
PROGRAMA DE DOCTORADO EN
MATEMÁTICAS
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A los miembros del Departamento de Matemáticas y del grupo de investigación MAPTHE
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cluyendo a Enric Monsó, Margarida Mitjana y Leonardo Acho. Entre ellos, me gustaŕıa
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Me gustaŕıa agradecer a CARTIF su apuesta decidida por la investigación en matemáticas,
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Samperio también por enseñarme la importancia de estudiar y trabajar duro para conseguir
lo que me propongo. Espero que este año veamos por fin al Racing volver a Primera. A
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Introduction

Inverse problems are a class of mathematical problems where the objective is to determine
unknown causes from their known effects. Many inverse problems have garnered attention
because their resolution allows to infer information that in some cases is not directly ob-
servable, and in other cases is directly observable, but observing it is more expensive and/or
destructive than inferring it from its known effects.

Inverse problems have applications in many different fields. For instance, they are com-
mon in deblurring images, signal recovery, and other areas of digital processing. Moreover,
techniques like magnetic resonance imaging (MRI) and computed tomography (CT) scans
rely on solving inverse problems to create images of the interior of the body. Inverse prob-
lems also help in interpreting seismic data for oil exploration or in analyzing astronomical
data.

Most inverse problems are ill-posed, meaning they do not meet for every data set the
criteria of existence, uniqueness and stability of the solution. In an unstable problem, even
if there is a unique solution for a data set, small changes in the data can lead to much
greater changes in the solution. Regularization techniques are often used to handle this,
[4, 21]. Regularization is a method to stabilize inverse problems by introducing additional
information or constraints. Techniques like Tikhonov regularization or L1-regularization
help in dealing with ill-posedness and improving the robustness of solutions, [1, 4, 89, 104].

In this work we focus on the study of inverse problems on finite electrical networks.
We will consider Direct Current (DC) networks and balanced Alternating Current (AC)
electrical networks in which all lines are inductive and “short”, (i.e., their length is shorter
than 80km). An electrical network, (see Definition 1.3.1), is a pair Γ = (V, a) where V is
a finite nonempty set called vertex set, and a is a complex symmetric function on V × V
with nonnegative real part and nonpositive imaginary part such that a(x, x) = 0 for any
x ∈ V , called admittance. In the case of DC networks, a is a real function and it is called
conductance. A network has an associated graph called its “network topology”, whose vertex
set is V and whose edges are the pairs {x, y} of distinct vertices such that a(x, y) ̸= 0. The
value a(x, y) ̸= 0 is called the value of the admittance at the edge {x, y}.

At a given time, there exist physical quantities, such as potential, current injected or
power injected, which are defined at the vertices of the network. The value of each of these
quantities at a set F ⊆ V can be represented by a complex function on F for AC networks
and by a real function on F for DC networks. There are relations between these functions,
which can be expressed in terms of difference operators that depend on the electrical network.
Inverse problems on networks usually consist in determining information about the network
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such as its topology and/or the values of the admittance at its edges from certain measured
functions of potential, current and/or power, and sometimes alongside additional known
information.

The objective of Chapter 1 is to establish a version of discrete vector calculus on net-
works, which gives us the framework to formulate the inverse problems that we study in this
text, and also to introduce concepts and results that we use to solve those problems. Over
time, many authors have proposed different approaches to define a discrete vector calculus
on networks according to their needs and aims. On the one hand, in the area of numerical
methods for solving boundary problems, the so-called Mimetic Methods describe how finite
difference schemes on logically rectangular grids can be related to an operational calculus
that follows the lines of differential operators, see for example [68, 69, 90]. In the field of
finite or infinite networks or graphs, the vector calculus follows the guidelines of Algebraic
Topology, see for instance [59, 74], especially when the graphs are part of simplicial com-
plexes. The consideration of some boundary value problems on graphs and networks, and
their variational treatment also led to the consideration of some operators as derivative, nor-
mal derivative, Laplacian, Green operator and Green functions, see for instance [44, 46, 67].
In the last decade, the need to deal with irregular graphs and abstract data with irregular
interrelationships has revived the interest in vector calculus on graphs and networks, see
[74, 84]. A good description of the interest of these methodologies can be found on the
website [100], especially devoted to its use in image modeling.

It is interesting to note that most of the above mentioned papers ignore developments
made by other groups. For example, the theoretical description made on the web [100] is
very similar to the one proposed in [47], although this paper is absent from the references.
Furthermore, all the authors seem to be unaware of the systematic work that Japanese
geometers and analysts have developed since the the last decades of the past century, see
as example [70]. Another common feature of most vector calculus developed on graphs and
networks is that the vector fields are identified with functions on the edge set and therefore
limited to flows. This allows the formulation of Green’s identities, but not the Divergence
Theorem, and also limits the study to the so-called purely resistive networks.

In [18, 20, 35, 36], the authors introduced a discrete vector calculus for DC networks
following the guidelines of differential geometry, whose central concept is the introduction
of the tangent space at each vertex of the network. With this concept, the authors obtain
discrete versions of several differential operators, vector fields, and boundary value problems
that mimic the properties of its continuum analogues. The version proposed here extends
that work to the case of AC networks, with some modifications.

In Section 1.1 we start by introducing the general properties of the vector spaces and
operators that we use throughout the document. Then, in Section 1.2 we study several
topological and geometrical concepts associated to a graph without considering any weighting
on the edge set. Those concepts include the tangent space at a vertex, difference operators
such as the derivative and divergence, that are analogous in the discrete setting to the
differential operators with the same name of the continuous calculus, and the boundary of a
set of vertices.

In Section 1.3 we set the fundamentals for the discrete calculus on networks. We consider
the concepts introduced in the previous section, which only depend on the network topology,
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and we introduce other difference operators depending on the topology and admittance which
are analogous to the gradient, to the normal derivative, and to the Laplace-Beltrami operator.
With those operators we can explain the physical laws relating the potential, current and
power injected at the whole network, (see Remark 1.3.8). We prove that the operators
introduced satisfy discrete versions of the Green Identities and Gauss’ Theorem.

Then, in Section 1.4 we study the Dirichlet and Poisson problems on a subset F ⊆ V
of the vertices of a network Γ, and their associated Green and Poisson operators. We
extend the formulation of [35] to consider Dirichlet and Poisson problems on a subset that
is not necessarily connected. The study of those problems allow us to introduce in Section
1.5 the Dirichlet-to-Neumann map of Γ and F . Under the condition that there is zero
injected current at the vertices of F for any potential, this operator gives us the linear
relationship between the potential and the respective injected current at F c = V \ F , i.e.,
at the complementary set of F . We extend the definition of [35] to consider also networks
with edges between vertices of F c.

Section 1.6 is dedicated to survey previous results from [9] and [35] of monotonicity of
real functions on DC networks in order to prove additional properties of the Dirichlet-to-
Neumann map of a DC network. In particular, we have that any Dirichlet-to-Neumann
map is the Laplacian (the discrete analogous to the Laplace-Beltrami operator) of another
network, the Kron reduction of Γ with respect to F . We show that for AC networks, the
previous result is not always true, but it is true when F c = {x, y} ⊂ V . In Section 1.7
we introduce the effective admittance between two vertices x and y from the Dirichlet-to-
Neumann map of Γ and F = V \ {x, y}, and therefore, by the previous result, we can relate
it to a Kron reduction of Γ.

Chapter 2 is dedicated to study the inverse conductance problem on a DC network,
which is the discrete version of the continuous Calderón problem. In 1980, A.P. Calderón
published the seminal paper “On an inverse boundary value problem” ([34]), which has mo-
tivated numerous developments in inverse problems. Calderón’s problem establishes whether
the electrical conductivity of a medium can be determined by making voltage and current
measurements at the boundary.

The problem at hand involves an unknown conductivity that needs to be determined and
possibly reconstructed using boundary measurements of current and voltage. This intriguing
challenge has garnered significant attention due to its wide range of applications in diverse
fields, including noninvasive medical imaging, which stands as one of the most complex and
compelling areas of interest (see [4, 42, 82, 91]).

Calderón’s problem is severely ill-posed, and significant efforts are being made to develop
algorithms that can accurately solve it. This includes optimization algorithms, heuristic
methods, and machine learning techniques, (see [24, 41]).

The discrete inverse conductance problem consists in determining the conductance of a
DC network from its Dirichlet-to-Neumann map. We study the problem for well-connected
spider networks, which are a subfamily of critical circular planar networks and were first
introduced in [54] because of their remarkable properties. In [51, 52, 53, 54, 55] it was
established that for critical planar networks the problem has a unique solution. They also
introduced an explicit method to solve the problem for well-connected spider networks from
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a finite number of elementary algebraic operations, and the method was generalized in [10].

Well-connected spider networks are among the most used networks to study the inverse
conductance problem. Moreover, the resolution of the inverse problem in those networks has
been also studied as part of a process to get a numerical solution of Calderón’s problem,
that is, to recover the conductivity of continuous media, from a finite number of (voltage
and current) measurements, (see [8, 26, 55]).

Nevertheless, as its continuous counterpart, the discrete problem is severely ill-posed
even for relatively small-sized networks. This poor performance explains why the use of
these networks in medical applications is restricted to networks with fewer than 16 nodes on
the boundary (see [91, 104]).

In Chapter 2, we review and extend the results from [38] and [37], in which the authors
proposed a stable reformulation of the inverse conductance problem and studied the process
to solve it. First, in Section 2.1, we expose in detail the background of both the discrete
inverse problem and the continuous one, in order to explain the relevance of the original
contributions of [38] and [37].

Then, in Section 2.2 we show an example to demonstrate that, in practice, the use of
the explicit method from [10] yields a big numerical error in the recovered conductance due
to the ill-posedness of the problem. Because of that, in [38] it was proposed to reformulate
the problem, (see Problem 2.3.1). In Section 2.3 we review this reformulation, which is
a polynomial optimization problem incorporating a regularization term that penalizes the
deviation with respect to the conductance being piecewise constant on a partition of the
edge set known a priori.

When the conductance of a network is piecewise constant on a partition whose number
of subsets is small compared to the total number of edges, we say that the piecewise constant
conductance hypothesis holds. In Section 2.4 we show several examples from [38] in which we
solve Problem 2.3.1 with a partition in the regularization term such that the conductance
of the real network is piecewise constant on that partition. We show that if the number
of subsets is small, that is, if the piecewise constant conductance hypothesis holds, in all
the examples we recover the conductance of all the networks with stability. In particular,
we have been able to recover the conductances on spider networks with up to 47 boundary
nodes, improving the known methods that show instabilities when the number of boundary
nodes is greater than 16, see for instance [1, 27, 38, 89, 104].

In Section 2.5 and Section 2.6 we review the results from [38]. These results examine
the application of Problem 2.3.1 when we penalize deviations with respect to a constant
piecewise conductance hypothesis in a given partition of the edge set that may not be satisfied
by the actual conductance. Even so, in the studied cases, the obtained solutions are good
approximations to the real conductances.

In Section 2.5 we provide an example of the variation of the error in the recovered con-
ductance with respect to the penalty parameter µ ≥ 0. The case when µ = 0 corresponds to
the unstable recovery without regularization, and the case when µ→ ∞ corresponds to im-
posing the piecewise constant conductance hypothesis exactly. We show an example in which
we solve Problem 2.3.1 using a partition with few subsets such that the real conductance is
not piecewise constant on the partition but is not far from a piecewise constant conductance
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on this partition. Recovering a conductance for several values of µ, we obtain the one that is
closest to the real one when we use an intermediate value of the parameter µ ∈ (0,∞), that
is, when we allow deviations with respect to the hypothesis but we also avoid the instability
of the problem without regularization. This example supports the penalty formulation of
Problem 2.3.1.

Finally, in Section 2.6, we study the application of techniques of Sum of Squares (SOS)
decompositions of polynomials in order to seek a guarantee that a minimum of Problem 2.3.1
obtained with a numerical method is a global minimum, and thus a solution of the problem.

In Chapter 3 we study the inverse problem of simultaneously recovering the admittance
and topology of an AC or DC network from a set of measurements of voltage and its corre-
sponding power injected at all vertices. The chapter is an extension and review of the results
from [88], in which the problem is reformulated to the recovery of a sparse network.

Nowadays, electrical systems are expanding and increasing in complexity really fast due
to the deregulation and proliferation of distributed energy resources. Because of this expan-
sion, sometimes the system operators do not have precise and updated information about
the admittance or the topology of the network. Also, the dependence of the admittance on
temperature can cause the information about them to be incorrect [2]. The lack of topology
information is especially frequent in the secondary distribution network [72], in which the
lines are short [29]. Moreover, recently, the availability and accuracy of measured data in
the electrical system has increased significantly. At the nodes, power injection and voltage
magnitude can be measured using smart meters and the phase angle information can be
obtained by micro phasor measurement units [72]. In that scenario, the simultaneous recov-
ery of the topology and admittance of a network from voltage and power data is of great
interest from an applied point of view. We start the chapter comparing the formulation of
our inverse problem with other inverse problems on networks which involve the recovery of
the topology.

In an example in Section 3.1 we show that the general problem of admittance and topology
recovery is ill-posed, in some cases even having multiple solutions. As a result, if we have
a set of edges E that are candidate to belong to the network, we usually obtain a solution
in which the value of the admittance at all edges in E is distinct from zero, and thus the
set of edges of the solution is the whole E. When E is large, the recovered network is not
efficient for applications. Therefore, in Section 3.2 we reformulate that inverse problem to
obtain Problem 3.2.1, which consists in recovering a sparse network such that the fitting
error to the data is below a fixed tolerance. Such a network would allow the efficient and
accurate resolution of usual problems in electrical networks which require the admittance
and topology. Those applications include failure identification, power flow optimization or
generation scheduling [57].

In Section 3.3 we review the notion of spectral sparsification of a network introduced in
[95] by Spielman and Teng. In [16] the authors proposed Algorithm 1 in order to construct a
sparse approximation of a network with less edges than the original. The results in Section
1.7 allow us to give a novel physical interpretation to the product of the conductance of an
edge by its effective resistance and, as a consequence, to Algorithm 1.

In Section 3.4, we present original theoretical results (see Theorems 3.4.1 and 3.4.4)
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that give an upper bound on the increase of the fitting error of a network in the process
of removing edges of a network using the techniques of spectral sparsification of networks
of the previous section. These results are the basis for the Algorithm 2 that we propose in
Section 3.5 to obtain a solution to Problem 3.2.1. It consists in an iterative procedure of
recovering a network and sparsifying it, with an automatic exploration to find the levels of
closeness of sparsification that allow us to remove edges without increasing the error in the
data above the fixed tolerance.

Finally, in Section 3.6 we show several experimental results of the application of Algo-
rithm 2. We see that, in some cases, we are able to recover the exact network (with the
actual topology and low error in the admittance). We show other cases in which we recover
an electrical network which is electrically equivalent to the original one under conditions
satisfied by the data set (such as the power injected at some node being always zero). More-
over, we show that, in some cases, the algorithm has the advantage of providing a sparse
approximation of the real electrical network, in which computation is faster than in the real
network.



Chapter 1

Discrete vector calculus on networks

In this chapter we introduce a version of vector calculus in networks, establishing the fun-
damental concepts, results and notation that we will use throughout the text. We use the
notation N,Z,Q,R and C for the sets of natural, integer, rational, real and complex num-
bers, respectively. In addition, N∗ = N \ {0} and the same applies to the other number sets.
Given z ∈ C, ℜ(z) and ℑ(z) denote the real and imaginary part of z, z̄ denotes its conjugate
and |z| denotes its modulus. We always identify R with the set of complex numbers with
null imaginary part.

The set of nonnegative real numbers is denoted by [0,∞). Moreover we add the symbol
∞ to [0,∞) and use the usual order and arithmetic in the interval [0,∞]:

(i) a <∞ for any a ∈ [0,∞).

(ii) a+∞ = ∞ for any a ∈ [0,∞].

(iii) a∞ = ∞ for any a ∈ (0,∞] and 0∞ = 0.

(iv)
1

0
= ∞ and

1

∞
= 0.

1.1 Function spaces

In all the document V indicates a finite set, with cardinality |V |, whose elements are gener-
ically denoted by x, y, z ∈ V ; and F indicates a subset of V . For any F ⊆ V , F c = V \ F
stands for the complementary set of F in V .

The spaces of real and complex functions on V are denoted as C (V ) = {u : V −→ R}
and C (V,C) = {u : V −→ C}, respectively. Given u ∈ C (V,C), ℜ(u) and ℑ(u) are called
the real and imaginary parts of u, and we have u = ℜ(u) + iℑ(u). The notation ū for
u ∈ C (V,C) corresponds to the function defined by ū(x) = u(x), for each x ∈ V . Clearly,
C (V ) is identified with the subset of C (V,C) of functions having null real part and hence,
we have u = ū iff u ∈ C (V ). The notation |u| for u ∈ C (V,C) corresponds to the function
of C (V ) defined by |u|(x) = |u(x)|, for each x ∈ V .
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The space C (V ), respectively C (V,C), is a real, respectively complex, vector space of
dimension dimR(C (V )) = dimC(C (V,C)) = |V |. Furthermore, u ≥ 0 denotes a nonnegative
function of C (V ), that is, a function such that u(x) ≥ 0 for each x ∈ V , and the space of
nonnegative functions is denoted by C +(V ).

The support of u ∈ C (V,C) is the set supp(u) = {x ∈ V : u(x) ̸= 0}. Given F ⊆ V ,
C (F,C) = {u ∈ C (V,C) : u = 0 in F c} = {u ∈ C (V,C) : supp(u) ⊆ F} and moreover,
C (F ) = C (V ) ∩ C (F,C).

The characteristic function of F , χ
F
∈ C (V ), is defined as χ

F
(x) = 1 when x ∈ F and

χ
F
(x) = 0 otherwise. In particular, if F = {x}, its characteristic function is denoted by εx.

Given F ⊆ V , for each u ∈ C (V,C) we define∫
F

udx =
∑
x∈F

u(x) =
∑
x∈F

ℜ(u)(x) + i
∑
x∈F

ℑ(u)(x) =
∫
F

ℜ(u)dx+ i

∫
F

ℑ(u)dx.

Of course,

∫
F

udx ∈ R when u ∈ C (V ).

We consider the following inner product on C (V,C)

⟨u, v⟩ =
∫
V

uv̄dx,

whose associated norm is denoted by || · || = || · ||2. It is clear that the above inner product
induces an inner product on C (V ). Given a subset S ∈ C (V,C), its orthogonal complement
is the subspace S⊥ = {u ∈ C (V,C) such that ⟨u, v⟩ = 0 for all v ∈ S}. When S ∈ C (V ) we
denote by S⊥

R
its orthogonal complement in C (V ) with the induced inner product; that is,

S⊥
R
= S⊥ ∩ C (V ). We drop the subindex R when it does not lead to confusion.

We also consider in C (V,C) the norm || · ||∞, which is defined for each u ∈ C (V,C) as
||u||∞ = max

x∈V
{|u(x)|}.

Given m ∈ N∗, m ≥ 2, we generalize the above spaces to the spaces of vector functions
C (V,Rm) and C (V,Cm). Clearly, we can consider C (V,Rm) ⊂ C (V,Cm). Moreover, each
function u ∈ C (V,Cm) has m component functions u1, . . . , um that are elements of C (V,C)
and hence,

C (V,Cm) =
{
u = (u1, ..., um) such that uj ∈ C (V,C) for all j = 1, ...,m

}
.

Again, functions in C (V,Rm) are identified with those functions in C (V,Cm) whose compo-
nents belong all to C (V,R).

On C (V,Cm) we consider the inner product

⟨u,v⟩ =
m∑
j=1

⟨uj, vj⟩ =
m∑
j=1

∫
V

uj v̄jdx, where u = (u1, . . . , um) and v = (v1, . . . , vm)

whose associated norm is denoted by ||·||. Again, this inner product induces an inner product
on C (V,Rm).
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As in the case m = 1, we also consider in C (V,Cm) the norm || · ||∞ , which is defined for
each u = (u1, ..., um) ∈ C (V,Cm) as ||u||∞ = max

j=1,..,m
{||uj||∞}.

Of course, C (V,Cm) can be identified with C (V,R2m) and in particular C (V,C) is iden-
tified with C (V,R2).

The elements of C (V ×V ) = {K : V × V −→ R} and C (V ×V,C) = {K : V × V −→ C}
are called real and complex kernels, respectively. The space of real nonnegative kernels is
denoted by C +(V ×V ). We also define the space C +

∞(V ×V ) = {u : V × V −→ [0,∞]}. The
support of K ∈ C (V × V,C) is the set supp(K) = {(x, y) ∈ V × V : K(x, y) ̸= 0}. Again,
we always assume that C (V × V ) ⊂ C (V × V,C).

For every kernel K ∈ C (V × V,C) ⊃ C (V × V ), its transpose kernel K⊤ is defined by
K⊤(x, y) = K(y, x), for each x, y ∈ V . Its adjoint kernel K∗ is defined byK∗(x, y) = K(y, x),
for each x, y ∈ V . We have that K is real, i.e., K ∈ C (V × V ), iff K∗ ∈ C (V × V ) or
equivalently, iff K⊤ = K∗. A kernel K is called symmetric when K = K⊤; and it is called
self-adjoint when K = K∗. Of course, being symmetric and self-adjoint is equivalent iff
K ∈ C (V × V ). For every K ∈ C (V × V,C) there exist ℜ(K),ℑ(K) ∈ C (V × V ) such that
K(x, y) = ℜ(K)(x, y) + iℑ(K)(x, y) for each x, y ∈ V . These kernels are called the real and
imaginary parts of K, respectively.

GivenK ∈ C (V ×V,C), its symmetric and antisymmetric partsKs, Ka ∈ C (V ×V,C) are
respectively defined byKs(x, y) = 1

2

(
K(x, y)+K(y, x)

)
andKa(x, y) = 1

2

(
K(x, y)−K(y, x)

)
for each x, y ∈ V . Note that, if K ∈ C (V × V ), then Ks, Ka ∈ C (V × V ).

If K ∈ C (V × V,C), its trace is tr(K) =
∑
x∈V

K(x, x) =

∫
V

K(x, x)dx. Of course, if

K ∈ C (V × V ), then tr(K) ∈ R. It is clear that tr(K) = tr(Ks).

If F1 and F2 are nonempty subsets of V , then C (F1 × F2), respectively C (F1 × F2,C),
denotes the set of kernelsK ∈ C (V ×V ), respectivelyK ∈ C (V ×V,C), such that supp(K) ⊆
F1 × F2. If F is a nonempty subset of V, any function K ∈ C (F × F ), respectively K ∈
C (F ×F,C), will be called a real, respectively complex, kernel on F . Of course, if F1 ⊂ F2,
then each kernel on F2 is also a kernel on F1.

If K is a kernel on F , for each x, y ∈ F we denote by Kx and Ky the functions of C (F,C)
defined by Kx(y) = Ky(x) = K(x, y). Note that (K∗)x = Kx for each x ∈ V .

Given F1, F2 ⊆ V , for each K ∈ C (V × V,C) we define∫
F1×F2

Kdxdy =
∑
x∈F1

∑
y∈F2

K(x, y) =

∫
F1

(∫
F2

Kxdy

)
dx =

∫
F2

(∫
F1

Kydx

)
dy.

We can consider a labeling, or enumeration, on V , identifying it with the set {x1, ..., xn},
with n = |V |. After a labeling, C (V ), respectively C (V,C), can be identified with R|V |,
respectively with C|V |. Moreover, C (V ×V ) and C (V ×V,C) can be identified with the spaces
of square matrices M|V |×|V |(R) and M|V |×|V |(C), respectively. If a kernel K is identified with
a matrix K, then K⊤ is identified with its transpose matrix K⊤, and K∗ is identified with
its conjugate transpose matrix K∗. Observe that the determinant of a matrix can only be
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defined after a labeling of V , but it is clearly independent of it. Moreover, the trace is also
clearly independent of any labeling on V .

Given x, y ∈ V , we denote as K(x, y) the entry of the matrix K corresponding to vertices
x and y, that is, the entry K(x, y) of the kernel K. More generally, given a pair of subsets
F1, F2 ⊆ V , we define the submatrix of K: K(F1;F2) =

(
K(x, y)

)
(x,y)∈F1×F2

.

We call operator to any linear application K : P −→ Q between two finite dimensional
complex or real vector spaces with inner product P and Q. Its null space is the subspace
of P defined as ker(K ) = {u ∈ P such that K (u) = 0}. Its image is the subspace of Q
defined as Img(K ) = {K (u) such that u ∈ P}. When P = Q, we say that K : P −→ P is
an operator on P . The following results are extensions of results of operators from [17] to
include the complex case.

Given an operator K : P −→ Q, we denote by K ∗ : Q −→ P its adjoint, which is the
operator uniquely determined by the relation

⟨K (u), v⟩ = ⟨u,K ∗(v)⟩,

for all u ∈ P and v ∈ Q.

The following result is a consequence that follows almost immediately from the previous
relation.

Lemma 1.1.1 (Fredholm alternative). If K is an operator on P , then we have that

Img(K ) =
[
ker(K ∗)

]⊥
.

Given an operator K on P , we say that u ∈ P is an eigenvector of K if u ̸= 0 and there
exists λ ∈ C such that K (u) = λu. In that case, λ is called the eigenvalue of K associated
to the eigenvector u. The number of eigenvalues of K is at most dim(P ).

We say that an operator K on P is self-adjoint if K ∗ = K . If K is self-adjoint, then
⟨K (u), u⟩ ∈ R for every u ∈ P . Moreover, each eigenvalue of K is real, and there is a basis{
u1, ..., udim(P )

}
of P such that each uj is an eigenvector of K , and uj⊥uk whenever j ̸= k.

We say that K is positive semidefinite, respectively negative semidefinite, if ⟨K (u), u⟩ ≥
0, respectively ⟨K (u), u⟩ ≤ 0, for every u ∈ C (V,C). If K is positive semidefinite, respec-
tively negative semidefinite, then each eigenvalue of K is nonnegative, respectively nonpos-
itive.

Let K : P −→ Q be an operator, and let m = min {dim(P ), dim(Q)}. Then K ∗ ◦ K
is a self-adjoint and positive semidefinite operator on P . We denote its eigenvalues by
λ1 ≥ ... ≥ λdim(P ) ≥ 0. The singular values of K are the nonnegative numbers σj =

√
λj

for each j = 1, ...,m. Then, we define the condition number of K as κ(K ) = σ1/σm. We
have that κ(K ) = ∞ iff K is singular, i.e., iff ker(K ) ̸= {0}. We also define the spectral
norm of K as its largest singular value, ∥K ∥2 = σ1.

Let K be a self-adjoint operator on C (V ), respectively on C (V,Rm). Then, by the
Courant-Fisher theorem [94], we have that the maximum of the eigenvalues of K is equal
to
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max
||u||=1

{⟨K (u), u⟩}. Also, for any u ∈ C (V ), respectively u ∈ C (V,Rm), we have that

∥K (u)∥ ≤ ∥K ∥2∥u∥.

We denote by C : C (V,C) −→ C (V,C) the conjugation application, that is defined by
C(u) = ū for each u ∈ C (V,C). We say that K : C (V,C) −→ C (V,C) is a symmetric
operator if K ∗ = C ◦ K ◦ C [83], or equivalently iff K = C ◦ K ∗ ◦ C. If we restrict the
definition to operators in C (V ), C is the identity, so being symmetric and self-adjoint is
equivalent.

Given an operator K on C (V ) or on C (V,C), we define its real and complex parts as
ℜ(K ) = 1

2
(K + K ∗) and ℑ(K ) = 1

2i
(K − K ∗), respectively. It is clear that they are

self-adjoint operators and K = ℜ(K ) + iℑ(K ), (see [49]).

