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a b s t r a c t 

We find closed-form algebraic formulas for the elements of the inverses of tridiagonal 2- 

and 3-Toeplitz matrices which are symmetric and have constant upper and lower diago- 

nals. These matrices appear, respectively, as the impedance matrices of resonator arrays in 

which a receiver is placed over every 2 or 3 resonators. Consequently, our formulas allow 

to compute the currents of a wireless power transfer system in closed form, allowing for 

a simple, exact and symbolic analysis thereof. Small numbers are chosen for illustrative 

purposes, but the elementary linear algebra techniques used can be extended to k -Toeplitz 

matrices of this special form with k arbitrary, hence resonator arrays with a receiver placed 

over every k resonators can be analysed in the same way. 
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1. Introduction 

This work concerns the theory and applications of some special tridiagonal matrices, known in the literature as tridiag-

onal k -Toeplitz matrices. Those are tridiagonal matrices of order n , say, where the entries along the main diagonal and its
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⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

a 1 b 1 

c 1 
. . . 

. . . 

. . . a k b k 
c k a 1 b 1 

c 1 
. . . 

. . . 

. . . a k b k 
c k a 1 b 1 

c 1 
. . . 

. . . 

. . . 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, 

where the entries are real or complex numbers, with b j c j � = 0 for j = 1 , . . . , k . These matrices have proved to be a very useful

tool in many contexts of pure and applied mathematics, e.g., in partial differential equations (appearing in the discretization

of elliptic or parabolic partial differential equations by finite difference methods), in chain models of quantum physics ( [7] ),

and in sound propagation theory ( [9,10] ). Gover in [13] solved the eigenproblem associated with such matrices for the special

case k = 2 . Gover’s results were recasted by Marcellán and Petronilho in [14] using tools from the theory of orthogonal

polynomials. Later, in [15] these authors solved the associated eigenproblem for the case k = 3 , using again tools from

orthogonal polynomials theory and polynomial mappings (see also the work [7] by Álvarez-Nodarse et al.). The eigenproblem

of a general tridiagonal k -Toeplitz matrix was solved by da Fonseca and Petronilho ( [12] ), motivated by the need of finding

explicit formulas for the entries of the inverses of such matrices (whenever they are nonsingular), the special case k = 3

having been considered previously by these same authors in [11] . Recently these explicit formulas for the entries of the

inverses have proved to be very useful in real world problems involving circuit models (e.g. [6] ). Such formulas for the

entries were obtained in [11,12] as expressions involving polynomial mappings and Chebyshev polynomials of the second

kind, a fact that (despite the beauty of such formulas) may be regarded as an additional difficulty in their applications,

especially for those which are not so familiar with the theory of orthogonal polynomials. 

Our aim in this contribution is twofold. On the one hand we will determine, without using the theory of orthogonal

polynomials, explicit algebraic expressions for the entries of the inverses of symmetric 2- and 3-Toeplitz matrices which

have constant and equal upper and lower diagonals ( b 1 = · · · = b k = c 1 = · · · = c k ). To do so we will only resort to elementary

linear algebra: we will compute the determinants of such matrices by linear recurrence relations, and then apply those

determinants to compute the minors appearing in the cofactor matrix, which directly relate to the elements of the inverse.

It is clear that the methods found here can be applied to k -Toeplitz matrices with constant and equal upper and lower

diagonals, for arbitrary k . 

On the other hand, we will apply these results to achieve closed formulas for wireless power transfer (WPT) systems

using resonator arrays with multiple receivers. WPT systems have been going through intensive research lately, as they allow

one to avoid electrical contact and transfer power in rough environments with water, dust or dirt. Nowadays they are being

used in several applications as electrical vehicle charging ( [1] ), mobile devices charging ( [18] ) and powering biomedical

devices ( [22] ). However, they have the drawback that, in case of misalignment or distance from the transmitter to the

receiver, the efficiency and power transmitted can drop abruptly. So, in order to overcome this inconvenience, arrays of

resonators can be used to transfer power over longer distances ( [16,17,23] ). In these arrays the first resonator is usually

connected to a power source and transmits power through magnetic coupling to the other resonators of the array, which

are arranged in a plane with parallel axes, and a receiver is placed over the array to absorb the power transmitted ( [2–

5,17,20] ). In the literature, these arrays have been examined mostly using magnetoinductive wave theory ( [17,20] ) or through

the circuit analysis of the array ( [3,23] ), in which the array is represented by an impedance matrix which contains the

impedance of each resonator and the mutual inductances between pairs of resonators ( [2,17,19,23,24] ). In [5,6] the inversion

of the impedance matrix is performed using generic tridiagonal matrices. In this way, it is possible to determine closed-form

expressions for equivalent impedance, the power transmitted and the efficiency of these systems. However all these works

consider only one receiver placed over the array. Instead, the array could possibly transmit power to several receivers at

the same time. In this paper we study and give closed-form algebraic formulas for the currents, power transmission and

efficiency in an array powering multiple receivers placed over every two or three resonators. These small numbers have

been chosen for the sake of simplicity of the exposition, but the same methods work equally well for arrays with receivers

placed every k resonators, with k arbitrary. 

