebra. Therefore we can consider R contained in R̂. Moreover, since R̂ contains
R and is contained in Qs

m(R), if R is semiprime then R̂ is semiprime. The ring R̂
is centrally closed, i.e., it coincides with its central closure. In particular, its center
equals its extended centroid, Z(R̂) = C(R̂).

If R is a centrally closed semiprime ring, then R− is a Lie algebra over the ring
of scalars C(R); if in addition R has an involution ∗, then K is a Lie algebra over
H(C(R), ∗).

2.4 If R is a centrally closed ∗-prime ring without 2-torsion and Skew(C(R), ∗) �= 0,
then for any 0 �= λ ∈ Skew(C(R), ∗)we have R = H +K = λ2H +K ⊆ λK +K ⊆
R because 0 �= λ2 is invertible, so R = λK + K for every 0 �= λ ∈ Skew(C(R), ∗).
This occurs in particular when R is ∗-prime but not prime, because in this situation

123



J. Brox et al.

there exists a nonzero ideal I of R such that I ∩ I ∗ = 0, and so we can define a nonzero
skew element λ : I ⊕ I ∗ → R in C(R) given by λ(x + y) := x − y.

2.5 ([9, 2.10]) Since the extended centroidC(R)of a semiprime ring R is vonNeumann
regular, given an element λ ∈ C(R) there exists λ′ ∈ C(R) such λλ′λ = λ and
λ′ = λ′λλ′. Let us define ελ := λλ′. Then ελ is an idempotent of C(R) satisfying
ελλ = λ. If R has no k-torsion for some k ∈ N, then for k = k · 1 ∈ C(R) there
exists a unique k′ ∈ C(R) such that kk′k = k, so k(k′k − 1) = 0 and k′k = 1, i.e.,
k′ = 1

k ∈ C(R). In particular, throughout this paper 1
2 ∈ C(R) because R will always

be a semiprime ring without 2-torsion.
Moreover, if R is a semiprime ring without 2-torsion with involution ∗ and λ ∈

Skew(C(R), ∗), then −λ = λ∗ = (λλ′λ)∗ = λλ′∗λ, which implies that λ′ can be
taken in Skew(C(R), ∗) (indeed, replace λ′ by 1

2 (λ
′ − λ′∗)). In this case, ελ = λλ′ ∈

H(C(R), ∗) is a symmetric idempotent of C(R).

Lemma 2.6 ([9, Lemma 2.11]) Let (R, ∗) be a semiprime ring with involution free of
2-torsion and let a ∈ R. If there exist λ and μ ∈ C(R) such that a − λ and a − μ

are nilpotent then λ = μ. Moreover, if a ∈ K and λ ∈ C(R) is such that a − λ is
nilpotent, then λ ∈ Skew(C(R), ∗).

Proof Ifa−λ anda−μ are nilpotent elements of the central closure R̂ of R,a−λ−(a−
μ) = μ−λ is a nilpotent element in the semiprime commutative ringC(R). Therefore
λ = μ. Now, if a ∈ K and a − λ is nilpotent then (a − λ)∗ = −(a + λ∗) is nilpotent
and therefore a + λ∗ is nilpotent, which implies that λ = −λ∗ ∈ Skew(C(R), ∗). ��

We will use the following two results due to Beidar, Martindale and Mikhalev.

Theorem 2.7 ([30, Theorem 2(a)]) Let R be a prime ring. Let ai , bi ∈ R for i =
1, 2, . . . , n with b1 �= 0 be such that

∑n
i=1 ai xbi = 0 for every x ∈ R. Then there

exist λi ∈ C(R) for i = 2, . . . , n such that a1 = ∑n
i=2 λi ai in R̂.

Theorem 2.8 ([5, Theorem 2.3.3]) Let R be a semiprime ring and let a1, a2, . . . , an ∈
R. If a1 /∈ ∑n

i=2 C(R)ai in R̂ then there exist r j , s j ∈ R for j = 1, 2, . . . ,m such
that

∑m
j=1 r j a1s j �= 0 and

∑m
j=1 r j aks j = 0 for k = 2, . . . , n.

The next corollary can be found in [9]. For the sake of completeness, we include
its proof here.

Corollary 2.9 Let R be a semiprime ring. Let ai , bi ∈ R for i = 1, 2, . . . , n be such
that IdR(a1) ⊂ IdR(b1) and

∑n
i=1 ai xbi = 0 for every x ∈ R. Then there exist

λi ∈ C(R) for i = 2, . . . , n such that a1 = ∑n
i=2 λi ai in R̂.

Proof By Theorem 2.8, if a1 /∈ ∑n
i=2 C(R)ai there exist r j , s j ∈ R, j = 1, . . . ,m,

such that
∑m

j=1 r j a1s j �= 0 and
∑m

j=1 r j aks j = 0 for k = 2, 3, . . . , n. Replace x by
s j x and multiply

∑n
i=1 ai xbi = 0 on the left by r j . We have

0 =
n∑

i=1

m∑

j=1

r j ai s j xbi =
m∑

j=1

r j a1s j xb1,
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which implies that the ideal generated by
∑m

j=1 r j a1s j is orthogonal to the ideal
generated by b1, and therefore, since IdR(a1) ⊂ IdR(b1), the ideal generated by∑m

j=1 r j a1s j has zero square, a contradiction because R is semiprime. ��
The following proposition is an easy generalization of [5, Theorem 2.3.9(i)].

Proposition 2.10 Let R be a centrally closed semiprime ring free of 2-torsion. For any
subset V ⊂ R, there exists a unique idempotent ε ∈ C(R) such that εv = v for all
v ∈ V , the annihilator in C(R) of V isAnnC(R)(V ) = (1−ε)C(R), the annihilator in
R of the ideal generated by V is AnnR(IdR(V )) = (1− ε)R, and the ideal generated
by V is essential in εR. Moreover, when R has an involution ∗ and V ⊂ H or V ⊂ K,
then ε ∈ H(C(R), ∗).

Proof The first part of the proof follows as in [5, Theorem 2.3.9(i)] with the obvious
changes. Let V ⊂ H or V ⊂ K , and consider the unique idempotent ε ∈ C(R) such
that εv = v for all v ∈ V , the annihilator inC(R) of V is AnnC(R)(V ) = (1−ε)C(R)

and the annihilator in R of the ideal generated by V is AnnR(IdR(V )) = (1 − ε)R.
When R has an involution, we can decompose ε = εk + εh with εk ∈ Skew(C(R), ∗)

and εh ∈ H(C(R), ∗). We have that εv = v implies εkv = 0. Therefore, εk ∈
AnnC(R)(V ) = (1 − ε)C(R), i.e., εkε = 0 and ε2k = εkεh = 0 and therefore ε =
ε2 = (εk + εh)

2 = ε2h ∈ H(C(R), ∗). ��
Lemma 2.11 Let R be a centrally closed semiprime algebra and let {νi }i∈I be a family
of idempotent elements in C(R). Suppose there exists a family {λi }i∈I of elements in
C(R) such that for every i, j ∈ I , λiνiν j = λ jνiν j . Then there exists λ ∈ C(R) such
that λνi = λiνi for every i ∈ I . Moreover, if the ideal generated by the family {νi }i∈I
is essential in R, such λ is unique.

Proof Let us consider the ideal S = ∑
Rνi generated by the family of idempotents

{νi }i∈I and the essential ideal T = S ⊕ AnnR(S). Define λ : T → R by

λ
(∑

xiνi + z
)

:=
∑

λi xiνi .

Let us prove that λ is well defined and an element in C(R). If
∑

xiνi + z = 0 then∑
xiνi = 0 = z and for every νk , we have

(∑
λi xiνi

)
νk =

∑
λk xiνiνk = λk

(∑
xiνi

)
νk = 0.

Therefore
∑

λi xiνi ∈ S ∩ AnnR(S) = 0 which proves that λ is well defined. By
construction [T , λ] ∈ C(R). Moreover, if the ideal S generated by the family {νi }i∈I
is essential, AnnR(S) = 0 and [S, λ] ∈ C(R) is uniquely defined. ��

3 Pure Ad-nilpotent Elements

Recall that an element a in a Lie algebra L is ad-nilpotent of index n if adna(L) = 0
and adn−1

a (L) �= 0.
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3.1.

