©2013 IEEE Original IEEE publication available at https://ieeexplore.ieee.org/document/6622357 M. I. Rey, M. Galende, G. I. Sainz and M. J. Fuente, "Selection of rules by orthogonal transformations and genetic algorithms to improve the interpretability in fuzzy rule based systems," 2013 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Hyderabad, India, 2013, pp. 1-8, doi: 10.1109/FUZZ-IEEE.2013.6622357

Selection of Rules by Orthogonal Transformations and Genetic Algorithms to Improve the Interpretability in Fuzzy Rule Based Systems

M. Isabel Rey INDOMAUT S.L. Pol. Ind. San Cristóbal 47012 Valladolid, SPAIN Email: i.rey@indomaut.com Marta Galende CARTIF Centro Tecnológico * 47151 Boecillo (Valladolid), SPAIN Email: margal@cartif.es gresai@cartif.es Gregorio I. Sainz ^{†,*} Maria J. Fuente [†] Dpt. of Systems Engineering and Control [†] University of Valladolid 47011 Valladolid, SPAIN Email: gresai@eis.uva.es maria@autom.uva.es

Abstract—Fuzzy modeling is one of the best known techniques to model systems and processes. In most cases, as in data-driven fuzzy modeling, these fuzzy models reach a high accuracy, but show poor performance in complexity or interpretability, which are key aspects of Fuzzy Logic.

There are several approaches in the literature to deal with the complexity and interpretability challenges for fuzzy rule based systems (FRBSs). In this paper, a post-processing approach is proposed via a genetic rule selection based on the relevance of each rule (using Orthogonal Transformations (OTs), in this case P-QR) and the well-known accuracy-interpretability trade-off. The main objective is to check the true significance, drawbacks and advantages of the rule selection based on OTs to manage the accuracy-interpretability trade-off.

In order to achieve this aim, a neuro-fuzzy system (FasArt-Fuzzy Adaptive System ART based) and several case studies from the KEEL Project Repository are used to tune and check this selection of rules based on rule relevance by OTs, genetic selection and accuracy-interpretability trade-off. This neuro-fuzzy system generates Mamdani FRBSs, in an approximate way. SPEA2 is the multi-objective evolutionary algorithm (MOEA) tool used to tune the proposed rule selection, and different interpretability measures have been considered.

Keywords—FRBS, Orthogonal Transformations, Interpretability, Genetic Algorithm.

I. INTRODUCTION

Fuzzy systems are one usual way to apply of the Fuzzy Set Theory, frequently using a model structure in the form of FRBSs. FRBSs constitute an extension to classical rule-based systems, whose antecedents and consequents are composed of fuzzy logic statements instead of classical ones. They have demonstrated their ability in very different scientific and technical areas.

In general, most of the FRBSs in real world applications have been used due to their advantages: easy use and performance. This performance has usually been evaluated on the accuracy of the models: minimizing the error between the known and the estimated output by the fuzzy models. But other aspects have not usually been taken into consideration: complexity, interpretability, etc, despite being some of the principles of fuzzy logic. Complexity is a usual measure for FRBSs related with their interpretability. Thus, if a reduction of this complexity was reached, it could permit a better performance on interpretability. The question lies in how this complexity reduction can be carried out. Different approaches to this question can be found in [1], [2], [3], [4], and one review has been made in [5].

On the other hand, this work is devoted to complexity reduction based on the selection of rules by OTs and accuracyinterpretability trade-off using a genetic algorithm. OTs [6] have been an alternative approach for complexity reduction and interpretability improvement of fuzzy models [3], [7], [8], [9]. This approach applies OTs on the *firing strength matrix* of the fuzzy model rules as a regression problem in order to estimate the relevance of the rules, then a rule selection is carried out.

In this context, this work checks the possibilities and drawbacks of the OTs as a postprocessing approach to reduce complexity and get more interpretable scatter FRBSs. Thus, a scatter FRBS is involved with rule selection by a genetic approach subject to the rule relevance and the accuracy-interpretability trade-off, taking into account different interpretability measures.

The paper is organized as follows: first, in Section II, a brief description about interpretability and the main concepts of OTs are given. The proposal of genetic rule selection based on OTs and accuracy-interpretability trade-off is introduced in Section III. The methodology used in this work is described in Section IV, while the experimental studies are carried out and the main results obtained are discussed in Section V. Finally, in Section VI, the most interesting conclusions obtained are set out.

II. INTERPRETABILITY AND ORTHOGONAL TRANSFORMATIONS

A. Interpretability: Taxonomy

The interpretability of FRBSs is the capacity to express the behavior of the real system in an understandable way. This is a subjective property that is related to several factors, mainly the model structure, the number of input variables, the number of fuzzy rules, the number of linguistic terms, the shape of the

TABLE I. A TAXONOMY TO ANALYZE INTERPRETABILITY [5]

	Rule Base level	Fuzzy partition level
	Q1	Q_2
Complexity-based	number of rules	number or membership functions
interpretability	number of conditions	number of features
	Q3	Q4
	consistency of rules	completeness or coverage
Semantic-based	rules fired at the same time	normalization
interpretability	transparency of rule structure	distinguishability
	cointension	complementarity
		relative measures

fuzzy sets, etc. There is still no standard measure to assess how good interpretability is [2], [4], [5], [10].

In this work the taxonomy considered is [5]. This is based on a double axis: "complexity versus semantic interpretabilyty" considering the two main kinds of measures; and "rule base versus fuzzy partitions" considering the different components of the knowledge base (KB) to which both kinds of measures can be applied. There are four different quadrants to be analyzed:

- *Q1*: The complexity at the rule based (RB) level.
- *Q2*: The complexity at the fuzzy partition level.
- *Q3*: The semantics at the RB level.
- *Q4*: The semantics at the fuzzy partition level.

Each Q_i contains several interpretability measures. Some of these measures are shown in Table I.

B. Complexity Reduction and Orthogonal Transformations

The reduction of the complexity system can imply a better interpretability of the fuzzy system [8], [9]. OTs are used for rule selection/reduction and for reducing complexitity in FRBSs. In this context, an FRBS can be written as a linear regression problem [9] (Eq. 1)

$$y = P * \theta + e \tag{1}$$

where: $y = [y_1, y_2..., y_N]^T$ are the measured outputs, $\theta = [c_1, c_2, ..., c_M]^T$ are the consequents of the M rules and $e = [e_1, e_2, ..., e_N]^T$ are the vectors of approximation errors. The matrix $P = [p_1, p_2, ..., p_M] \in \mathbb{R}^{N \times M}$ contains the firing strength of all the M rules for the N inputs x_k , where $p_i = [p_{i1}, p_{i2}, ..., p_{iN}]^T$.

In this work, the P-QR Decomposition has been considered: this approach produces a rule ordering without a rank estimation. Here, P-QR is directly applied to P, obtaining a permutation matrix [6]:

The QR decomposition of P is given by $P * \Pi = Q * R$, where $\Pi \in \Re^{M*M}$ is a permutation matrix, $Q \in \Re^{N*M}$ has orthogonal columns and $R \in \Re^{M*M}$ is upper triangular (Eq. 2), such that

$$R = \left[\begin{array}{cc} R_{11} & R_{12} \\ 0 & R_{kk} \end{array} \right] \tag{2}$$

The diagonal values of R are called R-values ($|R_{kk}|$) [3], which track the singular values $\sigma(P)$, so the most active and

least redundant rules are those whose R-values are higher [9] in the original fuzzy rule space.

In order to address the rule selection in this work, concepts about interpretability, accuracy and their trade-off are used together with the orthogonal transformations.