2. Description of the circuit 

In this paper we consider an array with N identical resonators and some identical receivers placed over them. If the

l th resonator has a receiver over it ( Fig. 1 (A,B)) then an impedance ˆ Z d is added, which is the impedance of the receiver as

seen from the resonator ( [17,20] ). The last resonator ( N th) is connected to a termination impedance ˆ Z T . The first resonator is

connected to a voltage source ˆ V s , which we consider to generate an ideal sinusoidal voltage, as has been done in other WPT
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Fig. 1. Circuit representations of a possible configuration of the considered resonator array: (A) Receiver over the l th cell. (B) Receiver represented by an 

impedance ˆ Z d . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

works ( [8,21] ). The impedance of each resonator is given by ˆ Z = R + jωL + 1 / jωC, being L the inductance of the resonator, R

its intrinsic resistance and C the added capacitance. At the resonant angular frequency ω 0 = 2 π f 0 = 1 / 
√ 

LC , the impedance

of each resonator becomes equal to its resistance ( ̂  Z = R ) . The mutual inductance between adjacent resonators is given by

M , whereas the one between non-adjacent resonators is neglected, as its value is much smaller compared to M in arrays

arranged in a plane with parallel axes ( [17,20] ). Then the equivalent circuit can be written in matrix form as ˆ V = 

ˆ Z m ̂

 I with
ˆ V = [ ̂  V s , 0 , . . . , 0] T , ̂  I = [ ̂ I 1 , . . . , ̂  I N ] 

T and the matrix ˆ Z m 

a symmetric tridiagonal matrix: 

ˆ Z m 

= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

ˆ Z jωM · · · 0 · · · 0 

jωM 

ˆ Z 
. . . 0 · · · 0 

. . . 
. . . 

. . . jωM 

. . . 0 

0 0 jωM 

ˆ Z + 

ˆ Z d 
. . . 0 

. . . 
. . . 

. . . 
. . . 

. . . jωM 

0 0 0 0 jωM 

ˆ Z + 

ˆ Z T 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, (2.1)

where a term 

ˆ Z + 

ˆ Z d appears as the l th element of the diagonal whenever the l th resonator has a receiver placed over it.

In order to determine the current vector ˆ I (i.e., the currents flowing in the resonators) as ˆ I = 

ˆ Z 

−1 
m 

ˆ V we need to determine

the inverse matrix ˆ Z 

−1 
m 

. Actually, as all components of ˆ V are 0 except for the first one, we only need to determine the

first column of ˆ Z 

−1 
m 

. Nevertheless, since long lines of resonators may be used, some attenuation can be expected along the

array, so in practice it may become necessary to add voltage sources at several points (and then 

ˆ V would have more than

one nonzero element). For this reason we determine all entries of ˆ Z 

−1 
m 

(see Sections 3.2.1 and 4.2.1 ). After determining the

current in each resonator, one can determine the power transmitted to a receiver. 

In this paper we are interested in the case in which the receivers are periodically placed over the resonators, that is,

with a receiver placed over every k resonators. For simplicity of the analysis we will only consider explicitly the cases

k = 2 and k = 3 , and no terminal impedance besides the one which eventually comes from a receiver placed over the N th

resonator. We also note that, since the mathematical analysis (undertaken in Sections 3 and 4 for k = 2 , 3 respectively)

finds the inverse of any symmetric k -Toeplitz matrix with constant upper and lower diagonals, it actually allows to find the

currents in any system with arbitrary impedances a 1 , . . . , a k over the first k resonators and periodically repeating afterwards

(in particular, the case with several identical receivers per period can be handled in the same manner). The current, power

and efficiency formulas with arbitrary periodic impedance matrix for the cases k = 2 , 3 would then be formally the same as

those in Section 5 , but with different impedance parameters, depending on the corresponding impedance matrix. 
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2.1. Receiver over every 2 resonators 

Consider a receiver placed over each resonator of even index (see Fig. 2 ). In this case the impedance matrix of the array

is a 2-Toeplitz matrix with constant and equal upper and lower diagonals: 

ˆ Z m 

= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

ˆ Z jωM 0 . . . . . . . . . . . . 0 

jωM 

ˆ Z + 

ˆ Z d jωM 0 . . . . . . . . . 0 

0 jωM 

ˆ Z jωM 0 . . . . . . 0 

0 0 jωM 

ˆ Z + 

ˆ Z d jωM 0 . . . 0 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . jωM 

0 0 . . . . . . . . . 0 jωM 

ˆ Z + 

ˆ Z T 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, 

with 

ˆ Z T = 

{
0 , if N is odd 

ˆ Z d , if N is even 

. 

Fig. 2. Circuit of a resonator array with a receiver placed over each resonator of even index (shown here for N odd). 

2.2. Receiver over every 3 resonators 

When there is a receiver placed over each resonator of index a multiple of 3 ( Fig. 3 ), the impedance matrix of the array

is a 3-Toeplitz matrix with constant and equal upper and lower diagonals: 

ˆ Z m 

= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

ˆ Z jωM 0 . . . . . . 0 

jωM 

ˆ Z jωM 0 . . . 0 

0 jωM 

ˆ Z + 

ˆ Z d jωM . . . 0 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

0 0 . . . 0 jωM 

ˆ Z + 

ˆ Z T 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, 

with 

ˆ Z T = 

{
0 if N � = 3 p 

ˆ Z d if N = 3 p 

Fig. 3. Circuit of a resonator array with a receiver placed over each resonator of index multiple of 3 (shown here for N not a multiple of 3). 

3. 2-Toeplitz matrix 

Recall that the ( i, j ) th cofactor of the matrix A ∈ M n (C ) is 

C i j = (−1) i + j det (A i j ) , 

where A i j ∈ M n −1 (C ) is the submatrix of A formed by removing the i th row and the j th column. Then the cofactor matrix of

A is the matrix C(A ) = (C i j ) ∈ M n (C ) . The inverse of a regular matrix A can be computed as 

A 

−1 = 

adj (A ) 
, 
det A 
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where the adjugate matrix of A is adj (A ) = C(A ) T , the transpose of its cofactor matrix. 

Denote M n (a 1 , a 2 , b) = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

a 1 b 0 . . . . . . . . . . . . 0 

b a 2 b 0 . . . . . . . . . 0 

0 b a 1 b 0 . . . . . . 0 

0 0 b a 2 b 0 . . . 0 

. 

. 

. 
. 
. 
. 

. . . 
. . . 

. . . 
. . . 

. . . 
. 
. 
. 