Lemma 1.1.2. If K is a symmetric operator on C (V ) or on C (V,C), then ℜ(K )|C (V ) and
ℑ(K )|C (V ) are operators on C (V ).

Proof. Let K be a symmetric operator and u ∈ C (V ). Then, K ∗ = C ◦ K ◦ C and u = u,
so on one hand

ℜ(K )(u) = C ◦ ℜ(K )
(
C(u)

)
= 1

2

(
C ◦ (K + K ∗) ◦ C

)
(u)

= 1
2

(
C ◦ K ◦ C + C ◦ K ∗ ◦ C

)
(u) = 1

2
(K ∗ + K )(u) = ℜ(K )(u),

and on the other hand

ℑ(K )(u) = C ◦ ℑ(K )
(
C(u)

)
= −1

2i

(
C ◦ (K − K ∗) ◦ C

)
(u)

= 1
2i

(
C ◦ K ∗ ◦ C − C ◦ K ◦ C

)
(u) = 1

2i
(K − K ∗)(u) = ℑ(K )(u).

If K is a real, respectively complex, kernel on F , we define the integral operator associ-
ated with K as the endomorphism K : C (F ) −→ C (F ), respectively as the endomorphism
K : C (F,C) −→ C (F,C), that assigns to each u ∈ C (F ), respectively u ∈ C (F,C), the

function K (u)(x) =

∫
F

K(x, y)u(y) dy for all x ∈ V .

The relationship between kernels, integral operators and endomorphisms of C (F ) is given
by the following result. Its first part can be seen as a discrete version of the Schwartz’s Kernel
Theorem, because of the natural identification between C (F ) and its dual space.

Proposition 1.1.3 (Kernel Theorem [19, Prop. 5.1]). Each endomorphism K of C (F ),
respectively C (F,C), is an integral operator associated with a real, respectively complex,
kernel K on F which is uniquely determined by the relation K(x, y) = K (εy)(x) for each
(x, y) ∈ F × F .

Moreover, if K is the integral operator on F associated to the kernel K and A is a non
empty subset of F , then the following statements hold:

(i) The adjoint of K , K ∗, is the operator associated with the kernel K∗. Therefore, K
is self-adjoint iff K is self-adjoint.
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(ii) The operator C ◦K ∗ ◦ C is associated with the kernel K⊤. Therefore, K is symmetric
iff K is symmetric.

(iii) ImgK ⊆ C (A) iff K ∈ C (A× F ).

(iv) C (F \ A) ⊆ kerK iff K ∈ C (F × A).

In particular, each endomorphism of C (V ), respectively C (V,C), is the integral operator
associated to some kernel. Given K ,J endomorphisms of C (V ), respectively of C (V,C),
whose kernels are respectively K and J , then the kernel of K ◦J is K ◦J , defined for each
x, y ∈ V as

(K ◦ J)(x, y) =
∑
z∈V

K(x, z)J(z, y) =

∫
V

Kx(z)Jy(z)dz = ⟨Jy, Kx⟩.

In addition, we can define the trace on the space of endomorphisms of C (V ) or C (V,C)
as tr(K ) = tr(K), where K is the kernel of K . From this definition, we can endow the
space of endomorphisms of C (V ) or of C (V,C), and as a consequence the space of kernels
C (V ×V ) or C (V ×V,C), with a natural inner product: ifK and J are the kernels associated
to the operators K and J respectively, then

⟨K ,J ⟩ = tr(K ◦ J ∗) =

∫
V

⟨Jx, Kx⟩dx = tr(K∗ ◦ J).

In particular, ⟨K ,J ⟩ = ⟨K ∗,J ∗⟩. The associated norm on the space of endomor-
phisms, or on the space of kernels, is named Frobenius norm and denoted as ||·||

Fr
. Therefore,

||K ||
Fr
= ||K||

Fr
= tr(K ∗ ◦ K )

1
2 .

1.2 Topology and geometry of a graph

In this section we will present several topological and geometrical concepts associated to a
graph. We start with the basic definitions, (see [19, 35] for a detailed discussion). Although
almost all concepts we next introduce can be defined in infinite and locally finite graphs,
every graph throughout this work will be finite, undirected and simple.

A graph is a pair G = (V,E) where V is a finite nonempty set called vertex set, and
E ⊆

{
{x, y} such that x, y ∈ V and x ̸= y

}
is called edge set.

A vertex is any x ∈ V . We say that x, y ∈ V are adjacent iff {x, y} ∈ E and usually we
denote it as x ∼ y. We will denote {x, y} ∈ E also by exy and so, exy = eyx. In Figure 1.1,
we show the representation of some examples of graphs.

We define the subspaces of kernels C (G) = {f ∈ C (V × V ) | f(x, y) = 0 if exy /∈ E},
C (G,C) = {f ∈ C (V × V,C) | f(x, y) = 0 if exy /∈ E} and C +(G) = {f ∈ C +(V ×
V ) | f(x, y) = 0 if exy /∈ E}. The subspaces of symmetric kernels of C (G), C (G,C) and
C +(G) can be identified with the function spaces on the edge set C (E), C (E,C) and C +(E),
respectively.
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Figure 1.1: Examples of (locally finite) graphs

We say that a subset F ⊆ V is connected if for any x, y ∈ F there exists a path contained
in F from x to y, that is, a (finite) sequence of vertices x0, . . . , xk ∈ F such that x0 = x,
xk = y and exj−1,xj

∈ E for all j = 1, . . . , k. We say that a graph is connected if V is
connected. We say that two distinct vertices x, y ∈ V are connected through F if there exists
a path from x to y such that every vertex of the path distinct from x or y belongs to F .

Given a graph G = (V,E), and a subset F ⊆ V , we denote by GF the induced subgraph
GF = (F,EF ) with vertex set F , and only the set of edges of G which are adjacent to two
vertices of F , i.e., EF = {exy ∈ E such that x, y ∈ F}.

There is a unique partition of V = V1 ⊔ ...⊔Vs, with s ≥ 1, such that E = EV1 ⊔ ...⊔EVs

and GVi is connected for i = 1, ..., s. We call each GVi , or Vi, a connected component of G
and write G = GV1 ⊔ ... ⊔GVs .

Given x, y ∈ V , we denote by d(x, y) the geodesic distance in the graph, that is defined
as the minimum length of all paths from x to y if x and y belong to the same connected
component of G and as d(x, y) = ∞ otherwise. It is clear that d gives a structure of metric
space to the set of vertices of each connected component of the graph and that d(x, y) = 1
iff x ∼ y.

Given x ∈ V , its combinatorial degree k(x) is the number of vertices adjacent to x, that
is k(x) = |{y ∈ V : y ∼ x}|.
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1.2.1 Tangent bundle of a graph

We follow the approach of [35, 36], in which the topological and geometrical concepts in a
graph are based on the definition of a tangent space at each point of a graph. The main
difference of our approach is that we consider the tangent space as a complex vector space
with the standard inner product, instead of a real vector space.

We define the tangent space Tx(G) of a vertex x as the complex vector space of formal
linear combinations of the set of edges {exy ∈ E : y ∼ x}. The dimension of Tx(G) is k(x),
and the set of those edges is a basis of Tx(G), that we call its coordinate basis. In Figure 1.2
we show the coordinate basis at a vertex.

Tx(G)

x
x

Figure 1.2: Graph and tangent space at vertex x.

A vector field on the graph is any function f : V −→
⋃
x∈V

Tx(G) with the property that

for every x ∈ V , f(x) ∈ Tx(G). We denote the space of vector fields by X (G). The support
of f is defined as supp(f) = {x ∈ V : f(x) ̸= 0}.

A vector field f ∈ X (G) is uniquely determined by its components in the coordinate
basis, so we can define a kernel f ∈ C (G,C), which is called the component function of f,

such that for any x ∈ V , f(x) =
∑
y∼x

f(x, y)exy. This association between f and f defines

an isomorphism between X (G) and C (G,C). Therefore, we can define the symmetric and
antisymmetric components of f ∈ X (G), fs and fa, as the vector fields associated with f s

and fa, respectively. Note that f = fs + fa. We say that f is symmetric if f = fs and that f
is antisymmetric, or a flow, if f = fa.

Given u ∈ C (V,C) and f ∈ X (G) with component function f , we denote by uf ∈ X (G)
the vector field whose component function is uf ∈ C (G,C).

We define the inner product of f, g ∈ X (G) as

⟨f, g⟩ = 1

2

∫
V

[f(x), g(x)] dx,

where for any x ∈ V we denote by [f(x), g(x)] the inner product on Tx(G) determined by
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the orthonormality of its coordinate basis, i.e., for any y, z such that y ∼ x and z ∼ x, then
[exy, exz] = εy(z). As a consequence, if f and g are the respective component functions of f
and g, then

[f(x), g(x)] =
∑
y∼x

f(x, y)g(x, y) =
∑
y∈V

f(x, y)g(x, y).

We have included the factor 1
2
in the definition of the inner product of X (G) because

each edge is considered twice. In particular, including that factor we will avoid getting a
factor 2 multiplying the sum in the result of Lemma 1.2.2.

Lemma 1.2.1. If f ∈ X (G) is symmetric and g ∈ X (G) is a flow, then ⟨f, g⟩ = 0. As a
consequence, given any f, g ∈ X (G), we have that ⟨f, g⟩ = ⟨fs, gs⟩+ ⟨fa, ga⟩.

Proof. Let f ∈ X (G) be symmetric and g ∈ X (G) be a flow. Then, we have

⟨f, g⟩ = 1

2

∫
V×V

f(x, y)g(x, y)dydx = −1

2

∫
V×V

f(y, x)g(y, x)dxdy = −⟨f, g⟩.

The second statement follows trivially from the properties of any inner product.

The following result is straightforward.

Lemma 1.2.2. Let both f, g ∈ X (G) be either symmetric vector fields or flows, with compo-
nent functions f and g. Then:

⟨f, g⟩ =
∑
exy∈E

f(x, y)g(x, y).

Note that the sum in Lemma 1.2.2 is well defined because if both f and g are symmetric
or are flows, then f(x, y)g(x, y) = f(y, x)g(y, x) for every x, y ∈ V .

Remark 1.2.3. Due to the isomorphism between C (G,C) and X (G), the inner product
on X (G) determines an inner product on C (G,C) defined for each f, g ∈ C (G,C) as ⟨f, g⟩,
where f, g ∈ X (G) are the vector fields whose component functions are f and g, respectively.

The norm associated with this inner product is ||f || = ⟨f, f⟩ 1
2 . This inner product is different

than the restriction to C (G,C) of the one in the space of kernels C (V ×V,C) defined at the
end of Section 1.1 from the inner product on the space of endomorphisms, whose associated
norm is ||f ||

Fr
. Throughout the whole text, whenever we consider the norm of a kernel

f ∈ C (G,C) for a graph G, we will use that first norm ||f || rather than the Frobenius one.
If f is symmetric, by Lemma 1.2.2 we have that ||f ||2 =

∑
exy∈E

|f(x, y)|2.

1.2.2 Difference operators on a graph

Now, we will define the derivative and divergence as discrete difference operators on a graph.
They are analogous to the differential operators with the same name in the continuous vector
calculus.
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We define the derivative [35] as the linear map d : C (V,C) −→ X (G), which assigns to
each u ∈ C (V,C) the flow du, such that for each x ∈ V , du(x) =

∑
y∼x

(u(y)− u(x))exy.

Analogously to the continuous case, du = 0 iff u ∈ C (V,C) is constant within each
connected component of G.

We define the divergence as the linear map div = −d∗ : X (G) −→ C (V,C). Namely, for
any f ∈ X (G), div(f) ∈ C (V,C) is the function determined by:

⟨div(f), u⟩ =
∫
V

div(f)u dx = −1

2

∫
V

[f(x), du(x)] dx = −⟨f, du⟩ (1.1)

Let G = GV1 ⊔ ...⊔GVs be the decomposition of G in its connected components. For any
i = 1, ..., s, substituting u = χ

Vi
in the previous expression, we have

∫
Vi
div(f) dx = 0 for any

f ∈ X (G). In particular,
∫
V
div(f) dx = 0 for any f ∈ X (G).

In [36], for any weighting ω ∈ C +(V ) on the set of vertices, the authors define an inner
product on C (V ) associated to ω. Then, they define the divergence as div = −d∗ with
respect to that inner product. We do not consider any weighting on the vertices, although
when we restrict the divergence to real vector fields, our definition of divergence agrees with
the one in [36] when the weighting ω is equal to one. In [35], the divergence is introduced
in a different manner because the authors consider an inner product on the tangent space
at a vertex which is dependent on the electrical conductance on the edges. Nevertheless,
that definition of divergence turns out to be independent of the conductance and it is also
equivalent to our definition when we restrict it to real vector fields. As a consequence, our
definition satisfies the following proposition from [35].

Proposition 1.2.4. If f ∈ X (G) and f ∈ C (G,C) is its component function, then for any
x ∈ V :

div(f)(x) =
∑
y∼x

fa(x, y) =
∑
y∈V

fa(x, y).

Proof. If for any x ∈ V we substitute u = εx in (1.1), then we get

div(f)(x) = ⟨div(f), εx⟩ = ⟨f,−dεx⟩ = ⟨fa,−dεx⟩,

where the last equality follows from Lemma 1.2.1. By definition, for any z ∈ V , −dεx(z) =∑
y∼z

(εx(z)− εx(y))ezy. The component function of the flow−dεx is−dεx(z, y) = εx(z)−εx(y),

which is nonzero only if y ∼ z and z or y are equal to x. Moreover, −dεx(x, y) = 1, so, by
Lemma 1.2.2:

div(f)(x) = −
∑
exy∈E

fa(x, y)dεx(x, y) =
∑
y∼x

fa(x, y).
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1.2.3 Boundary of a set

A subset of vertices F ⊆ V of a graph can be seen as the discrete analogue to a compact
manifold. In [35, 36] there are discrete concepts analogous to topological concepts involving
a compact manifold such as its interior, boundary, closure, exterior normal vector field and
the Divergence Theorem, which we review below.

The interior of F is
◦
F= {x ∈ F : y ∈ F when y ∼ x} =

{
x ∈ F : {y : d(x, y) ≤ 1} ⊂ F

}
.

The boundary of F is δ(F ) = {x ∈ F c| ∃y ∈ F such that y ∼ x} = {x ∈ V : d(x, F ) = 1}.

The interior boundary of F is δ(F c) = F\
◦
F= {x ∈ V : d(x, F c) = 1}.

The closure of F is F̄ = F ∪ δ(F ) = {x ∈ V : d(x, F ) ≤ 1}.

The Exterior of F is Ext(F ) = V \ F̄ = {x ∈ V : d(x, F ) > 1}.

The Figure 1.3 shows a vertex set F in light brown color and its boundary in ochre color.

Vertices in
◦
F , δ(F ), δ(F c) or Ext(F ) are depicted in different color.

F

δ(F )

Figure 1.3:
◦
F (blue), δ(F ) (orange), δ(F c) (green) and Ext(F ) (light grey).

Observe that to define the above geometric notions, the (possible) edges between bound-
ary vertices play no role. For this reason this kind of edges are depicted in light grey in
Figure 1.3

The normal vector field to F is the flow n
F
= −dχ

F
. Hence, its component function in

C (G,C) is given by

n
F
(x, y) =


1, y ∼ x and (x, y) ∈ δ(F c)× δ(F )

−1, y ∼ x and (x, y) ∈ δ(F )× δ(F c),

0, otherwise

As a consequence, n
Fc = −n

F
and supp(n

F
) = δ(F c) ∪ δ(F ). Therefore, given x ∈ F , n

F
(x)

only takes into account the edges exy such that y ∈ F and hence n
F
has the meaning of

exterior normal field.

The concept of the normal field to a set F appears for the first time in the literature
in [20], although it had already been used previously by the authors. Without the vector
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field formalism considered here, the notion of normal derivative was already present in many
works related to Graph Analysis, see for example [22, 44, 47, 67] where the authors introduce
the notions more or less independently of each other. In fact, these authors ignore the work
of M. Yamasaki and collaborators, who introduced several years earlier a similar concept
related to the interior normal derivative, see [70] and references therein.

In Figure 1.4 we consider the same set F as in Figure 1.3 and show that different vertices
on the boundary could have different number of edges joining them with vertices in F .

Figure 1.4: x has two edges and z has one edge joining them with vertices in F .

The motivation to introduce the normal field was to express the normal derivative of a
function as the inner product of its derivative with a field representing the exterior normal,
thus mimicking differential calculus with the aim of proving the divergence theorem and
Green’s identities. All the mentioned authors have their version for the Green Identities, see
the next section, but none of them present something similar to the Divergence Theorem,
due to the absence of the notion of normal field. As the proof of this result included in [20] is
given in a more general setting that that considered in this work, we include here its proof.

Proposition 1.2.5. (Divergence Theorem) For any f ∈ X (G), it is verified that∫
F

div(f) dx =

∫
δ(F )

[fa(x), n
F
(x)] dx.

Proof. By the definition of divergence and normal vector field, and by Lemma 1.2.1, we have∫
F

div(f) dx = ⟨div(f), χ
F
⟩ = −⟨f, dχ

F
⟩ = −⟨fa, dχ

F
⟩ = ⟨fa, n

F
⟩.

Denoting by f the component function of f, from Lemma 1.2.2 we get

⟨fa, n
F
⟩ =

∑
(x,y)∈δ(F c)×δ(F )

fa(x, y) =

∫
δ(F )

[fa(x), n
F
(x)] dx.
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Definition 1.2.6. We say that a graph G = (V,E) is a graph with boundary if there is a
proper subset F ⊂ V such that V = F̄ and the boundary δ(F ) is totally disconnected, i.e.,
Gδ(F ) = (δ(F ), ∅).

Well-connected spider graphs

Now we will introduce different subsets of graphs with boundary, in order to illustrate the
previous concepts and, in particular, to define the well-connected spider graphs. Such graphs
were initially introduced in [54] due to their exceptional characteristics and will be the type
of graphs with boundary on which we will formulate the inverse problem in Chapter 2.

A circular planar graph [51] is a graph with boundary G = (F̄ , E) which can be planarly
embedded (i.e., without crossing edges) in a disk D ⊂ R2, with the vertices within set F lo-

cated in the interior of D (
◦
D) and the boundary vertices of δ(F ) located in the circumference

of D (∂D).

Now, let G = (F̄ , E) be a circular planar graph and we fix an embedding of it with the
characteristics of the last paragraph. A circular pair is a pair (Ξ; Σ) = (ξ1, ..., ξs;σ1, ..., σs)
of disjoint subsets of δ(F ) such that the sequence (ξ1, ..., ξs, σ1, ..., σs) is in clockwise order.
A circular pair (Ξ; Σ) is connected through F if there are s disjoint paths ϱ1, ..., ϱs such that
each ϱj starts at ξj, ends at σj and, apart from these two, passes only through vertices of F
[51].

We consider the process of contracting an edge exy ∈ E, with x ∈ F , from a network
with boundary G = (F̄ , E), which consists in creating the graph G′ = (F ′, E ′) such that
F ′ = F \ {x} and E ′ =

(
E \

{
exz such that z ∈ F

} )
∪ {eyz such that exz ∈ E and z ̸= y}.

Note that δ(F ′) = δ(F ). We also consider the process of removing the edge exy ∈ E
from G = (F̄ , E), which consists in creating the graph G′ = (F ′, E ′), with F ′ = F and
E ′ = E \ {exy}.

We say that a circular planar graph G is a critical circular planar graph if the operation
of removing any edge or the operation of contracting any edge to a single vertex results in a
graph G′ such that there is at least one circular pair that is connected through F in G and
it is not connected through F ′ in G′ (see [51]).

In [48], the author introduced the notion of well-connected graph, which is a circular
planar graph in which every circular pair is connected through F .

A well-connected spider graph G = (F̄ , E) with ℓ ≥ 0 circles and m = 4ℓ + 3 radii is a
particular example of a critical circular planar graph, which is the graph corresponding to
the following planar embedding. We start by placing a vertex set in the center of a disk D
and the m boundary vertices of δ(F ) in ∂D. Next, we draw straight lines, referred to as
radii, from the central vertex to each of the boundary vertices. Then, we draw ℓ distinct
concentric circumferences contained within the interior of D whose center is the center of D.
Now, we place a vertex for every intersection point of every circle and radius. The graph’s
edges are determined by these radii and circles, as shown in Figure 1.5.
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x00

F

δ(F )

xji

circle i

radius j

am

am−1

δ(F )

circle i

radius j

Figure 1.5: Representation of a spider graph.

The arithmetic conditions between the number of circles and radii ensure that the graph
is indeed critical and well-connected, (see [54, Proposition 2.3 and Corollary 8.9]).

1.3 Electrical networks

In this section we will introduce a discrete vector calculus on Direct Current (DC) and
Alternating Current (AC) electrical networks. A DC network is modeled mathematically
as a graph with a real positive weight at each edge, which is the inverse of its resistance.
Several detailed versions of calculus on DC electrical networks have been proposed (see for
instance [7, 35, 36]).

For modeling AC networks there are different alternatives, depending on the character-
istics of the network. In this work, we study the case of balanced three-phase networks in
which all lines are inductive and “short”, (i.e., their length is shorter than 80km). In that
case, the susceptance to earth of the lines can be neglected and the mathematical model of
a network is a graph in which each physical connection between a pair of vertices is repre-
sented by a single edge characterized by a complex weight with nonnegative real part and
nonpositive imaginary part called admittance, (see [96, 99]).

Discrete vector calculus on AC electrical networks has been less studied than the one on
DC networks. In [30], some of the concepts of a version of calculus in networks with general
complex weights are introduced, but without the structure of vector fields. We propose a
generalization of the vector calculus and difference operators in [35] to include the case of
AC networks.

Definition 1.3.1. An electrical network is a pair Γ = (V, a) where V is a finite nonempty set
called vertex set, and a ∈ C (V × V,C), called admittance, satisfies the following properties:

(i) a = c− ib where c, b ∈ C +(V × V ) and the kernel c is called conductance whereas the
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kernel b is called susceptance.

(ii) c and b are symmetric and c(x, x) = b(x, x) = 0, for any x ∈ V .

In the particular case the network is operating in DC, b = 0, so the network Γ = (V, c)
is a real weighted graph. In a DC network, the kernel r ∈ C +

∞(V × V ) such that for every
(x, y) ∈ V × V , r(x, y) = 0 if x = y and r(x, y) = 1/c(x, y) if x ̸= y is named resistance.
Also, we get that r(x, y) = +∞ iff x ̸= y and x ̸∼ y. Given x, y ∈ V , and a path from x to
y, we define the resistance of the path as the sum of the resistances of all edges in the path.
We denote by dr(x, y) the resistance distance in the graph, that is defined as the minimum
of the resistances of all existing paths from x to y if x and y belong to the same connected
component of G and as dr(x, y) = ∞ otherwise.

An electrical network Γ = (V, a) has an associated graph G(Γ) = (V,E(Γ)) called its
“network topology”. The set of edges of the network is E(Γ) =

{
exy such that (x, y) ∈

supp(a)
}
. Note that E(Γ) is well defined because a(x, y) ̸= 0 iff a(y, x) ̸= 0. For any

exy ∈ E(Γ), we denote by a(exy) the value a(x, y) = a(y, x) ̸= 0. Note that a(x, x) = 0
for any x ∈ V , so (V,E(Γ)) is a finite undirected simple graph without loops, i.e., without
edges from a vertex to itself. The inverse of the value of the admittance at an edge exy ∈ E,

1

a(exy)
=

(
c

c2 + b2
+ i

b

c2 + d2

)
(x, y), is called the impedance of exy. The real and imaginary

parts of the impedance are nonnegative.

All the concepts defined in the previous section can be considered for the graph G(Γ) =
(V,E(Γ)) which is a topology of a network Γ, and we will denote them substituting the
dependency of the graph from the dependency of the network. As an example, we will
denote by C (Γ,C) the subspace C (G(Γ),C), and we will use the expression network with
boundary to refer to a network whose topology is a graph with boundary. We will denote by
E the set of edges E(Γ) when the electrical network Γ is clear from the context.

For an AC network Γ = (V, a) we consider the two DC networks Γc = (V, c) and Γb =
(V, b), which we will call the conductance and susceptance networks of Γ, respectively. Note
that E(Γ) = E(Γc) ∪ E(Γb).

For x ∈ V , we denote by κ(x) ∈ C the weighted degree of x, i.e., κ(x) =

∫
V

a(x, y) dy.

Given a subset F ⊆ V , we denote by κF (x) ∈ C the sum of weights of the edges adjacent to

x and to a vertex of F , i.e., κF (x) =

∫
F

a(x, y) dy.

Definition 1.3.2. Given an electrical network Γ = (V, a) with topology G = (V,E), and a
subset F ⊆ V , we define the subnetwork ΓF = (F, a|F×F

). Note that its network topology is
GF .

1.3.1 Difference operators on a network

For an electrical network Γ = (V, a), we will consider the derivative and divergence operators
(which depend only on the topology of Γ), and we will also define discrete difference operators
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depending on the admittance a which are the discrete analogues (see [35]) to the gradient,
to the normal derivative, and to the Laplace-Beltrami operator (see [33]).

We define the gradient as ∇ = ad. So, it is the linear map ∇ : C (V,C) −→ X(G), which
assigns to each u ∈ C (V,C) the flow ∇u, such that

∇u(x) =
∑
y∼x

a(x, y)(u(y)− u(x))exy, for each x ∈ V .

The Laplacian of Γ is the endomorphism of C (V,C) given by L = −div ◦ ∇. For any
u ∈ C (V,C) and any x ∈ V , as ∇u is a flow, from Proposition 1.2.4:

L(u)(x) =
∑
y∈V

a(x, y)
(
u(x)− u(y)

)
.

Given a subnetwork ΓF = (F, a|F×F
), we denote its Laplacian as LF . Note that the re-

striction of the Laplacian to C (F,C), L|C (F,C), is equal to LF iff ΓF is a connected component
of Γ or the union of several of them.

We denote by Lc and Lb the Laplacian of the conductance and susceptance (DC) networks
of Γ, respectively. Clearly, L = Lc − iLb.

Several authors have considered a discrete version of the Green identities for DC networks,
(see [46, 67]). The next result is a generalization to the case of AC networks.

Proposition 1.3.3. Let Γ = (V, a) be an electrical network whose decomposition in connected
components is Γ = ΓV1 ⊔ ... ⊔ ΓVs. Given u, v ∈ C (V,C) the following properties hold:

(i) First Green Identity,∫
V

L(u)vdx =
1

2

∫
V×V

a(x, y)
(
u(x)− u(y)

)(
v(x)− v(y)

)
dxdy

(ii) Second Green Identity, ∫
V

L(u)vdx =

∫
V

uL(v)dx.

(iii) Gauss’ Theorem, ∫
Vi

L(u)dx = 0, for every i = 1, ..., s.

Proof. Given u, v ∈ C (V,C), by the definition of divergence, we get that∫
V

L(u)vdx = −⟨div(∇u), v⟩ = ⟨∇u, dv⟩. (1.2)

The first Green identity follows applying Lemma 1.2.2 to the last inner product, and
considering that when we integrate over V ×V , we are summing the quantity a(x, y)

(
u(x)−

u(y)
)(
v(x)− v(y)

)
corresponding to each edge exy twice.
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The second identity follows directly from the first one. Gauss’ theorem is obtained
substituting v = χ

Vi
in (1.2).

If Γ is a DC network, then by Proposition 1.3.3-(i), its Laplacian is a positive semidefinite
operator, and by Proposition 1.3.3-(ii), it is self-adjoint.

