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Abstract—Fuzzy modeling is one of the best known techniques
to model systems and processes. In most cases, as in data-driven
fuzzy modeling, these fuzzy models reach a high accuracy, but
show poor performance in complexity or interpretability, which
are key aspects of Fuzzy Logic.

There are several approaches in the literature to deal with the
complexity and interpretability challenges for fuzzy rule based
systems (FRBSs). In this paper, a post-processing approach is
proposed via a genetic rule selection based on the relevance of
each rule (using Orthogonal Transformations (OTs), in this case
P-QR) and the well-known accuracy-interpretability trade-off.
The main objective is to check the true significance, drawbacks
and advantages of the rule selection based on OTs to manage the
accuracy-interpretability trade-off.

In order to achieve this aim, a neuro-fuzzy system (FasArt-
Fuzzy Adaptive System ART based) and several case studies from
the KEEL Project Repository are used to tune and check this
selection of rules based on rule relevance by OTs, genetic selection
and accuracy-interpretability trade-off. This neuro-fuzzy system
generates Mamdani FRBSs, in an approximate way. SPEA2 is
the multi-objective evolutionary algorithm (MOEA) tool used to
tune the proposed rule selection, and different interpretability
measures have been considered.

Keywords—FRBS, Orthogonal Transformations, Interpretabi-
lity, Genetic Algorithm.

I. INTRODUCTION

Fuzzy systems are one usual way to apply of the Fuzzy
Set Theory, frequently using a model structure in the form of
FRBSs. FRBSs constitute an extension to classical rule-based
systems, whose antecedents and consequents are composed
of fuzzy logic statements instead of classical ones. They
have demonstrated their ability in very different scientific and
technical areas.

In general, most of the FRBSs in real world applications
have been used due to their advantages: easy use and perfor-
mance. This performance has usually been evaluated on the
accuracy of the models: minimizing the error between the
known and the estimated output by the fuzzy models. But
other aspects have not usually been taken into consideration:
complexity, interpretability, etc, despite being some of the
principles of fuzzy logic.

Complexity is a usual measure for FRBSs related with their
interpretability. Thus, if a reduction of this complexity was
reached, it could permit a better performance on interpretabi-
lity. The question lies in how this complexity reduction can be
carried out. Different approaches to this question can be found
in [1], [2], [3], [4], and one review has been made in [5].

On the other hand, this work is devoted to complexity
reduction based on the selection of rules by OTs and accuracy-
interpretability trade-off using a genetic algorithm. OTs [6]
have been an alternative approach for complexity reduction
and interpretability improvement of fuzzy models [3], [7], [8],
[9]. This approach applies OTs on the firing strength matrix
of the fuzzy model rules as a regression problem in order to
estimate the relevance of the rules, then a rule selection is
carried out.

In this context, this work checks the possibilities and
drawbacks of the OTs as a postprocessing approach to re-
duce complexity and get more interpretable scatter FRBSs.
Thus, a scatter FRBS is involved with rule selection by
a genetic approach subject to the rule relevance and the
accuracy-interpretability trade-off, taking into account different
interpretability measures.

The paper is organized as follows: first, in Section II, a
brief description about interpretability and the main concepts
of OTs are given. The proposal of genetic rule selection based
on OTs and accuracy-interpretability trade-off is introduced in
Section III. The methodology used in this work is described in
Section IV, while the experimental studies are carried out and
the main results obtained are discussed in Section V. Finally,
in Section VI, the most interesting conclusions obtained are
set out.

II. INTERPRETABILITY AND ORTHOGONAL
TRANSFORMATIONS

A. Interpretability: Taxonomy

The interpretability of FRBSs is the capacity to express the
behavior of the real system in an understandable way. This is
a subjective property that is related to several factors, mainly
the model structure, the number of input variables, the number
of fuzzy rules, the number of linguistic terms, the shape of the
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TABLE I. A TAXONOMY TO ANALYZE INTERPRETABILITY [5]

Rule Base level Fuzzy partition level
Q1 Q2

Complexity-based number of rules number or membership functions
interpretability number of conditions number of features

Q3 Q4
consistency of rules completeness or coverage

Semantic-based rules fired at the same time normalization
interpretability transparency of rule structure distinguishability

cointension complementarity
relative measures

fuzzy sets, etc. There is still no standard measure to assess
how good interpretability is [2], [4], [5], [10].

In this work the taxonomy considered is [5]. This is based
on a double axis: ”complexity versus semantic interpretabilyty”
considering the two main kinds of measures; and ”rule base
versus fuzzy partitions” considering the different components
of the knowledge base (KB) to which both kinds of measures
can be applied. There are four different quadrants to be
analyzed:

• Q1: The complexity at the rule based (RB) level.

• Q2: The complexity at the fuzzy partition level.

• Q3: The semantics at the RB level.

• Q4: The semantics at the fuzzy partition level.

Each Qi contains several interpretability measures. Some
of these measures are shown in Table I.

B. Complexity Reduction and Orthogonal Transformations

The reduction of the complexity system can imply a better
interpretability of the fuzzy system [8], [9]. OTs are used
for rule selection/reduction and for reducing complexitity in
FRBSs. In this context, an FRBS can be written as a linear
regression problem [9] (Eq. 1)

y = P ∗ θ + e (1)

where: y = [y1, y2..., yN ]T are the measured outputs,
θ = [c1, c2, ..., cM ]T are the consequents of the M rules
and e = [e1, e2, ..., eN ]T are the vectors of approximation
errors. The matrix P = [p1, p2, ..., pM ] ∈ RN×M contains
the firing strength of all the M rules for the N inputs xk,
where pi = [pi1, pi2, ..., piN ]T .