. 

. . 
. 
. . 

. . . 
. . . 

. . . 
. . . 

. . . 
. 
. . 

. 

. 

. 
. 
. 
. 

. . . 
. . . 

. . . 
. . . 

. . . b 

0 0 . . . . . . . . . 0 b α

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

∈ M n (C ) , where α is a 1 when n is odd and a 2 when

n is even. We compute the inverse of M n ( a 1 , a 2 , b ) with the previous formula. In this case the adjugate matrix is just the

cofactor matrix, since M n ( a 1 , a 2 , b ) is symmetric. 

3.1. Determinant 

Recall that the Laplace expansion along the j th column gives the determinant of a matrix A = (a i j ) ∈ M n (C ) as det A =
a 1 j C 1 j + · · · a n j C n j (Laplace expansion along a row is analogous). Let D (n ) = det (M n (a 1 , a 2 , b)) . From Laplace expansion along

the last column we see that 

D (n ) = αD (n − 1) − bD 

′ = αD (n − 1) − b 2 D (n − 2) , 

where D 

′ has been computed by Laplace expansion along its last row. We get two linear recurrence equations for D ( n ): for

D (2 k ) and for D (2 k − 1) . Written in matrix form: (
D (2 k ) 

D (2 k − 1) 

)
= 

(
a 2 −b 2 

1 0 

)(
D (2 k − 1) 
D (2 k − 2) 

)
, (

D (2 k − 1) 
D (2 k − 2) 

)
= 

(
a 1 −b 2 

1 0 

)(
D (2 k − 2) 
D (2 k − 3) 

)
. 

Put A = 

(
a 2 −b 2 

1 0 

)
, B = 

(
a 1 −b 2 

1 0 

)
. Since A gives D (2 k ) from D (2 k − 1) and B gives D (2 k − 1) from D (2 k − 2) , which

has again even argument, by induction we get (
D (2 k ) 

D (2 k − 1) 

)
= (AB ) k −1 

(
D (2) 
D (1) 

)
= (AB ) k −1 

(
a 1 a 2 − b 2 

a 1 

)
. 

Denote a 2 = a 1 a 2 . Let us diagonalize AB (when possible) as P DP −1 with D diagonal, so that (
D (2 k ) 

D (2 k − 1) 

)
= P D 

k −1 P −1 

(
a 2 − b 2 

a 1 

)
. 

The characteristic polynomial of AB is 

X 

2 + (2 b 2 − a 2 ) X + b 4 , 

its eigenvalues 

r 1 , 2 = 

a 2 

2 

− b 2 ±
√ 

a 2 (a 2 − 4 b 2 ) 

2 

. 

A sufficient condition for diagonalization is a 2 � = 4 b 2 , as this implies r 1 � = r 2 . In that case, a matrix of eigenvectors is 

P = 

⎛ 

⎝ 

r 1 + b 2 

a 1 

r 2 + b 2 

a 1 

1 1 

⎞ 

⎠ 

with determinant 

det (P ) = 

r 1 − r 2 
a 1 

and inverse (computed via the adjugate matrix) 

P −1 = 

1 

det (P ) 

⎛ 

⎜ ⎝ 

1 − r 2 + b 2 

a 1 

−1 

r 1 + b 2 

a 

⎞ 

⎟ ⎠ 

. 
1 



6 J. Alberto and J. Brox / Applied Mathematics and Computation 377 (2020) 125185 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Now 

P D 

k −1 = 

⎛ 

⎝ 

r 1 + b 2 

a 1 
r k −1 

1 

r 2 + b 2 

a 1 
r k −1 

2 

r k −1 
1 

r k −1 
2 

⎞ 

⎠ , 

P −1 

(
a 2 − b 2 

a 1 

)
= 

1 

det (P ) 

(
a 2 − 2 b 2 − r 2 

−a 2 + 2 b 2 + r 1 

)
= 

1 

det (P ) 

(
r 1 

−r 2 

)
, 

since a 2 − 2 b 2 = tr (AB ) = r 1 + r 2 . Putting all the results together we get 

D (2 k ) = 

1 

r 1 − r 2 
((r 1 + b 2 ) r k 1 − (r 2 + b 2 ) r k 2 ) , 

D (2 k − 1) = 

a 1 
r 1 − r 2 

(r k 1 − r k 2 ) . 

The matrix M n ( a 1 , a 2 , b ) will be invertible if and only if its determinant is nonzero, which will be the case precisely when

r k 
1 

� = r k 
2 

if n = 2 k − 1 and when (r 1 + b 2 ) r k 
1 

� = (r 2 + b 2 ) r k 
2 

if n = 2 k . Observe that the sufficient condition for diagonalization

a 2 � = 4 b 2 is not enough to assure invertibility, as the example with n = 3 , b = 1 , a 1 = 1 , a 2 = 2 shows: 

rank 

( 

1 1 0 

1 2 1 

0 1 1 

) 

= 2 < 3 

since the second row is the sum of the first and third ones. 

3.2. Elements of the inverse 

As stated in Section 2 , when there is only a voltage source at the first resonator we only need to compute the first

column of the inverse, equivalently the first row (since the matrix is symmetric), so for ease of reasoning we first explain

how to compute the first row of the cofactor matrix. We give the computation for an arbitrary element of the inverse, which

solves the more general problem of having several voltage sources in arbitrary positions, at the end of this section. 