(i) Let us consider R−: we say that an element a is a pure ad-nilpotent element of
R− of index n if for every λ ∈ C(R) with λa �= 0, λa is ad-nilpotent in R̂− of
index n, where R̂ is the central closure of R.

(ii) Let us consider K : we say that an element a is a pure ad-nilpotent element of
K of index n if for every λ ∈ H(C(R)), ∗) with λa �= 0, λa is ad-nilpotent in
Skew(R̂, ∗) of index n, where R̂ is the central closure of R.

Lemma 3.2 If R is a semiprime ring and a is an ad-nilpotent element of R of index n,
the following conditions are equivalent:

(i) a is a pure ad-nilpotent element of R−.
(ii) IdR(adn−1

a (R)) is an essential ideal of IdR(a).
(iii) AnnR(IdR(adn−1

a (R))) = AnnR(IdR(a)).

Proof Suppose that R is semiprime and centrally closed (otherwise, substitute R by
its central closure R̂).

(i) ⇒ (ii). Let us consider V = {adn−1
a x | x ∈ R}. By Proposition 2.10 there

exists e ∈ C(R) such that ev = v for every v ∈ V and AnnR(IdR(V )) = (1 −
e)R. Suppose that (1 − e)a �= 0. By hypothesis (1 − e)a is ad-nilpotent of index n,
hence 0 �= adn−1

(1−e)a(R) = (1 − e) adn−1
a (R) = 0, a contradiction. So ea = a and

AnnIdR(ea)(IdR(adn−1
a (R))) ⊂ AnnR(IdR(adn−1

a (R))) = (1− e)R must be zero, i.e.,
IdR(adn−1

a (R)) is essential in IdR(ea).
(ii)⇒ (iii). This holds in general if I and J are ideals of R with I essential in J :

0 = AnnJ (I ) = AnnR(I ) ∩ J implies AnnR(I )J = 0, so AnnR(I ) ⊂ AnnR(J ).
(iii) ⇒ (i). Let λ ∈ C(R) be such that λa �= 0. Clearly adnλa(R) = 0. Suppose

that adn−1
λa (R) = 0: then λn−1 adn−1

a (R) = 0, so λn−1 ∈ AnnR(IdR(adn−1
a (R))) =

AnnR(IdR(a)), which is not possible because R is semiprime and λa �= 0. ��
Lemma 3.3 Let R be a centrally closed semiprime ring with involution ∗ and no 2-
torsion, and let a ∈ K be a pure ad-nilpotent element of K of index n. If there exists
λ ∈ H(C(R), ∗) such that λa is ad-nilpotent of R of index n, then λa is a pure
ad-nilpotent element of R of index n.

Proof Let us see that for everyμ ∈ C(R)withμλa �= 0, the elementμλa has index of
ad-nilpotency in R equal to n. Suppose that there exists μ ∈ C(R) with adn−1

μλa R = 0,
and let us prove that μλa = 0:

We have that μn−1 adn−1
λa R = adn−1

μλa R = 0, so μ adn−1
λa R = 0 because C(R)

is regular von Neumann. In particular, μ adn−1
λa H = μ adn−1

λa K = 0. Since μ =
μh + μk , we have that μh ad

n−1
λa R = μk ad

n−1
λa R = 0.

From 0 = μn−1
h adn−1

λa R = adn−1
μhλa

R, we get that μhλa index of ad-nilpotency in
K lower than n, implying μhλa = 0 because a is a pure ad-nilpotent element of K .

From 0 = (μ2
k)

n−1 adn−1
λa R = adn−1

μ2
kλa

R we get that μ2
kλa has index of ad-

nilpotency in K lower than n, so again μ2
kλa = 0 (because a is a pure ad-nilpotent

element of K ), and by regularity of C(R), μkλa = 0.
This implies μλa = 0. ��
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The next proposition shows that every ad-nilpotent of R− and of K can be expressed
as an orthogonal sum of pure ad-nilpotent elements of decreasing indices.

Proposition 3.4 Let R be a centrally closed semiprime ring and let a ∈ R be an ad-
nilpotent element of R− of index n. There exists a family of orthogonal idempotents
{εi }ki=1 ⊂ C(R) such that a = ∑k

i=1 εi a with εi a a pure ad-nilpotent element of index
ni in εi R for n = n1 > n2 > · · · > nk.

Similarly, if R has an involution ∗ and a is an ad-nilpotent element of K of index
n, then there exists a family of orthogonal idempotents {εi }ki=1 ⊂ H(C(R), ∗) such

that a = ∑k
i=1 εi ai with εi a a pure ad-nilpotent element of index ni in Skew(εi R, ∗)

for n = n1 > n2 > · · · > nk.

Proof Let us prove the result for Lie algebras of skew-symmetric elements. We will
proceed by induction on n. If n = 1 there is nothing to prove. Let us suppose that the
result is true for every ad-nilpotent element of index less than n and let a ∈ K be an
ad-nilpotent element of index n ≥ 3. Let us consider V = {adn−1

a x | x ∈ K }. By
Proposition 2.10 there exists ε ∈ H(C(R), ∗) such that εv = v for every v ∈ V and
AnnR(IdR(V )) = (1 − ε)R. Then a = εa + (1 − ε)a.

Clearly, by construction (1−ε)a is ad-nilpotent of index less than n in K : for every
x ∈ K , adn−1

(1−ε)a x = (1 − ε) adn−1
a x = adn−1

a x − ε adn−1
a x = 0.

Let us prove that εa is pure ad-nilpotent of index n in Skew(εR, ∗). For
any λ ∈ H(C(R), ∗) such that λεa �= 0, λεa is ad-nilpotent of index n:
clearly adnλεa(Skew(εR, ∗)) = 0 and if adn−1

λεa (Skew(εR, ∗)) = 0 then λn−1ε ∈
AnnR(IdR(V )) = (1− ε)R, which leads to a nilpotent ideal generated by the nonzero
element λεa, a contradiction with the semiprimeness of R.

Apply now the induction hypothesis to (1 − ε)a and the Lie algebra of skew-
symmetric elements Skew((1 − ε)R, ∗). ��

4 Ad-nilpotent Elements of R

In this section, we are going to prove that every nilpotent inner derivation is induced by
a nilpotent element, generalizing to semiprime rings Herstein’s result [21, Theorem in
p. 84] for simple rings. This result was already proved by Grzeszczuk ([18, Corollary
8]). Our techniques are rather elementary and, by adding the hypothesis of pure ad-
nilpotence, we can describe such elements with less restrictions on the torsion of the
ring.

Lemma 4.1 Let R be a semiprime ring and let a ∈ R be a nilpotent element. Suppose
that there exist some λi ∈ Z, i = 0, . . . , n, such that

n∑

i=0

λi a
i [x, y]an−i = 0

for all x, y ∈ R. Then for every i = 0, . . . , n we have λi amax(i,n−i) = 0. In particular,
each term in the identity above is zero.
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Proof First, let us suppose that R is prime and suppose that a �= 0 has index of
nilpotence s. If the lemma is not satisfied, there exists some k with λkamax(k,n−k) �= 0.
In particular, max(k, n − k) < s. Let us multiply the expression

∑n
i=0 λi ai [x, y]an−i

by as−1−k on the left and by as−1−(n−k) on the right, so that

0 = as−1−k

(
n∑

i=0

λi a
i [x, y]an−i

)

as−1−(n−k) = λka
s−1[x, y]as−1

for every x, y ∈ R. Hence λkas−1xyas−1 = λkas−1yxas−1 for every x, y ∈ R. Since
as−1 �= 0 for every x ∈ R, we have by Theorem 2.7 that there exists αx ∈ C(R) such
that λkas−1x = αxλkas−1. Multiplying this last expression by a on the right, we get
λkas−1xa = 0 for every x ∈ R. By primeness of R we get that either as−1 = 0 or
λka = 0, leading to a contradiction.