In this work, the P-QR Decomposition has been consid-
ered: this approach produces a rule ordering without a rank
estimation. Here, P-QR is directly applied to P, obtaining a
permutation matrix [6]:

The QR decomposition of P is given by P ∗ Π = Q ∗ R,
where Π ∈ <M∗M is a permutation matrix, Q ∈ <N∗M has
orthogonal columns and R ∈ <M∗M is upper triangular (Eq.
2), such that

R =

[
R11 R12

0 Rkk

]
(2)

The diagonal values of R are called R-values (|Rkk|) [3],
which track the singular values σ(P ), so the most active and

least redundant rules are those whose R-values are higher [9]
in the original fuzzy rule space.

In order to address the rule selection in this work, concepts
about interpretability, accuracy and their trade-off are used
together with the orthogonal transformations.

III. GENETIC RULE SELECTION BASED ON ORTHOGONAL
TRANSFORMATIONS AND ACCURACY-INTERPRETABILITY

TRADE-OFF

The main objective of this work is the selection of rules
by OTs and accuracy-interpretability trade-off from a multi-
objective evolutionary algorithm (MOEA). One well-known
OT has been involved in this work: P-QR. The FRBSs are
generated by a neuro-fuzzy system, FasArt [11], [12], which
is a scatter fuzzy system. Now, in order to generate a better
rule selection, this is carried out following the guidance of
different points of view concerned with:

• Relevance or influence of each fuzzy rule estimated
by the OTs.

• Accuracy-Interpretability trade-off in FRBSs defined
by measures on both concepts.

Based on previous concepts, a genetic approach for the
rule selection is done. This provides an interesting scenario
of results concerning the rule ordering and selection based on
these OTs. The study of this scenario will give us a better
knowledge of the scope of this selection proposal.

In the following subsections, the accuracy-interpretability
measures considered are briefly described. Then, some com-
ments and references on the genetic and neuro-fuzzy approach
used in this work are introduced.

A. Accuracy and Interpretability Measures

The accuracy (Acc) is the capability to faithfully represent
the real system. Here, the accuracy of the model is measured
through its Mean Squared Error (MSE) (Eq. 3):

MSE =
1

N

N∑
i=1

(yi − y′i)2 (3)

The interpretability (Inter) is the capacity to express the
behavior of the real system in an understandable way. Here, we
use some of the proposed interpretability measures in [5] (see
table I). In this work, the most used measure of each quadrant
have been selected:

• Q1, Number of Rules (RN) has been selected as the
interpretability measure (Eq. 4):

Inter = RN (4)

• Q2, Number of Membership Functions (MFs) (Eq. 5).

Inter = Number of MF (5)

• Q3, Consistency of Rules (Eq. 6 and Eq. 7).

Cons(R(i), R(k)) = exp−
(

(
SRP (i,k)
SRC(i,k)

−1.0)2

( 1
SRP (i,k)

)2

)
(6)



where SRP is the similarity of the rule premises and
SRC is the similarity of the rule consequents.

Incons(i) =
∑

1≤k≤N
k 6=i

[1.0− Cons(R1(i), R1(k))]

+
∑

1≤l≤L
i=1,2,..,N

[1.0− Cons(R1(i), R2(l))]

(7)
where R1 and R2 denote the rule base (RB) gener-
ated from the data and the RB extracted from prior
knowledge and N and L are the rule numbers of R1

and R2. Then,

Inter = Incons (8)

• Q4, Distinguishability has been selected as an
interpretability measure. The most common measure
to quantify distinguishability is similarity S [13] (Eq.
9).

S(A,B) = |A∩B|
|A∪B| = |A∩B|

|A|+|B|−|A∩B| (9)

Then,

Inter = Similarity = S(A,B) (10)

B. Genetic Algorithms

The well-known MOEA SPEA2 [14] is taken into account
to select a subset of cooperative rules from a set of candidate
fuzzy rules, but other MOEAs can also be used [15]. Two
fitness functions from MSE (Eq. 3) and Inter (Eqs. 4, 5, 7
and 9) are used for a better accuracy-interpretability trade-off.

A third fitness function is considered to penalize rules with
lower relevance obtained by OTs. According to previous works
[8], [9], these rules introduce a high level of similarity, low
level of activity and high redundancy, so they must be avoided.
Thus, this is implemented as follows (Eq. 11):

RelevanceOT = RelevanceR-value =

n
√∏n

i=1 (1−R− valuenormi)
(11)

where n = number of rules and:

R-valuenormi =
R-valueRulei∑n

j=1
R-valueRulej

(12)

C. Neuro-Fuzzy System FasArt

On the other hand, neuro-fuzzy systems are a very popular
approach to generate FRBSs. In this work, the neuro-fuzzy
system FasArt [11], [12], which is a neuro-fuzzy system based
on the Adaptive Resonance Theory (ART) has been used. If the
taxonomy for FBRSs described in [16] is taken into account,
FasArt is a scatter model. Another classification can be done if
[17] is considered: FasArt is a Mamdani-type FRBS for precise
modeling.