III. GENETIC RULE SELECTION BASED ON ORTHOGONAL TRANSFORMATIONS AND ACCURACY-INTERPRETABILITY TRADE-OFF

The main objective of this work is the selection of rules by OTs and accuracy-interpretability trade-off from a multiobjective evolutionary algorithm (MOEA). One well-known OT has been involved in this work: P-QR. The FRBSs are generated by a neuro-fuzzy system, FasArt [11], [12], which is a scatter fuzzy system. Now, in order to generate a better rule selection, this is carried out following the guidance of different points of view concerned with:

- Relevance or influence of each fuzzy rule estimated by the OTs.
- Accuracy-Interpretability trade-off in FRBSs defined by measures on both concepts.

Based on previous concepts, a genetic approach for the rule selection is done. This provides an interesting scenario of results concerning the rule ordering and selection based on these OTs. The study of this scenario will give us a better knowledge of the scope of this selection proposal.

In the following subsections, the accuracy-interpretability measures considered are briefly described. Then, some comments and references on the genetic and neuro-fuzzy approach used in this work are introduced.

A. Accuracy and Interpretability Measures

The *accuracy* (*Acc*) is the capability to faithfully represent the real system. Here, the accuracy of the model is measured through its Mean Squared Error (MSE) (Eq. 3):

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (y_i - y'_i)^2$$
(3)

The *interpretability* (*Inter*) is the capacity to express the behavior of the real system in an understandable way. Here, we use some of the proposed interpretability measures in [5] (see table I). In this work, the most used measure of each quadrant have been selected:

• Q1, *Number of Rules (RN)* has been selected as the interpretability measure (Eq. 4):

$$Inter = RN \tag{4}$$

• Q2, Number of Membership Functions (MFs) (Eq. 5).

$$Inter = Number of MF$$
(5)

• Q3, Consistency of Rules (Eq. 6 and Eq. 7).

$$Cons(R(i), R(k)) = exp - \left(\frac{(\frac{SRP(i,k)}{SRC(i,k)} - 1.0)^2}{(\frac{1}{SRP(i,k)})^2}\right)$$
(6)

where SRP is the similarity of the rule premises and SRC is the similarity of the rule consequents.

$$Incons(i) = \sum_{\substack{1 \le k \le N \\ k \ne i}} [1.0 - Cons(R^{1}(i), R^{1}(k))] + \sum_{\substack{1 \le l \le L \\ i=1,2,..,N}} [1.0 - Cons(R^{1}(i), R^{2}(l))]$$
(7)

where R^1 and R^2 denote the rule base (RB) generated from the data and the RB extracted from prior knowledge and N and L are the rule numbers of R^1 and R^2 . Then,

$$Inter = Incons \tag{8}$$

• Q4, *Distinguishability* has been selected as an interpretability measure. The most common measure to quantify distinguishability is similarity S [13] (Eq. 9).

$$S(A,B) = \frac{|A \cap B|}{|A \cup B|} = \frac{|A \cap B|}{|A| + |B| - |A \cap B|}$$
(9)

Then,

$$Inter = Similarity = S(A,B)$$
(10)

B. Genetic Algorithms

The well-known MOEA SPEA2 [14] is taken into account to select a subset of cooperative rules from a set of candidate fuzzy rules, but other MOEAs can also be used [15]. Two fitness functions from MSE (Eq. 3) and Inter (Eqs. 4, 5, 7 and 9) are used for a better accuracy-interpretability trade-off.

A third fitness function is considered to penalize rules with lower relevance obtained by OTs. According to previous works [8], [9], these rules introduce a high level of similarity, low level of activity and high redundancy, so they must be avoided. Thus, this is implemented as follows (Eq. 11):

$$Relevance_{OT} = Relevance_{R-value} =$$

$$\sqrt[n]{\prod_{i=1}^{n} (1 - R - value_{norm_i})}$$
(11)

where n = number of rules and:

$$R\text{-value}_{norm_i} = \frac{R\text{-value}_{Rule_i}}{\sum_{j=1}^{n} R\text{-value}_{Rule_j}}$$
(12)

C. Neuro-Fuzzy System FasArt

On the other hand, neuro-fuzzy systems are a very popular approach to generate FRBSs. In this work, the neuro-fuzzy system FasArt [11], [12], which is a neuro-fuzzy system based on the Adaptive Resonance Theory (ART) has been used. If the taxonomy for FBRSs described in [16] is taken into account, FasArt is a scatter model. Another classification can be done if [17] is considered: FasArt is a Mamdani-type FRBS for precise modeling.

TADLE II. TASAKI TAKAMETEKS FOR MODELING	TABLE II.	FASART	PARAMETERS	FOR	MODELING
--	-----------	--------	------------	-----	----------

	FasArt Parameters
Numbers of variables < 9	$\rho_A = \rho_B = 0.7$
	$\gamma_A = \gamma_B = 8$
Numbers of variables > 9	$\rho_A = \rho_B = 0.7$
	$\gamma_A = \gamma_B = 6$

IV. EXPERIMENTAL METHODOLOGY

In this paper, the proposed methodology checks the capabilities of the OTs for rule selection based on accuracyinterpretability trade-off and genetic tuning. This goal is carried out by a general post-processing fuzzy rule selection through a three-objective genetic approach: accuracy, interpretability and the most influential rules. In this scenario, it will be possible to check the trade-off of the FRBSs tuned by the rule selection, the rule influence level preserved in the simplified models, the level of complexity reduction achieved, the distribution of the rule influence amongst the selected rules for each FRBS, etc.

The FRBSs were generated by FasArt in five fold cross validation for each regression problem considered (see data sets in Section V). The FasArt parameters considered have been divided into two groups, depending on the numbers of antecedents and consequents of each case. Thus, the FasArt parameters considered are shown in Table II, where $\rho_A = \rho_B$ is the vigilance parameter used by FasArt and $\gamma_A = \gamma_B$ is the fuzzification rate in FasArt.

A general methodology description is summarized in Algorithm 1. This methodology is set out in the following sections, describing in detail the MOEA applied in the post-processing stage for this rule selection.

Algorithm 1 Methodology for Genetic Rule Selection based on Accuracy-Interpretability Trade-Off and Orthogonal Transformations

	for Neuro-Fuzzy Algorithm= $FasArt$ do
р.	
2:	for $OT=P-QR$ do
	for $DataSet = 1$ to 9 do
4:	for $CrossValidation = 1$ to 5 do
	Generation of Rule Importance Ordering by OT
6:	Training Neuro-Fuzzy System (see Table II)
	for $Run = 1$ to 6 do
8:	Generate Initial Population and Create the Empty External
	Population
	Run Genetic Algorithm SPEA2 (see Table III)
10:	end for
	end for
12:	Analysis Pareto Front (DataSet) (see Section IV-B)
	end for
14:	end for
	end for
16:	Non-Parametric Statistical Test

A. Multi-Objective Evolutionary Algorithm for Rule Selection

The fuzzy rule selection to achieve *lower complexity and better performance on interpretability with enough accuracy* based on the influential rules is carried out by a MOEA. In order to achieve the aims commented previously, a threeobjective (*Inter*, *Acc*, *Relevance*_{OT}) genetic approach is used based on the SPEA2 algorithm [14]: The SPEA2 algorithm (Strength Pareto Evolutionary Algorithm 2 for multiobjetive optimization) is one of the most used techniques for solving problems with multi-objective nature.

Genetic operator							
Selection	Binary Tournament						
Crossover	HUX $P_c=0.6$						
Mutation	Classical $P_m=0.2$						
Other options							
Population size	200						
External Population size	61						
Evaluations	100000						

In the next sections, the fitness functions are formulated and the genetic parameters and operators are described.