When we compute cofactor C 1 j of M ( a 1 , a 2 , b ) via its submatrix M 1 j , by construction the first row and the j th column of M

are removed, the elements of the 1 , . . . , j − 1 th columns get bumped up one position upwards, and the rest of elements from

M ( a 1 , a 2 , b ) keep their original relative positions in M 1 j , but with both their indices lowered by one (e.g., the ( j, j )th element

becomes the ( j − 1 , j − 1) th one). Thus M 1 j will have the element b in its diagonal positions (1 , 1) , . . . , ( j − 1 , j − 1) , zero

in the columns below those b , and the unaltered lower right block M 

′ of M n ( a 1 , a 2 , b ) from the ( j, j )th element onwards: 

M(a 1 , a 2 , b) = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

a 1 b 
b a 2 b 

0 b 
. . . b 

. . . 
. . . b a j 

0 · · · 0 b M 

′ 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

⇒ M 1 j = 

⎛ 

⎜ ⎜ ⎜ ⎝ 

b a 2 b 

0 b 
. . . 

. . . 
. . . b 

0 · · · 0 M 

′ 

⎞ 

⎟ ⎟ ⎟ ⎠ 

So M 1 j is diagonally composed of an upper triangular block with constant diagonal b and a lower right block M 

′ which is

another 2-Toeplitz matrix (either M n − j (a 1 , a 2 , b) or M n − j (a 2 , a 1 , b) , depending on the parity of j ), so its determinant is the

product of the determinants of these two blocks, which are known. Denote now by D n ( a 1 , a 2 , b ) the determinant of the

matrix M n ( a 1 , a 2 , b ). Recall that α = α(n ) equals a 1 when n is odd and a 2 when n is even; write α2 ( n ) for the function with

the opposite behaviour. By the exposition above, the elements q 1 j of the first row of the adjugate matrix of M n ( a 1 , a 2 , b ) are

of the form 

q 1 j = (−1) j−1 b j−1 D n − j (α2 ( j) , α( j) , b) . 

To get the elements m 1 j of the first row of the inverse we just need to divide by the determinant of the whole matrix: 

m 1 j = (−b) j−1 D n − j (α2 ( j) , α( j) , b) 

D n (a 1 , a 2 , b) 

(when D n ( a 1 , a 2 , b ) � = 0). 

Example. For the matrix M 8 ( a 1 , a 2 , b ) we have 

m 15 = 

( −b ) 
4 
D 3 ( a 2 , a 1 , b ) 

D 8 ( a 1 , a 2 , b ) 
= 

b 4 a 2 
(
r 2 1 − r 2 2 

)(
r 1 + b 2 

)
r 4 

1 
−

(
r 2 + b 2 

)
r 4 

2 

(when D 8 ( a 1 , a 2 , b ) � = 0 and a 2 � = 4 b 2 ). Observe that in the numerator we get a 2 instead of a 1 because in D 3 ( a 2 , a 1 , b ) the
elements a 2 , a 1 are swapped. Note also that r 1 , r 2 are symmetric with respect to a 1 , a 2 . 
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3.2.1. General case 

The technique applied above allows to find any element of the inverse. Since the matrix is symmetric we may suppose

j ≥ i . In general, the submatrix M ij which gives rise to the cofactor C ij is an upper block-triangular matrix with three diagonal

blocks: a first matrix M i −1 (a 1 , a 2 , b) , a middle upper triangular matrix of order j − i with constant diagonal b , and an ending

matrix M n − j (α2 ( j) , α( j) , b) . Recall that the determinant of a block-triangular matrix equals the product of the determinants

of its diagonal blocks, so that the ( i, j )th element m ij of the inverse is 

m i j = (−b) j−i D i −1 (a 1 , a 2 , b) D n − j (α2 ( j ) , α( j ) , b) 

D n ( a 1 , a 2 , b) 
, i ≤ j 

(when D n ( a 1 , a 2 , b ) � = 0). 

4. 3-Toeplitz matrix 

Let M n (a 1 , a 2 , a 3 , b) = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

a 1 b 0 . . . . . . 0 

b a 2 b 0 . . . 0 

0 b a 3 b . . . 0 

. . 

. 
. . 
. 

. . . 
. . . 

. . . 
. . 
. 

. 

. 

. 
. 
. 
. 

. . . 
. . . 

. . . 
. . . 

0 0 . . . 0 b α

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

∈ M n (C ) , 

where α = 

{ 

a 1 , n ≡ 1 ( mod 3) 

a 2 , n ≡ 2 ( mod 3) 

a 3 , n ≡ 3 ( mod 3) 

. Note that the impedance matrix in Section 2.2 is of the special form M n ( a 1 , a 1 , a 2 , b ),

but the cases M n ( a 1 , a 2 , a 1 , b ) and M n ( a 2 , a 1 , a 1 , b ) will be needed when computing its inverse. We compute the inverse of

M n ( a 1 , a 2 , a 3 , b ) via its adjugate matrix, which is again its cofactor matrix. 

4.1. Determinant 

Let D (n ) = det (M n (a 1 , a 2 , a 3 , b)) . By Laplace expansion along the last column we see that 

D (n ) = αD (n − 1) − bD 

′ = αD (n − 1) − b 2 D (n − 2) , 

where D 

′ has been computed by Laplace expansion along the last row. We get three linear recurrence equations for D ( n ):

for D (3 k ), D (3 k − 1) and D (3 k − 2) . Written in matrix form: (
D (3 k ) 

D (3 k − 1) 

)
= 

(
a 3 −b 2 

1 0 

)(
D (3 k − 1) 
D (3 k − 2) 

)
, (

D (3 k − 1) 
D (3 k − 2) 

)
= 

(
a 2 −b 2 

1 0 

)(
D (3 k − 2) 

D (3(k − 1)) 

)
, (

D (3 k − 2) 
D (3(k − 1)) 

)
= 

(
a 1 −b 2 

1 0 

)(
D (3(k − 1)) 

D (3(k − 1) − 1) 

)
. 