In the case Γ is an AC network, for any u, v ∈ C (V,C), we have ⟨L(u), v⟩ = ⟨u,L(v)⟩, so
L∗ = C ◦ L ◦ C, and thus the Laplacian is a complex symmetric operator. As L∗

c = Lc and
L∗

b = Lb, we have that L∗ = Lc + iLb. As a consequence, the real part of the Laplacian is
the positive semidefinite operator ℜ(L) = Lc and the imaginary part of the Laplacian is the
negative semidefinite operator ℑ(L) = −Lb.

We define the energy of a network [35] as the bilinear form on C (V,C) given by E(u, v) =
⟨u,L(v)⟩, that is,

E(u, v) =
∫
V

uL(v)dx =
1

2

∫
V×V

a(x, y)
(
u(x)− u(y)

)(
v(x)− v(y)

)
dxdy.

For DC networks, the energy is a positive semidefinite symmetric form, that is, for any
u, v ∈ C (V,C), we have E(u, v) = E(v, u) and E(u, u) ≥ 0. Additionally, the restriction of
the energy to C (V )×C (V ) is a real bilinear form. For AC networks, E(u, v) = ⟨u,Lc(v)⟩+
i⟨u,Lb(v)⟩ = ⟨L∗(u), v⟩ = E(v, u) for any u, v ∈ C (V,C); and the real and imaginary parts
of E(u, u) are nonnegative for any u ∈ C (V,C).

Lemma 1.3.4. Let Γ = (V, a) be an electrical network and u ∈ C (V,C). Then, the following
statements are equivalent:

(i) u is constant on each connected component of Γ.

(ii) L(u) = 0.

(iii) E(u, u) = 0.

Proof. The implications (i) =⇒ (ii) and (ii) =⇒ (iii) are trivial. In order to see that
(iii) =⇒ (i), notice that by the First Green Identity:

E(u, u) =
∑

{x,y}∈E

a(x, y) |u(x)− u(y)|2 .

The real and imaginary parts in each summand of the previous expression are nonnegative,
so if E(u, u) = 0, then u(x) = u(y) whenever a(x, y) ̸= 0.

As a consequence, a basis for the null space of L is
{
χ

V1
, ..., χ

Vs

}
, where Γ = ΓV1⊔ ...⊔ΓVs

is the decomposition in connected components of Γ.

Remark 1.3.5. After fixing a labeling {x1, ..., xn} on the vertex set V of a network Γ =
(V, a), we denote by L the matrix corresponding to its combinatorial Laplacian, L. The
matrix L is called the Admittance matrix of Γ if it is an AC network and the Laplacian
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matrix of Γ if it is a DC network. Denoting ajk ≡ a(xj, xk), L is the n× n singular complex
symmetric matrix defined by:

L(xj, xk) =


−ajk if {xj, xk} ∈ E∑

t̸=j ajt if j = k

0 otherwise.

(1.3)

If we write an admittance matrix as the sum of its real and imaginary parts, then L =
Lc − iLb, where Lc and Lb are the Laplacian matrices of the conductance network Γc = (V, c)
and the susceptance network Γb = (V, b), respectively.

For DC networks, the Laplacian matrix L is positive semidefinite. Moreover, it is an
M -matrix, i.e. its off-diagonal entries are nonpositive and the real parts of its eigenvalues
are nonnegative. Additionally, it is diagonally dominant, i.e., |L(x, x)| ≥

∑
y ̸=x |L(x, y)| for

every x ∈ V .

Given a network Γ = (V, a), and F ⊂ V , the normal derivative of a function u ∈ C (V,C)
with respect to F is defined as the function in C (δ(F ),C) given by

∂u

∂n
F

(x) = [∇u(x), n
F
(x)] =

∑
y∈F

a(x, y)
(
u(x)− u(y)

)
, for any x ∈ δ(F ).

We remark that the normal derivative of a function u with respect to F only depends of
the values of u on the interior and exterior boundaries of F .

The following result is an extension of Proposition 1.3.3 to the case in which we integrate
over a subset of vertices. It is also an extension of a result given in [35] for DC networks.

Proposition 1.3.6. Given u, v ∈ C (V,C) and F ⊂ V the following properties hold:

(i) First Green Identity,∫
F

L(u)vdx =
1

2

∫
(F̄×F̄ )\(δ(F )×δ(F ))

a(x, y)
(
u(x)− u(y)

)(
v(x)− v(y)

)
dxdy

−
∫
δ(F )

∂u

∂n
F

vdx.

(ii) Second Green Identity,∫
F

(
L(u)v − uL(v)

)
dx =

∫
δ(F )

(
u
∂v

∂n
F

− ∂u

∂n
F

v

)
dx.

(iii) Gauss’ Theorem, ∫
F

L(u)dx = −
∫
δ(F )

∂u

∂n
F

dx.
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Proof. For any x ∈ F , L(u)(x) =
∑
y∈F̄

a(x, y)
(
u(x)− u(y)

)
, so we get

∫
F

L(u)vdx =

∫
F

∫
F̄

a(x, y)
(
u(x)− u(y)

)
v(x)dydx

=

∫
F̄

∫
F̄

a(x, y)
(
u(x)− u(y)

)
v(x)dydx

−
∫
δ(F )

∫
F̄

a(x, y)
(
u(x)− u(y)

)
v(x)dydx.

Then, on one hand,∫
F̄

∫
F̄

a(x, y)
(
u(x)− u(y)

)
v(x)dydx =

1

2

∫
F̄×F̄

a(x, y)
(
u(x)− u(y)

)(
v(x)− v(y)

)
dxdy,

and on the other hand,∫
δ(F )

∫
F̄

a(x, y)
(
u(x)−u(y)

)
v(x)dydx =

∫
δ(F )

v(x)

(
∂u

∂n
F

(x)+

∫
δ(F )

a(x, y)
(
u(x)− u(y)

)
dy

)
dx,

so we obtain the first Green identity. The second Green identity and Gauss’ theorem
follow trivially from the first Green identity.

Finally, we introduce the following notations and lemma, which are generalizations of the
ones in [35] to include the case of AC networks.

Given F ⊂ V and a kernel K, for each x ∈ δ(F ) and each y ∈ V , we denote by ∂K
∂nx

(x, y)

the value ∂Ky

∂n
F
(x); and for each x ∈ V and each y ∈ δ(F ), we denote by ∂K

∂ny
(x, y) the value

∂Kx

∂n
F
(y). When K ∈ C (V × V,C), we have ∂K

∂nx
∈ C (δ(F )× V,C) and ∂K

∂ny
∈ C (V × δ(F ),C).

Meanwhile, when K ∈ C (V × V ), we have ∂K
∂nx

∈ C (δ(F )× V ) and ∂K
∂ny

∈ C (V × δ(F )).

Lemma 1.3.7. Let K be a complex, respectively real, kernel on V , then we have

∂2K

∂nx∂ny

=
∂2K

∂ny∂nx

,

and both are complex, respectively real, kernels on δ(F ). In addition, for each x, y ∈ δ(F ):

∂2K

∂nx∂ny

= κF (x)κF (y)K(x, y)− κF (x)

∫
F

a(y, z)K(x, z)dz

−κF (y)
∫
F

a(x, z)K(z, y)dz +

∫
F

∫
F

a(x, u)a(y, z)K(u, z)dudz.

Moreover, ∂2K
∂nx∂ny

is a symmetric kernel when K is.
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Remark 1.3.8. The physical laws governing the current transmission in electrical networks
can be stated using the difference operators that we have defined. For AC networks, the
potential in the network can be represented by a function u ∈ C (V,C). Then, by Ohms’
law, −∇u represents the flow of electrical current. That is, each of the coefficients in the
coordinate basis of −∇u(x) is equal to the current flowing from x to each of its neighbours.
Also, by Kirchhoff’s Current Law, L(u) is the function assigning to each vertex the current
injected at it when the potential at the network is u. Then, uL(u) is the function assigning
to each vertex the apparent power injected at it when the potential at the network is u, and
thus E(u, u) is equal to the total power dissipated at the network when the potential is u.
For DC networks, the potential in the network can be represented by u ∈ C (V ) and the rest
of results are analogous, with the additional result that the dissipated power in the network
is always nonnegative.

1.4 Boundary value problems

The objective of this section is to review several results about the Dirichlet and Poisson
problems on DC networks that can be found in [17, 35, 36], and to extend them to the case
of AC networks. We study the following problem.

Given an electrical network Γ, F ⊆ V , h ∈ C (F,C) and g ∈ C (F c,C), find u ∈ C (V,C)
such that

L(u) = h on F, u = g on F c. (1.4)

When F = V this is called the Poisson problem and when F ⊊ V this is called the
Dirichlet problem. We have that F c = δ(F )⊔Ext(F ), but because the values of the Laplacian
of a function at F only depend on the values of the function at F̄ , the set of solutions of
(1.4) only depends on the values of g at δ(F ), so it is called a boundary value problem on F .

The associated homogeneous boundary value problem consists in finding u ∈ C (V,C) such
that

L(u) = 0 on F, u = 0 on F c. (1.5)

Lemma 1.4.1. Let Γ = ΓV1 ⊔ ... ⊔ ΓVs be the decomposition in connected components of Γ.
Then, the set of solutions of the homogeneous boundary value problem (1.5) is the vector

subspace V of C (F,C) spanned by
{
χ

Vi
such that Vi ⊆ F

}
.

Proof. Clearly, any function of V is a solution of (1.5). Now, let u ∈ C (F,C) be a solution
of (1.5). Then,

E(u, u) =
∫
V

uL(u)dx =

∫
F

uL(u)dx+
∫
F c

uL(u)dx = 0,

so u is a linear combination of
{
χ

V1
, ..., χ

Vs

}
. As u = 0 in F c, u must be equal to zero in

each Vi such that Vi ∩ F c ̸= ∅, so u ∈ V .
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Proposition 1.4.2. Let Γ = (V, a) be an electrical network and let Γ = ΓV1 ⊔ ...⊔ ΓVs be its

decomposition in connected components. Then, (1.4) has a solution if and only if

∫
Vi

h dx = 0

for each i such that Vi ⊆ F . Moreover, if the problem has a solution, then there is a unique

solution v such that

∫
Vi

v dx = 0 for each i such that Vi ⊆ F .

Proof. In the case (1.4) has a solution, then, for any solution u, the set of all its solutions is
u+ V .

Consider the problem (1.4) of finding u ∈ C (V,C) such that

L(u) = h− L(g) on F, u = 0 on F c. (1.6)

Then u is a solution to (1.6) iff u+ g is a solution to (1.4).

We denote by M : C (F,C) −→ C (F,C) the linear operator M (u) = L(u) on F for each
u ∈ C (F,C). Considering the inner product on C (F,C) induced by the standard one on
C (V,C), we have that, for every u, v ∈ C (F,C):

⟨M (u), v⟩ =
∫
F

M (u)vdx =

∫
V

L(u)vdx =

∫
V

uL(v)dx =

∫
F

uM (v)dx = ⟨u,M (v)⟩,

so M ∗ = C ◦ M ◦ C, and thus M is a symmetric operator. Now, ker(M ) = V . Moreover,
u ∈ ker(M ∗) iff M (u) = 0, that is, iff u ∈ ker(M ). As u ∈ V iff u ∈ V , we have that
ker(M ) = ker(M ∗), and, by the Fredholm alternative, Img(M ) = V⊥.

Then, (1.6) has a solution iff ⟨h − L(g), χ
Vi
⟩ = 0 for each i such that Vi ⊆ F . This is

equivalent to saying
∫
Vi
h dx =

∫
Vi
L(g) dx = 0 for each i such that Vi ⊆ F , and the last

equality follows from Gauss’ Theorem.

To prove the uniqueness, we see that there is a unique solution w to (1.6) such that
w ∈ V⊥. This is equivalent to that v = w + g is the only solution to (1.4) satisfying that∫

Vi

v dx =

∫
Vi

w dx = 0

for each i such that Vi ⊆ F .

We say that a function u is harmonic on F when L(u) = 0 on F . The particular case of
(1.4) in which h = 0 consists in, given the values of a function at F c, seeking for an extension
of the function at F that is harmonic on F . In this case, any solution must be constant on
each i such that Vi ⊆ F , so we get the following result.

Corollary 1.4.3. Given an electrical network Γ, F ⊆ V and g ∈ C (F c,C), the boundary
value problem of finding u ∈ C (V,C) such that

L(u) = 0 on F, u = g on F c, (1.7)

always has a solution. Moreover, it has a unique solution that is equal to zero on every
connected component of the network that is contained in F , that we denote by ug.
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Remark 1.4.4. Let v be a solution of (1.7). Then ∂v
∂n

F
= ∂ug

∂n
F
, L(v) = L(ug) and E(v, v) =

E(ug, ug).

In [30], a uniqueness result for a Dirichlet problem that is similar to (1.7) was obtained.
The problem there is partially more general than (1.7) in the sense that they consider the
possibility of adding a Schrödinger potential with some restrictions and the possibility of
having negative susceptance, but it is also partially more restrictive than (1.7) in the sense
that they only study the problem for connected networks. In the connected case, we obtain
the same uniqueness result immediately from Corollary 1.4.3.

Corollary 1.4.5. If Γ is a connected network and h = 0, then any Dirichlet problem has a
unique solution and the set of solutions to the Poisson problem is the set of constant functions
on V .

Let Γ = ΓV1 ⊔ ... ⊔ ΓVs be the decomposition in connected components of Γ, and F ⊂ V .
We denote by F0 the union of the Vi such that Vi ⊆ F , and F1 = F \ F0. Analogously to
the operator M defined in the proof of Proposition 1.4.2, we denote by MF1 : C (F1,C) −→
C (F1,C) the linear operator such that for each u ∈ C (F1,C), MF1(u) = L(u) on F1, which
is an automorphism.

Definition 1.4.6. We define the Green operator of F as J = MF1

−1, which is an automor-
phism of C (F1,C). For any h ∈ C (F1,C), u = J (h) is the unique solution to the boundary
problem L(u) = h on F1 and u = 0 on F c ⊔ F0.

We define the Poisson operator of F as the linear operatorK : C (F c,C) −→ C (V \ F0,C)
such that, for each g ∈ C (F c,C), K (g) = ug. That is, K (g) is the unique function satisfying
L(K (g)) = 0 on F , K (g) = g on F c and K (g) = 0 on F0.

Lemma 1.4.7. The Green operator J is symmetric with respect to the inner product on
C (F1,C) induced by the standard one on C (V,C).

Proof. Given g, h ∈ C (F1,C), we denote u = J (g) and v = J (h). Then we have L(u) = g
and L(v) = h on F1, and thus:

⟨J (g), h⟩ =
∫
F1

J (g)hdx =

∫
V

uL(v)dx =

∫
V

L(u)vdx =

∫
F1

gJ (h)dx = ⟨g,J (h)⟩,

so J ∗ = C ◦ J ◦ C.

The kernel J ∈ C (F1 ×F1,C) associated with the Green operator J on F , is called the
Green kernel. By the previous lemma, it is symmetric. The matrix associated with MF1 is
L(F1;F1), so the matrix associated with J is L(F1;F1)

−1.

We can extend the Poisson operator K on F to an endomorphism of C (V \ F0,C) such
that the image of any vector in C (F1,C) is equal to zero. By the Kernel Theorem, it has an
associated kernel K ∈ C ((V \ F0)× F c,C), which is called the Poisson kernel.

The following result gives a characterization of the Green and Poisson kernels as solutions
of boundary value problems, and a relation between them.
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Proposition 1.4.8. For every y ∈ F1, the function Jy is determined by L(Jy) = εy on F1.
For every y ∈ F c, the function Ky is determined by L(Ky) = 0 on F , Ky = εy on F c and
Ky = 0 on F0. Furthermore,

K(x, y) = εy(x)−
(
∂J

∂ny

)
(x, y), for every x ∈ V \ F0 and y ∈ F c.

Moreover, ∂K
∂nx

∈ C (δ(F )× δ(F ),C) and, for every x, y ∈ δ(F ),(
∂K

∂nx

)
(x, y) = εy(x)κ

F (x)−
(

∂2J

∂nx∂ny

)
(x, y).

As a consequence, ∂K
∂nx

is symmetric on C (δ(F )× δ(F ),C).

Proof. By the correspondence between kernels and operators, for every y ∈ F1, Jy = J (εy).
As J is an automorphism, this is equivalent to L(Jy) = 0 on F . Similarly, for every y ∈ F c,
Ky = K (εy) and thus u = Ky is the unique solution of the boundary problem L(u) = 0 on
F , u = εy on F c and u = 0 on F0. That problem is equivalent to seeking for v ∈ C (F1,C)
such that L(v) = −L(εy) on F1, in the sense that Ky = εy − J (L(εy)|F1).

Now, for every x ∈ F1, L(εy)(x) =
∫
V
a(x, z)(εy(x)− εy(z)) dz = −a(x, y), so we get:

J (L(εy)|F1) = −
∫
F1

J(x, z)ay(z)dz∫
F1

a(y, z) (J(x, y)− J(x, z)) dz =

(
∂J

∂ny

)
(x, y).

Now, we define the kernel ε ∈ C (F c × F c,C) as ε(x, y) = εy(x) for every x, y ∈ F c. The
expression of ∂K

∂nx
follows from the fact that, for every x ∈ δ(F ):

∂ε

∂nx

(x, y) =
∂εy
∂n

F

(x) =

∫
F

a(x, z) (ε(x, y)− ε(x, z)) dz = εy(x)κ
F (x).

Clearly, ∂ε
∂nx

∈ C (δ(F ) × δ(F ),C). Moreover, ∂J
∂ny

∈ C (F1 × δ(F ),C), so also ∂2J
∂nx∂ny

∈
C (δ(F )× δ(F ),C); and thus ∂K

∂nx
∈ C (δ(F )× δ(F ),C). The symmetry of this kernel follows

from Lemma 1.3.7.

Remark 1.4.9. In the particular case of (1.4) in which Γ is a DC electrical network, h ∈
C (F ) and g ∈ C (F c), we can restrict the problem to seek only for real solutions, i.e., to seek
for u ∈ C (V ) such that

L(u) = h on F, u = g on F c. (1.8)

Then, restricting to real function spaces, we can obtain for (1.8) results that are analogous
to all the results in the section. As a consequence, in that case, the solution v in Proposition
1.4.2 and the solution ug in Corollary 1.4.3 are real. Because of that, we can consider the real
restrictions of the Green and Poisson operators, that we also denote as J : C (F1) −→ C (F1)
and K : C (F c) −→ C (V \ F0), respectively. Its associated Green and Poisson kernels are
real and also satisfy Lemma 1.4.7 and Proposition 1.4.8, plus the fact that, in addition,
∂K
∂nx

∈ C (δ(F )× δ(F )).
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1.5 The Dirichlet-to-Neumann map

Consider an electrical network Γ = (V, a) and F ⊂ V . Recall that for any function g ∈
C (F c,C), the Poisson operator gives a solution K (g) = ug ∈ C (V,C) to (1.7), that is, an
extension of g to all V that is harmonic on F . This section is devoted to the study of the
relationship between g and L(ug), which is given by the following linear operator.

Definition 1.5.1. Given an AC (respectively DC) electrical network and F ⊂ V , the
Dirichlet-to-Neumann map is the following endomorphism Λ: C (F c,C) −→ C (F c,C) (re-
spectively Λ: C (F c) −→ C (F c)) defined for any g ∈ C (F c,C) (respectively g ∈ C (F c))
as:

Λ(g) =
∂ug
∂n

F

+ LF c

(g) = L(ug) = (L ◦ K )(g).

Note that, because of Remark 1.4.4, the definition of the Dirichlet-to-Neumann map is
independent of the chosen solution of (1.7).

In the literature, the Dirichlet-to-Neumann map is only defined for networks with bound-
ary. For AC networks, it is defined as the function Υ: C (δ(F ),C) −→ C (δ(F ),C) such that,

for any g ∈ C (δ(F ),C), Υ(g) =
∂ug
∂n

F

. Similarly, for DC networks, it is defined as the func-

tion Υ: C (δ(F )) −→ C (δ(F )) such that, for any g ∈ C (δ(F )), Υ(g) =
∂ug
∂n

F

. Note that, for

networks with boundary, our definition agrees with this one, i.e. Λ = Υ. This is because the
subnetwork of Γ corresponding to F c is ΓF c

= (F c, 0), so E(ΓF c
) = ∅ and thus its Laplacian

LF c
is zero.

For DC networks, the Dirichlet-to-Neumann map was considered in [52]. Later, in [10],
it is proved that the Dirichlet-to-Robin map, which is a generalization of the Dirichlet-to-
Neumann map to the case of a Schrödinger potential, is self-adjoint and positive semidefi-
nite. The characterization of possible Dirichlet-to-Neumann maps of networks with complex
weights at the edges whose imaginary parts are not necessarily nonpositive was first derived
in [78]. It was later rediscovered independently in [87]. A generalization of the Dirichlet-to-
Robin map to these networks with complex weights for certain complex Schrödinger poten-
tials was defined in [30].

The extension of the map to general electrical networks will allow us to introduce in
Section 1.7 the effective admittance from this map. This will allow us in Section 3.3 to give
a novel physical interpretation to the product of the conductance of an edge by its effective
resistance and, as a consequence, to the Algorithm 1 of spectral sparsification of networks.

We can also give the following physical interpretation to the Dirichlet-to-Neumann map.
Under the condition that there is zero injected current at the vertices of F for any potential,
the values of a potential at F c uniquely determine the values of that potential at the interior
boundary of F , and thus, they also uniquely determine the values of injected current at F c.
Moreover, the relationship between potential at F c and injected current at F c is linear.

In the electrical networks of the real world usually there is a subset of vertices F that
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are not associated to any generator or consumer in which there is never injected current,
and thus the Dirichlet-to-Neumann map allows us to study the relationship between current
and voltage in the rest of the vertices without having to calculate the voltage at F . Another
practical application of this discrete operator is that, for networks with boundary, it is
a mimetic discretization of the continuous Dirichlet-to-Neumann map, that is defined as
follows in [6].

Let Ω ⊆ Rn be a bounded connected open set with n ≥ 2 and a bounded measurable
conductivity σ which satisfies λ ≥ σ ≥ λ−1 almost everywhere in Ω for some λ > 0. Given
a potential g ∈ H1/2(∂Ω) in the trace space on the boundary ∂Ω, the induced potential ug
on Ω solves the Dirichlet problem of finding u ∈ H1(Ω) such that

∇ · (σ∇u) = 0 in Ω, u|∂Ω = g.

The Dirichlet-to-Neumann map, (see [6]), is defined as the operator
Λ: H1/2(∂Ω) −→ H1/2(∂Ω) such that

Λσ(g) =

(
σ
∂ug
∂n

) ∣∣∣∣
∂Ω

,

for every g ∈ H1/2(∂Ω), where n denotes the outer unit normal vector to ∂Ω.

Roughly speaking, H1(Ω) is the subset of the Hilbert space of square-integrable functions
L2(Ω) whose weak derivatives belong to L2(Ω), and therefore with weak gradient in L2(Ω).
These functions can be extended to functions on ∂Ω. The set of these extensions is H1/2(∂Ω),
which is a subspace of functions of L2(∂Ω) which have certain regularity. The consideration
of these spaces allows the variational treatment of the problem and the proof that there is a
solution (in H1(Ω)). The detailed definition and properties of these spaces can be found in
[3, 31].

The knowledge of the properties of the discrete Dirichlet-to-Neumann operator will allow
us to study the discrete problem analogous to Calderón’s inverse conductivity problem, which
will be the objective of Chapter 2.

The bilinear form on C (F c,C) associated to the Dirichlet-to-Neumann operator is given,
for every g, h ∈ C (F c,C), by:

⟨h,Λ(g)⟩ =
∫
V

hΛ(g)dx = ⟨uh,L(ug)⟩ = E(uh, ug).

By the First Green identity, and considering that L(ug) = 0 on F , we have that

⟨h,Λ(g)⟩ =
∫
δ(F )

uh
∂ug
∂n

F

dx+

∫
F c

hLF c(g)dx

=
1

2

∫
V×V

a(x, y)
(
uh(x)− uh(y)

)(
ug(x)− ug(y)

)
dxdy.

Proposition 1.5.2. Let Γ = ΓV1 ⊔ ... ⊔ ΓVs be the decomposition in connected components
of Γ, and F ⊂ V . The Dirichlet-to-Neumann map Λ is symmetric, singular, its real part is
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positive semidefinite and its imaginary part is negative semidefinite. Moreover, its null space
is the set of functions that are constant on each Vi ∩F c that is not empty. Furthermore, the
symmetric kernel N ∈ C (F c × F c,C) of Λ is:

N = L|
Fc×Fc −

∂2J

∂nx∂ny

.

Proof. For every g, h ∈ C (F c,C), we have that

⟨Λ(g), h⟩ − ⟨g,Λ(h)⟩ =
∫
V

Λ(g)h− gΛ(h)dx

=

∫
δ(F )

(
∂ug
∂n

F

uh − ug
∂uh
∂n

F

)
dx+

∫
F c

(
LF c

(g)h− gLF c

(h)
)
dx = 0,

where the integral in δ(F ) is equal to zero by the Second Green Identity on F , and the
integral in F c is equal to zero by the Second Green Identity on the whole subnetwork ΓF c

.
As a consequence, Λ∗ = C ◦ Λ ◦ C, so Λ is symmetric.

On the other hand, for any g ∈ C (F c,C), it is satisfied that

⟨Λ(g), g⟩ = E(ug, ug) =
1

2

∫
V×V

a(x, y)
∣∣ug(x)− ug(y)

∣∣2dxdy
=

1

2

∫
V×V

c(x, y)
∣∣ug(x)− ug(y)

∣∣2dxdy
−i1

2

∫
V×V

b(x, y)
∣∣ug(x)− ug(y)

∣∣2dxdy.
Considering that ⟨Λ∗(g), g⟩ = ⟨g,Λ∗(g)⟩ = ⟨Λ(g), g⟩; it is clear that

⟨ℜ(Λ)(g), g⟩ ≥ 0 and ⟨ℑ(Λ)(g), g⟩ ≤ 0.

Now, as in the previous section, if we denote by F0 the union of the Vi such that Vi ⊆ F ,
then F1 = F \F0 is the union of the Vi such that Vi∩F c ̸= ∅. For any g ∈ C (F c,C), Λ(g) = 0
iff L(ug) = 0 iff ug is constant at each Vi. If the last condition holds, it is clear that g is
constant on each Vi ∩ F c such that Vi ⊆ F1. Suppose now that g =

∑
i:Vi⊆F1

kiχVi∩Fc with
each ki ∈ C. Next, we will prove that for this g, ug is piecewise constant on each Vi, which
is enough to demonstrate the claim in the proposition about the null space of Λ.

By definition, ug is the unique solution to the boundary problem of finding u ∈ C (V \
F0,C) such that L(u) = 0 on F and u = g on F c. We consider the equivalent problem of
seeking for v ∈ C (F1,C) such that L(v) = −L(g) on F1.

The unique solution to this last problem is v =
∑

i:Vi⊆F1
kiχVi∩F

, because

L(
∑

i:Vi⊆F1

kiχVi∩F
) =

∑
i:Vi⊆F1

kiL(χVi∩F
) =

∑
i:Vi⊆F1

kiL(χVi
− χ

Vi∩Fc ) = −L(g).

Then, ug =
∑

i:Vi⊆F1
kiχVi∩F

+ g =
∑

i:Vi⊆F1
kiχVi

, so ug is piecewise constant on each Vi.



Monotonicity on DC networks 33

On the other hand, denoting as LF c
the kernel of LF c

, by the definition of Λ, we have that
N = LF c

+ ∂K
∂nx

. As a consequence, from Proposition 1.4.8, we get that for every x, y ∈ F c:

N(x, y) = LF c

(x, y) +

(
∂K

∂nx

)
(x, y) = LF c

(x, y) + εy(x)κ
F (x)−

(
∂2J

∂nx∂ny

)
(x, y).