TABLE II. FASART PARAMETERS FOR MODELING

FasArt Parameters
Numbers of variables < 9 ρA = ρB = 0.7

γA = γB = 8
Numbers of variables > 9 ρA = ρB = 0.7

γA = γB = 6

IV. EXPERIMENTAL METHODOLOGY

In this paper, the proposed methodology checks the ca-
pabilities of the OTs for rule selection based on accuracy-
interpretability trade-off and genetic tuning. This goal is
carried out by a general post-processing fuzzy rule selec-
tion through a three-objective genetic approach: accuracy,
interpretability and the most influential rules. In this scenario,
it will be possible to check the trade-off of the FRBSs tuned
by the rule selection, the rule influence level preserved in the
simplified models, the level of complexity reduction achieved,
the distribution of the rule influence amongst the selected rules
for each FRBS, etc.

The FRBSs were generated by FasArt in five fold cross
validation for each regression problem considered (see data
sets in Section V). The FasArt parameters considered have
been divided into two groups, depending on the numbers of
antecedents and consequents of each case. Thus, the FasArt
parameters considered are shown in Table II, where ρA=ρB is
the vigilance parameter used by FasArt and γA = γB is the
fuzzification rate in FasArt.

A general methodology description is summarized in Algo-
rithm 1. This methodology is set out in the following sections,
describing in detail the MOEA applied in the post-processing
stage for this rule selection.

Algorithm 1 Methodology for Genetic Rule Selection based
on Accuracy-Interpretability Trade-Off and Orthogonal Trans-
formations

for Neuro-Fuzzy Algorithm=FasArt do
2: for OT=P −QR do

for DataSet = 1 to 9 do
4: for CrossV alidation = 1 to 5 do

Generation of Rule Importance Ordering by OT
6: Training Neuro-Fuzzy System (see Table II)

for Run = 1 to 6 do
8: Generate Initial Population and Create the Empty External

Population
Run Genetic Algorithm SPEA2 (see Table III)

10: end for
end for

12: Analysis Pareto Front (DataSet) (see Section IV-B)
end for

14: end for
end for

16: Non-Parametric Statistical Test

A. Multi-Objective Evolutionary Algorithm for Rule Selection

The fuzzy rule selection to achieve lower complexity and
better performance on interpretability with enough accuracy
based on the influential rules is carried out by a MOEA.
In order to achieve the aims commented previously, a three-
objective (Inter, Acc, RelevanceOT ) genetic approach is
used based on the SPEA2 algorithm [14]: The SPEA2 algo-
rithm (Strength Pareto Evolutionary Algorithm 2 for multiob-
jetive optimization) is one of the most used techniques for
solving problems with multi-objective nature.



TABLE III. SPEA2 PARAMETERS

Genetic operator
Selection Binary Tournament
Crossover HUX Pc=0.6
Mutation Classical Pm=0.2

Other options
Population size 200
External Population size 61
Evaluations 100000

In the next sections, the fitness functions are formulated
and the genetic parameters and operators are described.

1) Objectives: The fitness functions are shown in Eq. (13).
Performance desired for the FRBS is:

max(Accuracy) = min(MSEtra)
max(Interpretability) = min(Inter)
max(RelevanceOT) = min(lowerR− values)

(13)

2) Coding Scheme and Populations: In order to run
SPEA2, the following characterization is done:

• Individuals are coded by binary-coding: C = C1, C2,
.. , Cm, with m being the number of initial rules and
Ci = (c1, .., cm) | ci ∈ 0, 1.

• The initial population is obtained so that all genes take
value ’1’ in all their individuals to favour a progressive
extraction of the worst rules.

3) Genetic Operators: Crossover and mutation:

• HUX [18] is used to crossover with probability Pc.

• Classical mutation with probability Pm. This operator
changes a gene value at random, sets a gene to zero
with probability Pm and sets to one with probability
1− Pm [19].

The stopping criterion is the number of evaluations.

Table III shows the parameters used to run SPEA2.

B. Pareto Front Analysis

The Pareto fronts are generated for each trial and three
representative points are analyzed according to the objectives:

1) According to the objetives accuracy and informa-
tion from OTs (Plane12): the most information from
OT (Best RelevanceOT ), the most accurate model
(Best Acc) and the median model (Median Acc −
RelevanceOT ).

2) According to the objetives accuracy and interpretabi-
lity (Plane13) [20], [21]: the most interpretable model
(Best Inter), the most accurate model (Best Acc) and
the median model (Median Acc− Inter).

3) According to the objetives information from OTs
and interpretability (Plane23): the most interpretable
model (Best Inter), The most information from OT
(Best RelevanceOT ) and the median model (Median
RelevanceOT − Inter).

TABLE IV. PERFORMANCE OF FASART MODELS (ACCORDING TO
SECTION III-A)

Fasart
Model MSE Inter RN a

tra tst RN MF I S
PLA 3.792 3.820 46.8 86.6 0.006 0.156 46.8
QUA 0.049 0.052 107.4 315.2 0.005 0.194 107.4
ELE 109178 153749 81.8 320.2 0.000 0.178 81.8
ABA 8.134 8.585 45.6 357.8 0.006 0.315 45.6
STP 2.068 2.190 36.2 318.8 0.000 0.243 36.2
WIZ 7.020 9.970 83.4 743.6 0.000 0.360 83.4
WAN 8.960 11.647 93.6 835.4 0.000 0.323 93.6
MOR 0.448 0.503 22.6 332.0 0.001 0.230 22.6
TRE 0.823 0.858 25.0 368.0 0.000 0.236 25.0

aRN is duplicated because Inter=RN in Q1

V. EXPERIMENTAL STUDY: RESULTS AND ANALYSIS

In order to check the performance of the proposal intro-
duced in this work, nine real-world data sets from the KEEL
Project [22] 1 have been used:

1) Plastic Strength (PLA): 3 variables, 1650 records.
2) Quake (QUA): 4 variables, 2178 records.
3) Electrical Maintenance (ELE): 5 variables, 1056

records.
4) Abalone (ABA): 9 variables, 4177 records.
5) Stock prices (STP): 10 variables, 950 records.
6) Weather Ankara (WAN): 10 variables, 1609 records.
7) Weather Izmir (WIZ): 10 variables, 1461 records.
8) Mortgage (MOR): 16 variables, 1049 records.
9) Treasury (TRE): 16 variables, 1049 records.