If R is semiprime then R is a subdirect product of prime quotients R/Iα with⋂
α Iα = 0. For any α and any i , by the prime case λi amax(i,n−i) ∈ Iα , so

λi amax(i,n−i) = 0. ��
Lemma 4.2 Every nilpotent element of a ring R is ad-nilpotent. If a has index of
nilpotence s and index of ad-nilpotence n, then n ≤ 2s − 1. If R is semiprime then
n ≥ s, and if in addition R is free of

(n
t

)
-torsion for t := [ n+1

2 ], then s = t and
n = 2s − 1.

Proof Since as = 0, for every x ∈ R we have

ad2s−1
a x =

2s−1∑

i=0

(
2s − 1

i

)
(−1)2s−1−i ai xa2s−1−i = 0

because if i < s then 2s − 1 − i ≥ s. Therefore n ≤ 2s − 1.
Suppose now that R is semiprime and let us see that n ≥ s: if on the contrary

ads−1
a x =

s−1∑

i=0

(
s − 1

i

)
(−1)s−1−i ai xas−1−i = 0

for every x ∈ R, focusing on the first summand of this expression ((−1)s−1xas−1)
we get that as−1 = 0 by Lemma 4.1, a contradiction.

Moreover, since for every x ∈ Rwehave 0 = adna(x) = ∑n
i=0

(n
i

)
(−1)n−i ai xan−i ,

again by Lemma 4.1
(n
t

)
at = 0 for t := [ n+1

2 ]. If R is free of
(n
t

)
-torsion, then at = 0

so t ≥ s, i.e., n ≥ 2s − 1, and therefore, n = 2s − 1 (equivalently, s = t). ��
The next example shows that all possible cases in the lemma above can be realized:

Let p be an odd prime number and R a prime ring with characteristic p. If a ∈ R is
a nilpotent element of index s ∈ { p+1

2 , . . . , p}, then a is ad-nilpotent of index p. In
particular, there are no ad-nilpotent elements of index between p+ 1 and 2p− 1, and
a nilpotent element of index p is ad-nilpotent of the same index p.
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Proposition 4.3 Let R be a prime ring and let a ∈ R be an ad-nilpotent element of R−
of index n. Let F denote the algebraic closure of the field F := C(R) and R := R̂⊗F.
Then:

(1) There exists μ ∈ F such that a − μ is a nilpotent element of R.
(2) If R is free of

(n
t

)
-torsion for t := [ n+1

2 ] then n is odd and the index of nilpotence
of a − μ is n+1

2 . If in addition R is free of t-torsion then μ ∈ C(R).

Proof (1) Since R is prime, F = C(R) is a field and R is a centrally closed prime ring
(see [5, pp. 445–446]). From

0 = adna x =
n∑

i=0

(
n

i

)
(−1)n−i ai xan−i

for every x ∈ R we have, by Theorem 2.7, that a seen as an element of R̂ is
an algebraic element over F of degree not greater than n. Let us consider the
minimal polynomial p(X) ∈ F[X ] of a. Let F be the algebraic closure of F and let
μ1, . . . , μt ∈ F be the roots of p(X) inF, i.e., p(X) = (X−μ1)

k1 · · · (X−μt )
kt ∈

F[X ].
Let us prove that p(X) has only one root in F and therefore p(X) = (X −
μ)k ∈ F[X ], whence a − μ is nilpotent in R: Suppose on the contrary that p(X)

has different roots μ1, . . . , μt , t > 1, and define qi (X) := p(X)/(X − μi ) for
every i . Since p(X) is the minimal polynomial of a, qi (a) �= 0 in R. Note that
(a − μi )qi (a) = p(a) = 0 and therefore aqi (a) = μi qi (a). Now, since we are
in the prime case, there exists y ∈ R such that q1(a)yq2(a) �= 0 and therefore
ada(q1(a)yq2(a)) = aq1(a)yq2(a) − q1(a)yq2(a)a = (μ1 − μ2)q1(a)yq2(a) �=
0. Thismeans thatq1(a)yq2(a) is an eigenvector of the linearmap ada associated to
the eigenvalueμ1−μ2; hence, it is an eigenvector of ad2a associated to (μ1−μ2)

2,
etc. This is a contradiction because both q1(a)yq2(a) and each power of (μ1−μ2)

are nonzero, while ada is nilpotent. Therefore t = 1, p(X) = (X − μ)k ∈ F[X ]
and (a − μ)k = 0.

(2) Let us consider b := a − μ ∈ R, which is ad-nilpotent of index n. Let us see that
n is odd: Suppose on the contrary that n = 2m. Then

0 = adna x = adnb x =
n∑

i=0

(
n

i

)
(−1)n−i bi xbn−i

implies by Lemma 4.1 that
(n
m

)
bm = 0 and, since R is free of

(n
m

)
-torsion, that

bm = 0. Substituting in adn−1
b x = ∑n−1

i=0

(n−1
i

)
(−1)n−1−i bi xbn−1−i we get that

adn−1
b x = 0 for every x ∈ R, a contradiction.

Therefore n is odd and a − μ is nilpotent of R of index t := n+1
2 by Lemma 4.2.

Moreover, since the coefficient of degree t − 1 of p(X) = (X − μ)t ∈ F[X ] is
−tμ ∈ F, if R is free of t-torsion then μ ∈ F, i.e., there exists μ ∈ C(R) such
that a − μ is nilpotent of index t = n+1

2 .
��
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In the following theorem, we get the description of the pure ad-nilpotent elements
of R−. In its proof, Proposition 4.3 is primarily used to find that any ad-nilpotent
element a ∈ R of index n forces [a, [adn−1

a x, [adn−1
a x, y]]] = 0 for every x, y ∈ R.

If 2, 3, . . . , r were invertible in R for r ≥ n + [ n2 ] + 1, this identity would directly
follow from the proof of [17, Theorem 2.3].

Theorem 4.4 Let R be a semiprime ring with no 2-torsion, let R̂ be its central closure,
and let a ∈ R be a pure ad-nilpotent element of R− of index n. Put t := [ n+1

2 ], and
suppose that R is free of

(n
t

)
-torsion and t-torsion. Then n is odd and there exists

λ ∈ C(R) such that a − λ ∈ R̂ is nilpotent of index n+1
2 .

Proof Let us suppose that R is a prime ring and, without loss of generality, that it is
centrally closed. Consider μ ∈ C(R) as given by Proposition 4.3. Putting b := a−μ,
we know that bt = 0 for t := n+1

2 , hence for every x, y ∈ R we have

(adn−1
a x)(adn−1

a x) = (adn−1
b x)(adn−1

b x) = 0, and

[a, [adn−1
a x, [adn−1

a x, y]]] = [b, [adn−1
b x, [adn−1

b x, y]]]
= −2

(
n − 1

t − 1

)(
n − 1

t − 1

)

[b, bt−1xbt−1ybt−1xbt−1] = 0.

If R is semiprime, R is a subdirect product of prime rings (without
(n
t

)
and t-torsion)

and in any of these prime quotients

(adn−1
a x)(adn−1

a x) = 0 and [a, [adn−1
a x, [adn−1

a x, y]]] = 0,

which imply that

(adn−1
a x)(adn−1

a x) = 0, and [a, [adn−1
a x, [adn−1

a x, y]]] = 0

for every x, y ∈ R. For every x ∈ R, let zx := adn−1
a x . By the identity above,

0 = 1

2
[a, [zx , [zx , y]]] = −azx yzx + zx yzxa.