For every x, y ∈ F c, we have that

LF c
(x, y) = LF c

(εy)(x) =

∫
F c

a(x, z)(εy(x)− εy(z)) dz,

L(x, y) = L(εy)(x) =
∫
V

a(x, z)(εy(x)− εy(z)) dz,

so L(x, y) = LF c
(x, y) except when x = y ∈ δ(F ), for which L(x, x) = LF c

(x, x) + κF (x).
Therefore, we obtain the desired expression of the kernel N .

Corollary 1.5.3. If Γ is a DC network, then the Dirichlet-to-Neumann map Λ is self-adjoint
and positive semidefinite. Moreover, N ∈ C (F c × F c).

Remark 1.5.4. After fixing a labeling {x1, ..., xn} on the vertex set V of a network Γ =
(V, a), we denote by N ∈ M|F c|×|F c|(C) the matrix corresponding to the Dirichlet-to-Neumann
map, Λ, which is named the response matrix of Γ. It is a singular complex symmetric matrix.

We can write a response matrix as N = ℜ(N) + iℑ(N), the sum of its real and imaginary
parts, with the property that ℜ(N) is positive semidefinite and ℑ(N) is negative semidefinite.

As a consequence, for every x ∈ F c, N(x, x) = −
∑

y ̸=x N(x, y) has a nonnegative real
part and a nonpositive imaginary part.

For DC networks, the response matrix N is real, positive semidefinite and its diagonal
entries are nonnegative.

Moreover, applying Lemma 1.3.7 to the kernel J associated to the Green operator (whose
matrix is L(F1;F1)

−1), we get that the matrix of ∂2J
∂nx∂ny

is L(F c;F1)L(F1;F1)
−1L(F c;F1)

T ,

because J is a kernel on F1, and thus the first three terms in the right side of the equation
of that lemma are equal to zero.

Therefore,

N = L(F c;F c)− L(F c;F1)L(F1;F1)
−1L(F c;F1)

T .

Thus N is equal to the Schur complement of L(F1;F1) of L
(
(V \ F0); (V \ F0)

)
, which is

denoted as L
(
(V \ F0); (V \ F0)

)/
L(F1;F1), (see [51]).

1.6 Monotonicity on DC networks

In this section we will review some results of monotonicity of real functions on DC networks
(Propositions 1.6.1, 1.6.2, 1.6.3 and 1.6.4), that can be found in [9] and [35]. This will allow
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us to prove additional properties (see Proposition 1.6.5, Lemma 1.6.7 and Proposition 1.6.8)
of the Dirichlet-to-Neumann map of a DC network.

The results in this section rely on the order of R and on the fact that the restriction of
the Laplacian of a DC network to the space of real functions C (V ) is an endomorphism of
C (V ), so they can not be generalized to AC networks. In fact, we show a counterexample
to Proposition 1.6.5 in the AC case.

Let Γ = (V, c) be a DC network and F ⊆ V . We say that a function u ∈ C (V ) is
superharmonic (respectively subharmonic) on F when L(u) ≥ 0 (respectively L(u) ≤ 0) on
F . Also, we say that a function u ∈ C (V ) is strictly superharmonic (respectively strictly
subharmonic) on F when L(u) > 0 (respectively L(u) < 0) on F .

Proposition 1.6.1 (Hopf’s minimum principle). Let Γ = (V, c) be a DC network, F ⊆ V
a connected subset, and u ∈ C (V ) superharmonic on F . If there is x∗ ∈ F such that
u(x∗) = min

y∈F̄

{
u(y)

}
, then u is constant on F̄ and it is harmonic on F .

Proof. As c is nonnegative,

0 ≤ L(u)(x∗) =
∫
F̄

c(x∗, y)(u(x∗)− u(y))dy ≤ 0.

So u(y) = u(x∗) whenever c(x, y) > 0, that is, for any y ∼ x. We can iterate this argument
evaluating the Laplacian at any vertex y ∈ F for which we know that u(y) = u(x∗), until we
get that u = u(x∗) on F̄ . As a consequence, L(u) = 0 on F .

The two following results are consequences of Hopf’s minimum principle.

Proposition 1.6.2 (Monotonicity Principle). Let Γ = (V, c) be a DC network, F ⊆ V a
connected subset, and u ∈ C (V ) superharmonic on F . If δ(F ) = ∅, then u is constant on F̄
and it is harmonic on F . Moreover, if δ(F ) ̸= ∅ and u ≥ 0 on δ(F ), then either u > 0 on F
or u = 0 on F̄ .

Proof. The result in the case that δ(F ) = ∅ is a straightforward consequence of Gauss’
Theorem.

Now, in the case that δ(F ) ̸= ∅ and u ≥ 0 on δ(F ), if there exists a vertex x∗ ∈ F such
that u(x∗) = 0, then u(x∗) = min

y∈F̄

{
u(y)

}
, so by Hopf’s minimum principle, u = 0 in F̄ .

Proposition 1.6.3 (Minimum Principle). Let Γ = (V, c) be a DC network, F ⊂ V a
connected subset such that δ(F ) ̸= ∅, and u ∈ C (V ) superharmonic on F . Then:

min
y∈F̄

{
u(y)

}
= min

y∈δ(F )

{
u(y)

}
,

and the equality holds if and only if u is constant on F̄ .
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Proof. We define the function v = u − min
y∈δ(F )

{
u(y)

}
χ

F̄
∈ C (V ). As L(χ

F̄
) = 0 on F , v is

superharmonic on F . The function v is also nonnegative on δ(F ), so we obtain the result
applying Proposition 1.6.2 to v.

In the next result we prove that a strictly superharmonic function on F can not have a
local minimum in F , as in the continuous vector calculus.

Proposition 1.6.4. Let Γ = (V, c) be a DC network, F ⊂ V and u ∈ C (V ) strictly super-
harmonic on F . Then, for any x ∈ F , there exists y ∈ F̄ such that y ∼ x and u(y) < u(x).

Proof. Let x ∈ F and suppose that for every vertex y ∈ F̄ adjacent to x, we have u(x) ≤ u(y).
Then we arrive to the following contradiction:

0 < L(u)(x) =
∫
F̄

c(x, y)(u(x)− u(y))dy ≤ 0.

As a consequence of the Minimum Principle, we obtain the following property for the
Dirichlet-to-Neumann map of any DC network.

Proposition 1.6.5. Let Γ = (V, c) be a DC network, F ⊂ V , and let Λ: C (F c) −→ C (F c)
be the Dirichlet-to-Neumann map of Γ and F , whose kernel is N ∈ C (F c × F c). Then, for
any x, y ∈ F c such that x ̸= y, we have that N(x, y) ≤ 0. Moreover, N(x, y) < 0 if and only
if x ∼ y or x and y are connected through F .

Proof. Given x, y ∈ F c such that x ̸= y, we have that

N(x, y) = Λ(εy)(x) =
∂uεy
∂n

F

(x) + LF c

(εy)(x).

On one hand, LF c
(εy)(x) ≤ 0 and LF c

(εy)(x) < 0 iff x ∼ y. On the other hand, as
K(x, y) = εy(x) = 0, we get:

∂uεy
∂n

F

(x) =
∂K

∂nx

(x, y) =
∑
z∈F

c(x, z)
(
K(x, y)−K(z, y)

)
= −

∑
z∈F

c(x, z)K(z, y).

By Proposition 1.4.8, if x /∈ δ(F ) or y /∈ δ(F ),
∂uεy

∂n
F
(x) = 0. Now, for every z ∈ F such

that z ∼ x, we denote by Hz ⊆ F the connected component of F that contains the vertex
z. For any z ∈ F such that z ∼ x, x ∈ δ(Hz) ̸= ∅ and uεy ≥ 0 on δ(Hz), so we get that
K(z, y) = uεy(z) ≥ 0 applying the Monotonicity Principle to uεy , which is harmonic on F .
As a consequence, N(x, y) ≤ 0.

Moreover, for any z ∈ F such that z ∼ x, by the Minimum Principle, K(z, y) > 0 iff
y ∈ δ(Hz). Given that x and y are connected through F iff there exists z ∈ F with z ∼ x
such that y ∈ δ(Hz), we finish the proof.
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As a consequence of Corollary 1.5.3 and Proposition 1.6.5, for DC networks, the response
matrix N has the same properties as a Laplacian matrix. It is a symmetric and diagonally
dominant M -matrix, such that N(x, x) = −

∑
y ̸=x N(x, y) for each x ∈ F c. In fact, it is the

Laplacian matrix of the Kron reduction of the network, (see [58, 60]).

Definition 1.6.6. Let Γ = (V, c) be a DC network, let F ⊂ V , and let ΛF be the Dirichlet-
to-Neumann map of Γ and F , whose kernel is N . The Kron reduction of Γ with respect to F
is the DC network ΓΛF

= (F c, cΛF ) whose conductance kernel cΛF ∈ C +(F c × F c) is defined
for each x, y ∈ F c as cΛF (x, y) = −N(x, y) if x ̸= y and as cΛF (x, y) = 0 if x = y.

Lemma 1.6.7. Let Γ = (V, c) be a DC network, let Γ = ΓV1 ⊔ ...⊔ΓVs be its decomposition in
connected components, let F ⊂ V , let ΛF be the Dirichlet-to-Neumann map of Γ and F , and
let ΓΛF

= (F c, cΛF ) be the Kron reduction of Γ with respect to F . Then, the set of edges of ΓΛF

is E(ΓΛF
) = E

(
ΓF c) ∪ {exy such that x, y ∈ δ(F ) and x and y are connected through F} .

Moreover, the Laplacian of the network is ΛF and the connected components of ΓΛF
are

the sets Vi ∩ F c that are nonempty.

Proof. The fact that ΛF is the Laplacian of the network follows trivially from the definition
of Kron reduction. The statement about the set of edges is a consequence of Proposition
1.6.5. From Proposition 1.5.2, the null space of ΛF is the set of functions that are constant
on each Vi ∩ F c that is not empty, so those sets are the connected components of ΓΛF

.

The last result implies that the operation of taking the Kron reduction is closed on the
set of DC networks. In the next result we prove that, given any two subsets H and F such
that H ⊂ F ⊂ V , the operation of doing the Kron reduction with respect to F is equivalent
to the composition of doing the Kron reduction with respect to H and doing the Kron
reduction of the result with respect to F \H. This composition property has been studied
in the literature from the properties of the Schur complement, (see [50, 58]). Nevertheless,
we provide a different proof using discrete vector calculus tools.

Proposition 1.6.8. Let Γ = (V, c) be a DC network, let H ⊂ F ⊂ V , let ΛF and ΛH be the
Dirichlet-to-Neumann maps of Γ and F and of Γ and H, respectively. Let ΓΛF

= (F c, cΛF )
and ΓΛH

= (Hc, cΛH ) be the Kron reductions of Γ with respect to F and with respect to H,
respectively. We denote as ΣF\H the Dirichlet-to-Neumann map of ΓΛH

= (Hc, cΛH ) and
F \ H; and we denote as

(
ΓΛH

)
ΣF\H

= (F c, cΣF\H ) the Kron reduction of ΓΛH
with respect

to F \H. Then: (
ΓΛH

)
ΣF\H

= ΓΛF
.

Proof. The set of vertices of
(
ΓΛH

)
ΣF\H

and ΓΛF
are equal, so it is sufficient to prove that

ΣF\H = ΛF .

As ΓΛH
is a DC network with set of vertices Hc and Laplacian ΛH , by definition of the

Dirichlet-to-Neumann map, we have ΣF\H = ΛH ◦Ξ, where Ξ is the Poisson operator of F \H
in the network ΓΛH

. The set F c is the complementary of F \ H in Hc, so Ξ is the linear
operator Ξ: C (F c,C) −→ C (Hc \

(
(F \H)0

)
,C) such that for any g ∈ C (F c,C), u = Ξ(g)

is the unique solution of the boundary problem:

ΛH(u) = 0 on F \H, u = g on F c, u = 0 on (F \H)0. (1.9)
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Now, we fix a function g ∈ C (F c,C). By definition, the Laplacian ΛH is equal to
ΛH = L ◦ KH , where KH is the Poisson operator of H in the network Γ. Moreover, ΛH is
an operator on Hc, so ΛH(Ξ(g)) = L

(
(KH ◦ Ξ)(g)

)
= 0 on F . Since F c ⊂ Hc, we get that

(KH ◦ Ξ)(g) = Ξ(g) = g on F c.

The set (F \H)0 in (1.9) stands for the set of connected components of the network ΓΛH

that are contained in F \H. Let Γ = ΓV1⊔ ...⊔ΓVs be the decomposition of Γ in its connected
components. The set (F \H)0 is equal to the union of the nonempty Vi ∩ (F \H) such that
Vi ⊆ F . That is, (F \H)0 is the union of the Vi ∩ (F \H) such that Vi ⊆ F0 and Vi ̸⊆ H0.
Now, KH is the Poisson operator ofH, so (KH◦Ξ)(g) = 0 onH0, and because (F \H)0 ⊆ Hc,
we also have that (KH ◦ Ξ)(g) = Ξ(g) = 0 on (F \ H)0. Since L

(
(KH ◦ Ξ)(g)

)
= 0 on F ,

the function (KH ◦Ξ)(g) must be constant on each connected component Vi ⊆ F0. Whether
a connected component Vi ⊆ F0 is contained in H0 or not, there is at least one vertex of Vi
such that (KH ◦Ξ)(g) is equal to zero, so we get (KH ◦Ξ)(g) = 0 on F0. As a consequence,
u = (KH ◦ Ξ)(g) is a solution of the boundary value problem:

L(u) = 0 on F, u = g on F c, u = 0 on F0. (1.10)

But (1.10) has a unique solution, which is KF (g), where KF is the Poisson operator of
F in the network Γ. Then, (KH ◦Ξ)(g) = KF (g) for every g ∈ C (F c,C), which implies that
(KH ◦ Ξ) = KF . As a consequence, ΣF\H = L ◦ (KH ◦ Ξ) = L ◦ KF = ΛF .

In the case of an AC network, Γ = (V, a), if we take F ⊂ V , and ΛF is the Dirichlet-to-
Neumann map of Γ and F , with kernel N = ℜ(N) + iℑ(N) ∈ C (V × V,C), whose real and
imaginary parts are ℜ(N),ℑ(N) ∈ C (V ×V ), respectively; we can define the Kron reduction
of the network if and only if the following property is satisfied:

ℜ(N)(x, y) ≤ 0, and ℑ(N)(x, y) ≥ 0 for any x, y ∈ F c such that x ̸= y. (1.11)

If (1.11) holds, we can give the analogous definition to Definition 1.6.6 for the AC case.
That is, the Kron reduction of Γ with respect to F is the AC network ΓΛF

= (F c, aΛF ) whose
admittance kernel aΛF ∈ C (F c×F c,C) is defined for each x, y ∈ F c as aΛF (x, y) = −N(x, y)
if x ̸= y and as aΛF (x, y) = 0 if x = y.

Property (1.11) assures that we can write aΛF = cΛF − ibΛF where cΛF , bΛF ∈ C +(V ×V )
are the conductance and susceptance kernels of ΓΛF

, so the Kron reduction is indeed an AC
network. Nevertheless, there is no result analogous to Proposition 1.6.5 for the case of AC
networks that ensures that (1.11) holds for every AC network and every subset, as we can
see in the following counterexample.

Example 1.6.9. Let Γ = (V, a) be the AC spider network in Figure 1.6, which has ℓ = 0
circles and m = 3 radii. We consider the labeling V = {x1, ..., x4}, and the subset F = {x4},
which only contains the central node.

The Admittance matrix of Γ is:

L =


−i 0 0 i
0 −i 0 i
0 0 10 −10
i i −10 10− 2i

 .
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Figure 1.6: AC spider network which does not satisfy (1.11).

The response matrix associated with the Dirichlet-to-Neumann map of Γ and F can be
calculated as the following Schur complement:

N = L(V ;V )
/
L(F ;F ) =

−i 0 0
0 −i 0
0 0 −10

− (10− 2i)−1

 i
i

−10

 [i i −10
]
=

5 + i

52

−1− 10i 1 10i
1 −1− 10i 10i
10i 10i −20i

 =

1

52

 5− 51i 5 + i −10 + 50i
5 + i 5− 51i −10 + 50i

−10 + 50i −10 + 50i 20− 100i

 .
Note that the kernel N associated to the Dirichlet-to-Neumann map satisfies N(x1, x2) =

5 + i, so (1.11) does not hold, and thus N is not the kernel of the Laplacian of a network.

As a conclusion, the operation of taking the Kron reduction is not closed on the set of
AC networks.

1.7 Effective admittance

Definition 1.7.1. Let Γ = (V, a) be an electrical network, and let x, y ∈ V be a pair of
vertices. We denote by Λ the Dirichlet-to-Neumann map of Γ and the set F = V \ {x, y}.
We define the effective admittance between x and y as:

ae(x, y) = Λ(εx)(x) = Λ(εy)(y).

If Γ is a DC network, the effective admittance is also called effective conductance between
x and y, and it is denoted by ce(x, y).
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Recall that, for an AC, respectively DC, network, the Dirichlet-to-Neumann map
Λ: C ({x, y} ,C) −→ C ({x, y} ,C), respectively Λ: C ({x, y}) −→ C ({x, y}) is associated
with the Dirichlet problem of, for any g ∈ C ({x, y} ,C), respectively g ∈ C ({x, y}), finding
u ∈ C (V,C) such that

L(u) = 0 on V \ {x, y} and u = g on {x, y} .

As a consequence, a physical meaning of the effective admittance between x and y, is
that it is the injected current that appears at x when we fix a potential equal to 1 at x, a
potential equal to 0 at y, and there is no injected current at any vertex of V \ {x, y}.

Lemma 1.7.2. The effective admittance, respectively conductance, between the vertices x
and y is nonzero if and only if x and y belong to the same connected component of the
network and x ̸= y.

Proof. Let Γ = ΓV1 ⊔ ...⊔ΓVs be the decomposition in connected components of the network
Γ. By Proposition 1.5.2, ae(x, y) = Λ(εx)(x) = −Λ(εx)(y), so a

e(x, y) = 0 iff Λ(εx) = 0.
This is satisfied if and only if εx is constant on each Vi∩{x, y} that is not empty, and thus if
and only if x and y belong to different connected components of the network or x = y.

Analogously to the definition of resistance, for a DC network we define the effective
resistance as the kernel re ∈ C +

∞(V × V ) such that for every (x, y) ∈ V × V , re(x, y) = 0
if x = y and re(x, y) = 1/ce(x, y) if x ̸= y. Note that re(x, y) = +∞ iff x and y belong to
different connected components of the network.

Now, let x, y ∈ V be vertices of a network Γ and let N be the kernel of the Dirichlet-
to-Neumann map Λ of Γ and F = V \ {x, y}. We have that N(x, y) = −N(x, x), so (1.11)
holds. Because of that, both in the case of an AC or a DC network, we can define the Kron
reduction of Γ with respect to F , ΓΛ = ({x, y} , cΛ). If x = y, ΓΛ = ({x} , 0), so the graph
associated with ΓΛ has one vertex and zero edges. If x ̸= y, cΛ(x, y) = −N(x, y) = ae(x, y),
so E(ΓΛ) = ∅ iff x and y belong to different connected components of the network.

Therefore, when there is only injected current at x and y and x and y belong to the same
connected component, the relationship between potential and current in {x, y} is equivalent
to the relationship given by a network of a single edge between x and y whose admittance
is the effective admittance between x and y.

The following result is a straightforward consequence of Proposition 1.6.8.

Corollary 1.7.3. The effective conductance between every pair of vertices of a Kron reduc-
tion of a network is the same as in the original network.

Finally, recall that

ae(x, y) = Λ(εx)(x) =
∂uεx
∂n

F

(x) + LF c

(εx)(x).

On one hand, LF c
(εx)(x) = a(x, y). On the other hand, we consider the network obtained

from Γ by removing the edge exy, i.e., the network Γ \ exy = (V, a\exy) such that a\exy = a in
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(
V ×V

)
\{(x, y), (y, x)} and a(x, y) = a(y, x) = 0. In that network, the effective admittance

between x and y is equal to:

ae\exy(x, y) =
∂uεx
∂n

F

(x),

that is, the function uεx and its normal derivative with respect to F do not change if we
remove the edge exy. As a consequence,

ae(x, y) = ae\exy(x, y) + a(x, y), (1.12)

where ae\exy(x, y) and a(x, y) have nonnegative real part and nonpositive imaginary part. In
particular, if Γ is a DC network, we can write

ce(x, y) = ce\exy(x, y) + c(x, y), (1.13)

and we have that ce(x, y) ≥ c(x, y).

From 1.12, the effective admittance between x and y is the sum of the admittance between
x and y and the effective admittance corresponding to the rest of paths between x and y
through the rest of vertices of the network. In particular, ae(x, y) = ae\exy(x, y) iff x ̸∼ y

and ae(x, y) = a(x, y) iff exy is a bridge, i.e., if the removal of exy creates a new connected
component in the network, or equivalently, if x and y are not connected through V \ {x, y}.



Chapter 2

The inverse conductance problem

The objective of this chapter is to obtain a stable algorithm for the solution of the inverse
conductance problem. The inverse conductance problem corresponds to the discrete version
of the well established Calderón problem in the (plane) continuous setting and in fact our
algorithm can be seen as the last step in the solution of this problem, namely the recon-
struction step. Specifically, the inverse conductance problem can be understood as part of
the numerical reconstruction of conductivity, whose objective is to obtain an approximation
of the conductivity from a finite number of (voltage and current) measurements.

As we mention in the previous chapter, given a bounded connected open set Ω ⊆ Rn

with n ≥ 2, given a bounded measurable conductivity σ which satisfies λ ≥ σ ≥ λ−1 almost
everywhere in Ω for some λ > 0, and given a potential g belonging to H1/2(∂Ω), the trace
space on the boundary ∂Ω, the induced potential ug on Ω solves the Dirichlet problem of
finding u ∈ H1(Ω) such that

∇ · (σ∇u) = 0 in Ω, u|∂Ω = g.

The Dirichlet-to-Neumann map is the operator Λσ : H
1/2(∂Ω) −→ H1/2(∂Ω) defined as

Λσ(g) =

(
σ
∂ug
∂n

) ∣∣∣∣
∂Ω

,

for every g ∈ H1/2(∂Ω), where n denotes the outer unit normal vector to ∂Ω.

The Dirichlet-to-Neumann map is the key tool to solve the so-called Inverse conductivity
problem, also known as Calderón’s problem, which is stated as follows, (see [34]).

Problem 2.0.1 (Calderón’s problem). Let Ω ⊆ Rn be a bounded connected open set with
n ≥ 2 and an unknown bounded measurable conductivity σ which satisfies λ ≥ σ ≥ λ−1

almost everywhere in Ω for some λ > 0. Let Λσ : H
1/2(∂Ω) −→ H1/2(∂Ω) be the (continuous)

Dirichlet-to-Neumann map operator. The problem consists in determining σ from Λσ.

A good summary of the problem origins and the different steps of its resolution can be
found in [15, 98].
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The discrete version of Calderón’s problem, called the Inverse conductance problem is
concerned with the recovery of the conductance of a given network from the response ma-
trix. Of course, this (discrete) inverse problem is not limited to the realm of numerical
reconstruction of conductivities, but makes sense in its own right and can be posed on arbi-
trary graphs and networks. It was proposed in the last decade of the past century mainly by
the Seattle school, led by E.B. Curtis and J. Morrow. The explanation in terms of discrete
vector calculus, mimicking the continuous formulation, is more recent, dating back to the
last ten years and is based on the work of the MAPTHE group in Barcelona. In fact, if Γ
is a network with boundary, i.e., Γ = (F̄ , c), the Dirichlet-to-Neumann map is a mimetic
discretization of the continuous Dirichlet-to-Neumann map, (as stated in Section 1.5) and
hence the resolution of the discrete problem can be interpreted as the reconstruction step of
the continuous one. Therefore, with the notations introduced in Section 1.5, in this chapter,
we study the following problem, (see [7, 8, 10, 54]).

Problem 2.0.2 (Inverse conductance problem). Let Γ = (V, c) be a DC electrical network
with unknown conductance c, but with a known topology, G(Γ) = (V,E(Γ)). Let F ⊂ V and
let Λ be the Dirichlet-to-Neumann map of Γ and F . The problem consists in determining c
from Λ.

2.1 Background of the problem

The (continuous) inverse conductivity problem has received a lot of attention since its in-
troduction in 1980. There are abundant papers dedicated to it, such as [5, 6, 23, 24, 26, 32,
34, 86, 97].

Two of the most studied aspects are the uniqueness of its solution, and in the cases
where there is a unique solution, the construction of an algorithm to obtain it. In the case
of dimension n = 2, the solution was proved to be unique in [13]. Moreover, an algorithm to
recover the conductivity in this case was obtained in [12]. In the case of dimension n ≥ 3,
the question of uniqueness in general remains open to this date, although some authors have
proved that the solution is unique if further regularity assumptions are added to the problem.
For instance, in [40] the uniqueness of the problem was proved if the conductivity and the
surface are Lipschitz continuous. Furthermore, an algorithm to recover the solution under
this hypothesis was obtained in [39].

Even when the conductivity σ can be uniquely obtained from the Dirichlet-to-Neumann
map Λσ, the solution σ does not depend continuously on Λσ in general, so the problem is
ill-posed, (see [6, 15]). Because of that, several authors have investigated if knowing some a
priori information about σ makes the problem stable. For example, in [14, 75] for the case
of dimension n = 2 and in [5] for the case n ≥ 3, the authors proved that if it is a priori
known that σ is bounded for a certain suitable norm, then σ depends continuously on Λσ,
but with this a priori hypothesis we only have the so-called logarithmic stability. Therefore,
the problem still exhibits a bad numerical behavior, which represents a severe obstruction
for the reconstruction step.

In that line of research, we highlight the paper [6] by Alessandrini and Vessella, where they
proved that if it is a priori known that there is a known partition of the set Ω with a bounded
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number of connected subsets satisfying some additional hypothesis such that the conductivity
is piecewise constant on that partition, (that is, σ is equal to an unknown constant value at
each subset), then Calderón’s problem becomes Lipschitz stable. Furthermore, the Lipschitz
constant grows exponentially with the number of subsets in the partition, as demonstrated
in [77, 85]. In order to improve the stability of the recovery process, there are authors that
have used regularization methods, mainly of Tikhonov type, (see [61, 76, 86]). Other authors
have used machine learning techniques, (see [41]).

The (discrete) inverse conductance problem has gathered relatively less attention than
its continuous counterpart, with papers such as [8, 10, 30, 45, 51, 65, 66]. Additionally,
several authors have studied the problem with the goal of obtaining an approximate solution
to Calderón’s problem, (see [23, 24, 26, 27, 28, 62]).

The situation in the research about this problem is analogous to the one in the continuous
problem. On one hand, there are works that study the uniqueness of the problem, also
known as the identification problem, which depends on the graph associated to the electrical
network G(Γ). To the best of our knowledge, the statement of this problem for general
networks appeared in [47], and was solved under some monotonicity hypothesis, see also
[22]. In these works, the authors emphasize the need to formulate network problems using
an operational calculus that allows following the developments of the continuum. In fact,
the background of most of the authors comes from the field of PDEs. The used operators are
the gradient, the normal derivative and the Laplacian, which are sufficient to describe the
analogue of the Dirichlet-to-Neumann map and to use the variational approach. The most
general framework including the consideration of general (discrete) elliptic operators and a
complete vector calculus was presented in [20], where again under monotonicity hypothesis,
similar results to the mentioned papers were obtained.