Put A i = 

(
a i −b 2 

1 0 

)
, a 3 = a 1 a 2 a 3 , s = a 1 + a 2 + a 3 , d = a 1 a 2 − b 2 . Observe that a and s are symmetric in a 1 , a 2 , a 3 , but

d = d(a 1 , a 2 ) is not; hence for M ( a 1 , a 1 , a 2 ) we will have to consider d ( a 1 , a 1 ), while for M ( a 1 , a 2 , a 1 ) and M ( a 2 , a 1 , a 1 ) we

will consider d ( a 1 , a 2 ). By induction we get (
D (3 k ) 

D (3 k − 1) 

)
= (A 3 A 2 A 1 ) 

k −1 

(
D (3) 
D (2) 

)
= (A 3 A 2 A 1 ) 

k −1 

(
a 3 + (a 2 − s ) b 2 

d 

)
. 

Let us diagonalize A 3 A 2 A 1 (when possible) as P DP −1 with D diagonal. The characteristic polynomial of A 3 A 2 A 1 is 

X 

2 + (sb 2 − a 3 ) X + b 6 , 

its eigenvalues 

r 1 , 2 = 

a 3 − sb 2 

2 

±
√ 

(a 3 − sb 2 ) 2 − 4 b 6 

2 

. 

Observe that r 1 , r 2 are also symmetric with respect to a 1 , a 2 , a 3 , being functions of a and s . A sufficient condition for

diagonalization is a 3 − sb 2 � = ±2 b 3 , as this implies r 1 � = r 2 . In that case, a matrix of eigenvectors is 

P = 

⎛ 

⎝ 

r 1 + a 2 b 
2 

d 

r 2 + a 2 b 
2 

d 

1 1 

⎞ 

⎠ 
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with determinant 

det (P ) = 

r 1 − r 2 
d 

and inverse (computed via the adjugate matrix) 

P −1 = 

1 

det (P ) 

⎛ 

⎜ ⎝ 

1 − r 2 + a 2 b 
2 

d 

−1 

r 1 + a 2 b 
2 

d 

⎞ 

⎟ ⎠ 

. 

Now 

P D 

k −1 = 

⎛ 

⎝ 

r 1 + a 2 b 
2 

d 
r k −1 

1 

r 2 + a 2 b 
2 

d 
r k −1 

2 

r k −1 
1 

r k −1 
2 

⎞ 

⎠ , 

P −1 

(
a 3 + (a 2 − s ) b 2 

d 

)
= 

1 

det (P ) 

(
a 3 − sb 2 − r 2 

−a 3 + sb 2 + r 1 

)
= 

1 

det (P ) 

(
r 1 

−r 2 

)
, 

since a 3 − sb 2 = tr (A 3 A 2 A 1 ) = r 1 + r 2 . Putting all the results together we get 

D (3 k ) = 

1 

r 1 − r 2 
((r 1 + a 2 b 

2 ) r k 1 − (r 2 + a 2 b 
2 ) r k 2 ) , 

D (3 k − 1) = 

d 

r 1 − r 2 
(r k 1 − r k 2 ) . 

We still have to compute D (3 k − 2) , which equals a 1 D (3(k − 1)) − b 2 D (3(k − 1) − 1) : 

D (3 k − 2) = 

1 

r 1 − r 2 
((a 1 r 1 + b 4 ) r k −1 

1 − (a 1 r 2 + b 4 ) r k −1 
2 ) . 

4.2. Elements of the inverse 

The computation of the elements of the inverse matrix from the determinants of the submatrices giving the ( i, j )th

minors is analogous to the case of 2-Toeplitz matrices studied in Section 3.2 , the main difference being that the ending

block of the block-triangular matrix can now be M n − j (a 1 , a 2 , a 3 , b) , M n − j (a 2 , a 3 , a 1 , b) or M n − j (a 3 , a 1 , a 2 , b) , depending on

the residue of j modulo 3. Denote by D n ( a 1 , a 2 , a 3 , b ) the determinant of the matrix M n ( a 1 , a 2 , a 3 , b ) and by σ j ( a 1 , a 2 , a 3 ) the

j th cyclic permutation of ( a 1 , a 2 , a 3 ) to the left, i.e., σ0 (a 1 , a 2 , a 3 ) = (a 1 , a 2 , a 3 ) , σ1 (a 1 , a 2 , a 3 ) = (a 2 , a 3 , a 1 ) , σ2 (a 1 , a 2 , a 3 ) =
(a 3 , a 1 , a 2 ) , σ3 (a 1 , a 2 , a 3 ) = (a 1 , a 2 , a 3 ) , etc. The elements q 1 j of the first row of the adjugate matrix of M n ( a 1 , a 2 , a 3 , b ) are

of the form 

q 1 j = (−b) j−1 D n − j (σ j (a 1 , a 2 , a 3 ) , b) . 

To get the elements m 1 j of the first row of the inverse we just need to divide by the determinant of the whole matrix: 

m 1 j = (−b) j−1 D n − j (σ j (a 1 , a 2 , a 3 ) , b) 

D n (a 1 , a 2 , a 3 , b) 

(when D n ( a 1 , a 2 , a 3 , b ) � = 0). 

Since the parameter d is not symmetric with respect to a 1 , a 2 , a 3 , care with d must be taken when n − j ≡ −1 ( mod 3) . 

Example. For the matrix M 8 ( a 1 , a 2 , a 3 , b ) we have 

m 14 = (−b) 3 
D 4 (a 2 , a 3 , a 1 , b) 

D 8 ( a 1 , a 2 , a 3 , b) 
= −b 3 

( a 2 r 1 + b 4 ) r 1 − (a 2 r 2 + b 4 ) r 2 

d( a 1 , a 2 ) · (r 3 
1 

− r 3 
2 
) 

(when D n ( a 1 , a 2 , a 3 , b ) � = 0 and a 3 − sb 2 � = ±2 b 3 ). 