Therefore, since IdR(zxa) ⊂ IdR(zx ), by Corollary 2.9 there exists λx ∈ C(R) such
that zxa = λx zx and by Proposition 2.10 there exists εx ∈ C(R) such that εx zx = zx
and AnnR(IdR(zx )) = (1 − εx )R. Therefore

0 = zx ad
n
a y = zx

(
n∑

i=0

(
n

i

)
(−1)n−i ai yan−i

)

=
n∑

i=0

(
n

i

)
(−1)n−i zxa

i yan−i

=
n∑

i=0

(
n

i

)
(−1)n−i zxλ

i
x ya

n−i = zx y

(
n∑

i=0

(
n

i

)
(−1)n−iλixa

n−i

)

= zx y(a − λx )
n
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for every y ∈ R, whence (a − λx )
n ∈ AnnR(IdR(zx )). So εx (a − λx )

n = 0. Now,
for every x, x ′ ∈ R there exist λx , λx ′ ∈ C(R) and idempotents εx , εx ′ ∈ C(R)

such that 0 = (εxεx ′a − εxεx ′λx )
n = (εxεx ′a − εxεx ′λx ′)n , so εxεx ′λx = εxεx ′λx ′

by Lemma 2.6. By Lemma 2.11 there exists λ ∈ C(R) such that εxλ = εxλx for
every x ∈ R. Then for every x ∈ R, we have zx (a − λ)n = εx zx (a − λx )

n = 0,
so 0 = εx zx adna y = zx y(a − λ)n for every y ∈ R thus (a − λ)n ∈ AnnR(IdR(zx ))
(see 2.2). Moreover

⋂
x∈R AnnR(IdR(zx )) = AnnR(IdR(adn−1

a (R))) by definition of
zx , and AnnR(IdR(adn−1

a (R))) = AnnR(IdR(a)) because a is pure (Lemma 3.2(iii)).
Finally, let ε ∈ C(R) be such that εa = a and AnnR(IdR(a)) = (1 − ε)R. Then
ε(a − λ)n = (a − ελ)n = 0 because it is contained in (1 − ε)R.

Hence a−ελ is nilpotent in addition to being ad-nilpotent of index n. Put t := [ n+1
2 ]

and take any prime quotient without t and
(n
t

)
-torsion in which a − ελ is still ad-

nilpotent of index n. By Proposition 4.3(2), we get that n must be odd and a − ελ is
nilpotent of index t . Since in any prime quotient (a − ελ)t = 0̄ by Proposition 4.3(2),
we have that t is the index of nilpotence of a − ελ. ��

Lee’s description of ad-nilpotent elements of R− is recovered when the hypothesis
of being pure is removed.

Corollary 4.5 ([26, Theorem 1.3]) Let R be a semiprime ring, let R̂ be its central
closure, let a ∈ R be an ad-nilpotent element of R− of index n, and suppose that R
is free of n!-torsion. Then n is odd and there exists λ ∈ C(R) such that a − λ ∈ R̂ is
nilpotent of index n+1

2 .

Proof Suppose without loss of generality that R is centrally closed, i.e., R = R̂.
By Proposition 3.4, there exists a family of orthogonal idempotents {εi }ki=1 ⊂ C(R)

such that a = ∑k
i=1 εi a with εi a a pure ad-nilpotent element of index ni (n = n1 >

n2 > · · · ) of Rεi . Then byTheorem4.4 there exists a family of scalars {λi }ki=1 ⊂ C(R)

such that (εi a − λi )
ti = 0 for ti := [ ni+1

2 ]. Hence λ = ∑n
i=1 εiλi satisfies the claim.

��
Interesting Lie algebras associated to simple rings R are the quotient algebras

[R, R]/([R, R]∩Z(R)), which are simple unless R has 2-torsion and is 4-dimensional
over its center ([22, Theorem 1.13]). Let us study ad-nilpotent elements in these
algebras.

Lemma 4.6 ([27, Lemma 4.6]) Let R be a semiprime ring and let a ∈ R be such that
adna(R) ⊂ Z(R). Then adna(R) = 0.

Proof For every x ∈ R, we have

0 = [adna(xa), x] = [(adna x)a, x] = (adna x)[a, x].

Therefore 0 = adn−1
a ((adna x)[a, x]) = (adna x)

2 which implies, since R is semiprime
and adna x ∈ Z(R), that adna x = 0. ��
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Lemma 4.7 Let R be a semiprime ring, let L := [R, R]/([R, R] ∩ Z(R)) and let
a := a + ([R, R] ∩ Z(R)) ∈ L be an ad-nilpotent element of L of index n. Then a is
an ad-nilpotent element of index n in R−.

Proof For every x ∈ R, adn+1
a x = adna([a, x]) ∈ adna([R, R]) ⊂ Z(R) so, by Lemma

4.6, adn+1
a x = 0 for every x ∈ R, i.e., a is ad-nilpotent in R− of index n or n + 1.

Let us suppose that R is prime. Then, by Proposition 4.3, there exists μ ∈ F, the
algebraic closure of F := C(R), such that a − μ is nilpotent in R ⊗ F of some index
s. Moreover, by Lemma 4.2, s ≤ n + 1. Put b := a − μ. Then

0 = adna([x, y]) = adnb([x, y]) =
n∑

i=0

(
n

i

)
(−1)n−i bi [x, y]bn−i

for every x, y ∈ R. By Lemma 4.1, for every k ∈ {0, 1, . . . , [ n+1
2 ]} we have(n

k

)
bmax(k,n−k) = 0, so

adna x = adnb x =
n∑

i=0

(
n

i

)
(−1)n−i bi xbn−i = 0,

i.e., a is an ad-nilpotent element of R− of index n.
Finally, since a is ad-nilpotent of index not greater than n in any prime quotient, a

is an ad-nilpotent element of R− of index n when R is semiprime. ��
In particular, from these last two lemmas we get that if R is semiprime then

[R, R]/([R, R] ∩ Z(R)) and R/Z(R) are nondegenerate Lie algebras (see [22, Sub-
lemma in p. 5]).

Corollary 4.8 Let R be a semiprime ring, let R̂ be its central closure, and let L :=
[R, R]/([R, R] ∩ Z(R)) or L := R/Z(R). If a ∈ L is an ad-nilpotent element of L
of index n and R is free of n!-torsion, then n is odd and there exists λ ∈ C(R) such
that a − λ ∈ R̂ is nilpotent of index n+1

2 .

Proof If L = [R, R]/([R, R]∩ Z(R)) the result follows by Lemma 4.7 and Corollary
4.5. If L = R/Z(R) the result follows by Lemma 4.6 and Corollary 4.5. ��

5 Ad-nilpotent Elements of K

In this section, we focus on semiprime rings R with involution ∗ and their set of
skew-symmetric elements K . As in the previous section, we will first describe the
pure ad-nilpotent elements of K and then remove the hypothesis of being pure by
decomposing each ad-nilpotent element into a sum of pure ad-nilpotent elements of
decreasing indices.

The following lemma collects some results about ∗-identities. Item (1) is [22,
Remark on p.43] (with a different proof), item (2) is a generalization of [29, Lemma
5], and item (3) is a generalization of [9, Lemma 5.2].
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Lemma 5.1 Let R be a semiprime ring with involution ∗ and free of 2-torsion. Let
k ∈ K and h ∈ H. Then:

(1) kKk = 0 implies k = 0.
(2) hKh = 0 implies hRh ⊂ H(C(R), ∗)h. In particular, R satisfies

hxhyh = hyhxh for every x, y ∈ R,

and if IdR(h) is essential then Skew(C(R), ∗) = 0.
(3) hKh = 0 and hKk = 0 imply hRk = 0. In particular, if IdR(h) is essential then

k = 0, while if h ∈ IdR(k) then h = 0 (resp. if k ∈ IdR(h) then k = 0).
(4) k[K , K ]k = 0 and k2 = 0 imply k = 0.

Proof Wecan supposewithout loss of generality that R = R̂, i.e., R is centrally closed.

(1) Take x ∈ R. Note that k(x − x∗)k = 0, so that kxk = kx∗k. Then

k(xkx)k = k(xkx)∗k = −kx∗kx∗k = −(kx∗k)x∗k = −kxkx∗k
= −kx(kx∗k) = −kxkxk

and so we have kxkxk = 0 since R is free of 2-torsion. Therefore kxkxkyk = 0
for every y ∈ R, hence

0 = −kxk(xky)k = −kxk(xky)∗k = kxky∗kx∗k = kxkykxk,

so (kxk)R(kxk) = 0 and kxk = 0 since R is semiprime. Now kRk = 0 implies,
again by semiprimeness, that k = 0.