1) Objectives: The fitness functions are shown in Eq. (13). Performance desired for the FRBS is:

$max(Accuracy) = min(MSE_{tra})$	
max(Interpretability) = min(Inter)	(13)
$max(Relevance_{OT}) = min(lowerR - values)$	

2) Coding Scheme and Populations: In order to run SPEA2, the following characterization is done:

- Individuals are coded by *binary-coding*: C = C₁, C₂,
 ..., C_m, with m being the number of initial rules and C_i = (c₁,..., c_m) | c_i ∈ 0, 1.
- The initial population is obtained so that all genes take value '1' in all their individuals to favour a progressive extraction of the worst rules.

3) Genetic Operators: Crossover and mutation:

- HUX [18] is used to *crossover* with probability P_c .
- Classical *mutation* with probability P_m . This operator changes a gene value at random, sets a gene to zero with probability P_m and sets to one with probability $1 P_m$ [19].

The stopping criterion is the number of evaluations.

Table III shows the parameters used to run SPEA2.

B. Pareto Front Analysis

The Pareto fronts are generated for each trial and three representative points are analyzed according to the objectives:

- 1) According to the objetives accuracy and information from OTs (Plane12): the most information from OT (Best $Relevance_{OT}$), the most accurate model (Best Acc) and the median model (Median $Acc - Relevance_{OT}$).
- 2) According to the objetives *accuracy and interpretability* (Plane13) [20], [21]: the most interpretable model (Best *Inter*), the most accurate model (Best *Acc*) and the median model (Median *Acc Inter*).
- 3) According to the objetives *information from OTs* and *interpretability* (Plane23): the most interpretable model (Best Inter), The most information from OT (Best $Relevance_{OT}$) and the median model (Median $Relevance_{OT} - Inter$).

TABLE IV. Performance of Fasart Models (according to section III-A)

	Fasart									
Model	MS	SE		RN^{a}						
	tra	tst	RN	MF	Ι	S				
PLA	3.792	3.820	46.8	86.6	0.006	0.156	46.8			
QUA	0.049	0.052	107.4	315.2	0.005	0.194	107.4			
ELE	109178	153749	81.8	320.2	0.000	0.178	81.8			
ABA	8.134	8.585	45.6	357.8	0.006	0.315	45.6			
STP	2.068	2.190	36.2	318.8	0.000	0.243	36.2			
WIZ	7.020	9.970	83.4	743.6	0.000	0.360	83.4			
WAN	8.960	11.647	93.6	835.4	0.000	0.323	93.6			
MOR	0.448	0.503	22.6	332.0	0.001	0.230	22.6			
TRE	0.823	0.858	25.0	368.0	0.000	0.236	25.0			

^aRN is duplicated because Inter=RN in Q1

V. EXPERIMENTAL STUDY: RESULTS AND ANALYSIS

In order to check the performance of the proposal introduced in this work, nine real-world data sets from the KEEL Project [22] ¹ have been used:

- 1) Plastic Strength (PLA): 3 variables, 1650 records.
- 2) Quake (QUA): 4 variables, 2178 records.
- 3) Electrical Maintenance (ELE): 5 variables, 1056 records.
- 4) Abalone (ABA): 9 variables, 4177 records.
- 5) Stock prices (STP): 10 variables, 950 records.
- 6) Weather Ankara (WAN): 10 variables, 1609 records.
- 7) Weather Izmir (WIZ): 10 variables, 1461 records.
- 8) Mortgage (MOR): 16 variables, 1049 records.
- 9) Treasury (TRE): 16 variables, 1049 records.

TABLE VI. WILCOXON TEST FOR FASART MODEL IN Q1-PLANE12: ORIGINAL MODEL (R+) AND IMPROVED MODEL (R-)

Best Rel _{OT}										
Measure	R+	R-	Hypothesis (alpha=0.10)	p-value						
MSE_{tst}	17.0	28.0	Accepted	0.515						
NR	45.0	0.0	Rejected	0.008						
Inter	45.0	0.0	Rejected	0.008						
Median $Acc - Rel_{OT}$										
Measure	R+	R-	Hypothesis (alpha=0.10)	p-value						
MSE_{tst}	37.0	8.0	Rejected	0.086						
NR	45.0	0.0	Rejected	0.008						
Inter	45.0	0.0	Rejected	0.008						
]	Best Acc							
Measure	R+	R-	Hypothesis (alpha=0.10)	p-value						
MSE_{tst}	42.0	3.0	Rejected	0.021						
NR	45.0	0.0	Rejected	0.008						
Inter	45.0	0.0	Rejected 0.00							

First of all, the FRBSs are generated by Fasart. Next, the multi-objective rule selection is carried out, generating a Pareto Front for each dataset and trial, as shown in Algorithm 1: for each experiment, a fivefold cross validation model is adopted

