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ABSTRACT: A method to synthesize cofacial dimeric porphyrins
bearing eight corannulene units has been developed. It relies on the
stability of octahedral CO-capped Ru(II) complexes linked by N-donor
ligands. This specific arrangement provides an optimal scaffold to
accommodate fullerenes by imposing corannulene groups at a precise L
distance and relative orientation. Their capabilities for Cy, recognition .
have been thoroughly assessed, revealing that each system can ’?‘ °
encapsulate up to four guests, giving rise to a compact supramolecular 11
van der Waals complex echoing a discrete donor—acceptor—donor ee
trilayer offering significant potential properties for further exploitation.

Organic—based materials comprising small molecule
entities with potential applications in many fields of
the chemical sciences require a certain degree of order in the
relative location and orientation of their constituents. Proper-
ties such as the size of the excitons, optical gap, mobility, and
redox potentials critically depend on these features.” The Mixture of atropisomers
distance in donor—acceptor (DA) junctions directly impacts . ‘ . .
electron transfer processes and must be carefully engmeered to
provide the most efficient electron transfer kinetics.'® Specific
host—guest recognition in supramolecular adducts is an
excellent strategy to fulfill these requirements because ..‘ ‘
interacting electron-active units self-assemble in ordered d)
structures.

[S]Circulene (corannulene) is a nonplanar aromatic hydro-
carbon exhibiting versatile applications as organic devices.”
One of the most 1nterest1n§ properties is the supramolecular
recognition of fullerenes’ due to the concave/convex
complementarity between their topologies. However, a single
unit of corannulene is insufficient to establish strong
interactions. This limitation has led to the development of This work
various strategies to enhance these interactions such as 7-
extension® or the design of molecular tweezers, where two
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Figure 1. Cartoon depiction of previously reported multicorannulene

porphyrin-based hosts. (a) Mixture of nonfunctional atropisomers.'**
corannulene moieties cooperate to bind fullerenes.” However,
(b) Negative allosterlc induction due to excellent synergy in the first

increasing the number of corannulene umts in flexible systems recognition step.'® (c) Neither porphyrin contribution nor host
does not unequivocally enhance affinity. This suggests that preorganization.'* (d) Four-fold hosts reported herein.

multitopic receptors may not fully utlllze all available binding

sites, except in polymeric frameworks.” Additionally, porphyr-
ins have shown remarkable proficiency in fullerene recog-
nition,” paving the way for the exploratlon of emergent
properties in resulting DA adducts.” Our investigations into
porphyrin—corannulene ensembles demonstrate their syner-
gistic recognition capabilities.'"” Nonetheless, a multitopic
receptor has never been achieved (Figure la—c). We therefore
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aimed to develop a platform in which more than two
corannulene moieties are preorganized, using porphyrin
primarily as an anchoring scaffold rather than an active
recognition motif. By grafting a Ru(II)—CO fragment onto a
free-base porphyrin, we could explore the sixth coordination
position using a quasilinear N-donor bidentate ligand with the
appropriate stoichiometry. This approach might furnish a
dimer consisting of two octahedral complexes with inherent
thermodynamic and kinetic inertness.'"" Such a porphyrin
dimer would render an arrangement in which eight
corannulenes are placed in a pairwise manner at the
appropriate distance, solely dictated by the ligand. With regard
to N-donor ligands, we opted to investigate 4,4’-bipyridyl
(bpy) and 1,4-di(pyridin-4-yl)benzene (dpyb), which typically
exhibit N—N distances of 7.06 and 11.41 A, respectively. Given
their proximity to the diameter of Cy (7.07 A), the resulting
dimeric hosts are expected to strongly interact with it. This
design holds the potential to accommodate up to four sites for
fullerene recognition (Figure 1d).