(2) If h = 0 then the claim is trivially fulfilled, so assume h �= 0. Take x, y ∈ R.
Note that h(x − x∗)h = 0 and therefore hxh = hx∗h. Then

0 = h(xhy − (xhy)∗)h = hxhyh − hy∗hx∗h = hxhyh − (hy∗h)x∗h =

= hxhyh − hy(hx∗h) = hxhyh − hyhxh = (hxh)yh − hy(hxh),

i.e., hxhyh = hyhxh. By Corollary 2.9, since h �= 0 and IdR(hxh) ⊆ IdR(h),
for each x ∈ R there exists μx ∈ C(R) such that hxh = μxh. Hence 0 �= hRh ⊂
C(R)h. Moreover, since hx∗h = hxh, 2hxh = hxh + hx∗h = (μx + μ∗

x )h ∈
H(C(R), ∗)h, so hRh ⊆ H(C(R), ∗)h.
Let us suppose that IdR(h) is essential in R and let us show that Skew(C(R), ∗) =
0: Take λ ∈ Skew(C(R), ∗) and y ∈ R. Then (λh)y(λh) = λh(yλ)h = λμλyh ∈
K for some μλy ∈ H(C(R), ∗). On the other hand, (λh)y(λh) = λ2hyh =
λ2μyh ∈ H for some μy ∈ H(C(R), ∗). Therefore (λh)y(λh) = 0 for every
y ∈ R, and by semiprimeness of R, λh = 0, so λ = 0 because IdR(h) is essential.

(3) Suppose first that R is ∗-prime and, without loss of generality, that it is centrally
closed. If R is not prime then there is λ ∈ Skew(C(R), ∗) such that R = K +λK
(see 2.4), hence hKh = 0 implies hRh = 0 and h = 0 since R is semiprime, so
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trivially hRk = 0. Now assume R is prime. Since R = H + K we only need to
show that hHk = 0. Let x ∈ H and y ∈ R. Then

0 = h(xky − (xky)∗)h = hxkyh + hy∗kxh = hxkyh + hykxh

since h(y∗ − y)k = 0 for every y ∈ R. By Corollary 2.9, since IdR(hxk) ⊂
IdR(h), for each x ∈ R there exists μx ∈ C(R) such that hxk = μxh. If μx = 0
then hxk = 0 and we are done. Otherwise, 0 = hxkxk = μxhxk = μ2

xh, hence
h = 0 and we are also done.
Suppose now that R is semiprime. Then there exists a family of ∗-prime ide-
als {Iα}α∈� such that

⋂
α∈� Iα = 0. In each ∗-prime quotient R/Iα , we have

h̄ R/Iα k̄ = 0̄, so hRk ⊂ Iα for all α, hence hRk = 0.
(4) Since k2 = 0 and k[K , K ]k = 0, for all x, y ∈ K we get

0 = k[[x, k], y]k = kxkyk + kykxk, (a)

thus kxkyk = −kykxk and 2kxkxk = 0 for all x ∈ K , hence kxkxk = 0 since
R is free of 2-torsion. Now, by (a),

0 = (kxkxk)yk = kx(kxkyk) = −kxkykxk

for all x, y ∈ K . Thus (kxk)K (kxk) = 0 for all x ∈ K , kKk = 0 and k = 0 by
item (1) applied twice. ��

Remark 5.2 Let R be a semiprime ring with involution such that R = H + K (in
particular this is true when R is centrally closed and has no 2-torsion by 2.5). Then
every x ∈ R can be expressed as x = xh + xk with xh ∈ H and xk ∈ K . If a ∈ K is
an ad-nilpotent element of K of index n, then for every x ∈ R

adna(ax + xa) = adna(axk + xka) + adna(axh + xha)

= a adna(xk) + adna(xk)a + adna(axh + xha) = 0,

since axh + xha ∈ K . On the other hand, expanding this expression,

0 = adna(ax + xa) = (−1)nxan+1 +
n∑

i=1

((
n

i

)
−

(
n

i − 1

))
(−1)n−i ai xan+1−i + an+1x .

Observe that a nilpotent element in K is ad-nilpotent of both K and R, but its
index of ad-nilpotence in R may be higher than the one found in K . In the following
proposition, we describe the ad-nilpotent elements of K of index n that are already
nilpotent of certain index s. The description depends on the equivalence class of the
index of ad-nilpotence modulo 4 and relates the index of nilpotence to the index of
ad-nilpotence.
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Proposition 5.3 Let R be a semiprime ring with involution ∗ and free of 2-torsion, let
R̂ be its central closure, and let a ∈ K be a nilpotent element of index of nilpotence s.
Then a is ad-nilpotent in R. If the index of ad-nilpotence of a in K is n and R is free
of

(n
t

)
-torsion for t := [ n+1

2 ], then:
(1) If n ≡ 0 (mod 4) then s = t + 1 and at Kat = 0.
(2) If n ≡ 1 (mod 4) then s = t and the index of ad-nilpotence of a in R is also n.
(3) The case n ≡ 2 (mod 4) is not possible.
(4) If n ≡ 3 (mod 4) then there exists an idempotent ε ∈ C(R) such that εat = at .

Moreover, when we write a = εa + (1 − ε)a, we have:

(4.1) If 0 �= εa ∈ R̂ then εa is nilpotent of index t + 1, εat = at generates
an essential ideal in ε R̂ and (εa)t−1k(εa)t = (εa)t k(εa)t−1 for every k ∈
Skew(R̂, ∗).

(4.2) If 0 �= (1 − ε)a ∈ R̂, then the index of ad-nilpotence of (1 − ε)a in R̂ is not
greater than n, and (1 − ε)at = 0.

Furthermore, if a is a pure ad-nilpotent element of K then in (2) and in (4.2) we obtain
pure ad-nilpotent elements of R (respectively of R̂) of index n.

Proof Let us suppose without loss of generality that R = R̂, i.e., R is centrally closed.
Let a ∈ K be a nilpotent element of index of nilpotence s. Then a is ad-nilpotent

of K of a certain index n. If we apply Lemma 4.1 to the second formula obtained in
Remark 5.2, we get that all the monomials appearing in it are zero. We will now focus
on certain monomials depending on the parity of n.

• If n is even, n = 2t . Let us see that s = t + 1: on the one hand, for any x ∈ R we
know that

((
n

t

)
−

(
n

t − 1

))
(−1)t at xat+1 = 0

and, since
(n
t

) − ( n
t−1

)
is a divisor of 2

(n
t

)
and R is free of 2

(n
t

)
-torsion, we have that

at xat+1 = 0 for all x . Therefore at+1 = 0 by semiprimeness, hence s ≤ t + 1. On
the other hand, if s = t then at = 0 and ad2t−1

a (R) = 0, a contradiction.
Let us see that n ≡ 0 (mod 4): For any k ∈ K ,

0 = ad2ta (k) =
2t∑

i=1

(
2t

i

)
(−1)2t−i ai ka2t−i =

(
2t

t

)
(−1)t at kat ,

so atkat = 0 for every k ∈ K , which implies that t has to be even, since otherwise
at ∈ K and at Kat = 0 imply at = 0 by Lemma 5.1(1), a contradiction. We have
shown that, if n is even, n ≡ 2 (mod 4) is not possible.

• If n is odd, n = 2t − 1, and for any x ∈ R,

((
n

t − 1

)
−

(
n

t − 2

))
at−1xat+1 = 0.

123



J. Brox et al.

Since
( n
t−1

) − ( n
t−2

)
is a divisor of 2

(n
t

)
and R is free of 2

(n
t

)
-torsion, we have that

at−1xat+1 = 0 for all x . Therefore at+1 = 0 by semiprimeness, hence s ≤ t + 1. On
the other hand s > t − 1 since otherwise ad2t−2

a (R) = 0, a contradiction.
If at = 0 then a is already an ad-nilpotent element of R of index n. In this case,

n ≡ 1 (mod 4) or n ≡ 3 (mod 4) by Proposition 4.3(2). Furthermore, if a is pure in
K then a is pure in R by Lemma 3.3.