¹http://sci2s.ugr.es/keel/datasets.php

Plane12	Best Rel _{OT}						Median Acc-Rel _{OT}				Best Acc							
Plane13	Best Inter						Median Acc-Inter				Best Acc							
Plane23		Best Inter					Median Rel _{OT} -Inter			Best Rel_{OT}								
DS	Inter 1	MSE_{tra}	MSE_{tst}	RN	Relot	Rel_{Rule}	Inter	MSE_{tra}	MSE_{tst}	RN	Rel_{OT}	Rel_{Rule}	Inter.	MSE_{tra}	MSE_{tst}	RN	Rel_{OT}	Rel_{Rule}
PLA ini	46.800	3.792	3.820	46.8	0.978	2.137	46.800	3.792	3.820	46.8	0.978	2.137	46.800	3.792	3.820	46.8	0.978	2.137
Plane12	9.900	3.603	3.605	9.9	0.953	4.581	15.533	2.507	2.523	15.5	0.963	3.633	2.300	2.300	2.369	22.3	0.971	2.918
Plane13	9.133	3.450	3.493	9.1	0.956	4.380	14.700	2.510	2.518	14.7	0.964	3.556						
Plane23	9.155	5.450	3.495	9.1	0.950	4.380	9.333	3.602	3.702	9.3	0.954	4.514	9.900	3.603	3.605	9.9	0.953	4.581
QUA ini	107.400	0.049	0.052	107.4	0.991	0.931	107.400	0.049	0.052	107.4	0.991	0.931	107.400	0.049	0.052	107.4	0.991	0.931
Plane12	46.667	0.037	0.039	46.7	0.986	1.369	57.000	0.035	0.038		0.988	1.234	67.433	0.034	0.038	67.4	0.989	1.091
Plane13	44.567	0.037	0.039	44.6	0.987	1.324	55.367	0.035	0.038		0.988	1.196						
Plane23							45.300	0.037	0.039		0.986	1.351	46.667	0.037	0.039	46.7	0.986	1.369
ELE ini	81.800	109178	153749	81.8	0.988	1.222	81.800	109178	153749	81.8	0.988	1.222	81.800	109178	153749	81.8	0.988	1.222
Plane12	70.867	122246	178727	70.9	0.987	1.302	75.067	112272	162213		0.987	1.271	78.800	108217	154058	78.8	0.988	1.234
Plane13	69.933	127291	180517	69.9	0.987	1.288	73.933	111551	161552		0.987	1.263						
Plane23							70.200	125304	181415		0.987	1.297	70.867	122246	178727	70.9	0.987	1.302
ABA ini	45.600	8.134	8.585	45.6	0.978	2.193	45.600	8.134	8.585		0.978	2.193	45.600	8.134	8.585	45.6	0.978	2.193
Plane12	24.567	7.235	7.481	24.6	0.969	3.088	29.267	6.267	6.703		0.972	2.785	34.733	5.994	6.464	34.7	0.975	2.424
Plane13	22.967	7.244	7.516	23.0	0.971	2.911	28.833	6.142	6.534		0.974	2.621	04.577	=	= 401	24.6	0.000	2 000
Plane23	26.200	2 0 6 0	2 100	26.2	0.070	2.5(2	23.400	7.496	7.700		0.969	3.025	24.567	7.235	7.481	24.6	0.969	3.088
STP ini	36.200	2.068	2.190	36.2	0.972	2.762	36.200	2.068	2.190		0.972	2.762	36.200	2.068	2.190	36.2	0.972	2.762
Plane12	21.567	2.580	2.747	21.6	0.965	3.446	25.800 25.200	2.105 2.085	2.311 2.269		0.968 0.969	3.163 3.081	29.333	2.052	2.226	29.3	0.971	2.919
Plane13 Plane23	20.600	2.711	2.816	20.6	0.966	3.378	25.200	2.085	2.269		0.969	3.410	21.567	2.580	2.747	21.6	0.965	3.446
WIZ ini	83.400	7.020	9.970	83.4	0.988	1.199	83.400	7.020	9.970	83.4	0.900	1.199	83.400	7.020	9.970	83.4	0.985	1.199
Plane12	50.400	6.335	9.970 9.515	85.4 50.4	0.988	1.199	53.300	7.020 5.779	9.970 8.946		0.986	1.199	85.400	7.020	9.970	65.4	0.988	1.199
Plane13	50.400		9.515	50.4	0.980	1.400	52.733	5.701	8.697	55.5 52.7	0.986	1.342	55.767	5.600	8.604	55.8	0.987	1.311
Plane23	49.467	6.480	9.535	49.5	0.986	1.375	49.833	6.579	9.747		0.986	1.342	50.400	6.335	9.515	50.4	0.986	1.400
WANini	93.600	8.960	11.647	93.6	0.989	1.068	93.600	8.960	11.647		0.989	1.068	93.600	8.960	11.647	93.6	0.989	1.068
Plane12	47.300	7.802	10.735	47.3	0.986	1.346	52.467	6.940	10.484		0.988	1.237						
Plane13							53.967	6.860	10.404		0.988	1.215	62.367	6.762	10.273	62.4	0.989	1.140
Plane23	45.667	7.789	11.217	45.7	0.987	1.293	46.167	7.960	11.022	46.2	0.987	1.322	47.300	7.802	10.735	47.3	0.986	1.346
MORini	22.600	0.448	0.503	22.6	0.955	4.425	22.600	0.448	0.503		0.955	4.425	22.600	0.448	0.503	22.6	0.955	4.425
Plane12	13.067	0.608	0.657	13.1	0.944	5.536	15.833	0.461	0.512		0.948	5.136						
Plane13	10.000			12.0			15.433	0.436	0.456	15.4	0.950	4.950	18.600	0.377	0.405	18.6	0.952	4.714
Plane23	12.033	0.806	0.864	12.0	0.946	5.297	12.233	0.779	0.832	12.2	0.945	5.415	13.067	0.608	0.657	13.1	0.944	5.536
TRE ini	25.000	0.823	0.858	25.0	0.960	4.000	25.000	0.823	0.858	25.0	0.960	4.000	25.000	0.823	0.858	25.0	0.960	4.000
Plane12	14.167	1.008	1.082	14.2	0.948	5.167	16.600	0.760	0.825	16.6	0.953	4.709	10 200	0.720		10.2		
Plane13	12.833	1 1 1 1	1.186	12.8	0.950	5.034	16.100	0.763	0.829	16.1	0.953	4.687	19.200	0.729	0.777	19.2	0.957	4.231
Plane23	12.833	1.111	1.180	12.8	0.950	3.034	13.333	1.086	1.172	13.3	0.949	5.111	14.167	1.008	1.082	14.2	0.948	5.167
												I						

TABLE V. FASART: PERFORMANCE OF THE IMPROVED FRBSs: P-QR. Inter = RN

 TABLE VII.
 WILCOXON TEST FOR FASART MODEL IN Q1-PLANE13:

 ORIGINAL MODEL (R+) AND IMPROVED MODEL (R-)

Best Inter									
Measure	R+	R-	Hypothesis (alpha=0.10)	p-value					
MSE_{tst}	16.0	29.0	Accepted	0.441					
NR	45.0	0.0	Rejected	0.008					
Inter	45.0	0.0	Rejected	0.008					
		Median	Acc-Inter						
Measure	R+	R-	Hypothesis (alpha=0.10)	p-value					
MSE_{tst}	40.0	5.0	Rejected	0.038					
NR	45.0	0.0	Rejected	0.008					
Inter	45.0	0.0	Rejected	0.008					
]	Best Acc						
Measure	R+	R-	Hypothesis (alpha=0.10)	p-value					
MSE_{tst}	42.0	3.0	Rejected	0.021					
NR	45.0	0.0	Rejected	0.008					
Inter 45.0 0.0			Rejected	0.008					

(each fold contained 20% of the records). For each of these five partitions (train/test), both stages of the algorithm were run 6 times. Therefore, we consider the average results of 30 runs on the three representative models from the Pareto front. Finally, non-parametric statistical tests are run to know the general significance of the results: non-parametric Wilcoxon's signed-rank tests [23].

A. FasArt Fuzzy Models

The fuzzy models were generated by FasArt in fivefold cross validation for each regression problem considered. The FasArt parameters used for all the cases are shown in Table II.

TABLE VIII. WILCOXON TEST FOR FASART MODEL IN Q1-PLANE23: ORIGINAL MODEL (R+) AND IMPROVED MODEL (R-)

Best Inter									
Measure	R+	R-	Hypothesis (alpha=0.10)	p-value					
MSE_{tst}	16.0	29.0	Accepted	0.441					
NR	45.0	0.0	Rejected	0.008					
Inter	er 45.0 0.0 Rejected								
		Median	$Rel_{OT} - Inter$						
Measure	R+	R-	Hypothesis (alpha=0.10)	p-value					
MSE_{tst}	16.0	29.0	Accepted	0.441					
NR	45.0	0.0	Rejected	0.008					
Inter	45.0	0.0	Rejected	0.008					
		Be	est Relot						
Measure	R+	R-	Hypothesis (alpha=0.10)	p-value					
MSE_{tst}	17.0	28.0	Accepted	0.515					
NR	45.0	0.0	Rejected	0.008					
Inter	45.0	0.0	Rejected	0.008					

In Table IV, the performance of these fuzzy models is shown: it is possible to see that the accuracy of the models is high.