The synthetic strategy (Scheme 1) starts with free-base
porphyrin 2HP-Br that readily reacts with trimer [Ruy(CO),, ]

Scheme 1. Synthetic Strategy to Prepare Porphyrin
Complexes (RuP-cor),"bpy and (RuP-cor), dpyb with Atom
Numberinglz,

a

(RuP-Br),-bpy

(RuP-Br),-dpyb (RuP-cor),-bpy

(RuP-cor),-dpyb
“Reagents and conditions: (i) Ruy(CO),,, toluene, reflux; (ii) 0.5
equiv of bidentate ligand, DCM, rt; (iii) Bpin-cor, [PdCL,(dppf)],
‘BuONa, toluene, microwave irradiation, 135°C. RuP-cor-py is also
shown.

in excess furnishing complex RuP-Br in good yield (79%). The
next step consisted of a dimerization via addition of 0.5 equiv
of the corresponding bidentate N-donor ligand. This process
furnished complexes (RuP-Br),bpy and (RuP-Br),-dpyb in
nearly quantitative yield. Finally, a multi-Suzuki C—C cross-
coupling between the parent brominated complex and an
excess of the boronate ester of corannulene was carried out. An
octa-Suzuki reaction has been previously achieved'’® and can
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be readily performed in toluene under microwave irradiation
with ‘BuONa as the base and [PdCL,(dppf)] as the catalyst.
The procedure gave rise to final complexes (RuP-cor),"bpy
and (RuP-cor),"dpyb in good yields (64% and 60%,
respectively)."> Compound RuP-corpy (see Scheme 1) was
also prepared and will be used as a monomeric reference
system.14

In general, 'H nuclear magnetic resonance (NMR) spectra
are relatively simple due to the symmetric nature of the
systems as well as the free rotation of the porphyrins along the
OC—Ru—N(bpy or dpyb) axis (Figure 2a). Signature f-
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Figure 2. (a) Partial '"H NMR spectrum (500 MHz, CDCl,) with key
signals colored red (f-pyrrole) and blue (bridging ligand). (b) UV—
vis spectrum (DCM) of compounds (RuP-cor),-bpy (solid line) and
(RuP-cor),-dpyb (dashed line). (c) Emission spectra (DCM; A, =
516 nm) of the same dimers (green lines) and those under deareated
conditions (blue lines).

pyrrole chemical shifts (H?) are the most deshielded nuclei at
8.75 and 8.83 ppm, whereas corannulene protons resonate
between 8.5 and 7.7 ppm. Aromatic protons pertaining to
bridging ligands (H*—H') experience an outstanding upfield
shift (6.32 to 1.36 ppm) that is less pronounced, as the nuclei
are located farther from Ru(II). This is a consequence of the
strong magnetic field imposed by the porphyrin z-ring current,
clearly indicating axial coordination (blue signals in Figure 2a).
Absorption UV—vis spectra show the expected set of signals
corresponding to 7—7x* transitions [strong Soret band at 415
nm and two weak Q bands at 534 and 568 nm (Figure 2b)],
typical of coordinated meso-substituted porphyrins according
to the four-orbital Gouterman model."> The reduction in the
number of Q bands (from four to two) arises from the
degeneration of the HOMO and HOMO-1 due to metal-
ation.'® Attaching corannulene groups to the scaffold in both
complexes minimally alters the absorption features, with Soret
and Q bands showing slight bathochromic shifts of 6 and 3 nm,
respectively, on average. This suggests weak electron coupling
between the porphyrin core and the nonplanar aromatic
groups, likely due to a dihedral angle of ~34°."" In terms of
emission, two distinct bands can be discerned at ~660 and
~725 nm (Figure 2c). The first band possesses fluorescent
character, whereas the second band demonstrates phosphor-
escence, evidenced by a marked enhancement in intensity
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under deaerated conditions (Figure 2c, blue), proving its
SMLCT (Metal to Ligand Charge Transfer) nature due to the
presence of a closed-shell heavy metal favoring spin—orbit
coupling,">*"*