The extension of Problem 2.0.2 to the case of recovering the admittance a in an AC
network was raised in [30]. In this paper, the authors also consider cases in which the
imaginary part of a is not nonpositive (which we do not consider in Definition 1.3.1), i.e.
the authors extend the problem to the case in which each edge has a complex weight with
positive real part. For this extension, they give a criterion to identify the graphs for which
the problem has a unique solution for almost all networks with that topology.

In previous works (see [52, 53, 54, 55]), Curtis and Morrow proved that the inverse
conductance problem has a unique solution when the network topology is a critical planar
graph, and thus, in particular, when it is a well-connected spider graph. They also introduced
an explicit method to recover the conductance of a well-connected spider network from a
finite number of elementary algebraic operations, which is called the layer peeling method.
This method was generalized in [10] to include the case in which there is a Schrödinger
potential at the vertices.

There are other network topologies for which the the solution of the inverse conductance
problem is also known to be unique and there is an explicit method similar to layer peeling
to obtain the conductance, including the n×n grids (see [11]), and any tree without vertices
of combinatorial degree two, (see [66]). The method introduced in the last reference also
allows to identify which tree is the network topology up to vertices of combinatorial degree
two, although the method is only valid for trees, because it exploits the fact that the effective
resistance between any two nodes coincides with the resistance distance between them.
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An alternative line of research in the construction of explicit algorithms for solving the
inverse conductance problem for some topologies is related to the study of certain Grass-
mannians. In that line, in [71], an algorithm is proposed to solve the problem for a certain
family of networks called standard networks. The values of the solution are obtained as a
biratio of Pfaffians constructed from the response matrix. A related algorithm, which works
for any well-connected electrical network can be found in [65], although the only example
of network in which the conductances are computed is a well-connected spider network with
m = 3 boundary nodes.

Despite being finite-dimensional, the inverse conductance problem is also severely ill-
posed in general, (see [54]). Among the explicit methods to recover the conductance men-
tioned so far, the ones in well-connected spider networks and in grids (in [10, 11, 52, 53,
54, 55]) are known to be ill-posed for networks of medium or large size; and for the rest of
the methods (in [65, 66, 71]) the stability is not studied and the computational examples of
recovery presented are only in networks with small size.

Several authors, (see [45]), have developed numerical methods with regularization to
recover an approximate solution of the inverse conductance problem with more stability
than the mentioned explicit methods. In [45], the inverse problem is reformulated to obtain
an equivalent problem in which the goal is to estimate a potential at the vertex set. Then, the
problem is solved utilizing a discrete version of the inverse Born series with regularization.
The method is tested in 12× 12 grids. In the experiments, the method converges when the
deviation from a constant potential is small; and the method diverges otherwise.

Some of the works that solve the discrete inverse problem to approximate the continuous
one have also contributed to the study of the stability of the discrete problem and the
development of numerical methods to solve it. L. Borcea alongside several collaborators
have written several papers in which they approximate the continuous problem using well-
connected spider networks, including [23, 24, 26, 27, 28]. In [27], the authors propose to
formulate the discrete problem as an optimization problem which includes a Tikhonov-type
regularization and to solve it with an optimization method. The regularization term penalizes
the deviation from a reference conductance whose value has to be known and fixed a priori.
The experimental results of the method are carried out in networks with moderate size
(with 29 or less vertices in the boundary). In the rest of those works ([23, 24, 26, 28]), the
conductance is recovered using the layer peeling algorithm ([55]). In order to have stability,
the authors limit the size of the networks, choosing the topology with greatest number of
boundary nodes such that the algorithm does not yield negative values for the conductance;
which generally has fewer than 11 boundary nodes.

In other works, the continuous problem is approximated solving the discrete one in grids.
For example, in [24, 25], the discrete problem is solved using an algorithm that converges
to the real network if and only if it is asymptotically close to a reference network that has
to be known and fixed a priori. In [62], the authors solve the discrete problem using a
discrete analogous to the complex geometric optics approach. They also use these solutions
to obtain a stability estimate for the discrete problem, which is in |log(error)|α, for some
α < 0, where error stands for the error in the Dirichlet-to-Neumann map, i.e., the problem
is exponentially unstable.

In the recent work [38], the authors explore whether knowing a priori the hypothesis
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that the conductance is piecewise constant on a partition with few subsets makes the dis-
crete inverse conductance problem stable. This hypothesis, called the “piecewise constant
conductance hypothesis”, mimics the hypothesis of piecewise constant conductivity consid-
ered in [6]. They propose to formulate the problem as a polynomial optimization problem,
with a regularization term à la Tikhonov that penalizes the deviation with respect to that
hypothesis. The authors present numerous experimental examples in which it is possible
to solve the inverse conductance problem with stability in well-connected spider networks
satisfying that hypothesis with up to m = 47 boundary vertices, which are larger than the
networks considered in the previous literature.

Moreover, this work is extended by the same authors in the paper [37]. In that work,
they show that the approach in [38] can be used to solve the inverse conductance problem
with stability even in some cases in which the piecewise constant conductance hypothesis is
not exactly satisfied by the real network. Moreover, they study the variation of the error in
the recovered conductance with respect to the penalty parameter, and they use techniques of
sum of squares of polynomials to seek for a guarantee that the obtained numerical solution
of the polynomial optimization problem is a global minimum.

The rest of the chapter is dedicated to review and extend the results of [37, 38] about
the inverse conductance problem in well-connected spider networks.

2.2 Ill-posedness of the inverse conductance problem

The aim of this section is to prove that the inverse conductance recovery problem is intrinsi-
cally severely ill-posed, in order to emphasize the importance of reformulating the problem
and seeking for methods that allow us to recover the conductance with stability. This section
is a review of [38, Section 2].

We conduct several tests in which we compute the Dirichlet-to-Neumann map of a well-
connected spider network, and then we apply the algorithm in [10] to solve the inverse
conductance problem. We recover a conductance that, when the number of boundary vertices
is high, widely differs from the one of the original network. This is due to the ill-posedness of
the problem: despite the fact that the algorithm is based on explicit formulas, any error in
the entries of the response matrix (which are stored with finite precision) could be amplified
several orders of magnitude in the algorithm.

For the sake of completeness we give here the highlights of the algorithm of [10] that are
mainly based on finding solutions of a battery of overdetermined boundary value problems.
Each step requires the information obtained in the last one.

Let Γ = (F̄ , c) be a DC well-connected spider network and let A,B ⊂ δ(F ) nonempty
subsets such that A ∩ B = ∅. Moreover we denote by R the set R = δ(F ) \ (A ⊔ B), so
δ(F ) = A ⊔ B ⊔ R is a partition of δ(F ). We remark that R can be an empty set. For any
f ∈ C (F ), g ∈ C (A ⊔ R) and h ∈ C (A), the overdetermined partial Dirichlet–Neumann
boundary value problem on F with data f, g, h consists in finding a function u ∈ C (F̄ ) such
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that

Lq(u) = f on F,
∂u

∂n
F

= h on A and u = g on A ⊔R. (2.1)

In Figure 2.1 we show the representation of a general overdetermined boundary problem.
We fix a labeling in the vertex set of Γ, and we denote by L its Laplacian matrix, by N its

F

B

A

R

Figure 2.1: Boundary partition in an overdetermined boundary value problem.

response matrix, and by f, g and h the vectors associated with f , g and h, respectively. In
[10] the authors proved the existence and uniqueness of a solution to this problem for any
data f ∈ C (F ), g ∈ C (A ⊔ R), h ∈ C (A) iff |A| = |B| and N(A;B) is invertible. Moreover,
if u ∈ C (F̄ ) is the unique solution of the overdetermined partial boundary value problem
(2.1), then its associated vector u satisfies

u(B) = −N(A;B)−1 ·
(
L(A;F ) · L(F ;F )−1 · f + N(A;A ⊔R) · g − h

)
,

u(F ) = L(F ;F )−1 ·
(
f − L(F ;B) · u(B)− L(F ;A ⊔R) · g

)
and, clearly, u(A ⊔R) = g.

We consider also the what we called boundary spike formula. If x ∈ R has a unique
neighbour y ∈ F , then

c(x, y) = N(x;x)− N(x;B) · N(A;B)−1 · N(A;x).

Once we get the value for the conductances on the boundary edges, and taking advantage
of the null zone for the solution of Problem (2.1) when f = 0, h = 0 and g = εz, for each
z ∈ A⊔R, we can recover the value of the solution on the set of vertices that are at distance 1
from the boundary. Then, the process follows alternating the knowledge of the conductance
and the function value from the boundary to the interior vertex.

The following example refers to the case of well-connected spider networks, as represented
in Figure 2.2.

Example 2.2.1 ([38]). For m = 7, 11, 15, 19, 23, 27, 31 and 35, we start from the well-
connected spider network with m radii and constant conductance c = 1. In all cases, we
compute the response matrix N of the network, and from it we recover the conductance c′

using the explicit formulas from [10]. The algorithm has been implemented in Matlab.
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A
R

B

Figure 2.2: The boundary partition in a well-connected spider network.

In Figure 2.3 we show the logarithm of the error in the recovered conductance in the
Euclidean norm, log(||c′−c||), for all values ofm, where log stands for the decimal logarithm,
and the norm of c′ − c ∈ C (Γ) = C (G(Γ)) is the one defined in Remark 1.2.3. Moreover,
Table 2.1 displays the error on the conductances. We see that the error is almost zero for
m = 7 and increases approximately exponentially with m from m = 7 to m = 23. The error
keeps increasing with m for m ≥ 23.

5 10 15 20 25 30 35

-15

-10

-5

0

5

Figure 2.3: Logarithm of the error in the recovered conductance.

We show the recovered conductance for m = 19 and for m = 23 in Figures 2.4 and 2.5,
respectively. In both figures, the width of each edge is proportional to the absolute value of
the recovered conductance c′. For the sake of clarity, the values displayed on each edge have
been rounded to the nearest integer within the graphical illustrations.
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Table 2.1: Error in the recovered conductance.

m 7 11 15 19 23 27 31 35
||c′ − c|| 1 · 10−14 4 · 10−11 3 · 10−7 4 · 10−3 5 · 102 2 · 103 7 · 103 9 · 103

Figure 2.4: Recovered network with m = 19 radii in Example 1.

Figure 2.5: Recovered network with m = 23 radii in Example 1.
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The error for m = 19 is approximately 3.5 · 10−3, and we see that the nearest integer
to the value of the recovered conductance at every edge is equal to the true value c = 1.
However, the error for the next bigger network, the one with m = 23, is approximately
5.2 · 10. We can see that the value of the recovered conductance is very far from 1 and in
some cases even negative, especially in edges that are far from the boundary. For example
there is an edge with conductance close to −31.

As a conclusion of the performed tests, the recovery of the conductance of a well-
connected spider network is unstable except for small networks. Moreover, the big dis-
crepancies appear on edges that are far away from the boundary. This situation is analogous
to the one that appears in the continuous Calderón inverse conductivity problem, which is
severely ill-posed, and the instabilities increase as we move farther away from the boundary,
(see [26]).

2.3 Stable reformulation: the discrete piecewise con-

stant conductance hypothesis

Calderón’s problem is ill-posed, but in [6] it was shown that if the hypothesis that the
conductivity is piecewise constant on a partition of the set Ω with a bounded number of
connected subsets is a priori known, then the problem becomes Lipschitz stable. As in
the previous section we have seen that its discrete counterpart is analogously ill-posed, we
propose to translate this hypothesis to the discrete setting and to study the conductance
recovery knowing a priori this hypothesis. This section is a review and extension of [38,
Section 3].

In the discrete case, we say that a conductance is piecewise constant on a partition
E = E1⊔· · ·⊔Es if it is constant on each Ei. Of course, as the number of edges is finite, any
conductance is inherently piecewise constant on some partition. In this work, we understand
that a piecewise constant conductance hypothesis holds if and only if s, the number of subsets
in the partition, satisfies s ≪ |E|. Note that we do not require for any j = 1, ..., s that the
subnetwork with edge set Ej and whose vertex set is the set of vertices of the network which
are joined by edges of Ej is connected. Therefore this discrete hypothesis can be seen as
a generalization of the strict discrete analogue of the hypothesis in [6] for the continuous
problem in which the subsets of the partition must be connected.

As demonstrated in the preceding section, even when considering the extreme scenario
where the real conductance satisfies the hypothesis with s = 1, it has been observed that
the explicit recovery methods that solve the general inverse conductance problem lead to
instabilities. That is due to the fact that the methods do not use the information of the
hypothesis of being piecewise constant on a particular partition: they do not enforce that
the solution must satisfy the hypothesis, nor penalize the deviation with respect to the
hypothesis in the recovery process.

Consequently, it becomes imperative to develop alternative algorithms that ensure stabil-
ity. Our proposal is to reformulate the inverse problem as a polynomial optimization problem
that includes the deviation in the recovered conductance with respect to being piecewise con-
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stant on a given partition as a penalty. We formulate the problem for any possible partition
E = E1⊔ · · · ⊔Es of the set of edges of the real network Γ = (F̄ , c), whether its conductance
c is piecewise constant on this partition or not. In the case in which s ≪ |E|, the penalty
term penalizes the deviation with respect to a piecewise constant conductance hypothesis.

2.3.1 Polynomial optimization problem

The polynomial optimization problem that we propose to solve the discrete inverse problem
can be stated as follows.

Problem 2.3.1. [[38]] Let Γ = (F̄ , c) be a well-connected spider DC network with known set
of edges E(Γ) but unknown conductance c, let N be the kernel of the Dirichlet-to-Neumann
map of Γ and F , let E(Γ) = E1 ⊔ · · · ⊔ Es be a partition and let µ ≥ 0 be a penalty
parameter. We denote by Γ′ = (F̄ , c′) the DC network that we want to recover, which must
satisfy E(Γ′) ⊆ E(Γ). We define another unknown DC network Γω = (F̄ , ω) such that
E(Γω) ⊆ E(Γ) and ω is piecewise constant on E1 ⊔ · · · ⊔Es. For each z ∈ δ(F ), we define a
function uz ∈ C (V ) such that uz = εz on δ(F ). The problem consists in determining values
of the variables

(i) c′(exy) (= c′(x, y) = c′(y, x)) for all exy ∈ E(Γ);

(ii) ω(Ej) for all j = 1, . . . , s;

(iii) uz(x) for all x ∈ F and z ∈ δ(F ),

which minimize the objective function

p =

∫
δ(F )×δ(F )

(
N (x, z)−

∫
V

c′(x, y) (uz(x)− uz(y)) dy

)2

dxdz

+ µ

s∑
j=1

∑
exy∈Ej

(c′(x, y)− ω(Ej))
2

(2.2)

subject to the constraints

gzx :=

∫
V

c′(x, y) (uz(x)− uz(y)) dy = 0 (2.3)

for all x ∈ F and z ∈ δ(F ); and c′(exy) ≥ 0 for all exy ∈ E.

Let c′ be a fixed feasible value for the conductance in the problem, and we denote by L′,
Λ′ and N ′ the Laplacian, the Dirichlet-to-Neumann map and the kernel of the Dirichlet-to-
Neumann map of the recovered network Γ′ = (F̄ , c′), respectively. Then, for any x ∈ F and
z ∈ δ(F ) we have that gzx = L′(uz)(x). Because of that, the constraints (2.3) are equivalent
to that, for each z ∈ δ(F ), uz ∈ C (V ) is a solution to the boundary value problem (1.7) for
g = εz, that is, the boundary value problem of finding u ∈ C (V ) such that

L′(u) = 0 on F, u = εz on δ(F ), (2.4)
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Now, for each x, z ∈ δ(F ), the evaluation at x of the normal derivative of uz with respect
to F in Γ′ is equal to

∂uz
∂n

F

(x) =

∫
V

c′(x, y) (uz(x)− uz(y)) dy =

∫
F

c′(x, y) (uz(x)− uz(y)) dy,

and as a consequence of Remark 1.4.4, we have that

∂uz
∂n

F

(x) =
∂uεz
∂n

F

(x) = Λ′(εz)(x) = N ′(x, z).

Then, the objective function (2.2) can be rewritten as

p = ||N′ − N||2
Fr
+ µ||c′ − ω||2, (2.5)

so a solution of Problem 2.3.1 minimizes the squared Frobenius norm of the difference be-
tween the response matrix N′ of the recovered network and N plus a penalty term which
is the squared norm (defined in Remark 1.2.3) of the difference between the recovered con-
ductance and any piecewise constant conductance on E = E1 ⊔ · · · ⊔ Es multiplied by the
penalty parameter µ. In the context of Tikhonov-like regularization methods the parameter
µ is often called regularization parameter (see [61, 76, 86]).

Remark 2.3.2. In Problem 2.3.1, we allow the possibility that c′(x, y) = 0 for some exy ∈
E(Γ), and thus E(Γ′) ⊊ E(Γ). As we have discussed, this is not a problem for the objective
function p to satisfy (2.5), even if some subset of vertices of F is isolated in Γ′. Nevertheless,
if we know a priori a value λ > 0 such that c(exy) ≥ λ for all exy ∈ E(Γ), we can slightly
modify the formulation of the problem, adding the restriction c′(exy) ≥ λ for all exy ∈ E if we
want to ensure that the topology of Γ′ and Γ are the same. In that case, Γ′ is a network with
boundary, so uz = uεz for each z ∈ δ(F ). Note that this a priori information is analogous
to the known lower bound for the conductivity in the formulation of Calderón’s problem.

We define the function f : [0,∞] −→ [0,∞] which assigns to each µ the value of the
minimum of p in a solution to Problem 2.3.1, i.e.,

f(µ) = min
{c′,ω}

{
||N′ − N||2

Fr
+ µ||c′ − ω||2

}
.

We also define h as the minimum value of ||N′ − N||2
Fr

among the conductances c′ that are
piecewise constant on the partition E = E1 ⊔ · · · ⊔Es. Note that, for every µ, we have that

f(µ) ≤ min
{c′,ω:c′=ω}

{
||N′ − N||2

Fr
+ µ||c′ − ω||2

}
= h.

By the last inequality, for every µ, the evaluation of the term µ||c′ −ω||2 in a solution to
Problem 2.3.1 must be lower than or equal to h. Then, for any µ > 0, we have that

f(µ) = min{
c′,ω: ||c′−ω||≤

√
h
µ

}{||N′ − N||2
Fr
+ µ||c′ − ω||2

}
.

From that expression, we see that the limit case of µ → ∞ corresponds with enforcing
the hypothesis that the recovered conductance is piecewise constant on E = E1 ⊔ · · · ⊔ Es
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and minimizing the difference between N′ and N. The limit of f(µ) when µ → ∞ is equal
to h. The case µ = 0 corresponds with minimizing the difference between N′ and N ignoring
the piecewise constant hypothesis.

A solution to the Problem 2.3.1 must be a stationary point of the Lagrangian function of
the optimization problem. In particular, if µ > 0, for each j = 1, . . . , s, the partial derivative
of
∑

exy∈Ej
(c′(x, y)− ω(Ej))

2 with respect to the variable ω(Ej) must be equal to zero, so

ω(Ej) =
1

|Ej|
∑

exy∈Ej

c′(x, y). (2.6)

Therefore, the ω(E1), . . . , ω(Es) variables can be removed from the optimization problem by
substituting in (2.2) each of the variables ω(Ej) with (2.6). Clearly, if µ = 0, the objective
function p does not depend on the variables ω(E1), . . . , ω(Es), so we can remove them from
the problem.

We remark that unlike other regularization methods to solve the discrete inverse conduc-
tance problem, as the ones in [24, 25, 27], ours has not used a reference conductance known a
priori. Here, the s constant values of the conductance ω, which appear in the penalty term,
are not fixed. On the contrary, they are considered as unknowns in the objective function.

In a well-connected spider network with m = 4ℓ+3 boundary vertices it is easy to check

that there are |E| =
(
m

2

)
edges and n =

m2 +m+ 4

4
vertices. So, the number of variables

of Problem 2.3.1, after removing ω(E1), . . . , ω(Es), is equal to

r = |E|+m(n−m) =
m(m2 −m+ 2)

4
= (4ℓ+ 3)(4ℓ2 + 5ℓ+ 2).

In particular, for the example 2.2.1 the number of variables goes from 77 corresponding to
ℓ = 1 to 10430 corresponding to ℓ = 8.

We denote by J =
〈
gzx such that x ∈ V, z ∈ δ(F )

〉
the ideal generated by the quadratic

polynomials in (2.3), and we denote by V (J) ⊂ Rr the real vanishing set of J . Then, Problem
2.3.1 can be rewritten as finding a global minimum of the quartic p in the semialgebraic set

A =
(
[0,∞]|E| × Rr−|E|) ∩ V (J).

For µ = 0, Problem 2.3.1 has a unique solution t̂ ∈ A, with p(t̂) = 0. In the solution, we
have that the recovered conductance is the real one, c′ = c, because Γ is the unique network
with this topology whose response matrix is exactly N. For every z ∈ δ(F ), the value of
uz in the solution is uz = uεz , which is the unique solution to (2.4). For any µ > 0, if c is
piecewise constant on the partition E = E1 ⊔ · · · ⊔Es, then Problem 2.3.1 also has the same
unique solution (with p(t̂) = 0 and c′ = ω = c).

For any µ > 0, if c is not piecewise constant on the partition E = E1 ⊔ · · · ⊔ Es, then a
solution t̂ ∈ A to Problem 2.3.1 must satisfy p(t̂) > 0, because the recovered network with
c′ = c is the unique with ||N′ − N||

Fr
= 0, but for this network ||c′ − ω|| > 0, (see [37]).
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2.3.2 Problem resolution

Using a numerical optimization method, such as an interior point algorithm, we can obtain
an approximation t∗ ∈ A to a local minimum of p in A. In Section 2.4, we will discuss several
examples of how the recovered conductance c′ in the computed t∗ ∈ A approximates the real
conductance c when c is piecewise constant on the partition E = E1 ⊔ · · · ⊔Es. Sections 2.5
and 2.6 are dedicated to discuss several examples of how c′ approximates c when c is not
piecewise constant on the partition.

We denote by Γ1 = (F̄ , χ
E
) the DC network with the same topology as Γ such that

χ
E
(exy) = 1 for every exy ∈ E(Γ). As an initial guess for the interior point algorithm we

choose a constant conductance, c0χ
E
, on the spider graph. The value of c0 > 0 is determined

as the one such that the response matrix of (F̄ , c0χ
E
) is the closest to N in the Frobenius

norm.

Proposition 2.3.3. Consider a network with boundary Γ = (F̄ , c) and its response matrix
N. Then, the network Γ0 = (F̄ , c0χ

E
) with the same set of edges E as Γ and constant

conductance c0 > 0 at all edges whose response matrix is the closest to N in the Frobenius
norm satisfies that

c0 =
tr(N1N)

||N1||2Fr
= argminx>0

{
||N− xN1||2Fr

}
,

where N1 is the response matrix of the unweighted network Γ1 = (F̄ , χ
E
).

Proof. If L1 is the Laplacian matrix of Γ1, then

N1 = L1(δ(F ); δ(F ))− L1(δ(F );F )L1(F ;F )
−1L1(δ(F );F )

T .

For any x > 0, the Laplacian matrix of the network with set of edges E and constant
conductance equal to x is xL1 and hence, its response matrix is xN1. On the other hand,

||N− xN1||2Fr = x2||N1||2Fr − 2x tr(N1N) + ||N||2
Fr

whose minimum is attained at c0 =
tr(N1N)

||N1||2Fr
. Moreover each term in the diagonal of N1N is

positive, since N1 and N are both M -matrices. Therefore, c0 > 0.

Remark 2.3.4. In the case of a well-connected spider, if m ≥ 7, then

N1 = (I− J(δ(F c); δ(F c))

where J = L1(F ;F )
−1, is the matrix associated with the Green operator of the network Γ1 on

F , J ; and if m = 3, then

N1 =
1

3

 2 −1 −1
−1 2 −1
−1 −1 2

 .

Remark 2.3.5. For each z ∈ δ(F ) and each x ∈ F , we choose as an initial guess for the
variable uz(x) the unique value which is compatible with satisfying all the constraints (2.3)
when c′ = c0χ

E
. That is, denoting by L0 the Laplacian of Γ0, for each z ∈ δ(F ), the initial
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guess for uz is the unique solution to the boundary value problem of finding u ∈ C (V ) such
that

L0(u) = 0 on F, u = εz on δ(F ).

As a consequence, the initial guess for the variable uz(x) is equal to(
− L1(F ;F )

−1 · L1(δ(F );F )T
)
(x, z).

For computing the experiments in the next sections, we write the proposed optimiza-
tion problem in MATLAB using Casadi [101], an open-source software tool that provides a
symbolic framework suited for numerical optimization, and we obtain an approximate solu-
tion of it using the interior-point solver IPOPT [102], an open-source software package for
large-scale nonlinear optimization. The tolerance used in IPOPT is equal to 10−8.

2.4 Stable recovery of piecewise constant conductances

In this section, we present numerical examples of the resolution of Problem 2.3.1 in the case
in which we aim to recover the conductance of a well-connected spider network Γ = (F̄ , c)
knowing its topology, its Dirichlet-to-Neumann map and a partition E(Γ) = E1 ⊔ · · · ⊔ Es

such that the real conductance c is really piecewise constant on the partition. This section
is a review of [38, Section 3].

In this case, as discussed in the previous section, for any value of the penalty parameter
µ ≥ 0, the problem has a unique solution t̂ ∈ A with p(t̂) = 0, in which the recovered
conductance is the real one, and using a numerical optimization method we obtain t∗ ∈ A,
an approximation of a local minimum of p in A. In all the tested experiments, for any
value of µ, any network Γ = (F̄ , c), and any partition, the evaluation of p at t∗ has a very
small value p(t∗) ≈ p(t̂) = 0, which is usually lower than the tolerance of the numerical
optimization method. That means that in every case we recover a network whose response
matrix N′ is very close to the one of Γ, N.

Nevertheless, because of the ill-posedness of the inverse conductance problem, this does
not guarantee that t∗ ∈ A is close to t̂ ∈ A, (nor that the recovered conductance c′ is close
to c). In fact, when µ = 0, we obtain results similar to those of Example 2.2.1, in the sense
that usually t∗ is an approximation of a local minimum which is very far from t̂, and c′ is
very far from c, and the instability increases with the size of the network. This is expected,
because we are not using any information a priori or regularization.

The values of the conductance of any well-connected spider network at the edges are
rational functions of the entries of its response matrix, (see [54]), and therefore the inverse
conductance problem is locally Lipschitz stable. As a consequence, given λ > 0, there is a
constant M such that for any two networks Γ1 = (F̄ , c1) and Γ2 = (F̄ , c2) with the topology
of Γ such that λ ≥ c1(x, y) ≥ λ−1 and λ ≥ c2(x, y) ≥ λ−1 for every exy ∈ E(Γ), then

||c1 − c2|| ≤M ||N1 − N2||Fr ,
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where N1 and N2 are the response matrices of Γ1 and Γ2, respectively. In the experiments,
alongside with the error in the recovered conductance ||c′ − c||, we compute the quotient
||c′ − c||

||N′ − N||
Fr

, which is a lower bound of the Lipschitz constant.

In Calderón’s inverse problem the Lipschitz stability constant depends on the partition
in which the conductivity is piecewise constant, as well as in the bounds of the conductivity
and the set on which the conductivity is defined. It is expected that the constant will diverge
as the number of subsets in the partition goes to infinity [6].

By analogy, in the discrete setting, when the recovered conductance c′ is approximately
piecewise constant on the partition E(Γ) = E1⊔ · · · ⊔Es, (on which c is piecewise constant),
we expect that the stability of the problem depends on m, s and the partition. We also
expect the problem becomes unstable as s → |E|, that is, when the piecewise constant
conductance hypothesis is false. Note that in the limit s = |E|, each edge is in a different
subset of the partition, so the penalty term is meaningless.