TABLE VI. WILCOXON TEST FOR FASART MODEL IN Q1-PLANE12:
ORIGINAL MODEL (R+) AND IMPROVED MODEL (R-)

Best RelOT

Measure R+ R- Hypothesis (alpha=0.10) p-value
MSEtst 17.0 28.0 Accepted 0.515
NR 45.0 0.0 Rejected 0.008
Inter 45.0 0.0 Rejected 0.008

Median Acc− RelOT

Measure R+ R- Hypothesis (alpha=0.10) p-value
MSEtst 37.0 8.0 Rejected 0.086
NR 45.0 0.0 Rejected 0.008
Inter 45.0 0.0 Rejected 0.008

Best Acc
Measure R+ R- Hypothesis (alpha=0.10) p-value
MSEtst 42.0 3.0 Rejected 0.021
NR 45.0 0.0 Rejected 0.008
Inter 45.0 0.0 Rejected 0.008

First of all, the FRBSs are generated by Fasart. Next, the
multi-objective rule selection is carried out, generating a Pareto
Front for each dataset and trial, as shown in Algorithm 1: for
each experiment, a fivefold cross validation model is adopted

1http://sci2s.ugr.es/keel/datasets.php



TABLE V. FASART: PERFORMANCE OF THE IMPROVED FRBSS: P-QR. Inter = RN

Plane12 Best RelOT Median Acc-RelOT Best Acc
Plane13 Best Inter Median Acc-Inter Best Acc
Plane23 Best Inter Median RelOT -Inter Best RelOT

DS Inter MSEtraMSEtst RN RelOTRelRule Inter MSEtraMSEtstRN RelOTRelRule Inter MSEtraMSEtst RN RelOTRelRule

PLA ini 46.800 3.792 3.820 46.8 0.978 2.137 46.800 3.792 3.820 46.8 0.978 2.137 46.800 3.792 3.820 46.8 0.978 2.137
Plane12 9.900 3.603 3.605 9.9 0.953 4.581 15.533 2.507 2.523 15.5 0.963 3.633 2.300 2.300 2.369 22.3 0.971 2.918Plane13 9.133 3.450 3.493 9.1 0.956 4.380 14.700 2.510 2.518 14.7 0.964 3.556
Plane23 9.333 3.602 3.702 9.3 0.954 4.514 9.900 3.603 3.605 9.9 0.953 4.581

QUA ini 107.400 0.049 0.052 107.4 0.991 0.931 107.400 0.049 0.052 107.4 0.991 0.931 107.400 0.049 0.052 107.4 0.991 0.931
Plane12 46.667 0.037 0.039 46.7 0.986 1.369 57.000 0.035 0.038 57.0 0.988 1.234 67.433 0.034 0.038 67.4 0.989 1.091Plane13 44.567 0.037 0.039 44.6 0.987 1.324 55.367 0.035 0.038 55.4 0.988 1.196
Plane23 45.300 0.037 0.039 45.3 0.986 1.351 46.667 0.037 0.039 46.7 0.986 1.369

ELE ini 81.800 109178 153749 81.8 0.988 1.222 81.800 109178 153749 81.8 0.988 1.222 81.800 109178 153749 81.8 0.988 1.222
Plane12 70.867 122246 178727 70.9 0.987 1.302 75.067 112272 162213 75.1 0.987 1.271 78.800 108217 154058 78.8 0.988 1.234Plane13 69.933 127291 180517 69.9 0.987 1.288 73.933 111551 161552 73.9 0.987 1.263
Plane23 70.200 125304 181415 70.2 0.987 1.297 70.867 122246 178727 70.9 0.987 1.302

ABA ini 45.600 8.134 8.585 45.6 0.978 2.193 45.600 8.134 8.585 45.6 0.978 2.193 45.600 8.134 8.585 45.6 0.978 2.193
Plane12 24.567 7.235 7.481 24.6 0.969 3.088 29.267 6.267 6.703 29.3 0.972 2.785 34.733 5.994 6.464 34.7 0.975 2.424Plane13 22.967 7.244 7.516 23.0 0.971 2.911 28.833 6.142 6.534 28.8 0.974 2.621
Plane23 23.400 7.496 7.700 23.4 0.969 3.025 24.567 7.235 7.481 24.6 0.969 3.088

STP ini 36.200 2.068 2.190 36.2 0.972 2.762 36.200 2.068 2.190 36.2 0.972 2.762 36.200 2.068 2.190 36.2 0.972 2.762
Plane12 21.567 2.580 2.747 21.6 0.965 3.446 25.800 2.105 2.311 25.8 0.968 3.163 29.333 2.052 2.226 29.3 0.971 2.919Plane13 20.600 2.711 2.816 20.6 0.966 3.378 25.200 2.085 2.269 25.2 0.969 3.081
Plane23 20.800 2.631 2.761 20.8 0.966 3.410 21.567 2.580 2.747 21.6 0.965 3.446