B. Genetic Rule Selection: Results

This section shows the main results obtained by the SPEA2 genetic algorithm and the fitness-functions. Taking into account that SPEA2 has been run with four interpretability measures, one for each quadrant, the study has been made for each quadrant (Q1 with Inter=RN, Q2 with Inter=MF, Q3 with Inter=I and Q4 with Inter=S). Moreover, taking into account that SPEA2 has been run with three objetives, in each quadrant the study has been carried out for three planes:

Plane12			Best Rel	OT				Med	ian Acc-	Relo	T		Best Acc						
Plane13			Me	dian Acc-	Inte	r		Best Acc											
Plane23			Medi	an Rel_{OT}	r-Int	er		Best Rel _{OT}											
DS	Inter 1	MSE_{tra}	MSE_{tst}	RN	Relot	Rel_{Rule}	Inter	MSE_{tra}	MSEtst	RN	Relot	Rel_{Rule}	Inter.	MSE_{tra}	MSE_{tst}	RN	Relot	Rel_{Rule}	
PLA ini	86.600	3.792	3.820	46.8	0.978	2.137	86.600	3.792	3.820	46.8	0.978	2.137	86.600	3.792	3.820	46.8	0.978	2.137	
Plane12	13.667	3.549	3.556	10.3	0.955	4.487	24.467	2.465	2.510	15.7	0.964	3.606	38.067	2.299	2.349	22.5	0.971	2.916	
Plane13	12.667	3.327	3.393	9.8	0.957	4.285	24.133	2.453	2.509	15.6	0.965	3.447	38.007			22.3	0.971		
Plane23							13.000	3.562	3.588			4.446	13.667	3.549	3.556	10.3	0.955	4.487	
QUA ini	315.200	0.049	0.052	107.4	0.991	0.931	315.200	0.049			0.991	0.931	315.200	0.049	0.052	107.4	0.991	0.931	
Plane12	130.100	0.037	0.039	45.7	0.986	1.383	160.700	0.035	0.038	55.9	0.987	1.251	191.800	0.034	0.038	66.3	0.989	1.100	
Plane13	124.800	0.036	0.039	43.9	0.987	1.344	156.400	0.035	0.038	54.5	0.988	1.201							
Plane23							126.200	0.037	0.039		0.986	1.369	130.100		0.039	45.7	0.986	1.383	
ELE ini	320.200		153749	81.8	0.988	1.222	320.200	109178	153749	81.8	0.988	1.222	320.200	109178	153749	81.8	0.988	1.222	
Plane12	277.267	121294	177692	71.1	0.987	1.301	292.467		162067	74.9	0.987	1.272	309.000	108199	153760	79.0	0.988	1.233	
Plane13	273.000	122256	175706	70.0	0.987	1.292	290.333		160243		0.987	1.259	077.0/7	101001	177(02		0.007		
Plane23	257.000	0.124	0.505	15.6	0.070	2 102	274.200		176723		0.987	1.298	277.267		177692	71.1	0.987	1.301	
ABA ini	357.800	8.134	8.585	45.6	0.978	2.193	357.800	8.134	8.585	45.6	0.978	2.193	357.800	8.134	8.585	45.6	0.978	2.193	
Plane12	193.267	7.261	7.552	25.0	0.969	3.080	238.067 227.933	6.207 6.133	6.657 6.532		0.972 0.974	2.735	273.000	5.990	6.487	35.0	0.976	2.417	
Plane13 Plane23	181.000	7.258	7.581	23.5	0.970	2.917	184.733	6.133 7.393	0.532 7.732		0.974	2.614 3.033	193.267	7.261	7.552	25.0	0.969	3.080	
STP ini	318.800	2.068	2.190	36.2	0.972	2.762	318.800	2.068	2.190	36.2	0.969	2.762	318.800	2.068	2.190	36.2	0.969	2.762	
Plane12	183.800	2.580	2.190	21.2	0.972	3.452	225.800	2.008	2.311	25.9	0.972	3.165			2.190	30.2			
Plane13							219.200	2.085	2.260	25.9	0.968	3.078	258.200	2.052	2.226	29.5	0.971	2.911	
Plane23	179.000	2.480	2.704	20.7	0.966	3.409	179.300	2.617	2.838	20.7	0.965	3.437	183.800	2.580	2.791	21.2	0.965	3.452	
WIZ ini	743.600	7.020	9.970	83.4	0.988	1.199	743.600	7.020	9.970	83.4	0.988	1.199	743.600	7.020	9.970	83.4	0.988	1.199	
Plane12	447.500	6.270	9.478	50.5	0.986	1.397	471.200	5.782	8.913	53.1	0.986	1.357							
Plane13							470.600	5.699	8.677	53.1	0.986	1.342	495.800	5.640	8.691	55.9	0.987	1.315	
Plane23	441.800	6.127	9.292	49.9	0.986	1.372	443.300	6.313	9.569		0.986	1.388	447.500	6.270	9.478	50.5	0.986	1.397	
WANini	835.400	8.960	11.647	93.6	0.989	1.068	835.400	8.960	11.647	93.6	0.989	1.068	835.400	8.960	11.647	93.6	0.989	1.068	
Plane12	434.300	7.764	10.799	49.0	0.987	1.329	483.200	6.905	10.437	54.5	0.988	1.216	562 400	6.772	10 210	(2.2.2	0.000	1 1 2 2	
Plane13	421 400	7 575	11 107	17 (0.007	1 200	493.400	6.854	10.464	55.6	0.988	1.201	562.400	0.//2	10.318	63.3	0.989	1.133	
Plane23	421.400	7.525	11.197	47.6	0.987	1.289	424.400	7.765	10.959	47.9	0.987	1.307	434.300	7.764	10.799	49.0	0.987	1.329	
MORini	332.000	0.448	0.503	22.6	0.955	4.425	332.000	0.448	0.503	22.6	0.955	4.425	332.000	0.448	0.503	22.6	0.955	4.425	
Plane12	187.000	0.615	0.659	12.9	0.944	5.533	233.000	0.451	0.484	16.0	0.948	5.121	272.000	0.377	0.405	18.6	0.952	4.714	
Plane13	175.000	0.789	0.812	12.1	0.945	5.375	227.000	0.429	0.449		0.950	4.943		0.377					
Plane23							179.500	0.690	0.732		0.944	5.461	187.000	0.615	0.659	12.9	0.944	5.533	
TRE ini	368.000	0.823	0.858	25.0	0.960	4.000	368.000	0.823	0.858	25.0	0.960	4.000	368.000	0.823	0.858	25.0	0.960	4.000	
Plane12	203.500	1.017	1.078	14.0	0.948	5.170	244.000	0.752	0.818	16.7	0.953	4.671	281.000	0.729	0.777	19.2	0.957	4.231	
Plane13	184.000	1 1 2 9	1.178	12.7	0.949	5.039	235.000	0.761	0.828	16.1	0.953	4.685							
Plane23	101.000	2)			0.212	0.007	192.000	1.109	1.178	13.3	0.949	5.121	203.500	1.017	1.078	14.0	0.948	5.170	

TABLE IX. FASART: PERFORMANCE OF THE IMPROVED FRBSs: P-QR. Inter = NumofMF

- 1) Plane 12: MSE and $Relevance_{OT}$
- 2) Plane 13: *MSE* and *Inter*
- 3) Plane 23: Relevance_{OT} and Inter

The best popular plane is *Plane 13* because this plane takes into account accuracy and interpretability whose trade-off is wanted. The results of these three planes for each quadrant are described in the next subsections.

1) Q1: Inter=RN: Table V shows the averaged results obtained from the Pareto Frontwork over 30 runs for each case study: the MSE for training (MSE_{tra}) and testing (MSE_{tst}) , the interpretability (Inter), the rule relevance obtained by OTs $(Rel_{OT}=Relevance_{OT})$ and the amount of averages information (relevance) for rule in % $(Rel_{Rule}=Relevance_{OT})$ /Num.of Rules). Values in bold indicate a better performance.

In order to check the scope of this work, the Wilcoxon test is run on error and interpretability/complexity indices for the three characteristic models from the Pareto front.

The Wilcoxon test for the three planes (Tables VI, VII and VIII) accepts that: In general, results on three Pareto Front points analyzed for each plane show that the interpretability have been improved, reducing the complexity and the number of rules of the FRBSs and the accuracy of the models has been preserved or, in some cases, the accuracy has also been improved. On the other hand, Rel_{OT} has decreased, which means that the genetic algorithm has selected the most relevant rules and this also can be seen because the information for rule (Rel_{Rule}) has increased.