To evaluate fullerene recognition capabilities of synthesized
dimers, a series of titrations were conducted at room
temperature in toluene-dg and monitored by NMR. Monomer
RuP-cor'py was subjected to the same protocol. Despite
significant chemical shift changes observed during titration,
most signals broadened after the initial additions, likely due to
the deceleration of porphyrin rotation, precluding precise
analysis, even at high temperatures (Figures S121 and S122).
Interestingly, control host RuP-cor-py did not suffer from
these inconveniences (Figure S119). With regard to absorption
experiments, a very small hypsochromic shift (4 nm) of the
Soret band, concomitant with a mild enhancement of the
intensity of Q bands, was observed, indicating that the ground-
state electronic properties of the porphyrin remain in the
supramolecular adduct. In other words, the porphyrin core is
not involved in the recognition event, and therefore, it takes
place within the cavities imposed by pairs of corannulenes.
Moreover, no significant charge transfer (CT) band was
detected (Figure S118). This is likely due to (1) the
dominance of dispersion forces in the supramolecular
interaction and (2) the low solvent polarity, which does not
support CT complex stabilization."”” Conversely, emission
experiments proved to be highly effective for monitoring
supramolecular adduct formation. The fluorescence band of all
corannulene-based hosts was efficiently quenched upon
fullerene addition at a constant host concentration (Figure
3a)."* This suggests the involvement of corannulene-localized
molecular orbitals in the 'MLCT state.”’ This strategy has
previously been successful in other molecular tweezers based
on a corannulene motif.”' Given the complexity of fullerene
binding, we applied nonlinear regression analysis to fit the
fluorescence intensity decay across a series of models ranging
from 1:1 to 1:4 stoichiometries following Thordarson and
Miyake’s analysis.'*** It was conducted under the assumption
of static quenching and a non-emissive guest (Figure 3a,
inset).”” The host concentration was kept constant and low
(1075 M) so that the absorption of the species at the excitation
wavelength (516 nm, Q-band) lies below 0.05.>*" Control host
RuP-corpy was analyzed using the same protocol, revealing a
dominant 1:1 stoichiometry with an association constant of
373 M. This value aligns closely with the result from NMR
(362 M™")'* and a previously reported Zn-based porphyrin
host (Figure 1c, 273 M™)."% This consistency validates the
method used, confirms that emission decay is due to adduct
formation (static quenching), and verifies that host RuP-cor-
py binds in a tweezer-like arrangement.

With regard to dimers (RuP-cor),bpy and (RuP-cor),:
dpyb, the optimal fit was a noncooperative 1:4 binding model,
showing low residuals and a high covfit factor (<10.5).”>**"
Macroscopic association constants are listed in Table 1.
Despite allosteric effects observed in double-decker systems,”*
the noncooperative model dominates, as initial binding does
not change the host structure to facilitate subsequent binding.
Thus, the first values (K;, in M™') are comparable to
benchmarks such as rigid Sygula’s Buckycatchers I and II
(2.8 X 10° and 85 x 10% respectively)’>* and Chen’s
helicene (2.8 X 10°),”" despite the energy penalty arising from
free rotation of porphyrin cores.
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Figure 3. (a) Normalized emission spectra (toluene; A, = 517 nm) of
complex (RuP-cor),"bpy upon addition of Cg, at room temperature.
The inset shows the fluorescence quenching binding isotherm at 657
nm. Blue dots are experimental data, and the red line is a nonlinear
regression fit using a 1:4 noncooperative model. (b) NCI isosurfaces
showing vdW interactions in the (Cg),@(RuP-cor),'bpy assembly.
(c) Depiction of adduct Cg@(RuP-cor),-bpy with two arrange-
ments: sandwich-like (s) and tweezer-like (t). Corannulene units
involved in recognition are colored green.