WIZ ini 83.400 7.020 9.970 83.4 0.988 1.199 83.400 7.020 9.970 83.4 0.988 1.199 83.400 7.020 9.970 83.4 0.988 1.199
Plane12 50.400 6.335 9.515 50.4 0.986 1.400 53.300 5.779 8.946 53.3 0.986 1.357 55.767 5.600 8.604 55.8 0.987 1.311Plane13 49.467 6.480 9.535 49.5 0.986 1.375 52.733 5.701 8.697 52.7 0.986 1.342
Plane23 49.833 6.579 9.747 49.8 0.986 1.389 50.400 6.335 9.515 50.4 0.986 1.400

WANini 93.600 8.960 11.647 93.6 0.989 1.068 93.600 8.960 11.647 93.6 0.989 1.068 93.600 8.960 11.647 93.6 0.989 1.068
Plane12 47.300 7.802 10.735 47.3 0.986 1.346 52.467 6.940 10.484 52.5 0.988 1.237 62.367 6.762 10.273 62.4 0.989 1.140Plane13 45.667 7.789 11.217 45.7 0.987 1.293 53.967 6.860 10.404 54.0 0.988 1.215
Plane23 46.167 7.960 11.022 46.2 0.987 1.322 47.300 7.802 10.735 47.3 0.986 1.346

MORini 22.600 0.448 0.503 22.6 0.955 4.425 22.600 0.448 0.503 22.6 0.955 4.425 22.600 0.448 0.503 22.6 0.955 4.425
Plane12 13.067 0.608 0.657 13.1 0.944 5.536 15.833 0.461 0.512 15.8 0.948 5.136 18.600 0.377 0.405 18.6 0.952 4.714Plane13 12.033 0.806 0.864 12.0 0.946 5.297 15.433 0.436 0.456 15.4 0.950 4.950
Plane23 12.233 0.779 0.832 12.2 0.945 5.415 13.067 0.608 0.657 13.1 0.944 5.536

TRE ini 25.000 0.823 0.858 25.0 0.960 4.000 25.000 0.823 0.858 25.0 0.960 4.000 25.000 0.823 0.858 25.0 0.960 4.000
Plane12 14.167 1.008 1.082 14.2 0.948 5.167 16.600 0.760 0.825 16.6 0.953 4.709 19.200 0.729 0.777 19.2 0.957 4.231Plane13 12.833 1.111 1.186 12.8 0.950 5.034 16.100 0.763 0.829 16.1 0.953 4.687
Plane23 13.333 1.086 1.172 13.3 0.949 5.111 14.167 1.008 1.082 14.2 0.948 5.167

TABLE VII. WILCOXON TEST FOR FASART MODEL IN Q1-PLANE13:
ORIGINAL MODEL (R+) AND IMPROVED MODEL (R-)

Best Inter
Measure R+ R- Hypothesis (alpha=0.10) p-value
MSEtst 16.0 29.0 Accepted 0.441
NR 45.0 0.0 Rejected 0.008
Inter 45.0 0.0 Rejected 0.008

Median Acc− Inter
Measure R+ R- Hypothesis (alpha=0.10) p-value
MSEtst 40.0 5.0 Rejected 0.038
NR 45.0 0.0 Rejected 0.008
Inter 45.0 0.0 Rejected 0.008

Best Acc
Measure R+ R- Hypothesis (alpha=0.10) p-value
MSEtst 42.0 3.0 Rejected 0.021
NR 45.0 0.0 Rejected 0.008
Inter 45.0 0.0 Rejected 0.008

(each fold contained 20% of the records). For each of these
five partitions (train/test), both stages of the algorithm were
run 6 times. Therefore, we consider the average results of 30
runs on the three representative models from the Pareto front.
Finally, non-parametric statistical tests are run to know the
general significance of the results: non-parametric Wilcoxon’s
signed-rank tests [23].

A. FasArt Fuzzy Models

The fuzzy models were generated by FasArt in fivefold
cross validation for each regression problem considered. The
FasArt parameters used for all the cases are shown in Table II.

TABLE VIII. WILCOXON TEST FOR FASART MODEL IN Q1-PLANE23:
ORIGINAL MODEL (R+) AND IMPROVED MODEL (R-)

Best Inter
Measure R+ R- Hypothesis (alpha=0.10) p-value
MSEtst 16.0 29.0 Accepted 0.441
NR 45.0 0.0 Rejected 0.008
Inter 45.0 0.0 Rejected 0.008

Median RelOT − Inter
Measure R+ R- Hypothesis (alpha=0.10) p-value
MSEtst 16.0 29.0 Accepted 0.441
NR 45.0 0.0 Rejected 0.008
Inter 45.0 0.0 Rejected 0.008

Best RelOT

Measure R+ R- Hypothesis (alpha=0.10) p-value
MSEtst 17.0 28.0 Accepted 0.515
NR 45.0 0.0 Rejected 0.008
Inter 45.0 0.0 Rejected 0.008

In Table IV, the performance of these fuzzy models is shown:
it is possible to see that the accuracy of the models is high.