2) Q2: Inter=Number of MF: Table IX shows the averaged results obtained from the Pareto Front work over 30 runs for each case study.

The Wilcoxon test has been run for the three planes and the results obtained are very similar to Q1.

3) Q3: Inter=Inconsistency: Table X shows the averaged results obtained from the Pareto Front work over 30 runs for each case study.

The Wilcoxon test has been run for the three planes and the results obtained are very similar to Q1. Here, the interpretabiliy is preserved in some cases because initial Inconsistency = 0 for several data sets.

4) Q4: Inter=Similarity: Table XI shows the averaged results obtained from the Pareto Front work over 30 runs for each case study.

The Wilcoxon test has been run for the three planes and the results obtained are very similar to Q1.

VI. CONCLUSIONS

This work is focused on the checking of the capacities and drawbacks of OTs for complexity reduction and interpretability of FRBSs. This aim is carried out by rule selection using a genetic algorithm subject to accuracy-interpretability tradeoff, and the rule influence provided by OTs. P-QR orthogonal

Plane12			Best Rel	lot			Median Acc-Rel _{OT}							Best Acc						
Plane13	Best Inter							Me	dian Acc	r		Best Acc								
Plane23	Best Inter							Med	an Rel _O	ter		Best Rel_{OT}								
DS	$InterMSE_{tra}MSE_{tst}$ RN $Rel_{OT}Rel_{Rule}$				InterMSE _{tra} MSE _{tst} RN Rel _{OT} Rel _{Rule}							InterMSE _{tra} MSE _{tst} RN Rel _{OT} Rel _{Rule}								
PLA ini	0.006	3.792	3.820	46.8	0.978	2.137	0.006	3.792	3.820	46.8	0.978	2.137	0.006	3.792	3.820	46.8	0.978	2.137		
Plane12	0.000	3.054	3.039	14.0	0.959	4.049	0.001	2.442	2.487	17.9	0.965	3.487	0.003	2.305	2.367	22.9	0.971	2.928		
Plane13	0.000	2.330	2.420	22.3	0.971	2.912	0.003	2.315	2.408	24.5	0.971	2.848	0.005	2.305	2.307	22.9	0.971	2.928		
Plane23	0.000	2.330	2.420	22.5	0.971	2.912	0.000	3.054	3.039	14.0	0.959	4.049	0.000	3.054	3.039	14.0	0.959	4.049		
QUA ini	0.005	0.049	0.052	107.4	0.991	0.931	0.005	0.049	0.052	107.4	0.991	0.931	0.005	0.049	0.052	107.4	0.991	0.931		
Plane12	0.000	0.038	0.039	58.7	0.987	1.301	0.002	0.035	0.038	65.3	0.988	1.209	0.003	0.035	0.038	74.9	0.989	1.073		
Plane13	0.000	0.036	0.038	65.3	0.988	1.181	0.001	0.035	0.038	70.6	0.989	1.134	0.005	0.055	0.030	/4.9	0.969	1.075		
Plane23	0.000	0.030	0.030	05.5	0.966	1.101	0.000	0.038	0.039	59.7	0.987	1.290	0.000	0.038	0.039	58.7	0.987	1.301		
ELE ini	0.000	109178	153749	81.8	0.988	1.222	0.000	109178	153749	81.8	0.988	1.222	0.000	109178	153749	81.8	0.988	1.222		
Plane12	0.000	120552	175328	72.0	0.987	1.297	0.000	111692	160710		0.987	1.269	0.000	108244	152794	79.8	0.988	1.230		
Plane13	0.000	111567	159047	78.3	0.987	1.242	0.000	109495	155028	79.1	0.988	1.238	0.000	100244	134/94	19.0	0.966	1.230		
Plane23	0.000	111507	139047	10.5	0.987	1.242	0.000	120552	175328	72.0	0.987	1.297	0.000	120552	175328	72.0	0.987	1.297		
ABA ini	0.006	8.134	8.585	45.6	0.978	2.193	0.006	8.134	8.585	45.6	0.978	2.193	0.006	8.134	8.585	45.6	0.978	2.193		
Plane12	0.004	7.865	7.887	26.6	0.970	2.974	0.006	6.676	6.898	29.6	0.972	2.766	0.006	6.308	6.642	35.7	0.976	2.404		
Plane13	0.002	6.781	7.013	31.7	0.975	2.513	0.004	6.499	6.776			2.390				55.7				
Plane23	0.002	0.701	7.015	51.7	0.975	2.515	0.002	7.776	7.827	26.8	0.970	2.957	0.004	7.865	7.887	26.6	0.970	2.974		
STP ini	0.000	2.068	2.190	36.2	0.972	2.762	0.000	2.068	2.190	36.2	0.972	2.762	0.000	2.068	2.190	36.2	0.972	2.762		
Plane12	0.000	2.403	2.576	23.4	0.966	3.364	0.000	2.092	2.287	26.9	0.969	3.107	0.000	2.052	2.226	29.3	0.971	2.923		
Plane13	0.000	2.052	2.226	29.6	29.6 0.971	71 2.909	0.000	2.052	2.226	29.7	0.971	2.907		2.032	2.220	29.3	0.971	2.923		
Plane23							0.000	2.403	2.576		0.966	3.364	0.000	2.403	2.576	23.4	0.966	3.364		
WIZ ini	0.000	7.020	9.970	83.4	0.988	1.199	0.000	7.020	9.970	83.4	0.988	1.199	0.000	7.020	9.970	83.4	0.988	1.199		
Plane12	0.000	6.093	9.294	52.3	0.986	1.387	0.000	5.735	8.836	54.2	0.986	1.349	0.000	5.639	8.686	56.9	0.987	1.308		
Plane13	0.000	5.639	8.686	57.0	0.987	1.307	0.000	5.639	8.686		0.987	1.307								
Plane23			0.000			1.507	0.000	6.093	9.294	52.3	0.986	1.387	0.000	6.093	9.294	52.3	0.986	1.387		
WANini	0.000	8.960	11.647	93.6	0.989	1.068	0.000	8.960	11.647	93.6	0.989	1.068	0.000	8.960	11.647	93.6	0.989	1.068		
Plane12	0.000	7.575	10.673	53.4	0.987	1.290	0.000	6.856	10.366	56.3	0.988	1.205	0.000	6.769	10.311	64.1	0.989	1.127		
Plane13	0.000	6.769	10.311	64.4	0.989	1.125	0.000	6.769	10.311	64.4	0.989	1.125	0.000	0.709	10.511	04.1	0.969	1.127		
Plane23							0.000	7.575	10.673		0.987	1.290	0.000	7.575	10.673	53.4	0.987	1.290		
MORini	0.001	0.448	0.503	22.6	0.955	4.425	0.001	0.448	0.503	22.6	0.955	4.425	0.001	0.448	0.503	22.6	0.955	4.425		
Plane12	0.000	0.608	0.655	13.8	0.944	5.510	0.001	0.438	0.472	16.5	0.949	5.066	0.001	0.377	0.405	18.6	0.952	4.713		
Plane13	0.000	0.380	0.410	18.6	0.952	4.725	0.001	0.379	0.406	18.8	0.952	4.713	0.001	0.577	0.405					
Plane23			0.410	10.0		4.723	0.000	0.608	0.655	13.8	0.944	5.510	0.000	0.608	0.655	13.8	0.944	5.510		
TRE ini	0.000	0.823	0.858	25.0	0.960	4.000	0.000	0.823	0.858	25.0	0.960	4.000	0.000	0.823	0.858	25.0	0.960	4.000		
Plane12	0.000	0.862	0.922	15.1	0.949	5.045	0.000	0.745	0.814	17.3	0.954	4.597	0.000	0.729	0.779	19.2	0.957	4.230		
Plane13	0.000	0.729	0.779	19.3	0.957	4.218	0.000	0.729	0.779	19.2	0.957	4.230								
Plane23	0.000	0.147	0.779	19.5	0.937	4.218	0.000	0.862	0.922	15.1	0.949	5.045	0.000	0.862	0.922	15.1	0.949	5.045		

TABLE X. FASART: PERFORMANCE OF THE IMPROVED FRBSs: P-QR. Inter = Inconsistency

transformation has been considered with different interpretability measures: RN (Q1), Number of MFs (Q2), Inconsistency (Q3) and Similarity (Q4).