Suppose from now on that at �= 0. Let us show that n ≡ 3 (mod 4). By Propo-
sition 2.10, there exists an idempotent ε ∈ H(C(R), ∗) such that εat = at and
AnnR(IdR(at )) = (1 − ε)R (so at = εat generates an essential ideal in εR). Notice
that εa �= 0 (otherwise 0 = (εa)t = εat = at , a contradiction). For every k ∈ K , we
have

0 = adnεa k =
n∑

i=1

(
n

i

)
(−1)n−iεai kan−i =

=
(

n

t − 1

)
(−1)tεat−1kat +

(
n

t

)
(−1)t−1εatkat−1 =

=
(
n

t

)
(−1)t−1(−εat−1kat + εatkat−1).

Since R has no
(n
t

)
-torsion, εat−1kat = εatkat−1 for every k ∈ K . Moreover, multi-

plying by a on the right we get εatkat = atkat = 0, so at Kat = 0, which by Lemma
5.1(1) is only possible if at �= 0 is symmetric, hence t is even and n ≡ 3 (mod 4).

If (1 − ε)a �= 0 then ad2t−1
(1−ε)a(R) = 0 and (1 − ε)a is an ad-nilpotent element of

R of index not greater than 2t − 1.
If a is a pure ad-nilpotent element of index n in K then (1− ε)a is ad-nilpotent of

K of index n and therefore (1− ε)at−1 �= 0. From this, the index of ad-nilpotence of
(1− ε)a in R must be n = 2t − 1. Then by Lemma 3.3 (1− ε)a is a pure ad-nilpotent
element of R of index n. ��
Remark 5.4 Let a ∈ K be a nilpotent element of index s. If we denote its index of
ad-nilpotence in K by n, we obtain from Proposition 5.3 that, under the right torsion
hypothesis, 2s − 3 ≤ n ≤ 2s − 1 and n+1

2 ≤ s ≤ n+3
2 .

Proposition 5.5 Let R be a semiprime ring with involution ∗ and free of 2-torsion, let
R̂ be its central closure, and let a ∈ K be a pure ad-nilpotent element of K of index
n > 1. Then:

(1) There exists an idempotent ε ∈ H(C(R), ∗) such that (1− ε)a is an ad-nilpotent
element of R̂ of index ≤ n and εa is nilpotent with adnμεa(R̂) �= 0 for every
μ ∈ C(R) such that μεa �= 0.

(2) Moreover, if a is pure ad-nilpotent in K and R is free of
(n
t

)
-torsion and t-torsion

for t := [ n+1
2 ], when we write a = εa + (1 − ε)a we have:

(2.1) If εa �= 0 then εa is nilpotent of index t + 1.
(2.2) If (1− ε)a �= 0 then (1− ε)a is pure ad-nilpotent in R̂ of index n. In this case,

n is odd and there exists λ ∈ Skew(C(R), ∗) such that ((1 − ε)a − λ)t = 0.
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Proof Notice that n ≥ 3 since ad2a(K ) = 0 implies a ∈ Z(R) by [16, Corollary 4.8]
and so ada(K ) = 0, which is not possible because n > 1 by hypothesis.

(1) Let us suppose first that R is a ∗-prime ring and, without loss of generality, that
it is centrally closed.

(1.a) Case 1: adna(R) = 0 and we get the claim for the idempotent ε = 0.
(1.b) Case 2: adna(R) �= 0 implies that there are no nonzero skew elements λ in C(R),
since otherwise (by 2.4) R = K + λK would imply adna(R) = 0; in particular R
is prime. Since adna(K ) = 0, by the second formula of Remark 5.2 and Corollary
2.9, a is an algebraic element of R over the field F := C(R). Let us consider the
minimal polynomial p(X) ∈ F[X ] of a. Let F be the algebraic closure of C(R) and
let μ1, . . . , μt ∈ F such that p(X) = (X − μ1)

k1 · · · (X − μt )
kt . Let q1(X) :=

p(X)/(X − μ1), so q1(a)a = μ1q1(a). Now, for any x ∈ R ⊗ F,

0 = adna(ax + xa)q1(a)

= a
n∑

i=0

(
n

i

)
(−1)n−i ai xan−i q1(a) +

n∑

i=0

(
n

i

)
(−1)n−i ai xan−i aq1(a)

= a
n∑

i=0

(
n

i

)
(−1)n−i ai xμn−i

1 q1(a) +
n∑

i=0

(
n

i

)
(−1)n−i ai xμn−i

1 μ1q1(a)

= a
n∑

i=0

(
n

i

)
(−1)n−i aiμn−i

1 xq1(a) +
n∑

i=0

(
n

i

)
(−1)n−i aiμn−i

1 μ1xq1(a)

= a(a − μ1)
nxq1(a) + (a − μ1)

nμ1xq1(a) = (a − μ1)
n(a + μ1)xq1(a)

and therefore, since R ⊗ F is a centrally closed prime ring (see [5, pp. 445–446]),
(a−μ1)

n(a+μ1) = 0. Ifμ1 = 0, then a is nilpotent of index at most n+1. Ifμ1 �= 0,
since the involution is of the first kind on R, it extends to R⊗F via (r ⊗λ)∗ := r∗ ⊗λ,
hence 0 = ((a − μ1)

n)∗(a + μ1)
∗ = (a∗ − μ1)

n(a∗ + μ1) = (−a − μ1)
n(−a + μ1)

implies (a + μ1)
n(a − μ1) = 0. From the conditions (a − μ1)

n(a + μ1) = 0 and
(a + μ1)

n(a − μ1) = 0 we obtain p(X) = (X − μ1)(X + μ1). Thus a2 = μ2
1, but

then ad3a(k) = 4μ2
1[a, k] for every k ∈ K , a contradiction with n ≥ 3.

Let us study the semiprime case, and suppose without loss of generality that R is
centrally closed: If a is already ad-nilpotent in R of index n, take ε = 0 and the claim
holds. Suppose fromnowon that adna(R) �= 0. ByProposition 2.10 let ε ∈ H(C(R), ∗)

be an idempotent such that ε adna(x) = adna(x) for every x ∈ R,AnnR(IdR(adna(R))) =
(1−ε)R andAnnC(R)(adna(R)) = (1−ε)C(R). Then adn(1−ε)a(R) = (1−ε) adna(R) =
0.

Let us study the element εa: First notice that adnμεa R �= 0 for every μ such
that μεa �= 0, since otherwise με adna(R) = adnμεa R = 0 implies με ∈
AnnC(R)(adna(R)) = (1 − ε)C(R) and hence με = 0, a contradiction. Let us see
that εa is nilpotent. Since R is semiprime, the intersection of all ∗-prime ideals of R
is zero. Consider the essential ∗-ideal S := IdR(adna(R)) ⊕ AnnR(IdR(adna(R))) =
IdR(adna(R)) ⊕ (1 − ε)R. Let us consider the families

�1 := {I �∗ R | R/I is ∗ -prime and S �⊂ I }
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and

�2 := {I �∗ R | R/I is ∗ -prime and S ⊂ I }.

Since S ⊂ ⋂
I∈�2

I and S is essential,
⋂

I∈�1
I = 0 and R is a subdirect product of

R/I with I ∈ �1. Let us see that in any ∗-prime quotient εa is nilpotent of index not
greater than n + 1. Take I ∈ �1 and consider R̄ := R/I . We may have two cases:

• If ε = 0 then εa = 0.
• If ε �= 0 then ε = 1 ∈ R/I and 1 − ε = 0, so (1 − ε)R ⊂ I . Moreover,
adnεa(R/I ) �= 0 since otherwise adnεa(R/I ) = 0 would imply S ⊂ I , a con-
tradiction. Let us see that R/I is prime: if R/I is ∗-prime and not prime there
would exist a nonzero skew element λ in C(R/I ), which implies that R/I =
Skew(R/I , ∗)⊕λSkew(R/I , ∗) (see 2.4), so adnεa(R/I ) = adnεa(Skew(R/I , ∗)⊕
λSkew(R/I , ∗)) = 0, a contradiction. So R/I is a prime ring with involution and
adnεa(R/I )) �= 0 which implies that εa is nilpotent of index not greater than n+1.