Recall that we are chiefly interested in matrices of the form M n ( a 1 , a 1 , a 2 ). In this particular case, the elements m ij of

the first row of the inverse are 

m 1 j = 

(−b) j−1 D n − j (σ j (a 1 , a 1 , a 2 ) , b) 

D n (a 1 , a 1 , a 2 , b) 

(when D n ( a 1 , a 1 , a 2 , b ) � = 0). 

If n ≡ −1 ( mod 3) then d(a 1 , a 1 ) = a 2 
1 

− b 2 will appear in the denominator. If n − j ≡ −1 ( mod 3) , then in the numerator
2 
it will appear either d ( a 1 , a 1 ) if j ≡ 0 (mod 3) or d(a 1 , a 2 ) = a 1 a 2 − b if j ≡ 1, 2 (mod 3). 
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4.2.1. General case 

Since M n ( a 1 , a 2 , a 3 , b ) is symmetric we may suppose j ≥ i . The submatrix M ij which gives rise to the cofactor C ij is an

upper block-triangular matrix with three diagonal blocks: a first matrix M i −1 (a 1 , a 2 , a 3 , b) , a middle upper triangular matrix

of order j − i with constant diagonal b , and an ending matrix M n − j (σ j (a 1 , a 2 , a 3 ) , b) . Hence the ( i, j )th element m ij of the

inverse is 

m i j = (−b) j−i D i −1 (a 1 , a 2 , a 3 , b) D n − j (σ j (a 1 , a 2 , a 3 ) , b) 

D n (a 1 , a 2 , a 3 , b) 
, i ≤ j 

(when D n ( a 1 , a 2 , a 3 , b ) � = 0). 

5. Application of the mathematical results 

In this section we will use the generic expressions obtained for the elements of the inverse of the tridiagonal matrix to

determine the expressions for the currents, power transmitted and efficiency of the resonator array. Subsequently we will

use said expressions to illustrate the mathematical results and understand how the behaviour of the system changes with

the variation of its characteristics and parameters. In particular, we will analyse the behaviour of the system for different

values of the receiver impedance R d . 

5.1. Expressions for the currents in the resonators 

5.1.1. Receiver over every 2 resonators 

The formulas of the 2-Toeplitz case with circuit parameters 

b = jωM, a 1 = 

ˆ Z , a 2 = 

ˆ Z + 

ˆ Z d 

produce the values of the currents in the (2 k )th resonators. 

For even N , N = 2 p, we have 

ˆ I 2 k = − ˆ V s ( jωM) 2 k −1 
s 1 r 

p−k 
1 

− s 2 r 
p−k 
2 

s 1 r 
p 
1 

− s 2 r 
p 
2 

, 

ˆ I 1 = − ˆ V s ( ̂  Z + 

ˆ Z d ) 
r p 

1 
− r p 

2 

s 1 r 
p 
1 

− s 2 r 
p 
2 

with 

s 1 , 2 = 

1 

2 

ˆ Z ( ̂  Z + 

ˆ Z d ) ±
1 

2 

√ 

ˆ Z ( ̂  Z + 

ˆ Z d )( ̂  Z ( ̂  Z + 

ˆ Z d ) + 4(ωM) 2 ) , 

r 1 , 2 = s 1 , 2 + (ωM) 2 . 

For N odd, N = 2 p − 1 , we have 

ˆ I 2 k = − ˆ V s ( jωM ) 
2 k −1 r 

p−k 
1 

− r p−k 
2 

r p 
1 

− r p 
2 

, 

ˆ I 1 = −
ˆ V s 

ˆ Z 

s 1 r 
p−1 
1 

− s 2 r 
p−1 
2 

r p 
1 

− r p 
2 

with r 1,2 , s 1,2 as before. 

5.1.2. Receiver over every 3 resonators 

The formulas of the 3-Toeplitz case with circuit parameters 

b = jωM, a 1 = a 2 = 

ˆ Z , a 3 = 

ˆ Z + 

ˆ Z d 

produce the values of the currents in the (3 k )th resonators. For N = 3 p we have 

ˆ I 3 k = 

ˆ V s (− jωM) 3 k −1 
s 3 r 

p−k 
3 

− s 4 r 
p−k 
4 

s 3 r 
p 
3 

− s 4 r 
p 
4 

, 

ˆ I 1 = 

ˆ V s ( ̂  Z ( ̂  Z + 

ˆ Z d ) + (ωM) 2 ) 
r p 

3 
− r p 

4 

s 3 r 
p 
3 

− s 4 r 
p 
4 

with 
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α = 

ˆ Z 2 ( ̂  Z + 

ˆ Z d ) + (ωM) 2 (3 ̂

 Z + 

ˆ Z d ) , 

r 3 , 4 = 

α

2 

± 1 

2 

√ 

α2 + 4(ωM) 6 , 

s 3 , 4 = r 3 , 4 − ˆ Z (ωM) 2 . 

For N = 3 p − 1 : 

ˆ I 3 k = 

ˆ V s ( − jωM ) 
3 k −1 r 

p−k 
3 

− r p−k 
4 

r p 
3 

− r p 
4 

, 

ˆ I 1 = 

ˆ V s 

ˆ Z 2 + ( ωM ) 
2 

t 3 r 
p−1 
3 

− t 4 r 
p−1 
4 

r p 
3 

− r p 
4 

with t 3 , 4 = 

ˆ Z r 3 , 4 + (ωM) 4 . 

Finally, for N = 3 p − 2 : 

ˆ I 3 k = 

ˆ V s ( − jωM ) 
3 k −1 t 3 r 

p−k −1 
3 

− t 4 r 
p−k −1 
4 

t 3 r 
p−1 
3 

− t 4 r 
p−1 
4 

, 

ˆ I 1 = 

ˆ V s 

u 3 r 
p−1 
3 

− u 4 r 
p−1 
4 

t 3 r 
p−1 
3 

− t 4 r 
p−1 
4 

with u 3 , 4 = s 3 , 4 − ˆ Z d (ωM) 2 . 