In order to check this, nine regression problems have been involved in the experimental work. The results achieved by the genetic selection on complexity, interpretability and accuracy show, in general, that the number of rules and the interpretability have always been improved. The accuracy of the models has been preserved or, in many cases, improved.

In general, there are no significant differences through the interpretability measures considered in this work:

Plane *MSE-Inter*: the interpretability has been improved, reducing the complexity and the number of rules of the FRBSs on three Pareto Front points analyzed, and the accuracy of the models has been preserved on the point of Best *Inter* and improved in the rest of the points.

Plane MSE- Rel_{OT} : the accuracy is better when some not so relevant rules (smaller R-values) are selected.

Plane Rel_{OT} -Inter: the interpretality is better when relevant rules (larger R-values) are selected.

The experiments have shown that the rules associated with lower influence values by OTs, not relevant rules, have relevance from the accuracy point of view.

Another point to be analyzed is the level of influence preserved for rule (Rel_{Rule}) : the obtained level is always

better than the initial model because the genetic algorithm selects the most influential rules from the OTs. Moreover, the most interpretable model achieved a higher level of relevancy: the interpretability is better when larger R-values are selected by OT's, and larger values preserve more information and permit a reduction in the number of rules, resulting in better interpretability. The most accurate model shows a lower level of relevancy: the accuracy is better when smaller R-values are selected by OT's, and these smaller values preserve less information (although higher than in the initial model).

ACKNOWLEDGMENT

This work was supported by the Spanish Ministry of Science and Innovation under grants nos. DPI2009-14410-C02-02 and DPI2012-39381-C02-02.

REFERENCES

- H. Ishibuchi and Y. Nojima, "Discussions on interpretability of fuzzy systems using simple examples," *Proc. of 13th IFSA World Congress* and 6th Conference of EUSFLAT, pp. 1649–1654, 2009.
- [2] J. Alonso, L. Magdalena, and G. González-Rodríguez, "Looking for a good fuzzy system interpretability index: An experimental approach," *International Journal of Approximate Reasoning*, vol. 51, no. 1, pp. 115 – 134, December 2009.
- [3] S.-M. Zhou, J. M. Garibaldi, R. I. John, and F. Chiclana, "On constructing parsimonious type-2 fuzzy logic systems via influential rule selection," *IEEE Transactions on Fuzzy Systems*, vol. 17, no. 3, pp. 654 – 667, June 2009.

Plane12			Best Rei	Іот			Median Acc-Rel _{OT}							Best Acc							
Plane13	Best Inter								dian Acc	-		Best Acc									
Plane23	Best Inter							Medi	an Rel _O	ter		Best Rel _{OT}									
DS	InterMSE _{tra} MSE _{tst} RN Rel _{OT} Rel _{Rule}						Inter	MSE_{tra}				Rel_{Rule}	InterMSE _{tra} MSE _{tst} RN Rel _{OT} Rel _{Rul}								
PLA ini	0.191	3.792	3.820	46.8	0.978	2.137	0.191	3.792	3.820		0.978	2.137	0.191	3.792	3.820	46.8	0.978	2.137			
Plane12	0.156	4.087	4.157	9.9	0.954	4.550	0.172	2.551	2.620	15.3	0.962	3.718	0.175	2.299	2.332	22.2	0.971	2 9 2 0			
Plane13	0.128	4.585	4.586	10.7	0.963	3.654	0.147	2.793	2.943	14.9	0.966	3.370	0.175	2.299	2.332	23.2	0.971	2.830			
Plane23	0.126	4.365	4.560	10.7	0.905	5.054	0.138	4.553	4.665	10.4	0.958	4.120	0.156	4.087	4.157	9.9	0.954	4.550			
QUA ini	0.194	0.049	0.052	107.4	0.991	0.931	0.194	0.049	0.052	107.4		0.931	0.194	0.049	0.052	107.4	0.991	0.931			
Plane12	0.170	0.039	0.042	57.3	0.987	1.274	0.177	0.036	0.038	62.8	0.988	1.215	0.175	0.035	0.037	74.1	0.989	1.072			
Plane13	0.152	0.041	0.044	61.5	0.989	1.075	0.158	0.036	0.039	66.8	0.989	1.061									
Plane23	0						0.159	0.041	0.043	58.1	0.988	1.194	0.170	0.039	0.042	57.3	0.987	1.274			
ELE ini	0.178	109178	153749	81.8	0.988	1.222	0.178	109178	153749	81.8	0.988	1.222	0.178	109178	153749	81.8	0.988	1.222			
Plane12	0.174	126752	184389	69.8	0.987	1.310	0.176	114532	166142		0.987	1.282	0.178	108315	152850	79.8	0.988	1.230			
Plane13 Plane23	0.171	125201	176799	72.4	0.987	1.286	0.174 0.172	114193 125466	164344 180020	75.7 71.4	0.987 0.987	1.265 1.298	0.174	126752	184389	69.8	0.987	1.310			
ABA ini	0.315	8.134	8.585	45.6	0.978	2.193	0.315	8.134	8.585	45.6	0.978	2.193	0.315	8.134	8.585	45.6	0.978	2.193			
Plane12	0.294	8.140	8.218	22.7	0.969	3.257	0.313	6.760	6.960	27.3		2.933									
Plane13							0.283	6.974	7.278	27.4	0.975	2.684	0.310	6.294	6.627	32.0	0.975	2.576			
Plane23	0.265	8.937	9.037	22.7	0.974	2.804	0.275	8.633	8.716		0.971	3.063	0.294	8.140	8.218	22.7	0.969	3.257			
STP ini	0.243	2.068	2.190	36.2	0.972	2.762	0.243	2.068	2.190	36.2	0.972	2.762	0.243	2.068	2.190	36.2	0.972	2.762			
Plane12	0.258	4.104	4.807	19.3	0.964	3.569	0.259	2.551	3.068	22.6	0.966	3.371	0.255	2.095	2.461	28.9	0.970	2.968			
Plane13	0.231	4.026	4.449	26.4	0.971	2.900	0.238	2.611	3.028	28.3	0.971	2.928		2.095	2.401	28.9	0.970	2.908			
Plane23							0.239	4.225	4.916		0.968	3.230	0.258	4.104	4.807	19.3	0.964	3.569			
WIZ ini	0.360	7.020	9.970	83.4	0.988	1.199	0.360	7.020	9.970	83.4	0.988	1.199	0.360	7.020	9.970	83.4	0.988	1.199			
Plane12	0.354	6.606	9.581	51.8	0.986	1.383	0.355	5.971	9.012		0.986	1.358	0.354	5.634	8.653	57.9	0.987	1.293			
Plane13	0.336	8.421	11.427	53.7	0.987	1.271	0.342	6.132	9.124		0.987	1.286									
Plane23							0.342	7.298	10.403	52.5	0.986	1.335	0.354	6.606	9.581	51.8	0.986	1.383			
WANini	0.323	8.960	11.647	93.6	0.989	1.068	0.323	8.960	11.647	93.6	0.989	1.068	0.323	8.960	11.647	93.6	0.989	1.068			
Plane12	0.316	8.763	12.031	59.7	0.988	1.220	0.319	7.415	10.715		0.988	1.180	0.315	6.915	10.647	67.8	0.989	1.110			
Plane13 Plane23	0.290	13.631	16.998	59.1	0.989	1.101	0.298 0.298	7.893 10.266	11.625 13.519		$0.989 \\ 0.988$	1.106 1.170	0.316	8.763	12.031	59.7	0.988	1.220			
MORini	0.230	0.448	0.503	22.6	0.955	4.425	0.298	0.448	0.503		0.988	4.425	0.316	0.448	0.503	22.6	0.988	4.425			
Plane12	0.230	0.448	0.303	12.5	0.935	5.704	0.230	0.448	0.503			4.423 5.224	0.250	0.448	0.505	22.0	0.935	4.423			
Plane13							0.213	0.471	0.525		0.947	5.051	0.221	0.376	0.402	18.6	0.952	4.708			
Plane23	0.199	1.128	1.153	13.2	0.949	5.059	0.209	0.919	0.945	13.0	0.945	5.406	0.218	0.731	0.788	12.5	0.942	5.704			
TRE ini	0.236	0.823	0.858	25.0	0.960	4.000	0.236	0.823	0.858	25.0	0.960	4.000	0.236	0.823	0.858	25.0	0.960	4.000			
Plane12	0.214	1.102	1.094	13.2	0.947	5.535	0.215	0.744	0.776	15.3	0.952	5.077	0.222	0.712	0.750	17.4	0.057				
Plane13	0.200	1.224	1.344	13.3	0.953	5.092	0.211	0.786	0.814	15.8	0.955	4.834	0.223	0.712	0.758	17.4	0.957	4.539			
Plane23	0.200	1.224	1.544	15.5	0.953	3.092	0.205	1.157	1.186	13.5	0.950	5.293	0.214	1.102	1.094	13.2	0.947	5.535			