In conclusion, for any I ∈ �1 we have εan+1 ∈ I and therefore εan+1 = 0.
(2) Suppose now that a is a pure element of K of index n and R is free of 2

(n
t

)
-

torsion and free of t-torsion for t := [ n+1
2 ]. If a is already ad-nilpotent of R of index

n then a is pure in R by Lemma 3.3 and we can use Theorem 4.4 to find that n is
odd and there exists λ ∈ Skew(C(R), ∗) such that (a − λ)t = 0. Otherwise write
a = εa + (1 − ε)a as before. Since εa is nilpotent and ad-nilpotent of K of index n
(because we are assuming that a is pure in K ), εa is nilpotent of index t + 1 (it has
index t or t + 1 by Proposition 5.3, but adnεa(R) �= 0). Moreover, (1 − ε)a is a pure
ad-nilpotent element of R of index n (if it is nonzero, its index of ad-nilpotence cannot
be lower than n since (1 − ε)a is ad-nilpotent in K of index n), and we can apply
Theorem 4.4 and Lemma 2.6 to get that n is odd and there exists λ ∈ Skew(C(R), ∗)

such that ((1 − ε)a − λ)t = 0. ��
Theorem 5.6 Let R be a semiprime ring with involution ∗ and free of 2-torsion, let
R̂ be its central closure, and let a ∈ K be a pure ad-nilpotent element of K of index
n > 1. If R is free of

(n
t

)
-torsion and t-torsion for t := [ n+1

2 ] then:
(1) If n ≡ 0 (mod 4) then at+1 = 0, at �= 0 and at Kat = 0. Moreover, there exists

an idempotent ε ∈ H(C(R), ∗) such that εa = a and the ideal generated by at is
essential in ε R̂. In addition ε R̂ satisfies the GPI at xat yat = at yat xat for every
x, y ∈ ε R̂.

(2) If n ≡ 1 (mod 4) then there exists λ ∈ Skew(C(R), ∗) such that (a − λ)t = 0 (a
is an ad-nilpotent element of R of index n).

(3) It is not possible that n ≡ 2 (mod 4).
(4) If n ≡ 3 (mod 4) then there exists an idempotent ε ∈ H(C(R), ∗) making a =

εa + (1 − ε)a ∈ R̂ such that:

(4.1) If εa �= 0 then εat+1 = 0, εat �= 0 and εatkεat−1 = εat−1kεat for every
k ∈ Skew(R̂, ∗). The ideal generated by εat is essential in ε R̂ and ε R̂ satisfies
the GPI at xat yat = at yat xat for every x, y ∈ ε R̂.

(4.2) If (1−ε)a �= 0 then there existsλ ∈ Skew(C(R), ∗) such that ((1−ε)a−λ)t =
0 ((1 − ε)a is a pure ad-nilpotent element of R̂ of index n).
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In particular, for all n > 1 there exists λ ∈ Skew(C(R), ∗) such that (a − λ)t+1 = 0,
(a − λ)t−1 �= 0.

Proof We can suppose without loss of generality that R = R̂, i.e., R is centrally
closed. By Proposition 5.5, there exists an idempotent ε ∈ H(C(R), ∗) such that
ε adna x = adna x for every x ∈ R and AnnR(IdR(adna(R))) = (1−ε)R, and moreover:

• If εa �= 0, it is nilpotent of index t + 1 and ad-nilpotent of K of index n. By
Proposition 5.3, this may happen if either n ≡ 0 (mod 4), in which case at+1 = 0,
at �= 0, at Kat = 0 and (1 − ε)a = 0 (because (1 − ε)a is ad-nilpotent of R
and its index cannot be even), or n ≡ 3 (mod 4). The case n ≡ 1 (mod 4) is not
possible because εat �= 0.

• If (1 − ε)a �= 0 then (1 − ε)a is a pure ad-nilpotent element of R, n is odd and
there exists λ ∈ Skew(R, ∗) with ((1 − ε)a − λ)t = 0. By Proposition 5.3, this
may happen if either n ≡ 1 (mod 4) (in this case εa = 0) or n ≡ 3 (mod 4). The
decomposition (1 − ε)a − λ = a1 + a2 given by Proposition 5.3(4) occurs with
a1 = 0 since otherwise the index t +1 of a1 would contradict ((1−ε)a−λ)t = 0.

In the particular case of n ≡ 3 (mod 4) with εa �= 0, the idempotent ε1 produced in
Proposition 5.3(4) for the nilpotent element εa satisfies ε1εat = εat , so (1 − ε1)ε ∈
AnnR(IdR(adna(R))) = (1−ε)R, thus ε1ε = ε and εat = ε1εat generates an essential
ideal in εR. On the other hand, we know from Proposition 5.5 that (εa)t−1k(εa)t =
(εa)t k(εa)t−1 for every k ∈ K ; in particular (εa)t K (εa)t = 0. Therefore, by Lemma
5.1(2) the identity

at xat yat = at yat xat

holds in εR.
In the particular case of n ≡ 0 (mod 4), the idempotent ε produced in Proposition

5.5 satisfies εat xat = εat for every x ∈ R and AnnR IdR(at Rat ) = (1− ε)R. On the
other hand, (1−ε)amust be zero because adn(1−ε)a(R) = 0 and a is a pure ad-nilpotent
element (so a = εa). Therefore, the ideal generated by at in εR is essential in εR and
the identity at xat yat = at yat xat holds in εR by Lemma 5.1(2). ��
Remark 5.7 It is worth noting that in the semiprime case, when n ≡ 3 (mod 4) there
can exist elements a with two nonzero parts εa and (1− ε)a behaving as in Theorem
5.6(4.1) and Theorem 5.6(4.2). This is no longer true in the prime case, see [29, Main
Theorem].

In the next corollary, we recover Lee’s main result by taking into account that
every ad-nilpotent element can be expressed as a sum of pure ad-nilpotent elements
of decreasing indices.

Corollary 5.8 ([26, Theorem 1.5]) Let R be a semiprime ring with involution ∗ and free
of n!-torsion, let R̂ be its central closure, and let a ∈ K be an ad-nilpotent element of
K of index n. Then there exist λ ∈ Skew(C(R), ∗) and an idempotent ε ∈ H(C(R), ∗)

such that (εa − λ)t+1 = 0 and (εa − λ)t−1 �= 0 for t := [ n+1
2 ], and (1 − ε)R̂ is a

PI-algebra satisfying the standard identity S4.

123



J. Brox et al.

Proof We can suppose without loss of generality that R = R̂, i.e., R is centrally
closed. By Proposition 3.4, there exists a family of orthogonal symmetric idempotents
{εi }ki=1 of the extended centroid such that a = ∑k

i=1 εi a, with εi a a pure ad-nilpotent
element of index ni (n = n1 > n2 > . . . ) of Skew(εi R, ∗). If nk = 1 then εka can
be decomposed as εka = εk1a + (1 − εk1)a, where εk1a ∈ Z(R) and (1 − εk1)R is a
PI-algebra satisfying the standard identity S4 by [9, Theorem 4.2(i),(ii) and (*)]. The
claim follows now from Theorem 5.6. ��

Let us extend this last result to Lie algebras of the form K/(K ∩ Z(R)) and
[K , K ]/([K , K ] ∩ Z(R)).

Corollary 5.9 Let R be a semiprime ring with involution free of n!-torsion, let R̂ be
its central closure, and consider the Lie algebra L := K/(K ∩ Z(R)). If ā is an
ad-nilpotent element of L of index n, then there exist λ ∈ Skew(C(R), ∗) and an
idempotent ε ∈ H(C(R), ∗) such that (εa − λ)t+1 = 0 and (εa − λ)t−1 �= 0 for
t := [ n+1

2 ], and (1 − ε)R̂ is a PI-algebra that satisfying the standard identity S4.