However, they perform worse than Buckycatcher III (5 X
10* in chlorobenzene, yet in a 2:1 adduct).”® Moreover, the
association constants of both dimers are higher than those of
previous atropisomeric porphyrins (Figure la, 5.4 X 10° on
average)'* and are comparable to those of the octapodal
porphgrin with negative allosteric binding (Figure 1b, 2.7 X
10*).""" Importantly, these dimers do not benefit from the
porphyrin core assistance in binding. Overall, both hosts
outperform the control porphyrin by 2 orders of magnitude
(Table 1), with host (RuP-cor),dpyb showing a slight
advantage [log Srup-cor)ybpy = 14-9 Vs 108 B(rup-cor)ydpyb =
15.5]. Therefore, the ligand length within this range has
minimal impact.

To elucidate the most likely structures of the supramolecular
complexes in solution, the geometries of inclusion complexes
(RuP-cor),'bpy and (RuP-cor),-dpyb were optimized at the
GFN2-xTB*** level. Noncovalent interaction (NCI) analy-
sis”®” indicated extended regions of weak 7---7 interactions
between corannulenes and Cg, (Figure 3b and Figure S124).
Morokuma-like energy decomposition analysis (EDA)>
showed that dispersion interactions (AEg,) constitute ~58%
of the total interaction energy, followed by electrostatic
attraction (AEq, < 28%) and orbital interactions [AE,; <
15% (Table S8)]. The interaction energy (AE,,), calculated at
the BLYP(D3BJ)/TZP//GEN2xTB level,'* for assembly
(Cgo)s@(RuP-cor),"bpy is —176.9 kcal/mol (Table S8),
nearly 4 times higher than that for adduct Cg4@(RuP-cor),’
bpy (see below). Fullerene center distances range from 14.7 to
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Table 1. Stepwise Association Constants (M™') for Hosts with Cq,

host K,
(3.73 + 0.06) x 10?
(2.12 + 0.12) x 10*

(3.08 + 0.29) x 10*

RuP-cor'py
(RuP-cor),bpy”
(RuP-cor),-dpyb”

“Uncertainties estimated with Monte Carlo simulations.”**

K

(7.96 + 0.45) x 10°
(1.16 + 0.11) x 10*

K, K,

(3.54 + 0.20) x 10° (1.33 + 0.08) x 10°
(5.14 + 0.48) x 10° (193 + 0.18) x 10°

15.6 A (Figure S125), exceeding the sum of a C4, diameter and
twice the van der Waals (vdW) radius of carbon. Thus, the
addition of each new fullerene to the complex is energetically
equivalent. These findings align with experimental association
constants, confirming noncooperative binding and a lack of
interactions between fullerenes.

The binding mechanism is convoluted and is not directly
accessible experimentally. However, the first recognition event
can be ventured knowing that fullerene binding by control host
RuP-cor'py involves a pincer-like interaction between two
adjacent corannulene groups as discussed above. For porphyrin
dimers, two possible binding modes might exist: a tweezer-like
(1-1t) or a sandwich-like (1-1s) arrangement (Figure 3c).
Complexity significantly increases with 1:2 and 1:3 stoichio-
metries (Scheme S2). Optimized structures of sandwich-like
(1-1s) and tweezer-like (1-1t) assemblies were obtained using
the same computational protocol (Figure S124), furnishing
AE;,, values of —44.4 and —43.1 kcal/mol, respectively. The
deformation energies (AEgy), i.e., the energy penalty for host
reorganization to bind the guest, were 1.9 and 6.7 kcal/mo],
respectively. The higher AE for 1-1t suggests that the
formation of 1-1s is energetically more favorable (Table S8).
This is supported by experimental data as K; for porphyrin
dimers is 2 orders of magnitude higher than K for the control
host (Table 1), suggesting that the binding mechanism likely
involves sequential sandwich-like assemblies (Scheme S3).

In summary, a suitable synthetic protocol for obtaining
porphyrin dimers based on Ru—N coordination bearing eight
corannulene units has been developed. They show excellent
capabilities for Cg4, recognition, accommodating up to four
guests within their structure in solution. The overall topology
resembles a triple layer of DA adducts, paving the way for
exploring higher fullerenes, potential photoinduced electron
transfer processes, and possible hierarchical self-assembly into
highly ordered materials.
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