B. Genetic Rule Selection: Results

This section shows the main results obtained by the SPEA2
genetic algorithm and the fitness-functions. Taking into ac-
count that SPEA2 has been run with four interpretability
measures, one for each quadrant, the study has been made
for each quadrant (Q1 with Inter=RN , Q2 with Inter=MF ,
Q3 with Inter=I and Q4 with Inter=S). Moreover, taking
into account that SPEA2 has been run with three objetives, in
each quadrant the study has been carried out for three planes:



TABLE IX. FASART: PERFORMANCE OF THE IMPROVED FRBSS: P-QR. Inter = NumofMF

Plane12 Best RelOT Median Acc-RelOT Best Acc
Plane13 Best Inter Median Acc-Inter Best Acc
Plane23 Best Inter Median RelOT -Inter Best RelOT

DS Inter MSEtraMSEtst RN RelOTRelRule Inter MSEtraMSEtstRN RelOTRelRule Inter MSEtraMSEtst RN RelOTRelRule

PLA ini 86.600 3.792 3.820 46.8 0.978 2.137 86.600 3.792 3.820 46.8 0.978 2.137 86.600 3.792 3.820 46.8 0.978 2.137
Plane12 13.667 3.549 3.556 10.3 0.955 4.487 24.467 2.465 2.510 15.7 0.964 3.606 38.067 2.299 2.349 22.5 0.971 2.916Plane13 12.667 3.327 3.393 9.8 0.957 4.285 24.133 2.453 2.509 15.6 0.965 3.447
Plane23 13.000 3.562 3.588 10.0 0.955 4.446 13.667 3.549 3.556 10.3 0.955 4.487

QUA ini 315.200 0.049 0.052 107.4 0.991 0.931 315.200 0.049 0.052 107.4 0.991 0.931 315.200 0.049 0.052 107.4 0.991 0.931
Plane12 130.100 0.037 0.039 45.7 0.986 1.383 160.700 0.035 0.038 55.9 0.987 1.251 191.800 0.034 0.038 66.3 0.989 1.100Plane13 124.800 0.036 0.039 43.9 0.987 1.344 156.400 0.035 0.038 54.5 0.988 1.201
Plane23 126.200 0.037 0.039 44.4 0.986 1.369 130.100 0.037 0.039 45.7 0.986 1.383

ELE ini 320.200 109178 153749 81.8 0.988 1.222 320.200 109178 153749 81.8 0.988 1.222 320.200 109178 153749 81.8 0.988 1.222
Plane12 277.267 121294 177692 71.1 0.987 1.301 292.467 112447 162067 74.9 0.987 1.272 309.000 108199 153760 79.0 0.988 1.233Plane13 273.000 122256 175706 70.0 0.987 1.292 290.333 111263 160243 74.3 0.987 1.259
Plane23 274.200 121624 176723 70.3 0.987 1.298 277.267 121294 177692 71.1 0.987 1.301

ABA ini 357.800 8.134 8.585 45.6 0.978 2.193 357.800 8.134 8.585 45.6 0.978 2.193 357.800 8.134 8.585 45.6 0.978 2.193
Plane12 193.267 7.261 7.552 25.0 0.969 3.080 238.067 6.207 6.657 30.6 0.972 2.735 273.000 5.990 6.487 35.0 0.976 2.417Plane13 181.000 7.258 7.581 23.5 0.970 2.917 227.933 6.133 6.532 29.4 0.974 2.614
Plane23 184.733 7.393 7.732 24.0 0.969 3.033 193.267 7.261 7.552 25.0 0.969 3.080

STP ini 318.800 2.068 2.190 36.2 0.972 2.762 318.800 2.068 2.190 36.2 0.972 2.762 318.800 2.068 2.190 36.2 0.972 2.762
Plane12 183.800 2.580 2.791 21.2 0.965 3.452 225.800 2.106 2.311 25.9 0.968 3.165 258.200 2.052 2.226 29.5 0.971 2.911Plane13 179.000 2.480 2.704 20.7 0.966 3.409 219.200 2.085 2.260 25.1 0.969 3.078
Plane23 179.300 2.617 2.838 20.7 0.965 3.437 183.800 2.580 2.791 21.2 0.965 3.452

WIZ ini 743.600 7.020 9.970 83.4 0.988 1.199 743.600 7.020 9.970 83.4 0.988 1.199 743.600 7.020 9.970 83.4 0.988 1.199
Plane12 447.500 6.270 9.478 50.5 0.986 1.397 471.200 5.782 8.913 53.1 0.986 1.357 495.800 5.640 8.691 55.9 0.987 1.315Plane13 441.800 6.127 9.292 49.9 0.986 1.372 470.600 5.699 8.677 53.1 0.986 1.342
Plane23 443.300 6.313 9.569 50.0 0.986 1.388 447.500 6.270 9.478 50.5 0.986 1.397

WANini 835.400 8.960 11.647 93.6 0.989 1.068 835.400 8.960 11.647 93.6 0.989 1.068 835.400 8.960 11.647 93.6 0.989 1.068
Plane12 434.300 7.764 10.799 49.0 0.987 1.329 483.200 6.905 10.437 54.5 0.988 1.216 562.400 6.772 10.318 63.3 0.989 1.133Plane13 421.400 7.525 11.197 47.6 0.987 1.289 493.400 6.854 10.464 55.6 0.988 1.201
Plane23 424.400 7.765 10.959 47.9 0.987 1.307 434.300 7.764 10.799 49.0 0.987 1.329

MORini 332.000 0.448 0.503 22.6 0.955 4.425 332.000 0.448 0.503 22.6 0.955 4.425 332.000 0.448 0.503 22.6 0.955 4.425
Plane12 187.000 0.615 0.659 12.9 0.944 5.533 233.000 0.451 0.484 16.0 0.948 5.121 272.000 0.377 0.405 18.6 0.952 4.714Plane13 175.000 0.789 0.812 12.1 0.945 5.375 227.000 0.429 0.449 15.6 0.950 4.943
Plane23 179.500 0.690 0.732 12.4 0.944 5.461 187.000 0.615 0.659 12.9 0.944 5.533