Proof Let us prove that adna(K ) ⊂ Z(R) implies adna(K ) = 0: Suppose first that R is
∗-prime and, without loss of generality, centrally closed. If adna(K ) �= 0, there would
exist 0 �= λ ∈ adna(K ) ∩ Z(R), so R = K + λK by 2.4 and hence adna(R) ⊂ Z(R),
which implies byLemma4.6 that adna(R) = 0, a contradiction. The same result follows
for semiprime rings because they can be expressed as subdirects product of ∗-prime
quotients.

The claim follows now from Corollary 5.8. ��
Now we turn to Lie algebras of the form [K , K ]/([K , K ] ∩ Z(R)). We first need

a technical lemma.

Lemma 5.10 Let R be a semiprime ring with involution ∗ and a ∈ K be such that
adna([K , K ]) ⊂ Z(R), n > 1. If R is free of (n + 1)!-torsion then adna(K ) = 0.

Proof Let us first suppose that R is a ∗-prime ring and, without loss of generality,
that it is centrally closed. If Skew(C(R), ∗) �= 0 then R = K + λK for any 0 �=
λ ∈ Skew(C(R), ∗) (see 2.4); thus adna([R, R]) ⊂ Z(R), and by Lemma 4.7 a is
an ad-nilpotent element of R of index n. Otherwise Skew(C(R), ∗) = 0, in which
case R must be prime and K ∩ Z(R) = 0, so adna([K , K ]) = 0. From adn+1

a K ⊂
adna([K , K ]) = 0 and Skew(C(R), ∗) = 0, we get from Proposition 5.5 that a is a
nilpotent element of R. Let s be its index of nilpotence. If adna K = 0 we are done;
suppose it is not and let us compare the index of ad-nilpotence of a in K with its index
of nilpotence s (see Proposition 5.3) to get a contradiction:

(a) If n+1 ≡ 0 (mod 4) then s = n+3
2 and as−1Kas−1 = 0. From

( n
s−2

) = ( n
s−1

)
we

get, for every x ∈ R, that adna x = (−1)s−1
( n
s−2

) (
as−2xas−1 − as−1xas−2

)
. Then,

for every k, k′ ∈ K ,

2(adna k)k
′(adna k)

= 2

(
n

s − 2

)(
n

s − 2

) (
as−2kas−1k′as−2kas−1 + as−1kas−2k′as−1kas−2

)
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= 2

(
n

s − 2

)(
n

s − 2

)
as−2k(as−1k′as−2 − as−2k′as−1)kas−1+

+ 2

(
n

s − 2

)(
n

s − 2

)
as−1k(as−2k′as−1 − as−1k′as−2)kas−2

= 2(−1)s−2
(

n

s − 2

)
(as−2k(adna k

′)kas−1 − as−1k(adna k
′)kas−2)

= (−1)s−2
(

n

s − 2

)
(as−2 ad2k(ad

n
a k

′)as−1 − as−1 ad2k(ad
n
a k

′)as−2)

= adna(ad
2
k(ad

n
a k

′)) ∈ adna([K , K ]) = 0

because a adna k = 0 = (adna k)a, a
s−1Kas−1 = 0 and s ≥ 3 implies as−1as−2 = 0.

Therefore (adna k)K (adna k) = 0 and hence adna k = 0 for every k ∈ K by Lemma
5.1(1).

(b) If n + 1 ≡ 1 (mod 4) then s = n
2 + 1. For every x ∈ R, adna x =

(−1)s−1
( n
s−1

)
as−1xas−1. Then, for every k, k′ ∈ K ,

2(adna k)k
′(adna k) = 2

(
n

s − 1

)(
n

s − 1

)
as−1kas−1k′as−1kas−1

=
(

n

s − 1

)(
n

s − 1

)
as−1 ad2k(a

s−1k′as−1)as−1

= adna(ad
2
k(ad

n
a k

′)) ∈ adna([K , K ]) = 0

because as−1as−1 = 0. Therefore (adna k)K (adna k) = 0 and hence adna k = 0 for
every k ∈ K by Lemma 5.1(1).

(c) The case n + 1 ≡ 2 (mod 4) is not possible.
(d) If n+1 ≡ 3 (mod 4) then, by primeness of R, either s = n

2 +2 and as−2kas−1 =
as−1kas−2 for every k ∈ K (case (4.1) in Theorem 5.6) or s ≤ n

2 + 1 (case (4.2) in
Theorem 5.6).

(d.1) Suppose s = n
2 + 2 and as−2kas−1 = as−1kas−2 (1) for every k ∈ K . For

convenience write α := ( n
s−3

)
, β := ( n

s−2

)
and observe that α �= β (since n �= 2s−5).

For every k, k′ ∈ K , we have

0 = adna([k, k′]) = αas−3[k, k′]as−1 − βas−2[k, k′]as−2 + αas−1[k, k′]as−3. (2)

Multiplying on the left by a and applying (1) to the second term afterwards,

0 = a adna([k, k′]) = αas−2[k, k′]as−1 − βas−1[k, k′]as−2 =
= αas−2[k, k′]as−1 − βas−2[k, k′]as−1 = (α − β)as−2[k, k′]as−1,

which gives as−2[k, k′]as−1 = 0 (3) since R is free of (α −β)-torsion. Now we study
two separate cases:

If n = 2 then s = 3 and a ∈ K satisfies ad3a(K ) = 0 and a2 �= 0, a3 = 0, so it
is a Clifford element (see [8]). Since R is free of 2, 3-torsion there is a twin element
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b ∈ K of a such that aba = a and a2b2a2 = a2 ([8, p. 289 and Proposition 3.7(6)]).
Then, by (3),

0 = a[[b, a], b]a2 = 2(aba)ba2 − a2b2a2 − ab2a3 = 2aba2 − a2 = a2,

a contradiction.
If n > 2 then n ≥ 6 and s ≥ 5, so 2s − 4 > s and (as−2)2 = 0. We see that

as−2[k1, k′
1]as−2[k2, k′

2]as−2[k1, k′
1]as−2 = 0 (4)

for every k1, k′
1, k2, k

′
2 ∈ K : from (2) we can write βas−2[k2, k′

2]as−2 as a linear
combination of as−1[k, k′]as−3 and as−3[k, k′]as−1, so (4) follows since R is free
of β-torsion and as−2[k1, k′

1]as−1 = 0 = as−1[k1, k′
1]as−2 by (3) and (1). Since

for each k1, k′
1 ∈ K we have that b := as−2[k1, k′

1]as−2 ∈ K is such that b2 = 0
and b[K , K ]b = 0 by (4), by Lemma 5.1(4) we get b = 0 for each k1, k′

1 ∈ K , so
as−2[K , K ]as−2 = 0, and as−2 = 0 again by Lemma 5.1(4), a contradiction.

(d.2) Suppose s ≤ n
2 + 1. In this case, the proof follows as in (b): adna x =

(−1)
n
2
(n
n
2

)
a

n
2 xa

n
2 for every x ∈ R, (adna k)K (adna k) = 0 and hence adna k = 0 for

every k ∈ K by Lemma 5.1(1).
In any case adna(K ) = 0. Finally, the semiprime case follows because R is a

subdirect product of ∗-prime rings. ��
From this lemma and Corollary 5.8 we get:

Corollary 5.11 Let R be a semiprime ring with involution ∗, let R̂ be its central closure,
and consider the Lie algebra L := [K , K ]/(Z(R) ∩ [K , K ]). If ā is an ad-nilpotent
element of L of index n > 1 and R is free of (n + 1)!-torsion then there exist λ ∈
Skew(C(R), ∗) and an idempotent ε ∈ H(C(R), ∗) such that (εa − λ)t+1 = 0 and
(εa − λ)t−1 �= 0 for t := [ n+1

2 ], and (1− ε)R̂ is a PI-algebra satisfying the standard
identity S4.
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