In the next example we see that when the value of µ > 0 is big enough, and the piecewise
constant conductance hypothesis holds for c, that is, when c is piecewise constant on E(Γ) =
E1 ⊔ · · · ⊔ Es with s ≪ |E|, in all the tests we recover the real conductance almost exactly,
so t∗ is an approximation of t̂. This example provides experimental results that suggest that
when the piecewise constant conductance hypothesis is true and known a priori, the inverse
conductance problem becomes well-posed.

Example 2.4.1. For each m = 7, 11, 15, 19, 23, 27, 31, 35, 39, 43 and 47, and for each s =
1, . . . , 10, we generate 10 well-connected spider networks with m radii, each with a conduc-
tance which is piecewise constant on a (possibly different) random partition with s subsets.
For the case m = 3, we do the same, but only for s = 1, 2 and 3, because the total number
of edges of the graph is 3.

For each combination of values of m and s, for each of the 10 networks, the value of the
conductance at each subset of the partition is sampled from the uniform distribution in the
interval [1, 100]. The total number of tested networks is 1130. According with the comments
in the preceding section, the number of variables in the above tests goes from 77 corresponding
to m = 7 to 25427 corresponding to m = 47.

For each network with conductance c, we compute its response matrix N, we recover the

conductance c′, we compute the error ||c′− c||, and we compute the quotient
||c′ − c||

||N′ − N||
Fr

. In

Table 2.2, we show the maximum error in the recovered conductance in the 10 networks with
each combination of values of m and s. Analogously, we show in Table 2.3 the maximum
||c′ − c||

||N′ − N||
Fr

in the 10 networks with each combination of values of m and s.

To recover the conductance of all networks, we choose a value of µ = 1 as penalty
parameter in our problem. With this value, in all the experiments, we obtain a solution such
that the evaluation of the quartic p at it is lower than 1.3746 · 10−13, the evaluation of the
deviation with respect to the hypothesis of being piecewise constant, ||c′−ω||2, is lower than
9.1998 ·10−14, and the deviation in the response matrix with respect to the data, ||N′−N||2

Fr
,

is lower than 4.5463 · 10−14.
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Table 2.2: Maximum error in the recovered conductance with one significant digit.

m\s 1 2 3 4 5 6 7 8 9 10
3 2 · 10−10 8 · 10−10 1 · 10−9

7 1 · 10−8 1 · 10−10 6 · 10−6 1 · 10−9 2 · 10−8 1 · 10−8 4 · 10−7 9 · 10−8 4 · 10−7 1 · 10−6

11 3 · 10−9 5 · 10−9 4 · 10−10 3 · 10−8 2 · 10−8 9 · 10−9 9 · 10−8 3 · 10−8 3 · 10−7 4 · 10−7

15 5 · 10−8 4 · 10−10 3 · 10−8 2 · 10−9 8 · 10−8 6 · 10−9 2 · 10−7 2 · 10−8 1 · 10−7 8 · 10−8

19 2 · 10−8 2 · 10−9 2 · 10−8 2 · 10−9 2 · 10−8 2 · 10−8 2 · 10−8 4 · 10−8 2 · 10−7 1 · 10−6

23 3 · 10−8 1 · 10−8 5 · 10−9 2 · 10−8 1 · 10−8 7 · 10−9 1 · 10−6 3 · 10−7 1 · 10−7 9 · 10−8

27 2 · 10−7 4 · 10−8 9 · 10−8 1 · 10−6 2 · 10−7 6 · 10−8 5 · 10−7 9 · 10−8 1 · 10−7 4 · 10−7

31 2 · 10−7 2 · 10−8 4 · 10−8 3 · 10−7 7 · 10−9 3 · 10−8 3 · 10−8 1 · 10−7 4 · 10−8 2 · 10−7

35 1 · 10−7 3 · 10−8 1 · 10−7 7 · 10−8 1 · 10−7 7 · 10−8 7 · 10−7 1 · 10−7 1 · 10−7 8 · 10−7

39 1 · 10−7 1 · 10−8 7 · 10−9 5 · 10−8 1 · 10−6 7 · 10−7 4 · 10−7 8 · 10−7 9 · 10−8 4 · 10−8

43 3 · 10−7 4 · 10−7 2 · 10−8 1 · 10−7 6 · 10−8 3 · 10−8 9 · 10−7 4 · 10−8 4 · 10−8 2 · 10−7

47 1 · 10−7 4 · 10−8 5 · 10−8 5 · 10−7 9 · 10−8 5 · 10−7 4 · 10−7 7 · 10−7 3 · 10−8 6 · 10−7

Table 2.3: Maximum ||c′−c||
||N′−N||

Fr
in the recovered conductance with one significant digit.

m\s 1 2 3 4 5 6 7 8 9 10

3 1 · 100 4 · 10−1 7 · 100
7 3 · 100 4 · 100 2 · 102 3 · 101 1 · 102 2 · 102 8 · 101 6 · 102 1 · 102 7 · 102
11 4 · 100 8 · 100 9 · 100 1 · 101 7 · 101 7 · 101 3 · 101 7 · 101 8 · 102 1 · 102
15 5 · 100 5 · 100 4 · 101 1 · 101 5 · 101 1 · 101 5 · 101 6 · 101 1 · 102 8 · 101
19 5 · 100 6 · 100 7 · 100 1 · 101 8 · 100 3 · 101 6 · 101 9 · 101 2 · 102 8 · 101
23 6 · 100 7 · 100 1 · 101 4 · 101 1 · 101 2 · 101 2 · 101 3 · 101 2 · 101 2 · 101
27 7 · 100 7 · 100 3 · 101 8 · 100 1 · 101 2 · 101 8 · 101 2 · 101 8 · 101 7 · 101
31 7 · 100 8 · 100 9 · 100 9 · 100 2 · 101 2 · 101 6 · 101 5 · 101 6 · 101 4 · 101
35 8 · 100 9 · 100 1 · 101 1 · 101 1 · 101 1 · 101 1 · 101 1 · 101 3 · 101 1 · 101
39 8 · 100 1 · 101 1 · 101 1 · 101 1 · 101 1 · 101 1 · 101 5 · 101 2 · 101 2 · 101
43 8 · 100 1 · 101 1 · 101 1 · 101 1 · 101 1 · 101 1 · 101 1 · 101 1 · 101 3 · 101
47 9 · 100 1 · 101 1 · 101 1 · 101 1 · 101 1 · 101 2 · 101 2 · 101 3 · 101 4 · 101

We see in Table 2.2 that we recover the conductance of all networks with an error lower
than 6.0250 ·10−6, which is much lower than the norm of the real conductances. In Table 2.3,
we see that in all cases the error in the conductance is lower than 833 times the error in the
response matrix with respect to the data, ||N′ − N||

Fr
.

As a note, we have done the same experiment for a wide range of different positive values
of µ, recovering in all cases the conductances with very low error. The recovery only becomes
unstable when the network is large and µ → 0, because we obtain solutions such that the
evaluation of the quartic p = ||N′−N||2

Fr
+µ||c′−ω||2 is almost zero, but the value ||c′−ω||2

is very high, so the conductance is far from being piecewise constant.

In all 1130 cases, the fact that the deviation with respect to the piecewise constant
hypothesis is very low gives us a stable recovery of the conductances. As the partition is
different in general for the 10 networks with the same value of m and s, we get quite different

errors recovering them, but we see that in general, the maximum of the ratio
||c′ − c||

||N′ − N||
Fr

increases with s, as expected. For example, in the case m = 7 and s = 10, s is almost half of
the total number of edges (|E| = 21), and the ratio is equal to 7 · 102. However, for m = 35
and s = 10, that represents almost the 2% of the edges, the ratio equals 10.

All the computations have been performed on a personal laptop with Intel(R) Core(TM)
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i5-1035G1 CPU and 8GB RAM. For the biggest case m = 47 the number of variables, for
each one of the 100 test performed, is 25427 and the computation time is approximately 1/2
hour. The experiments conducted show that the method remains stable as m increases. But
the variation of s is critical, as we will see in the next experiment.

We consider an example of recovery of piecewise constant conductances in networks with
the same value of radii m = 11 and all possible number of subsets of the partition s to see
how the stability varies with s.

Example 2.4.2. We set m = 11, and for each s = 1, . . . , |E| = 55, we generate 100 different
spider networks with 11 radii and piecewise constant conductance whose values at each subset
of the partition is sampled from the uniform distribution in the interval [1, 100].

As in Example 2.4.1, we set µ = 1, we compute its response matrix N, we recover the

conductance c′, we compute the error ||c′ − c||, and we compute the quotient
||c′ − c||

||N′ − N||
Fr

.

In Figure 2.6, we show the logarithm of the maximum error in the recovered conductance in
the 100 networks with each value of s. Analogously, we show in Figure 2.7 the logarithm of

the maximum
||c′ − c||

||N′ − N||
Fr

in the 100 networks with each value of s.
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Figure 2.6: Maximum of the logarithm of the error in the recovered conductances of 100
networks with m = 11 and s = 1, . . . , 55. (Example 2.4.2).

In this example, we see that there is a strong linear dependence between the logarithm of

the maximum of the ratio
||c′ − c||

||N′ − N||
Fr

and s, which is in agreement with the results obtained

in [6, 85] about exponential behaviour of the Lipschitz constant with respect to the number of
regions where the conductivity is constant. The line in Figure 2.7 shows the linear regression
between the number of subsets in a partition and the logarithm of the maximum ratio. It
has been computed using Matlab and the results show a value of R-squared equal to 0.938
with a p-value of 1.22 · 10−33.

In every case, we are able to recover a network with a low value of ||N′ − N||
Fr
, so we

see that the error ||c′ − c|| is low when s ≪ |E|. In particular, we see that for values of s
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Figure 2.7: Maximum log
(

||c′−c||
||N′−N||

Fr

)
in recovered conductance of 100 networks with m = 11

and s = 1, . . . , 55. (Example 2.4.2).

between 1 and 13, the error in the recovered conductances is very low in all the networks.
Besides, for values of s between 14 and 22, the error is greater in some cases, but smaller
than the norm of the real conductances. Finally, for s > 23, there are networks in which the
recovered conductances have a great error.

We finish this work by considering again the test of Example 2.2.1 but with our approach.
These results will show the robustness of our method, since as we will see all the cases are
stable and even if we perturb the response matrix we can recover the conductance.

Example 2.4.3. For m = 7, 11, 15, 19, 23, 27, 31, 35, 39, 43 and 47, we start from the well-
connected spider network with m radii and constant conductance c = 1. In all cases, we
compute the response matrix N of the network, and from it we recover the conductance c′

obtaining an approximation to Problem 2.3.1 with s = 1. Additionally, for each m we repeat
10 times the process of adding random perturbations to each entry of N sampled from a
uniform distribution in each of the intervals [−10−8, 10−8], [−10−7, 10−7] and [−10−1, 10−1],
and then recovering the conductance with the perturbed matrix.

As in Example 2.4.1, we set µ = 1, we recover the conductance c′, we compute the error

||c′ − c||, and we compute the quotient
||c′ − c||

||N′ − N||
Fr

. In the first row of Table 2.4 we show

the error in the recovered conductance in the unperturbed case. As we see the error is very
small, especially in comparison with the results displayed in Table 2.1. We can initially
see that for m = 7, 11 the error is smaller in the explicit case, however for m bigger or
equal than 15, when the explicit case becomes unstable, not only the error is smaller with
our algorithm but also the recovered value accurately approximates the spider network with
constant conductance 1, see Figure 2.8 for the case m = 23. In this last case, observe that
the maximum error in the conductance values is 1.4 · 10−8.

In the rest of the entries of Table 2.4 we show, for each network and each interval of
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perturbation, the maximum error in the 10 recovered networks. Moreover, in Table 2.5, we

display the maximum of the values of
||c′ − c||

||N′ − N||
Fr

. As we can see the results are similar to the

ones obtained by considering the unperturbed N, except for the case where the magnitude
of the perturbation is 10−1. In this case, the error is much bigger but still comparable with
the magnitude of the perturbation performed. Besides, the value for the conductance is
close enough to 1, see Figure 2.9. This also shows the robustness of our algorithm. We can
compare these results in Table 2.4 with the ones obtained in [55, Section 13], where a similar
experiment was conducted only for m = 15. There, the authors perturbed the entries of
N randomly by terms of magnitude 10−8 obtaining the conductance values with an error of
up to 0.5. Also, the authors perturbed the entries of N randomly by terms of magnitude
10−7 obtaining several negative values in the conductance. In contrast, using our algorithm
the maximum error in the conductance of an edge is 1.1 · 10−8 for perturbations of order of
magnitude 10−8; and the maximum error in the conductance is 8.7 · 10−8 for perturbations
of order of magnitude 10−7. We have continued this experiment with perturbations of order
of magnitude 10−1, obtaining a conductance whose maximum error is 7.8 · 10−2.

Figure 2.8: Recovered network with m = 23 radii in Example 2.4.3.

Table 2.4: Maximum error in the recovered conductance with one significant digit.
Interval \m 7 11 15 19 23 27 31 35 39 43 47

Unperturbed 2 · 10−8 4 · 10−8 9 · 10−8 1 · 10−7 2 · 10−7 3 · 10−7 4 · 10−7 5 · 10−7 6 · 10−7 8 · 10−7 9 · 10−7

[−10−8, 10−8] 4 · 10−8 6 · 10−8 1 · 10−7 2 · 10−7 3 · 10−7 4 · 10−7 4 · 10−7 6 · 10−7 7 · 10−7 8 · 10−7 1 · 10−6

[−10−7, 10−7] 3 · 10−7 4 · 10−7 5 · 10−7 6 · 10−7 6 · 10−7 1 · 10−6 7 · 10−7 7 · 10−7 9 · 10−7 1 · 10−6 2 · 10−6

[−10−1, 10−1] 3 · 10−1 4 · 10−1 4 · 10−1 4 · 10−1 3 · 10−1 8 · 10−1 9 · 10−1 9 · 10−1 6 · 10−1 8 · 10−1 8 · 10−1
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Figure 2.9: Recovered network with m = 35 radii in Example 2.4.3 and perturbations in the
interval [−10−1, 10−1]. (α = 0.96).

Table 2.5: Maximum ||c′−c||
||N′−N||

Fr
in the recovered conductance with two significant digits.

(
Interval \m 7 11 15 19 23 27 31 35 39 43 47
Unperturbed 2.8 3.9 4.7 5.4 6.0 6.6 7.1 7.6 8.0 8.5 8.9
[−10−8, 10−8] 2.7 4.8 5.1 5.7 6.3 6.7 7.6 7.8 8.1 8.7 9.0
[−10−7, 10−7] 2.5 3.4 3.9 4.6 4.9 5.5 5.8 6.2 6.8 7.3 7.8
[−10−1, 10−1] 2.5 3.4 3.8 4.1 4.2 5.1 5.5 5.7 5.4 6.1 6.4

2.5 Error Variation with respect to the penalty param-

eter

This section is a review of [37, Section 2]. The formulation of Problem 2.3.1 introduces
the deviation with respect to the piecewise constant hypothesis as a penalty rather than
imposing the hypothesis and minimizing the difference between N′ and N. As µ → ∞, the
formulation of the problem corresponds with this last scenario.

As discussed in the previous section, in the case that the real conductance c is piecewise
constant on the partition E = E1 ⊔ · · · ⊔ Es, with s ≪ |E|, the solution of the problem is
almost equal for every µ > 0, recovering a conductance that is very close to c, except when
µ → 0, that is when the problem becomes unstable. Therefore, in that case, the penalty
formulation for any value of µ that is big enough gives almost the same experimental results
as the approach of imposing the hypothesis and minimizing the difference between N′ and
N.

Nevertheless, the penalty formulation has the advantage of making possible to consider



Error Variation with respect to the penalty parameter 61

intermediate values of µ ∈ (0,∞) that allow us to obtain a good approximation to the
conductance avoiding the instabilities in cases in which the conductance is not piecewise
constant on the partition E = E1 ⊔ · · · ⊔ Es, as we can see in the following example.

Example 2.5.1. We consider the DC spider network Γ = (F̄ , c) with m = 19 radii, see
Figure 2.10, and we show how the error in recovering the conductance varies with µ when a
piecewise constant conductance hypothesis which does not hold in the network is used.

Figure 2.10: Well-connected spider network Γ with m = 19.

The conductance is piecewise constant on a partition E = E1 ⊔ E2 ⊔ E3 ⊔ E4, with
c(E1) = 1, c(E2) = 5, c(E3) = 2 and c(E4) = 4.

We run our algorithm assuming that the conductance is piecewise constant on a different
partition E = A1 ⊔ A2 ⊔ A3, with A1 = E1, A2 = E2 and A3 = E3 ⊔ E4.

We obtain a numerical approximation to a local minimum of Problem 2.3.1 with this
false hypothesis for the following 498 values of µ: µ = 0, µ = 10−10j, µ = 10−8j, µ = 10−6j,
µ = 10−4j and 10−2j for j = 1, 2, ..., 99, µ = 1 and µ = 105. The error in the recovered
conductances ||c′ − c|| is shown in Figure 2.11 for the values such that µ ≤ 5 · 10−7 with a
linear interpolation. Additionally, the error ||c′− c|| is shown in Figure 2.12 in a logarithmic
scale with a linear interpolation for all the positive values except µ = 105, for which the
recovered conductance is almost equal to the one recovered with µ = 1. In all figures, the
recovered values of the conductances have been rounded with one decimal digit for the sake
of clarity.

For µ = 0, we obtain the network in Figure 2.13. The error is 7.8519, which is much
higher than for any of the other values of µ. Despite in this case we have the minimum
difference with respect to the data ||N′ − N||

Fr
= 5.9512 · 10−6, and thus also this is the

solution at which the evaluation of p is minimum (equal to 3.5417 · 10−11), the recovered
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Figure 2.11: Error in the recovered conductance as a function of µ.

Figure 2.12: Error in the recovered conductance as a function of log(µ).

network differs a lot from the real one, being max |c − c′| = 2.9997, because the inverse
conductance problem without regularization is ill-posed.

When we recover the conductance for the problem with a positive value of µ, the error
decreases drastically, and in µ = 4 · 10−10 the error is minimum, ||c′ − c|| = 2.3567. In
Figure 2.14, we show the recovered network for this value. Despite the error in the data,
||N′ − N||

Fr
= 1.0791 · 10−5, is greater than for µ = 0, the recovered conductance is much

closer to the real one, with max |c−c′| = 1.3334. The evaluation of p is equal to 2.6808 ·10−9.

For µ > 4 · 10−10, the error monotonically increases with µ. From µ = 4.7 · 10−1 onwards,
the recovered conductance almost does not vary with µ, being almost piecewise constant
on the partition E = A1 ⊔ A2 ⊔ A3, with c′(A1) = 0.9999, c′(A2) = 5.0145 and c′(A3) =
2.1943. The error is ||c′ − c|| = 3.7250. The deviation with respect to the data is maximum,
||N′ −N||

Fr
= 0.0078, the evaluation of p is equal to 6.0897 · 10−5, and max |c− c′| = 1.8057.
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Figure 2.13: Recovered network with µ = 0.

Figure 2.14: Recovered network with µ = 4 · 10−10.

The recovered conductance for µ = 105 can be seen in Figure 2.15, and in Table 2.6 there is
a summary of the results for this value of µ, and also for µ = 0 and for the value of µ with
minimum error.

This example illustrates that if we consider a piecewise constant conductance hypoth-
esis on a given partition that does not suit the real network, but the real conductance is
not far from a piecewise constant conductance in this partition, the error in the recovered
conductance is lower when introducing the penalization (µ > 0) than if we do not use it
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Figure 2.15: Recovered network with µ = 10000.

Table 2.6: Error in the recovered conductance for different values of µ.

µ ||c− c′|| max{|c− c′|} ||N′ − N||
Fr

0 7.8519 2.9997 5.9512 · 10−6

4 · 10−10 2.3567 1.3334 1.0791 · 10−5

105 (µ→ ∞) 3.7250 1.8057 7.8037 · 10−3

(µ = 0).

These results support using a penalty term in our formulation of Problem 2.3.1 and will
be useful in many applied inverse conductance problems. From an applied perspective, it
is reasonable to work with a piecewise constant conductance hypothesis that may not be
entirely accurate but closely approximates reality. This can be intentional, such as when
using an approximate piecewise constant model, or unintentional, because we are recovering
a network whose conductance should be piecewise constant on a partition under normal
circumstances, but may exhibit perturbations in certain unknown edges.

In the given example, we achieve the minimum error for an intermediate value of µ∈(0,∞)
for which there is a compromise between deviating with respect to the data N and with re-
spect to the piecewise constant conductance hypothesis.

In the solution with µ = 4 · 10−10, we see that the recovered conductance c′ is close to
being constant on A1 and on A2, on which the real conductance is constant, while c′ is far
from being piecewise constant on A3, and the value of c′ at any edge of E3 is lower than the
value of c′ at any edge of E4. This suggests the idea of choosing a finer partition than the
original one for the subsets on which the solution is far from being constant. Then, we would
recover the conductance again Problem 2.3.1 by considering this refined partition seeking a
solution with a lower error.
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2.6 Optimality guarantees of the recovered conductances

This section is a review of [37, Section 3]. In the previous section we have shown an example
in which obtaining an approximation to a local minimum t∗ ∈ A of Problem 2.3.1 with a
value µ > 0 and a partition E = E1 ⊔ · · · ⊔ Es with s ≪ |E| such that c is not piecewise
constant on it allow us to recover an approximation of c with some stability. Recall that, in
this case of a false piecewise constant conductance hypothesis, a solution t̂ ∈ A to Problem
2.3.1 must satisfy p(t̂) > 0. In this case, we do not know a priori the value of p(t̂), so we can
not tell whether t∗ is an approximation of a global minimum or not just from the value of
p(t∗), even if the recovery is stable. Nevertheless, we can apply techniques of Sum of Squares
(SOS) decompositions of polynomials [81] to this problem to try to find a guarantee that
t∗ is an approximation to a global minimum, and as a consequence, an approximation to a
solution to Problem 2.3.1.

SOS decompositions are relaxations used in polynomial optimization to obtain a lower
bound for a real polynomial in a real algebraic set. We say that a polynomial is SOS if it
can be written as a sum of squares of real polynomials and we denote by I(V (J)) the ideal
of polynomials vanishing on V (J). We denote by t the vector containing all the variables of
Problem 2.3.1, and we define the coordinate ring of the algebraic set V (J) as the quotient
ring R[t]/I(V (J)). We formulate the following SOS problem, which is a particular case of
the main problem studied in [56].

Problem 2.6.1. Given a bound d ∈ N, a quartic p, an algebraic set V (J), and a value
z ≥ 0, is there any polynomial q such that

p(t)− z = q(t) in R[t]/I(V (J)); q is SOS, and deg(q) ≤ 2d?

Let z = p(t∗) for t∗ ∈ A and suppose that Problem 2.6.1 has an affirmative answer for
p, V (J), z and some d, then p(t) ≥ z in V (J). Therefore, t∗ is a global minimum of p in A
and thus a solution to Problem 2.3.1. In Example 2.6.2, we will show a network in which we
are able to guarantee that a minimum to Problem 2.3.1 is global by finding an affirmative
answer to Problem 2.6.1.

It could be possible that there is a global minimum t∗ ∈ A to Problem 2.3.1 such that
Problem 2.6.1 has a negative answer for V (J), z = p(t∗) and any d, because for most
algebraic varieties there exist nonnegative polynomials which are not SOS in the coordinate
ring. Nevertheless, p− p(t∗) in V (J) can always be approximated by SOS polynomials, and
the minimum degree of those polynomials depends on the closeness of the approximation
[56], (see also [73] for more details).

Given a Gröbner basis of I(V (J)), Problem 2.6.1 reduces to a semidefinite program (SDP)
[56]. It is equivalent to find a symmetric positive semidefinite matrix Q such that the normal
form of p− z − uTQu in the Gröbner basis is zero, where u is a vector whose entries are the
standard monomials corresponding to the Gröbner basis, (that is, the monomials which are
not divisible by any leading term of the polynomials in that basis) with degree at most d,
see [81].

In general, it is computationally complex to determine a Gröbner basis of the real radical
I(V (J)) of J . Alternatively, we can check if p − z is sum of squares in R[t]/J , which is a
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SDP problem that only requires a Gröbner basis of J , and obtaining an affirmative answer
to this problem is a sufficient condition for obtaining an affirmative answer to Problem 2.6.1,
because the evaluation of a polynomial which is equal to p−z in R[t]/J at any point of V (J)
is equal to the evaluation of p− z at that point.

Even with the relaxation of the above paragraph, the computation of a Gröbner basis of
the ideal J is computationally expensive when J is the ideal of a spider network of a medium
or large number of radii, because the number of variables of Problem 2.3.1 and the number
of polynomials in (2.3) increase with the number of radii. Nevertheless, the ideal J depends
only on the number of radii, and it does not depend on the Dirichlet-to-Neumann matrix
nor on the partition used in Problem 2.3.1, so once a Gröbner basis of J corresponding to
a number of radii is computed, it could be used to check if a local minimum of any case of
Problem 2.3.1 in a spider network with this number of radii is a global minimum.

Example 2.6.2. We consider the spider network Γ = (F̄ , c) with m = 3 radii in Figure
2.16, we recover its conductance using a piecewise constant conductance hypothesis which
does not hold in the network, and we check if the obtained solution is a global minimum of
Problem 2.3.1.

Figure 2.16: Real network with m = 3.

In the real network, we have c(x1, x4) = 1, c(x2, x4) = 2 and c(x3, x4) = 3. The Laplacian
matrix of Γ is

L =


1 0 0 −1
0 2 0 −2
0 0 3 −3
−1 −2 −3 6

 ,

and its Dirichlet-to-Neumann matrix is

N =
1

6

 5 −2 −3
−2 8 −6
−3 −6 9

 .

We set µ = 1 and we obtain a numerical approximation to a local minimum of Problem
2.3.1 under the hypothesis that the conductance is piecewise constant on E = E1 ⊔E2, with
E1 = {ex2x4 , ex1x4} and E2 = {ex3x4}; which is false in Γ. In Problem 2.3.1, we do not include
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the variable ω(E2), nor the term (c′(x3, x4)− ω(E2))
2 in p, since as E2 only has one edge, in

the solution we will have ω(E2) = c′(x3, x4) trivially. The problem is to minimize

p =
(
c′(x1, x4)− c′(x1, x4)ux1(x4)− 5

6

)2
+
(
−c′(x2, x4)ux1(x4) +

1
3

)2
+
(
−c′(x3, x4)ux1(x4) +

1
2

)2
+
(
−c′(x1, x4)ux2(x4) +

1
3

)2
+
(
c′(x2, x4)− c′(x2, x4)ux2(x4)− 4

3

)2
+ (−c′(x3, x4)ux2(x4) + 1)2

+
(
−c′(x1, x4)ux3(x4) +

1
2

)2
+ (−c′(x2, x4)ux3(x4) + 1)2

+
(
c′(x3, x4)− c′(x3, x4)ux3(x4)− 3

2

)2
+ (c′(x1, x4)− ω(E1))

2 + (c′(x2, x4)− ω(E1))
2 .

subject to 
g14 := −c′(x1, x4) + (c′(x1, x4) + c′(x2, x4) + c′(x3, x4))ux1(x4) = 0

g24 := −c′(x2, x4) + (c′(x1, x4) + c′(x2, x4) + c′(x3, x4))ux2(x4) = 0

g34 := −c′(x3, x4) + (c′(x1, x4) + c′(x2, x4) + c′(x3, x4))ux3(x4) = 0,

and c(x, y) ≥ 0 for all exy ∈ E.