5.2. Analysis of the currents on the resonators 

For simplicity we consider now that the resonators and receivers have the same resonant frequency ω 0 and that the

array is working at such frequency ( ̂  Z = R and 

ˆ Z d = R d are real), and the voltage source having a root-mean-square (RMS)

value of 1V ( V s = 1V). In order to illustrate the mathematical results obtained, we offer some examples of the RMS values of

the currents for each case ( I 2 k and I 3 k ), using the values from [5] ( R = 0 . 11�, ω 0 M = −1 . 43 ). 

5.2.1. Receiver over every 2 resonators 

Using the expressions from previous sections, we calculate the RMS values of the currents for four different values of
ˆ Z d = R d ( R , 5 R , 10 R , 100 R ), for N even ( Fig. 4 (A)) and N odd ( Fig. 4 (B)). As we can see from Fig. 4 , the currents have higher

values if the value of R d is lower. Also, when the number of resonators of the array is even, the currents drop less abruptly

as we move to the end of the array, compared with the odd case. 

Fig. 4. Comparison of the currents in the 2 k th resonators, for (A) N = 20 and (B) N = 21 , for different values of R d . 

5.2.2. Receiver over every 3 resonators 

Similarly, by using the expressions from previous sections we obtain the RMS values of the currents for different values

of R d and N (we use N = 21 , N = 22 and N = 23 ). The results are shown in Fig. 5 . 

As seen with the values of I 2 k , the values of the currents decrease as the value of R d increases, in this case with alter-

nating highs and lows for a fixed R d . The cases N = 3 p − 3 and N = 3 p − 1 present approximately the same behaviour, in

contrast with the N = 3 p − 2 case, in which the alternating behaviour is reversed. When k is odd, we have higher values
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Fig. 5. Comparison of the currents in the 3 k th resonators, for (A) N = 21 , (B) N = 22 and (C) N = 23 for different values of R d . 

Fig. 6. Comparison of the currents in the 3 k th resonators, for (A) N = 21 to 23, (B) N = 24 to 26. 

 

 

 

 

 

 

 

for N = 21 and N = 23 than for N = 22 , and the other way around when k is even; this happens in general for p odd, the

behaviour is reversed for p even (See Fig. 6 ). The differences between the values at the same k for N = 3 p − 3 , 3 p − 1 and

N = 3 p − 2 get bigger as k grows. 

5.3. Expressions for the power transmitted and efficiency of the system 

We use the expressions obtained for the currents in the 2 k th and 3 k th resonators to calculate the power transmitted to

each receiver over those resonators. Considering I 2 k and I 3 k the RMS values for the currents on the 2 k th and 3 k th resonators,

respectively, and considering the array operating at resonant frequency ω 0 and that the receivers have the same resonant

frequency as the resonators, meaning that ˆ Z d is real ( ̂  Z d = R d ), we determine the power transmitted for the period 2 and 3

cases as being, respectively, 

P R d , 2 k = I 2 2 k R d and P R d , 3 k = I 2 3 k R d . 

Afterwards, using the RMS values of voltage ( V s ) and of the current ( I 1 ) in the first resonator, we get the expression for the

efficiency of the system by adding the power transmitted to all receivers and dividing it by the input power: 

η2 k = 

P out 

P in 
= 

∑ 

P R d , 2 k 

V s I 1 
and η3 k = 

P out 

P in 
= 

∑ 

P R d , 3 k 

V s I 1 
. 

5.3.1. Receiver over every 2 resonators 

For N = 2 p we have 

P R d , 2 k = V 

2 
s R d (ω 0 M) 4 k −2 

(s 1 r 
p−k 
1 

− s 2 r 
p−k 
2 

) 2 

(s 1 r 
p 
1 

− s 2 r 
p 
2 
) 2 

, 

η2 k = 

R d 

( R + R d )(r p 
1 

− r p 
2 
)(s 1 r 

p 
1 

− s 2 r 
p 
2 
) 

p ∑ 

k =1 

(ω 0 M) 4 k −2 (s 1 r 
p−k 
1 

− s 2 r 
p−k 
2 

) 2 . 

For N = 2 p − 1 : 

P R d , 2 k = V 

2 
s R d (ω 0 M) 4 k −2 

(r p−k 
1 

− r p−k 
2 

) 2 

(r p − r p ) 2 
, 
1 2 
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Fig. 7. Comparison of the power transmitted to the receivers over the 2 k th resonators, for (A) N = 20 and (B) N = 21 , for different values of R d . 

 

 

 

 

 

 

 

 

η2 k = 

RR d 

(r p 
1 

− r p 
2 
)(s 1 r 

p−1 
1 

− s 2 r 
p−1 
2 

) 

p−1 ∑ 

k =1 

(ω 0 M) 4 k −2 (r p−k 
1 

− r p−k 
2 

) 2 . 

5.3.2. Receiver over every 3 resonators 

For N = 3 p we have 

P R d , 3 k = V 

2 
s R d (ω 0 M) 6 k −2 

(s 3 r 
p−k 
3 

− s 4 r 
p−k 
4 

) 2 

(s 3 r 
p 
3 

− s 4 r 
p 
4 
) 2 

, 

η3 k = 

R d 

( R (R + R d ) + (ω 0 M) 2 )(r p 
3 

− r p 
4 
)(s 3 r 

p 
3 

− s 4 r 
p 
4 
) 

p ∑ 

k =1 

(ω 0 M) 6 k −2 (s 3 r 
p−k 
3 

− s 4 r 
p−k 
4 

) 2 . 

For N = 3 p − 1 : 

P R d , 3 k = V 

2 
s R d (ω 0 M) 6 k −2 

(r p−k 
3 

− r p−k 
4 

) 2 

(r p 
3 

− r p 
4 
) 2 

, 

η3 k = 

R d (R 

2 + (ω 0 M) 2 ) 

(r p 
3 

− r p 
4 
)(t 3 r 

p−1 
3 

− t 4 r 
p−1 
4 

) 

p−1 ∑ 

k =1 

(ω 0 M) 6 k −2 (r p−k 
3 

− r p−k 
4 

) 2 . 