TABLE XI. FASART: PERFORMANCE OF THE IMPROVED FRBSs MODELS: P-QR. Inter = Simitarity

- [4] C. Mencar and A. Fanelli, "Interpretability constraints for fuzzy information granulation," *Information Sciences*, vol. 178, no. 24, pp. 4585 – 4618, December 2008.
- [5] M. Gacto and F. Alcalá, R.and Herrera, "Interpretability of linguistic fuzzy rule-based systems: An overview of interpretability measures," *Information Sciences*, vol. 181, pp. 4340 – 4360, 2011.
- [6] G. H. Golub and C. F. Van Loan, *Matrix computations*. The Johns Hopkins University Press, 1996 (Third edition).
- [7] S.-M. Zhou and J. Q. Gan, "Constructing l2-svm-based fuzzy classifiers in high-dimensional space with automatic model selection and fuzzy rule ranking," *IEEE Transactions on Fuzzy Systems*, vol. 15, no. 3, pp. 398 – 409, June 2007.
- [8] M. Setnes and R. Babuška, "Rule base reduction: Some comments on the use of orthogonal transforms," *IEEE Transactions on Systems, Man,* and Cybernetics, Part C: Applications and Reviews, vol. 31, no. 2, pp. 199 – 206, May 2001.
- [9] J. Yen and L. Wang, "Simplifying fuzzy rule-based models using orthogonal transformation methods," *IEEE Transactions on Systems*, *Man and Cybernetics. Part B: Cybernetics*, vol. 29, no. 1, pp. 13–24, February 1999.
- [10] S.-M. Zhou and J. Q. Gan, "Low-level interpretability and high-level interpretability: a unified view of data-driven interpretable fuzzy system modelling," *Fuzzy Sets and Systems*, vol. 159, pp. 3091 – 3131, 2008.
- [11] J. Cano Izquierdo, Y. Dimitriadis, E. Gómez Sánchez, and J. López Coronado, "Learnning from noisy information in FasArt and Fasback neuro-fuzzy systems," *Neural Networks*, vol. 14, no. 4-5, pp. 407–425, May 2001.
- [12] G. Sainz Palmero, Y. Dimitriadis, J. Cano Izquierdo, E. Gómez Sánchez, and E. Parrado Hernández, "ART based model set for pattern recognition: FasArt family," in *Neuro-fuzzy pattern recognition*, H. Bunke and A. Kandel, Eds. World Scientific Pub. Co., December 2000, ch. 1, pp. 147–177.
- [13] M. Setnes, R. Babuška, U. Kaymak, and H. van Nauta Lemke, "Sim-

ilarity measures in fuzzy rule base simplification," *IEEE Transactions on Systems, Man and Cybernetics. Part B: Cybernetics*, vol. 28, no. 3, pp. 376 – 386, June 1998.

- [14] E. Zitzler, L. Laumanns, and L. Thiele, "Spea2: Improving the strength pareto evolutionary algorithm for multiobjetive optimization," *Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems*, pp. 95–100, 2001.
- [15] M. I. Rey, M. Galende, M. Fuente, and G. I. Sainz Palmero, "Checking orthogonal transformations and genetic algorithms for selection of fuzzy rules based on interpretability-accuracy concepts," *International Journal* of Uncertainty, Fuzziness and Knowledge-Based Systems, vol. 20, no. Suppl. 2, pp. 159 – 186, 2012.
- [16] F. Herrera, "Genetic fuzzy systems: Taxonomy, current research trends and prospects." *Evolutionary Intelligence*, vol. 1, pp. 27 – 46, 2008.
- [17] J. Casillas, O. Cordón, F. Herrera, and L. Magdalena, Accuracy Improvements in Linguistic Fuzzy Modelling, ser. Studies in Fuzziness and SoftComputing. Berlin Heildelberg: Springer-Verlag, 2003, vol. 129, ch. Accuracy Improvements to Find the Balance Interpretability-Accuracy in Fuzzy Modeling: An Overview, pp. 3–24.
- [18] E. L. J., "The chc adaptive search algorithm : How to have safe search when engaging in nontraditional genetic recombination," *Foundations* of *Genetic Algorithms*, pp. 265–283, 1991.
- [19] H. Ishibuchi, T. Murata, and I. B. Türksen, "Single-objective and twoobjective genetic algorithms for selecting linguistic rules for pattern classification problems," *Fuzzy Sets and Systems*, vol. 89, no. 2, pp. 135 – 150, July 1997.
- [20] M. Gacto, R. Alcalá, and F. Herrera, "Integration of an index to preserve the semantic interpretability in the multi-objective evolutionary rule selection and tuning of linguistic fuzzy systems," *IEEE Transactions* on Fuzzy Systems, vol. 18, no. 3, pp. 515 – 531, 2010.
- [21] R. Alcalá, P. Ducange, F. Herrera, B. Lazzerini, and F. Marcelloni, "A multiobjective evolutionary approach to concurrently learn rule and

data bases of linguistic fuzzy-rule-based systems," *IEEE Transactions on Fuzzy Systems*, vol. 17, no. 5, pp. 1106 – 1122, October 2009.

- [22] J. Alcalá-Fdez, A. Fernandez, J. Luengo, J. Derrac, S. García, L. Sánchez, and F. Herrera, "KEEL data-mining software tool: Data set repository, integration of algorithms and experimental analysis framework," *Journal of Multiple-Valued Logic and Soft Computing*, vol. 17:2-3, pp. 255–287, 2011.
- [23] D. J. Sheskin, Handbook of parametric and nonparametric statistical procedures. Chapman & Hall/CRC, 2003.