Using an interior point method, we obtain a local minimum t∗ such that p(t∗) = 0.1995,
and the values of all the variables in t∗ are c′(x1, x4) = 1.1486, c′(x2, x4) = 1.5765, c′(x3, x4) =
3.4764, ω(E1) = 1.3625, ux1(x4) = 0.1852, ux2(x4) = 0.2542 and ux3(x4) = 0.5606.

We define the ideal J = ⟨g14, g24, g34⟩. We choose the degree reverse lexicographic order
with c′(x1, x4) > c′(x2, x4) > c′(x3, x4) > ux1(x4) > ux2(x4) > ux3(x4), and we compute the
Gröbner basis J = ⟨h1, h2, h3, h4, h5, h6⟩ of J with respect to that monomial order using the
gbasis function in Matlab. The polynomials of the basis are



h1 = c′(x2, x4)− c′(x1, x4) + c′(x3, x4) + c′(x1, x4)ux1(x4)− c′(x2, x4)ux2(x4)

−2c′(x2, x4)ux3(x4)− c′(x3, x4)ux3(x4),

h2 = c′(x2, x4)ux1(x4)− c′(x2, x4) + c′(x2, x4)ux2(x4) + c′(x2, x4)ux3(x4),

h3 = c′(x3, x4)ux1(x4)− c′(x3, x4) + c′(x2, x4)ux3(x4) + c′(x3, x4)ux3(x4),

h4 = c′(x1, x4)ux2(x4)− c′(x2, x4) + c′(x2, x4)ux2(x4) + c′(x2, x4)ux3(x4),

h5 = c′(x3, x4)ux2(x4)− c′(x2, x4)ux3(x4),

h6 = c′(x1, x4)ux3(x4)− c′(x3, x4) + c′(x2, x4)ux3(x4) + c′(x3, x4)ux3(x4).

Then, we solve Problem 2.6.1 for p, z = p(t∗) and d = 2, but with the relaxation that
consists in substituting the coordinate ring R[t]/I(V (J)) by R[t]/J . That is, we check if there
is a symmetric positive semidefinite matrix Q such that the normal form of p−0.1995−uTQu
in ⟨h1, h2, h3, h4, h5, h6⟩ is null, where u is a vector whose entries are the standard monomials
with degree at most 2 corresponding to ⟨h1, h2, h3, h4, h5, h6⟩.

Using the function findbound from SOOSTOOLS, a toolbox of Matlab for solving sum
of squares programs [80], and the SDP solver SeDuMi [103], we obtain an affirmative answer
to the raised question.
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Therefore, p − 0.1995 is SOS in R[t]/J , so p ≥ 0.1995 in A and thus we have been able
to guarantee that t∗ is a global minimum of p in A and thus a solution to Problem 2.3.1
without needing a Gröbner basis of I(V (J)).



Chapter 3

Simultaneous recovery of the topology
and admittance of a network

In this chapter we study the inverse problem of simultaneously recovering the admittance of
an AC network Γ, respectively the conductance of a DC network Γ, and the topology of Γ
from a set of measurements of voltage and its corresponding power injected at all vertices.
Recall that, as mentioned in Remark 1.3.8, if Γ is an AC network, at a given time, the
potential at the vertices can be represented by u ∈ C (V,C), and the power injected at the
vertices is equal to s = uL(u) ∈ C (V,C), where L is the Laplacian of Γ. Similarly, if Γ is a
DC network, the potential at the vertices can be represented by u ∈ C (V ), and the power
injected at the vertices is equal to s = uL(u) ∈ C (V ). These equations relating voltage and
power are called the power flow equations, (see [79]).

Remark 3.0.1. In order to avoid possible faults in the operation of an electrical network,
voltages are usually maintained close to a reference value, that is chosen to be u = 1 in
appropriate units (see [79]). In this chapter we will fix minimum and maximum values
of voltage 0 < |u|min ≤ |u|max. Later, in the experiments, we will use |u|min = 0.9 and
|u|max = 1.1.

Throughout the chapter we always assume that given m ∈ N∗ and u ∈ C (V,Cm),
respectively u ∈ C (V,Rm), the components of u are u1, . . . , um ∈ C (V,C), respectively
u1, . . . , um ∈ C (V ), i.e. u = (u1, . . . , um). We denote its real and imaginary parts as
ℜ(u) = (ℜ(u1), ...,ℜ(um)) ∈ C (V,Rm) and ℑ(u) = (ℑ(u1), ...,ℑ(um)) ∈ C (V,Rm).

In this chapter, for any kernel a ∈ C (V × V,C) that is symmetric and satisfies that
a(x, x) = 0 for any x ∈ V , we denote by La the endomorphism of C (V,C) defined as

La(u)(x) =
∑
y∈V

a(x, y)
(
u(x)− u(y)

)
for any u ∈ C (V,C) and any x ∈ V . Note that if a is the admittance of an electrical network
Γ = (V, a), then La is the Laplacian of Γ, that is, La = −div ◦ (ad).

Moreover, for any a ∈ C (V × V,C) that is symmetric and satisfies that a(x, x) = 0 for
any x ∈ V , we denote by Pa : C (V,Cm)× C (V,Cm) −→ C (V,Cm) the function defined for
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each (v,w) = ((v1, ..., vm), (w1, ..., wm)) ∈ C (V,Cm)× C (V,Cm) as

Pa (v,w) = (v1La(w1), ..., vmLa(wm)).

Of course, when a is a real kernel, Pa (v,w) ∈ C (V,Rm) for every u,v ∈ C (V,Rm). Also, if a
is the admittance of an AC network, respectively a DC network, then for any u ∈ C (V,Cm),
respectively u ∈ C (V,Rm), the j-th component of the function Pa (u,u) is equal to the
power injected at the network when the potential is uj, for any j = 1, ...,m.

We denote as E(KV ) the set of edges of the complete graph on V , i.e. the set of all
possible edges on the vertex set V . In an applied situation, one of the main causes that
the system operators of a network Γ may not know its topology (V,E(Γ)) is the existence
of lines which have a switch whose status is unknown, so they do not know whether their
corresponding edges belong to E(Γ) or not, (see [2]). In general, we formulate the inverse
problem with the a priori information that there is a set E ⊆ E(KV ) of edges which are
candidates to belong to E(Γ), and we know that the edges in E(KV ) \E do not exist in the
network topology. Note that, the particular case in which E = E(KV ), corresponds with
the framework in which we do not have any a priori information about E(Γ).

Problem 3.0.2. Let V be a finite set of vertices, let E be a set of edges, let 0 < |u|min ≤
|u|max be positive values, let m ∈ N∗ and let u, s ∈ C (V,Cm), respectively u, s ∈ C (V,Rm),
such that |u|min ≤ |uj| ≤ |u|max for all j = 1, . . . ,m. Determine an AC, respectively a DC,
electrical network Γ = (V, a) with set of edges E(Γ) ⊆ E such that s = Pa(u,u).

The pair (u, s) is usually called the data pair or the data set and hence we always under-
stand that for any j = 1, . . . ,m, uj represents a measurement of voltage and sj represents its
corresponding measurement of power. Therefore for any j = 1, . . . ,m we have that uj(z) ̸= 0
for all z ∈ V , since 0 < |u|min ≤ |uj|.

Several authors have formulated different problems of recovering the topology and ad-
mittance of a network, starting from different data; and they have proposed methods to
solve these problems. For instance, as mentioned in Section 2 in the context of the in-
verse conductance problem, in [66] the authors introduced a method which recovers the
conductance and the topology up to vertices of combinatorial degree two of any tree from
its Dirichlet-to-Neumann map.

In [2], the application of a least squares approach to solve two problems is discussed:
the first one concerns the admittance estimation alongside voltage estimation from a known
topology, and the second one consists of the voltage estimation alongside detection of errors
in the network topology determined by a given admittance. However, in that paper, the
simultaneous recovery of topology and admittance is not discussed.

An iterative method is proposed in [72] to recover simultaneously the topology and ad-
mittance of a network from power and voltage data, starting at each step from an estimated
admittance and then calculating the current flow in each edge, removing an edge if its con-
ductance and susceptance have a value below a given threshold. Nevertheless, relying only
on the values of the admittance to decide if an edge can be removed from a network can lead
us to an error, as we show in Example 3.6.1. The method proposed in [57] also estimates
both the topology and admittance of a network from power and voltage data, but only in
the particular case of distribution networks which operationally are a tree.
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In [88], it is shown that the problem of simultaneously recovering the topology and
admittance of an electrical network from power and voltage data at all nodes is often ill-
posed, sometimes even having multiple solutions. Instead of recovering a network with the
best fit to the data, the author formulates a problem of seeking a network which fits the
data up to a given tolerance and whose topology is sparse, i.e., with few edges. The author
proposes an algorithm to solve this problem, which combines, in an iterative procedure, the
resolution of nonnegative linear regression problems, and techniques of spectral sparsification
of networks. The algorithm is tested on several electrical networks.

The objective of this chapter is to review the results from [88] from a perspective of
discrete vector calculus on networks.

3.1 Ill-posedness of the problem

This section is a review of [88, Section 3]. Problem 3.0.2 is ill-posed in general, often having
multiple solutions. For example, in the following example, we show a case in which, under
the restriction that the power injected at a node is zero at a certain vertex for all the sj
functions in the data pair (u, s), then there are multiple solutions for any choice of (u, s).
Recall that this restriction is common in networks of the real world, in which there are
vertices which are not associated to any generator or consumer of power.

Example 3.1.1. Let Γ = (V, c) be the DC electrical network which is the weighted path
in Figure 3.1, with vertex set V = {x, y, z}, with set of edges E(Γ) = {exy, eyz}, whose
conductance values are c(x, y) = c(y, x) > 0 and c(y, z) = c(z, y) > 0, respectively; and
with Laplacian L. Let (u, s) be a data pair satisfying the power flow equations, that is,
s = Pc(u,u) =

(
u1L(u1), . . . , umL(um)

)
, and moreover that s(y) = 0.

Figure 3.1: Electrical network in Example 3.1.1.

We have that for each j = 1, ...,m, uj is harmonic on y, because uj(y) ̸= 0. By Gauss’
Theorem, L(uj)(x) = Ij, L(uj)(y) = 0 and L(uj)(z) = −Ij, for some Ij ∈ R. Then, each uj
must be equal to uj(x) =

Ij
c(x,y)

+ ζj, uj(y) = ζj and uj(z) = − Ij
c(y,z)

+ ζj, for some ζj ∈ R.

We consider the Problem 3.0.2 with data pair (u, s) and the edge set of the complete
graph in V , E(KV ) = {exy, exz, eyz}. Then, a DC electrical network Γ′ = (V, c′) with
Laplacian L′ is a solution of the problem if and only if we have that c′ ∈ C +(E) is a solution
of 

c′(x, y)
(
uj(x)− uj(y)

)
+ c′(x, z)

(
uj(x)− uj(z)

)
= Ij

c′(x, z)
(
uj(z)− uj(x)

)
+ c′(y, z)

(
uj(z)− uj(y)

)
= −Ij

c′(x, y)
(
uj(y)− uj(x)

)
+ c′(y, z)

(
uj(y)− uj(z)

)
= 0,

for all j = 1, ...,m. For each j = 1, ...,m, the third equation in that system depends linearly
on the rest. If Ij = 0, then uj is constant on V , so any value of the conductance c′ satisfies



72 Simultaneous recovery of the topology and admittance of a network

that sj = ujL′(uj). If, on the contrary, Ij ̸= 0, then the previous system is equivalent to the
following system, which is independent of Ij and ζj:


c′(x, y)

c(x, y)
+

(
1

c(x, y)
+

1

c(x, z)

)
c′(x, z) = 1(

1

c(x, y)
+

1

c(x, z)

)
c′(x, z) +

c′(y, z)

c(x, z)
= 1.

(3.1)

The function α ∈ C (E); which is determined by the values α(x, y) = −1 − c(x,y)
c(y,z)

,

α(x, z) = 1 and α(y, z) = −1 − c(y,z)
c(x,y)

; is a solution to the homogeneous system associated

to (3.1). Therefore, any network Γ′ = (V, c′) whose conductance is of the form c′ = c + βα,

with β ∈
[
0, c(x,y)c(y,z)

c(x,y)+c(y,z)

]
, is a solution to Problem 3.0.2.

Among the solutions with conductance of this form c′ = c+βα, the one with β = 0 is the
real network Γ. The solution Γ′ = (V, c′) with β = c(x,y)c(y,z)

c(x,y)+c(y,z)
satisfies c′(x, y) = c′(y, z) = 0,

so it has only one edge, E(Γ′) = {exz}. Moreover, its conductance satisfies

1

c′(x, z)
=

1

c(x, y)
+

1

c(y, z)
, (3.2)

so Γ′ is the union of the isolated vertex {y} and the Kron reduction of Γ with respect to {y};
and c′(x, z) is equal to the effective conductance in Γ between x and z, ce(x, z). The fact that
this network is a solution of the problem is because its Laplacian is the Dirichlet-to-Neumann
map of Γ and {y}, which gives us the relationship between potential and injected current
at V \ {y} = {x, z} when the potential is harmonic on y. Additionally, the rest of solutions

with conductance of form c′ = c + βα, are the infinite solutions with β ∈
(
0, c(x,y)c(y,z)

c(x,y)+c(y,z)

)
,

which have the topology of (V,E(KV )), the complete graph in V . Note that Problem 3.0.2
can be ill-posed even in cases in which the set of edges E considered is the set of edges of a
solution, as happens in this example.

In a numerical context, we usually have errors in the data pair (u, s), and as a consequence
often there is no exact solution to Problem 3.0.2. We reformulate the problem in Problem
3.1.2, in order to have a solution for any data pair. We seek a network for which the power
flow equations are the closest possible to be satisfied in the least squares sense. If Γ = (V, c)
is a DC network, we define the error of the network Γ in the data pair (u, s), rms(Γ,u, s),
as the root mean square of the set of evaluations at all vertices of the residuals ujL(uj)− sj
of all the power flow equations corresponding with all the pairs (uj, sj), j = 1, . . . ,m. That
is,

rms(Γ,u, s) =
||Pc(u,u)− s||√

m|V |
=

√√√√ 1

m|V |

m∑
j=1

∫
V

(ujL(uj)− sj)
2 dx.

If Γ = (V, a) is an AC network, we define the error of the network Γ in the data pair (u, s),
rms(Γ,u, s), as the root mean square of the set of evaluations at all vertices of the real and
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imaginary parts of the residuals ujL(uj)− sj of all the power flow equations corresponding
with all the pairs (uj, sj), j = 1, . . . ,m. That is,

rms(Γ,u, s) =
||Pa(u,u)− s||√

2m|V |
=

√√√√ 1

2m|V |

m∑
j=1

∫
V

∣∣∣ujL(uj)− sj

∣∣∣2 dx.
Problem 3.1.2. Let V be a finite set of vertices, let E be a set of edges, let 0 < |u|min ≤
|u|max be positive values, let m ∈ N∗ and let u, s ∈ C (V,Cm), respectively u, s ∈ C (V,Rm),
such that |u|min ≤ |uj| ≤ |u|max for all j = 1, . . . ,m. Determine an AC, respectively a DC,
electrical network Γ = (V, a) with set of edges E(Γ) ⊆ E and such that the error rms(Γ,u, s)
is minimum.

Finding a solution to Problem 3.1.2 is equivalent to solving a Nonnegative Least Squares
(NNLS) problem, that is, a least squares problem with the restriction that the coefficients
must be nonnegative, (see [92]). In order to see that, given u ∈ C (V,Rm) and a set of edges
E, we define the linear operator ME,u : C (E) −→ C (V,Rm) as

ME,u(c) =
(
u1Lc(u1), . . . , umLc(um)

)
= Pc(u,u).

Then, for any DC network Γ = (V, c) with set of edges E(Γ) ⊆ E, and any data pair
(u, s) ∈ C (V,Rm)× C(V,Rm), we have that

rms(Γ,u, s) =
||ME,u(c)− s||√

m|V |
. (3.3)

Similarly, given u ∈ C (V,Cm) and a set of edges E, we define the linear operator
ME,u : C (E)× C (E) −→ C (V,R2m) as

ME,u(c, b) =
(
ℜ
(
u1La(u1)

)
,ℑ
(
u1La(u1)

)
, . . . ,ℜ

(
umLa(um)

)
,ℑ
(
umLa(um)

))
,

where a = c− ib.

We also consider the operator S : C (V,Cm) −→ C (V,R2m) defined as

S(s) =
(
ℜ(s1),ℑ(s1), . . . ,ℜ(sm),ℑ(sm)

)
.

Then, for any AC network Γ = (V, a) with set of edges E(Γ) ⊆ E, where a = c− ib, and any
data pair (u, s) ∈ C (V,Cm)× C(V,Cm), we have that

rms(Γ,u, s) =
||ME,u(c, b)− S(s)||√

2m|V |
. (3.4)

Both for DC and AC networks, Problem 3.1.2 consists in seeking for a nonnegative
function c ∈ C +(E) in the case of DC networks, or two nonnegative functions c, b ∈ C +(E)
in the case of AC networks, such that the norm of the difference between its image under
the real linear operator ME,u and the vector function s, or S(s), is minimum, so Problem
3.1.2 is equivalent to a NNLS problem.
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Any NNLS problem is a convex quadratic optimization problem, (see [92]), so every local
minimum of it is a global minimum. We can obtain a solution Γ to Problem 3.1.2 calculating
a minimum of its associated NNLS problem with an interior point method. The interior point
methods are among the main numerical algorithms used to solve NNLS problems, (see [43]).
We denote the numerical solution Γ with error rms ≡ rms(Γ,u, s) obtained from E and
(u, s) as [Γ, rms ] = network recovery(E,u, s).

A sufficient condition that implies that Problem 3.1.2 has a unique solution is that
m ≥ |E|

|V | and κ(ME,u) <∞, i.e., the condition number of ME,u is finite, (see [92]). We will
require in Section 3.6 that the data sets used to test the sparse network recovery algorithm
satisfy m ≥ |E|

|V | . Nevertheless, often the condition κ(ME,u) < ∞ is not satisfied, and thus
there are multiple solutions to Problem 3.1.2; as seen in Example 3.1.1, in which there are
multiple solutions with zero error.

As we will see in Section 3.6, in cases in which the pair (u, s) contains voltage and power
data corresponding to an electrical network with some error, the value of the condition
number κ(ME,u) is finite but it is very high, so Problem 3.1.2 has a unique solution but it
is severely ill-posed.

3.2 Reformulation of the problem: Recovery of a sparse

electrical network

This section is a review of the beginning of [88, Section 4]. As we have discussed in the
previous section, given a data data pair (u, s) and a set of edges E, the Problem 3.1.2 of
recovering a network Γ with minimum error such that E(Γ) ⊆ E is ill-posed. Because of
that, even if there is a solution Γ∗ to the exact Problem 3.0.2 whose topology is much more
sparse than (V,E), i.e., |E(Γ∗)| ≪ |E|, solving Problem 3.1.2 we usually get a solution whose
topology is (V,E). If the number of edges in E is high, a solution with that topology is not
efficient for applications. We are interested in recovering a sparse network such that the
fitting error to the data is below a fixed tolerance. Such a network would allow the efficient
and accurate resolution of usual problems in electrical networks which require the admittance
and topology. Those applications include failure identification, power flow optimization or
generation scheduling [57].

We formulate the following problem of recovering a sparse network. Given a fixed toler-
ance, we seek to recover a network such that its rms is below this tolerance and none of the
networks with the same set of vertices as our network and a subset of its edges has a rms
below the tolerance.

Problem 3.2.1 ([88]). Let V be a finite set of vertices, let E be a set of edges, let 0 < |u|min ≤
|u|max be positive values, let m ∈ N∗, let u, s ∈ C (V,Cm), respectively u, s ∈ C (V,Rm), such
that |u|min ≤ |uj| ≤ |u|max for all j = 1, . . . ,m and let tol > 0 be a tolerance. Determine an
AC network Γ = (V, a), respectively a DC network Γ = (V, c), with set of edges E(Γ) ⊆ E
such that rms(Γ,u, s) ≤ tol and Γ is “minimal” in the following sense: Given any electrical
network Γ′ = (V, a′), respectively Γ′ = (V, c′), with edge set E(Γ′), we have that

1. If E(Γ′) = E(Γ), then rms(Γ′,u, s) ≥ rms(Γ,u, s).
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2. If E(Γ′) ⊊ E(Γ), then rms(Γ′,u, s) > tol.

Remark 3.2.2. In particular, we have rms(Γ′,u, s) > tol ≥ rms(Γ,u, s) if E(Γ′) ⊊ E(Γ).
However, notice that there could be an electrical network E(Γ′) = (V, a′) such that
rms(Γ′,u, s) < rms(Γ,u, s) and E(Γ′) ̸⊂ E(Γ).

A first naive idea to solve Problem 3.2.1 could be to recover a network Γ solving Problem
3.1.2 with the set of edges E, i.e., [Γ, rms ] = network recovery(E,u, s), and then to remove
from E(Γ) the edges whose admittance values are close to zero. However, this approach
presents some problematic issues.

First, let Γ∗ be a solution to Problem 3.2.1, with set of edges E(Γ∗). As we will see
in Section 3.6, if E(Γ∗) is much smaller than E, then usually the condition number of the
operator associated with the network recovery Problem 3.1.2 using set E, κ(ME,u), is much
bigger than the condition number of the operator associated with the network recovery
Problem 3.1.2 using set E(Γ∗), κ(ME(Γ∗),u). Then, the values of the admittance of Γ at the
edges of E \ E(Γ∗) are usually far from zero. For instance, in Example 3.3.4, solving the
Problem 3.1.2 with the edge set E(KV ) = {exy, exz, eyz}, we can get solutions with zero error
such that the values of the admittance at all edges of E(KV ) are far from zero, despite the
fact that there are solutions with zero error and less than three edges.

Second, in Γ could exist edges with admittance close to zero whose removal would lead
to a network which would not correctly fit the data (see Example 3.6.1). In order to avoid
those problems, the algorithm that we propose in Section 3.5 algorithm uses techniques of
spectral sparsification of networks in order to remove edges from networks.

3.3 Spectral network sparsification

This section is a review of [88, Subsection 4.1]. Spielman and Teng introduced the notion
of spectral sparsification of a real weighted graph, (that is, a DC network), in [95], (see also
the subsequent papers [16, 93, 94] on this topic).

Definition 3.3.1 ([93]). For ε > 0, we say that a DC network Γ′ = (V, c′) with energy E ′ is
an ε-approximation of a DC network Γ = (V, c) with energy E if for all u ∈ C (V ):

1

1 + ε
E(u, u) ≤ E ′(u, u) ≤ (1 + ε)E(u, u). (3.5)

The energy of an AC network Γ = (V, a), with a = c − ib and c, b ∈ C +(E(Γ)), is a
complex bilinear form, so we can not apply Definition 3.3.1 to it. Nevertheless, we can
apply this definition separately to its conductance and susceptance networks, Γc = (V, c)
and Γb = (V, b). We introduce the following definition.

Definition 3.3.2. For ε > 0, we say that an AC network Γ′ is an ε-approximation of an AC
network Γ if the conductance and susceptance networks of Γ′ are ε-approximations of the
conductance and susceptance networks of Γ, respectively.
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Algorithm 1 Γ′ = Sparsify(Γ, ε).

Set t = 8|V | · log(|V |)/ε2, c′ = 0, and E(Γ′) = ∅.
for each edge exy ∈ E(Γ) do

Assign to edge exy a probability pxy proportional to c(x, y)re(x, y).
end for
Take t samples independently with replacement from E(Γ), and each time the edge exy is
sampled, increase the value of c′(x, y) and c′(y, x) by c(x, y)/tpxy, (and as a consequence,
add the edge exy to E(Γ′) if it is the first time that exy is sampled).

In [16] there is a procedure (Algorithm 1) that can be used to construct a sparse approx-
imation Γ′ = (V, c′) of a DC network Γ = (V, c) such that E(Γ′) ⊆ E(Γ).

Algorithm 1 is not guaranteed to produce an ε-approximation of Γ, but in [16] there is a
proof of the following theorem:

Theorem 3.3.3 (Batson, Spielman, Srivastava, Teng). Let Γ be a DC network, let ε ∈ R,
0 < ε ≤ 1 and let Γ′ = Sparsify(Γ, ε). Then Γ′ is an ε-approximation of Γ with probability at
least 1/2.

Note that the edges that are removed in Algorithm 1 are the ones that are never sam-
pled. The choice of the sampling probabilities in the algorithm has an interesting physical
interpretation. By (1.13), for each edge exy ∈ E, the probability of sampling it, pxy, is
proportional to the dimensionless ratio

c(x, y)re(x, y) =
c(x, y)

ce(x, y)
=

c(x, y)

c(x, y) + ce\exy(x, y)
∈ (0, 1],

where ce\exy(x, y) ≥ 0 is the effective conductance between x and y in the network Γ \ exy
obtained from Γ by removing the edge exy, which is equal to the contribution to the effective
conductance ce(x, y) of the paths between x and y through the rest of vertices of the network
Γ.

The probability of choosing edge exy in each sample is high if the contribution of the
value c(x, y) to the effective conductance between x and y in Γ, ce(x, y), is very important,
that is, if c(x, y) is big compared to ce\exy(x, y). The limit case is that in which the removal of

exy isolates x and y, in which ce\exy(x, y) = 0, so c(x, y)re(x, y) = 1; and thus the probability

of keeping exy in Γ′ is the highest possible.

The probability pxy is low in the opposite case, that is, when c(x, y) ≪ ce\exy(x, y). In
that case removal of edge exy does not significantly affect the effective conductance between
x and y, because ce\exy(x, y) ≈ ce(x, y). In that case, the probability of keeping exy in Γ′ is
low.

Example 3.3.4. We consider the DC network in Figure 3.2, with conductance c whose
values at each edge are given in Table 3.1. In the same table we indicate the sampling
probabilities calculated for each edge in Algorithm 1.

The values of the conductance at edges {x1, x2} and {x3, x4} are two orders of magnitude
smaller than at the rest of edges, nevertheless, edge {x3, x4} is crucial because it is the only
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Figure 3.2: Topology of the network in Example 3.3.4.

Table 3.1: Conductances and sampling probabilities of the edges in the network.
Edges

{x1, x2} {x1, x3} {x2, x3} {x3, x4} {x4, x5} {x4, x6}
Conductance 0.5797 75.980 75.980 0.4698 94.599 79.909
Conductance times
effective resistance

0.0150 0.9925 0.9925 1 1 1

Sampling probability 0.0030 0.1985 0.1985 0.2 0.2 0.2

connection between vertices x3 and x4, so it has a great probability of being sampled to
form any sparse approximation of the network, while edge {x1, x2} is expendable, because
its conductance c(x1, x2) is equal to only 1.5% of the effective conductance between nodes
x1 and x2. The current can flow from node x1 to node x2 with much greater ease by edges
{x1, x3} and {x2, x3}, so the sampling probability of {x1, x2} is close to zero.

In the case of an AC network Γ = (V, a), we will denote by Γ′ = Sparsify(Γ, ε) an AC
network constructed following the next procedure. First, we apply Algorithm 1 separately
to the conductance and susceptance networks, Γc and Γb, of Γ; getting Γ′

c = (V, c′) and Γ′
b =

(V, b′), respectively. Then, Γ′ = (V, a′) = (V, c′− ib′). Note that E(Γ′) = E(Γ′
c)∪E(Γ′

b), so in
the sparsification process of an AC network we remove the edges erased in the sparsification
of both Γc and Γb.