For N = 3 p − 2 : 

P R d , 3 k = V 

2 
s R d (ω 0 M) 6 k −2 

(t 3 r 
p−k −1 
3 

− t 4 r 
p−k −1 
4 

) 2 

(t 3 r 
p−1 
3 

− t 4 r 
p−1 
4 

) 2 
, 

η3 k = 

R d 

(t 3 r 
p−1 
3 

− t 4 r 
p−1 
4 

)(u 3 r 
p−1 
3 

− u 4 r 
p−1 
4 

) 

p−1 ∑ 

k =1 

(ω 0 M) 6 k −2 (t 3 r 
p−k −1 
3 

− t 4 r 
p−k −1 
4 

) 2 . 

5.4. Analysis of the power transmitted to the receivers and efficiency of the system 

As done previously, we use the values from [5] , consider that the resonators and receivers have the same resonant

frequency ω 0 with the array working at such frequency, and an RMS value of 1V for the voltage source ( V s = 1V ). 

5.4.1. Receiver over every 2 resonators 

In Fig. 7 we show the values of the power for four different values of ˆ Z d = R d ( R , 5 R , 10 R , 100 R ), for N even and N odd. In

Fig. 8 we plot the efficiency as a function of R d . The power transmitted to each of the resonators is approximately the same

whether N is odd or even. The maximum power transmitted is obtained when R d = 100 R, while the higher average power

between all the receivers is obtained when R d = 10 R . In contrast, we observe that the efficiency is higher when the number

of resonators of the array is even. This phenomenon disappears as N grows, both efficiency curves becoming identical for N

big enough: already for N = 60 and N = 61 the maximum difference in efficiency is less than 1%. 

Considering the efficiency as a function of x with R d = xR, we can get the maximum efficiency from the closed-form

formula either symbolically or numerically. For N = 20 , the maximum is 0.450, found with R d = 3 . 62 R, while for N = 21 the

maximum is 0.390, found with R d = 17 . 88 R . The calculation could be done with arbitrary parameters. In addition, when R d 



J. Alberto and J. Brox / Applied Mathematics and Computation 377 (2020) 125185 13 

Fig. 8. Comparison of the efficiency of the system as a function of R d , for N = 20 and N = 21 . 

 

 

 

 

 

 

 

 

 

tends to infinity (the rest of parameters being fixed), r 1 becomes the dominant eigenvalue and η2 k behaves essentially as
(ω 0 M) 2 

RR d 
−1 (for both N even and odd); in particular η2 k → 0 as R d → ∞ . 

5.4.2. Receiver over every 3 resonators 

In Fig. 9 we show the values of the power for four different values of ˆ Z d = R d ( R , 5 R , 10 R , 100 R ) and different values of

N . In Fig. 10 we plot the efficiency as a function of R d . 

The power transmitted also has different profile for the case N = 3 p − 1 compared to the N = 3 p, 3 p − 2 cases, which

are similar. Differently from the P 2 k, R d 
case, the maximum power transmitted is obtained when R d = 10 R , while the higher

average power between all the receivers is obtained when R d = 5 R . 

The efficiency behaviour is almost the same for the three values of N . Considering the efficiency as a function of x with

R d = xR we find that the maximum is 0.746 for all three, found approximately with R d = 24 . 87 R . The calculation could

be done with arbitrary parameters. The values obtained for the period 3 case are higher than the ones for the period

2 case, however this could be due to the fact that less receivers are being used. In addition, when R d tends to infinity

(the rest of parameters being fixed), r 3 becomes the dominant eigenvalue and η3 k behaves essentially as 
(ω 0 M) 4 

R (R 2 +(ω 0 M) 2 ) 
R d 

−1

(independently of the character of N modulo 3); in particular η3 k → 0 as R d → ∞ . 
Fig. 9. Comparison of the power transmitted to the receivers over the 3 k th resonators, for (A) N = 21 , (B) N = 22 and (C) N = 23 for different values of R d . 

Fig. 10. Comparison of the efficiency of the system as a function of R d , for N = 21 , N = 22 and N = 23 . 
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6. Conclusions 

In this paper, the inversion of special 2- and 3-Toeplitz matrices is used to analyse and assess the power transfer capa-

bility of a resonator array with multiple receivers. By replacing the generic parameters with the parameters of the circuit,

it is possible to obtain closed-form expressions for the currents in the resonators, power transfer and efficiency of the sys-

tem. Using these expressions, some examples were made in order to illustrate the mathematical results obtained and show

their practical applicability. It was found that, for the same lengths of the array, the efficiency is higher when considering a

receiver over every three resonators. However, higher values of power transmission are obtained when using an array with

a receiver over every two resonators. Also, the efficiency profiles for N = 2 p and N = 2 p − 1 are quite different when N is

small. The results obtained in this work allow one to better understand the behaviour of an array with multiple resonators

in order to expand the applications for these types of systems. The closed expressions obtained can help electrical engineers

to design systems composed of these resonator arrays, since they allow for abstract, general reasoning over all circuits, not

depending on the data of a specific case, in contrast with numerical methods. In particular we can easily predict the be-

haviour of the system when one of the parameters is changed, we can study the limit behaviour, and maximization of the

efficiency with the impedance of the receivers as a function of the impedance of the resonators can be done in a symbolic

way. In addition, since the formulas are rational functions, the only source of numerical instability are denominators, the

number of significant digits is controllable, and computation is fast. Finally, the same general analysis can be done mutatis

mutandis for resonator arrays having any number of receivers placed periodically every k resonators, with k arbitrary. 
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