TRE ini 368.000 0.823 0.858 25.0 0.960 4.000 368.000 0.823 0.858 25.0 0.960 4.000 368.000 0.823 0.858 25.0 0.960 4.000
Plane12 203.500 1.017 1.078 14.0 0.948 5.170 244.000 0.752 0.818 16.7 0.953 4.671 281.000 0.729 0.777 19.2 0.957 4.231Plane13 184.000 1.129 1.178 12.7 0.949 5.039 235.000 0.761 0.828 16.1 0.953 4.685
Plane23 192.000 1.109 1.178 13.3 0.949 5.121 203.500 1.017 1.078 14.0 0.948 5.170

1) Plane 12: MSE and RelevanceOT
2) Plane 13: MSE and Inter
3) Plane 23: RelevanceOT and Inter

The best popular plane is Plane 13 because this plane takes
into account accuracy and interpretability whose trade-off is
wanted. The results of these three planes for each quadrant
are described in the next subsections.

1) Q1: Inter=RN : Table V shows the averaged results
obtained from the Pareto Frontwork over 30 runs for each case
study: the MSE for training (MSEtra) and testing (MSEtst),
the interpretability (Inter), the rule relevance obtained by OTs
(RelOT=RelevanceOT ) and the amount of averages informa-
tion (relevance) for rule in % (RelRule=RelevanceOT /Num.of
Rules). Values in bold indicate a better performance.

In order to check the scope of this work, the Wilcoxon test
is run on error and interpretability/complexity indices for the
three characteristic models from the Pareto front.

The Wilcoxon test for the three planes (Tables VI, VII and
VIII) accepts that: In general, results on three Pareto Front
points analyzed for each plane show that the interpretability
have been improved, reducing the complexity and the number
of rules of the FRBSs and the accuracy of the models has
been preserved or, in some cases, the accuracy has also been
improved. On the other hand, RelOT has decreased, which
means that the genetic algorithm has selected the most relevant
rules and this also can be seen because the information for rule
(RelRule) has increased.

2) Q2: Inter=Number of MF: Table IX shows the aver-
aged results obtained from the Pareto Front work over 30 runs
for each case study.

The Wilcoxon test has been run for the three planes and
the results obtained are very similar to Q1.

3) Q3: Inter=Inconsistency: Table X shows the aver-
aged results obtained from the Pareto Front work over 30 runs
for each case study.

The Wilcoxon test has been run for the three planes and the
results obtained are very similar to Q1. Here, the interpretabiliy
is preserved in some cases because initial Inconsistency = 0
for several data sets.

4) Q4: Inter=Similarity: Table XI shows the averaged
results obtained from the Pareto Front work over 30 runs for
each case study.

The Wilcoxon test has been run for the three planes and
the results obtained are very similar to Q1.

VI. CONCLUSIONS

This work is focused on the checking of the capacities and
drawbacks of OTs for complexity reduction and interpretability
of FRBSs. This aim is carried out by rule selection using
a genetic algorithm subject to accuracy-interpretability trade-
off, and the rule influence provided by OTs. P-QR orthogonal



TABLE X. FASART: PERFORMANCE OF THE IMPROVED FRBSS: P-QR. Inter = Inconsistency

Plane12 Best RelOT Median Acc-RelOT Best Acc
Plane13 Best Inter Median Acc-Inter Best Acc
Plane23 Best Inter Median RelOT -Inter Best RelOT

DS InterMSEtraMSEtst RN RelOTRelRule InterMSEtraMSEtstRN RelOTRelRule InterMSEtraMSEtst RN RelOTRelRule

PLA ini 0.006 3.792 3.820 46.8 0.978 2.137 0.006 3.792 3.820 46.8 0.978 2.137 0.006 3.792 3.820 46.8 0.978 2.137
Plane12 0.000 3.054 3.039 14.0 0.959 4.049 0.001 2.442 2.487 17.9 0.965 3.487 0.003 2.305 2.367 22.9 0.971 2.928Plane13 0.000 2.330 2.420 22.3 0.971 2.912 0.003 2.315 2.408 24.5 0.971 2.848
Plane23 0.000 3.054 3.039 14.0 0.959 4.049 0.000 3.054 3.039 14.0 0.959 4.049

QUA ini 0.005 0.049 0.052 107.4 0.991 0.931 0.005 0.049 0.052 107.4 0.991 0.931 0.005 0.049 0.052 107.4 0.991 0.931
Plane12 0.000 0.038 0.039 58.7 0.987 1.301 0.002 0.035 0.038 65.3 0.988 1.209 0.003 0.035 0.038 74.9 0.989 1.073Plane13 0.000 0.036 0.038 65.3 0.988 1.181 0.001 0.035 0.038 70.6 0.989 1.134
Plane23 0.000 0.038 0.039 59.7 0.987 1.290 0.000 0.038 0.039 58.7 0.987 1.301

ELE ini 0.000 109178 153749 81.8 0.988 1.222 0.000 109178 153749 81.8 0.988 1.222 0.000 109178 153749 81.8 0.988 1.222
Plane12 0.000 120552 175328 72.0 0.987 1.297 0.000 111692 160710 75.5 0.987 1.269 0.000 108244 152794 79.8 0.988 1.230Plane13 0.000 111567 159047 78.3 0.987 1.242 0.000 109495 155028 79.1 0.988 1.238
Plane23 0.000 120552 175328 72.0 0.987 1.297 0.000 120552 175328 72.0 0.987 1.297

