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Designing Elastin-Like Recombinamers for Therapeutic and
Regenerative Purposes
José Carlos Rodríguez-Cabello, Sara Escalera☆, Diana Juanes-Gusano☆,
Mercedes Santos, and Alessandra Girotti

University of Valladolid, BIOFORGE lab (Group for Advanced Materials and Nanobiotechnology) CIBER-BBN,
Edificio Lucía, Paseo de Belén 19, Valladolid 47011, Spain

3.1 Introduction

The field of biomedicine relies on the development of advanced systems that mimic
the extracellular matrix (ECM) to allow in vitro studies of cell–matrix interactions
and subsequent implementation in vivo. The principal matrices for biomedical appli-
cations are hydrogels, which are hydrophilic polymer networks that can absorb a
large volume of water in resemblance to natural tissues (see Chapter 1). The mate-
rials used to obtain these biomimetic scaffolds include a large variety of synthetic
polymers such as polyethylene glycol (PEG) [1], as well as biopolymers, mostly pro-
teins from animal tissues such as collagen [2] (see Chapter 2). Combinations of
natural and synthetic polymers have also been tested to improve the properties of
hydrogels [3].

Essential characteristics for the development of hydrogels for general biomedical
applications include (i) an ability to provide a structural support to the surrounding
cells, thus promoting natural and adequate cell growth that helps complete inte-
gration of the scaffold into the natural surrounding tissue and provides mechanical
stability, (ii) an ability to mimic the ECM topography of tissues, (iii) an ability to
mimic the natural environment so that cells can develop their normal functions and
help restore damaged tissue, (iv) an ability to absorb and retain large quantities of
water while maintaining their structures, thereby maintaining the hydration levels
found in most tissues, (v) an ability to modulate their structures to match the shape
and the size of defects, (vi) an ability to be easily manipulated, and, particularly,
(vii) biocompatibility and biodegradability [4–7]. Depending on the final applica-
tion, hydrogels for use in regenerative medicine will need specific requirements in
order to simulate the tissue to be repaired, such as cell adhesion or growth factors,
which could also be included in the scaffold.
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