ABA ini 0.006 8.134 8.585 45.6 0.978 2.193 0.006 8.134 8.585 45.6 0.978 2.193 0.006 8.134 8.585 45.6 0.978 2.193
Plane12 0.004 7.865 7.887 26.6 0.970 2.974 0.006 6.676 6.898 29.6 0.972 2.766 0.006 6.308 6.642 35.7 0.976 2.404Plane13 0.002 6.781 7.013 31.7 0.975 2.513 0.004 6.499 6.776 35.2 0.976 2.390
Plane23 0.002 7.776 7.827 26.8 0.970 2.957 0.004 7.865 7.887 26.6 0.970 2.974

STP ini 0.000 2.068 2.190 36.2 0.972 2.762 0.000 2.068 2.190 36.2 0.972 2.762 0.000 2.068 2.190 36.2 0.972 2.762
Plane12 0.000 2.403 2.576 23.4 0.966 3.364 0.000 2.092 2.287 26.9 0.969 3.107 0.000 2.052 2.226 29.3 0.971 2.923Plane13 0.000 2.052 2.226 29.6 0.971 2.909 0.000 2.052 2.226 29.7 0.971 2.907
Plane23 0.000 2.403 2.576 23.4 0.966 3.364 0.000 2.403 2.576 23.4 0.966 3.364

WIZ ini 0.000 7.020 9.970 83.4 0.988 1.199 0.000 7.020 9.970 83.4 0.988 1.199 0.000 7.020 9.970 83.4 0.988 1.199
Plane12 0.000 6.093 9.294 52.3 0.986 1.387 0.000 5.735 8.836 54.2 0.986 1.349 0.000 5.639 8.686 56.9 0.987 1.308Plane13 0.000 5.639 8.686 57.0 0.987 1.307 0.000 5.639 8.686 57.0 0.987 1.307
Plane23 0.000 6.093 9.294 52.3 0.986 1.387 0.000 6.093 9.294 52.3 0.986 1.387

WANini 0.000 8.960 11.647 93.6 0.989 1.068 0.000 8.960 11.647 93.6 0.989 1.068 0.000 8.960 11.647 93.6 0.989 1.068
Plane12 0.000 7.575 10.673 53.4 0.987 1.290 0.000 6.856 10.366 56.3 0.988 1.205 0.000 6.769 10.311 64.1 0.989 1.127Plane13 0.000 6.769 10.311 64.4 0.989 1.125 0.000 6.769 10.311 64.4 0.989 1.125
Plane23 0.000 7.575 10.673 53.4 0.987 1.290 0.000 7.575 10.673 53.4 0.987 1.290

MORini 0.001 0.448 0.503 22.6 0.955 4.425 0.001 0.448 0.503 22.6 0.955 4.425 0.001 0.448 0.503 22.6 0.955 4.425
Plane12 0.000 0.608 0.655 13.8 0.944 5.510 0.001 0.438 0.472 16.5 0.949 5.066 0.001 0.377 0.405 18.6 0.952 4.713Plane13 0.000 0.380 0.410 18.6 0.952 4.725 0.001 0.379 0.406 18.8 0.952 4.713
Plane23 0.000 0.608 0.655 13.8 0.944 5.510 0.000 0.608 0.655 13.8 0.944 5.510

TRE ini 0.000 0.823 0.858 25.0 0.960 4.000 0.000 0.823 0.858 25.0 0.960 4.000 0.000 0.823 0.858 25.0 0.960 4.000
Plane12 0.000 0.862 0.922 15.1 0.949 5.045 0.000 0.745 0.814 17.3 0.954 4.597 0.000 0.729 0.779 19.2 0.957 4.230Plane13 0.000 0.729 0.779 19.3 0.957 4.218 0.000 0.729 0.779 19.2 0.957 4.230
Plane23 0.000 0.862 0.922 15.1 0.949 5.045 0.000 0.862 0.922 15.1 0.949 5.045

transformation has been considered with different interpretabi-
lity measures: RN (Q1), Number of MFs (Q2), Inconsistency
(Q3) and Similarity (Q4).

In order to check this, nine regression problems have
been involved in the experimental work. The results achieved
by the genetic selection on complexity, interpretability and
accuracy show, in general, that the number of rules and the
interpretability have always been improved. The accuracy of
the models has been preserved or, in many cases,improved.

In general, there are no significant differences through the
interpretability measures considered in this work:

Plane MSE-Inter: the interpretability has been improved,
reducing the complexity and the number of rules of the FRBSs
on three Pareto Front points analyzed, and the accuracy of the
models has been preserved on the point of Best Inter and
improved in the rest of the points.

Plane MSE-RelOT : the accuracy is better when some not
so relevant rules (smaller R-values) are selected.

Plane RelOT -Inter: the interpretality is better when rele-
vant rules (larger R-values) are selected.

The experiments have shown that the rules associated
with lower influence values by OTs, not relevant rules, have
relevance from the accuracy point of view.

Another point to be analyzed is the level of influence
preserved for rule (RelRule): the obtained level is always

better than the initial model because the genetic algorithm
selects the most influential rules from the OTs. Moreover, the
most interpretable model achieved a higher level of relevancy:
the interpretabiliy is better when larger R-values are selected
by OT’s, and larger values preserve more information and
permit a reduction in the number of rules, resulting in better
interpretability. The most accurate model shows a lower level
of relevancy: the accuracy is better when smaller R-values
are selected by OT’s, and these smaller values preserve less
information (although higher than in the initial model).
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