By definition, Γ′ will be an ε-approximation of Γ iff Γ′
c is an ε-approximation of Γc and Γ′

b

is an ε-approximation of Γb. By Theorem 3.3.3, if 0 < ε ≤ 1, then Γ′ is an ε-approximation
of Γ with probability at least 1

4
.

3.4 Sparsification of recovered electrical networks

This section is a review of [88, Subsection 4.2]. Once we have a procedure to sparsify any
network, the key observation to develop our algorithm of sparse network recovery is that
spectral sparsification is guaranteed to preserve the fitting properties of a network to some
extent.

We introduce some notation for the main result of the chapter in the case of DC networks.
Let Γ = (V, c) be a DC network with Laplacian L and let u, s ∈ C (V,Rm), such that
0 < |u|min ≤ |uj| ≤ |u|max for all j = 1, . . . ,m. For each j = 1, ...,m, we denote as QΓ,uj

the linear operator on C (V ) defined for each v ∈ C (V ) as QΓ,uj
(v) = ujL(ujv). Clearly,

QΓ,uj
is a self-adjoint and positive semidefinite operator. Now, we denote as QΓ,u the

linear operator on C (V,Rm) defined for each (v1, ..., vm) ∈ C (V,Rm) as QΓ,u(v1, ..., vm) =
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(QΓ,u1(v1), ...,QΓ,um(vm)). For any v = (v1, ..., vm),w = (w1, ..., wm) ∈ C (V,Rm), we have
that

⟨QΓ,u(v),w⟩ =
∑m

j=1

∫
V
L(ujvj)ujwjdx =

∑m
j=1

∫
V
ujvjL(ujwj)dx

= ⟨v,QΓ,u(w)⟩,
so the operator QΓ,u is self-adjoint. From the same expression, when v = w, we can see that
QΓ,u is also positive semidefinite. We denote by 1m = (χ

V
, ..., χ

V
) ∈ C (V,Rm) the vector

function whose value is equal to 1 at all vertices. Note that QΓ,u(1m) = ME(Γ),u(c).

For each j = 1, ...,m, we denote as u−1
j ∈ C (V ) the function defined for each x ∈ V as

u−1
j (x) = 1/uj(x). We also define the vector function

ϕu =

(∫
V
u−1
1 dx

||u−1
1 ||2

u−1
1 , ...,

∫
V
u−1
m dx

||u−1
m ||2

u−1
m

)
∈ C (V,Rm).

Our main original result consists in the following upper bound for the rms of any sparse
approximation in a fixed data set.

Theorem 3.4.1 (Main theorem). Given a DC network Γ = (V, c), positive values 0 <
|u|min ≤ |u|max, m ∈ N∗ and u, s ∈ C (V,Rm) such that |u|min ≤ |uj| ≤ |u|max for all
j = 1, . . . ,m; if Γ′ is an ε-approximation of Γ, then:

rms(Γ′,u, s) ≤ rms(Γ,u, s) + ε
∥QΓ,u∥2 · ∥1m − ϕu∥√

m|V |
.

Proof. Let Γ′ = (V, c′) be an ε-approximation of Γ, with Laplacian L′. As QΓ′,u(1m) =
ME(Γ′),u(c

′), by (3.3) we get that

rms(Γ′,u, s) =
1√
m|V |

∥QΓ′,u(1m)− s∥

≤ 1√
m|V |

∥QΓ,u(1m)− s∥+ 1√
m|V |

∥QΓ′,u(1m)− QΓ,u(1m)∥

= rms(Γ,u, s) +
1√
m|V |

∥ (QΓ′,u − QΓ,u) (1m)∥.

The constant functions belong to the null space of any Laplacian, therefore ϕu belongs
to the null space of QΓ′,u − QΓ,u, and thus

∥ (QΓ′,u − QΓ,u) (1m)∥ = ∥ (QΓ′,u − QΓ,u) (1m − ϕu) ∥
≤ ∥QΓ′,u − QΓ,u∥2 · ∥1m − ϕu∥ .

(3.6)

In order to complete the proof, it is enough to show that ∥QΓ′,u − QΓ,u∥2 ≤ ε∥QΓ,u∥2.
Now, QΓ′,u − QΓ,u is a self-adjoint operator, so its spectral norm is equal to the maximum
of the absolute value of its eigenvalues. It is straightforward to prove that its eigenvalues are
those of the operators QΓ′,uj

− QΓ,uj
for all 1 ≤ j ≤ m. In particular, there is at least one

index k such that

∥QΓ′,u − QΓ,u∥2 = ∥QΓ′,uk
− QΓ,uk

∥2.



Sparsification of recovered electrical networks 79

Let u0 ∈ C (V ) be an eigenvector of QΓ′,uk
−QΓ,uk

corresponding with its eigenvalue that
has the largest absolute value such that ∥u0∥ = 1. Then

∥QΓ′,u − QΓ,u∥2 = |⟨u0, (QΓ′,uk
− QΓ,uk

) (u0)⟩|.

Now, denoting as E and E ′ the energy of Γ and Γ′, respectively, we have that

⟨u0, (QΓ′,uk
− QΓ,uk

) (u0)⟩ = ⟨u0, uk(L′ − L)(uku0)⟩

=

∫
V

u0uk(L′ − L)(u0uk)dx

= E ′(u0uk, u0uk)− E(u0uk, u0uk).

Evaluating (3.5) at u = u0uk ∈ C (V ) we get

1

1 + ε
E(u0uk, u0uk) ≤ E ′(u0uk, u0uk) ≤ (1 + ε)E(u0uk, u0uk). (3.7)

From the right inequality of (3.7), we have:

E ′(u0uk, u0uk)− E(u0uk, u0uk) ≤ εE(u0uk, u0uk),

and from the left inequality in (3.7):

− (E ′(u0uk, u0uk)− E(u0uk, u0uk)) ≤
ε

1 + ε
E(u0uk, u0uk) < εE(u0uk, u0uk).

Joining the last two inequalities, we get

∥QΓ′,u − QΓ,u∥2 ≤ εE(u0uk, u0uk).

Moreover,

E(u0uk, u0uk) =
∫
V

u0ukL(u0uk)dx

= ⟨u0, ukL(uku0)⟩
= ⟨u0,QΓ,uk

(u0)⟩.

By the Courant-Fisher theorem [94], the evaluation of the quadratic form associated with
the operator QΓ,uk

at any unit vector is less or equal than its maximum eigenvalue, which
is equal to the norm of this operator because it is positive semidefinite, so:

∥QΓ′,u − QΓ,u∥2 ≤ ε∥QΓ,uk
∥2 ≤ ε∥QΓ,u∥2, (3.8)

where the last inequality holds because the eigenvalues of QΓ,u are those of the operators
QΓ,uj

for all 1 ≤ j ≤ m.

Remark 3.4.2. In (3.6), it is possible to introduce any vector function equal to(
λ1u

−1
1 , ..., λmu

−1
m

)
∈ C (V,Rm), for any choice of λ1, ..., λm ∈ R, because all of them be-

long to the null space of QΓ′,u − QΓ,u. Among them, we choose to introduce the term

ϕu because it is the choice that minimizes ρ(λ1, .., λm) ≡
∥∥1m −

(
λ1u

−1
1 , ..., λmu

−1
m

)∥∥2 =
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∑m
j=1

∫
V

(
χ

V
− λju

−1
j

)2
dx. Effectively, if we look for a minimum of ρ, its partial derivatives

must be zero:

∂ρ(λ1, .., λm)

∂λk
= 2

∫
V

(
−u−1

k + λk
(
u−1
k

)2)
dx = 0,

so the only possible choice for the λk is:

λk =

∫
V
u−1
k dx

||u−1
k ||2

,

which is indeed the global minimum of ρ because its Hessian is positive definite: if j ̸= k,

then ∂2ρ(λ1,..,λm)
∂λk∂λj

= 0, and for each k = 1, ...,m,

∂2ρ(λ1, .., λm)

∂λ2k
= 2

∫
V

(
u−1
k

)2
dx > 0.

Remark 3.4.3. The term
∥QΓ,u∥2·∥1m−ϕu∥√

m|V |
that appears in the upper bound given by the

last theorem depends only on the electrical network Γ and the first element of the data pair
(u, s), so if we want a sparse approximation of Γ such that the rms of the approximation
does not increase (with respect to rms(Γ,u, s)) in the sparsification procedure above a fixed
value, there is an ε > 0 such that any ε-approximation of Γ is guaranteed to meet this
requirement.

In the case of an AC electrical network Γ, we denote by Γc = (V, c) and Γb = (V, b)
the conductance and susceptance networks of Γ, whose respective Laplacians are Lc and Lb.
Additionally, we define the function

∆(Γ,u) =

((√
m|V |(∥QΓc,ℜ(u)∥2 + ∥QΓc,ℑ(u)∥2) + ∥Lb∥2 (∥ℜ(u)∥∞∥ℑ(u)∥2 + ∥ℑ(u)∥∞∥ℜ(u)∥2)

)2
+

+
(√

m|V |(∥QΓb,ℜ(u)∥2 + ∥QΓb,ℑ(u)∥2) + ∥Lc∥2(∥ℑ(u)∥∞∥ℜ(u)∥2 + ∥ℜ(u)∥∞∥ℑ(u)∥2)
)2)1/2

,

and we have the following result, which is the AC analogous to Theorem 3.4.1:

Theorem 3.4.4. Given an AC network Γ = (V, a), m ∈ N∗ and u, s ∈ C (V,Cm), if Γ′ is
an ε-approximation of Γ, then:

rms(Γ′,u, s) ≤ rms(Γ,u, s) + ε
∆(Γ,u)√
2m|V |

,

where ∆(Γ,u) is a function which depends only on Γ and u.

Proof. First, for every u ∈ C (V,C), we have that

uL(u) = uL∗(u) = (ℜ(u) + iℑ(u))(Lc + iLb)((ℜ(u)− iℑ(u))),

and therefore

ℜ(uL(u)) = ℜ(u)Lc(ℜ(u)) + ℜ(u)Lb(ℑ(u)) + ℑ(u)Lb(ℜ(u)) + ℑ(u)Lc(ℑ(u)), (3.9)
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and also

ℑ(uL(u)) = ℑ(u)Lc(ℜ(u)) + ℑ(u)Lb(ℑ(u)) + ℜ(u)Lb(ℜ(u)) + ℜ(u)Lc(ℑ(u)). (3.10)

Now, let Γ′ = (V, a′) be an ε-approximation of Γ, with Laplacian L′. Let Γ′
c = (V, c′) and

Γ′
b = (V, b′) be the conductance and susceptance networks of Γ′, whose respective Laplacians

are L′
c and L′

b. By (3.3) we get that

rms(Γ′,u, s) =
1√
m|V |

∥ME(Γ′),u(c
′, b′)− S(s)∥

≤ 1√
m|V |

∥ME(Γ),u(c, b)− S(s)∥+ 1√
m|V |

∥ME(Γ′),u(c
′, b′)−ME(Γ),u(c, b)∥

= rms(Γ,u, s) +
1√
m|V |

∥ME(Γ′),u(c
′, b′)−ME(Γ),u(c, b)∥.

The square of the norm in the last equation is equal to

∥ME(Γ′),u(c
′, b′)−ME(Γ),u(c, b)∥2 = ∥

(
ℜ(u1(L′ − L) (u1)), ...,ℜ(um(L′ − L) (um))

)
∥2

+ ∥
(
ℑ(u1(L′ − L) (u1)), ...,ℑ(um(L′ − L) (um))

)
∥2.

(3.11)

By equations (3.9), (3.10) and (3.11), we can write

∥ME(Γ′),u(c
′, b′)−ME(Γ),u(c, b)∥2 = ∥β1 + β2 − β3 + β4∥2 + ∥β5 + β6 + β7 − β8∥2

≤ (∥β1∥+ ∥β2∥+ ∥β3∥+ ∥β4∥)2

+ (∥β5∥+ ∥β6∥+ ∥β7∥+ ∥β8∥)2 ,
(3.12)

where:

β1 = (Pc′ − Pc) (ℜ(u),ℜ(u)) , β2 = (Pb′ − Pb) (ℜ(u),ℑ(u)) ,
β3 = (Pb′ − Pb) (ℑ(u),ℜ(u)) , β4 = (Pc′ − Pc) (ℑ(u),ℑ(u)) ,
β5 = (Pc′ − Pc) (ℑ(u),ℜ(u)) , β6 = (Pb′ − Pb) (ℑ(u),ℑ(u)) ,
β7 = (Pb′ − Pb) (ℜ(u),ℜ(u)) , β8 = (Pc′ − Pc) (ℜ(u),ℑ(u)) .

Then, on one hand, Pc (ℜ(u),ℜ(u)) = QΓc,ℜ(u)(1m) and Pc′ (ℜ(u),ℜ(u)) = QΓ′
c,ℜ(u)(1m),

so by (3.8), we get

∥β1∥ ≤ ∥QΓ′
c,ℜ(u) − QΓc,ℜ(u)∥2 · ∥1m∥ =

√
m|V |∥QΓ′

c,ℜ(u) − QΓc,ℜ(u)∥2
≤ ε
√
m|V |∥QΓc,ℜ(u)∥2.

Reasoning analogously, we also obtain that ∥β4∥ ≤ ε
√
m|V |∥QΓc,ℑ(u)∥2,

∥β6∥ ≤ ε
√
m|V |∥QΓb,ℑ(u)∥2 and ∥β7∥ ≤ ε

√
m|V |∥QΓb,ℜ(u)∥2.

On the other hand, Lc = QΓc,χV
, L′

c = QΓ′
c,χV

, Lb = QΓb,χV
and L′

b = QΓ′
b,χV

, so, by
the proof of Theorem 3.4.1, we have that ∥L′

c − Lc∥2 ≤ ε∥Lc∥2 and ∥L′
b − Lb∥2 ≤ ε∥Lb∥2.
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As a consequence, for any (v,w) = ((v1, ..., vm), (w1, ..., wm)) ∈ C (V,Rm) × C (V,Rm) it is
satisfied that

∥(Pc′ − Pc) (v,w) ∥2 =
m∑
j=1

∫
V

v2j (L′
c − Lc)(wj)

2dx

≤ ∥v∥2∞
m∑
j=1

∫
V

(L′
c − Lc)(wj)

2dx = ∥v∥2∞
m∑
j=1

∥(L′
c − Lc)(wj)∥22

≤ ∥v∥2∞
m∑
j=1

∥(L′
c − Lc)∥22 · ∥wj∥22 = ∥v∥2∞ · ∥(L′

c − Lc)∥22 · ∥w∥22

≤ ε2∥Lc∥22 · ∥v∥2∞ · ∥w∥22.

And, analogously, it is satisfied that ∥(Pb′−Pb) (v,w) ∥ ≤ ε∥Lb∥2·∥v∥∞·∥w∥2. Applying
this result, we get the following bounds: ∥β2∥ ≤ ∥Lb∥2 · ∥ℜ(u)∥∞ · ∥ℑ(u)∥2,
∥β3∥ ≤ ∥Lb∥2 · ∥ℑ(u)∥∞ · ∥ℜ(u)∥2, ∥β5∥ ≤ ∥Lc∥2 · ∥ℑ(u)∥∞ · ∥ℜ(u)∥2 and
∥β8∥ ≤ ∥Lc∥2 · ∥ℜ(u)∥∞ · ∥ℑ(u)∥2.

Considering in (3.12) all the upper bounds obtained for ∥β1∥, ..., ∥β8∥, we conclude the
proof.

3.5 Algorithm for sparse network recovery

This section is a review of [88, Subsection 4.3]. In this section we propose an algorithm
to solve the Problem 3.2.1 of recovering simultaneously the topology and admittance of a
sparse electrical network.

If we have an electrical network Γ = (V, a), a data pair (u, s) and we choose an ε such
that the rms of any ε-approximation of Γ in the data pair (u, s) does not surpass a fixed
tolerance tol > 0 (by Theorems 3.4.1 and 3.4.4 such a ε exists if rms(Γ,u, s) < tol), the
only guarantee about the number of edges that any ε-approximation obtained by executing
Sparsify(Γ, ε) will have is that this number of edges will be less or equal than the number of
edges sampled in Algorithm 1, t = 8|V | · log(|V |)/ε2. If tol is small, the number of edges
sampled will be large, so most ε-approximations of Γ will have the same number of edges as
the original network, thus they will not be useful for our purposes.

In the experimentation we have found that, if we choose an ε such that Γ′ = Sparsify(Γ, ε)
satisfies that |E(Γ′)| < |E(Γ)|, and then we solve Problem 3.1.2 with the set E(Γ′); (that is,
we execute [Γ′′, rms ′′] = network recovery(E(Γ′),u, s), determining a network Γ′′ = (V, a′′)
with set of edges E(Γ′′) ⊆ E(Γ′) such that the error rms ′′ = rms(Γ′′,u, s) is minimum), then
we have rms ′′ ≤ tol in many cases, even in cases in which rms(Γ′,u, s) > tol .

Our approach to solve Problem 3.2.1 consists in the application of Algorithm 2. The
algorithm starts by fitting a network Γ = network recovery(E,u, s) solving Problem 3.1.2
with the data pair (u, s) and the set of edges E. Then, our goal is to perform a sparsification
of Γ, Γ′ = Sparsify(Γ, ε), followed by a recovery of another network Γ′′ solving Problem 3.1.2
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with the set of edges of the sparse approximation, E(Γ′), as in the paragraph above, looking
for a network with less edges than the current one, and with a rms below the input tolerance
tol .

We do not know which choices of ε can lead us to a network with these characteristics,
so we use a procedure of exploration to let Algorithm 2 find suitable values of ε. We start
the algorithm with an initial input value of ε, and we do an iterative procedure. Each
iteration begins by checking if Γ′ = Sparsify(Γ, ε) has less edges than the current network Γ.
If this is not the case, there is a high probability, from Theorem 3.3.3, of Γ′ being a sparse
approximation so close to Γ that it has the same set of edges, so we increase the value of ε
multiplying it by the input parameter ψ > 1, and we finish the iteration. In this way, in the
next iteration the number of edges sampled in Sparsify will be lower than in the previous
one, increasing the probability of getting sparse approximations with less edges than Γ.

If, on the contrary, |E(Γ′)| < |E(Γ)|, we recover the network Γ′′ solving Problem 3.1.2
with set of edges E(Γ′), that is, we compute [Γ′′, rms ′′] = network recovery(E(Γ′),u, s).

Then, we check if rms ′′ ≤ tol . If this is the case, we replace the current network Γ by this
new Γ′′ and we finish the iteration, using the new network as input for Sparsify in the next
iteration, repeating the process, in order to look for networks with less edges than it. If, on
the opposite case, rms ′′ > tol , this means we have removed edges that are necessary for the
network to correctly fit the data in the sparsification process, because there are no networks
with set of edges contained in E(Γ′) whose rms is lower or equal than tol . We reject the
network Γ′′, we decrease the value of ε dividing it by ψ and we finish the iteration because,
from theorems 3.4.1 and 3.4.4, we know that decreasing the value of ε assures that the rms
on any subsequent ε-approximation of Γ will have a smaller upper bound.

It is possible to define different stopping criteria for Algorithm 2, such as the total running
time if we are interested on the best network that the algorithm can find in that period, or
a maximum number of consecutive iterations in which the network has not changed. In the
case of distribution networks, it is usual that the position of the switches is set so that the
network topology is a tree, so in this case, reaching a tree topology can be another stopping
criterion. A detailed discussion about the stopping criteria is left for future work.

3.6 Experimental results and discussion

Lastly, we present some results of the application of Algorithm 2 to solve examples of Problem
3.2.1. This section is a review of [88, Section 5]. The algorithm has been written in MATLAB
using Casadi [101], an open-source software tool that provides a symbolic framework suited
for numerical optimization, and the interior-point solver IPOPT [102], an open-source soft-
ware package for large-scale nonlinear optimization, for the network recovery process. The
tolerance used in IPOPT is equal to 10−8. In all the examples, we use ψ = 1.5 as input of
Algorithm 2.

In each example, we have chosen a network Γ and we have sampled a data pair (u, s)
consisting in m = 1000 pairs of voltage and power injected at Γ. Each pair (uj, sj) has

been computed numerically solving the power flow equations of Γ, sj = ujL(uj), along with
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Algorithm 2 Sparse network recovery.

Inputs: (u, s), E, ε, ψ > 1, tol , total time.
[Γ, rms ] := network recovery(E,u, s).
while running time < total time do // (Stopping criteria)

Set Γ′ := Sparsify(Γ, ε).
if |E(Γ′)| < |E(Γ)| then

[Γ′′, rms ′′] = network recovery(E(Γ′),u, s).
if rms ′′ ≤ tol then

Γ := Γ′′.
else

ε := ε/ψ.
end if

else
ε = ε · ψ.

end if
end while
Return Γ.

different additional restrictions. Restrictions that are common for all the pairs (uj, sj), such
as for instance having sj(x) = 0 for a vertex x ∈ V for all i = 1, ...m, will be highlighted
only if they are relevant for the analysis of the results.

In all the examples, we solve Problem 3.2.1 using E = E(KV ) as set of edges, that is, we
solve the problem without any a priori information about the topology of the network. We
fix a labeling {x1, ..., xn} on the set of vertices of each network and in the figures we denote
each vertex xj as j for the sake of clarity.

Example 3.6.1. We start with the DC network in Example 3.3.4, (whose conductance is
shown in Table 3.1). In the data pair (u, s), for each j = 1, ...,m we have different loads,
(that is, negative power injected sj) at all nodes, except at node x1, where the power feeding
the entire network is generated (sj(x1) ≥ 0). We apply Algorithm 2 with tol = 10−5 and
an initial value for ε equal to 0.1 and we obtain the results of Table 3.2 (we only write the
results of iterations in which the number of edges has decreased, and we consider the first
network recovery with the set of edges E(KV ) of the complete graph previous to the iterative
process as the iteration number 1).

Table 3.2: Example 3.6.1 network fitting results with tolerance 10−5.

Iteration number |E(Γ)| rms(Γ,u, s) κ(ME(Γ),u) ε
1 15 1.011 · 10−6 1.040 · 104 0.1000
2 9 9.415 · 10−7 4.316 · 103 0.1000
3 7 4.632 · 10−7 3.021 · 103 0.1000
4 6 1.491 · 10−8 2.100 · 103 0.1000

The last row in Table 3.2 corresponds to the final network found by the algorithm, that
has the real topology of the network (Figure 3.2). The difference between the values at each
edge of the conductance obtained and of the real conductance is of the order of magnitude
of 10−4. We obtain almost the real network in just 4 iterations.
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If we repeat the experiment with a looser tolerance tol = 10−3, we obtain the results
in Table 3.3. The final network is a sparse approximation of the original, with the same
edges than it except for edge {x1, x2}, that is removed. This removal barely distorts the
structure of the network, as we discussed in Example 3.3.4. It is important to remark that
the algorithm never removes the low conductance edge {x3, x4}. That removal would make
impossible satisfying the demand of power at nodes x4, x5 and x6, because node x1 is the
only node with generated power, so the rms of the resulting network would be higher than
tol .

Table 3.3: Example 3.6.1 network fitting results with tolerance 10−3.

Iteration number |E(Γ)| rms(Γ,u, s) κ(ME(Γ),u) ε
1 15 1.011 · 10−6 1.040 · 104 0.1000
2 11 8.418 · 10−7 6.354 · 103 0.1000
3 6 3.580 · 10−5 1.320 · 103 0.1000
5 5 3.579 · 10−5 7.028 · 102 0.1500

From now on, we will use tol = 10−5 for all experiments.

Example 3.6.2. The next experiment uses the CIGRE test AC network named “Medium
voltage distribution network with PV and Wind DER” [63].

Figure 3.3: Topology of the CIGRE Network. (Example 3.6.2).

An application of Algorithm 2 gives the results in Table 3.4.

Table 3.4: Example 3.6.2 network fitting results.
Iteration number |E(Γ)| rms(Γ,u, s) κ(ME(Γ),u) ε

1 105 2.905 · 10−5 4.200 · 1015 0.3000
2 24 8.772 · 10−6 1.492 · 1015 0.3000
3 18 6.405 · 10−6 1.526 · 1015 0.3000
4 17 6.397 · 10−6 1.497 · 1015 0.3000
6 16 4.343 · 10−6 1.482 · 1015 0.4500
8 15 1.668 · 10−8 1.476 · 1015 0.6750
15 14 1.668 · 10−8 7.965 · 102 3.417

As we can see in Figure 3.4, in this example, the sparsification parameter starts with a
value of ε = 0.3, and succeeds at eliminating most edges in the first few iterations. After
getting a network with 15 edges, there are some iterations in which Algorithm 1 does not
remove any edge. Therefore, Algorithm 2 looks for looser sparse approximations of the
network increasing the value of ε, but decreasing its value when a sparse approximation does
not fit the data up to the desired tolerance; until at iteration number 15. In this iteration
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the algorithm arrives to the real topology, with almost the real values of the admittance.
After this iteration, the algorithm never removes any more edges, and the value of ε tends
to oscillate, taking values between 2.28 and 7.69. In Figure 3.4, the iterations in which edges
were removed are marked with a circle.

Figure 3.4: Evolution of ε with the iteration number. Example 3.6.2.

Example 3.6.3. In the next experiment, we use a DC network with the topology of the
Heawood graph. The results of the application of Algorithm 2 with an initial value of ε
equal to 0.1 are shown in Table 3.5. The algorithm is able to find the topology of the real
network in just 5 iterations in this case.

Figure 3.5: Iteration number: 5, |E(Γ)| = 21. (Heawood graph network).

Table 3.5: Heawood graph network fitting results.
Iteration number |E(Γ)| rms(Γ,u, s) κ(ME(Γ),u) ε

1 91 3.705 · 10−6 2.119 · 104 0.1000
2 35 9.267 · 10−7 2.472 · 103 0.1000
3 24 6.378 · 10−7 5.365 · 102 0.1000
4 21 9.164 · 10−10 2.586 · 102 0.1000

In Table 3.6 we compare the rms of the sparse approximation in each iteration that
removes any edge with the upper bound on this rms given by Theorem 3.4.1.

The rms of the sparse approximations are an order of magnitude smaller than the upper
bound guaranteed by Theorem 3.4.1. The network recovery step that follows any sparsifica-
tion step decreases the rms of the network various orders of magnitude. It helps at keeping
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Table 3.6: Heawood graph rms on the sparse approximations.
Iteration number Upper bound on the rms

given by Theorem 3.4.1
rms of the sparse
approximation

2 0.4429 0.0369
3 0.4432 0.0308
4 0.4432 0.0388
5 0.4432 0.0318

the rms of the network below tol and lets us avoid the possibility of accumulation of error
on successive sparsification steps, which could lead to a network that does not correctly fit
the data.

Example 3.6.4. Finally, we present an example of sparse network recovery on the AC low
voltage network called “Landnetz Freileitung 1 network” (Figure 3.6), that belongs to the
Kerber test networks [64].

Figure 3.6: Landnetz Freileitung 1 network.

In the data pair (u, s) there is no injected power at node x14 for any component of s,
that is, sj(x14) = 0 and thus the potential uj is harmonic on x14, for all j = 1, ...,m. We
apply Algorithm 2 with an initial value of ε equal to 0.3; which gives the results in Table
3.7.

Table 3.7: Kerber network fitting results.
Iteration number |E(Γ)| rms(Γ,u, s) κ(ME(Γ),u) ε

1 105 2.069 · 10−7 1.488 · 1015 0.3
2 16 2.757 · 10−7 3.829 · 1014 0.3
3 15 2.485 · 10−12 3.825 · 1014 0.3
10 14 3.885 · 10−7 1.044 · 102 3.417
34 13 2.288 · 10−12 1.029 · 102 5.126

The final network Γ′ = (V, a′) has one edge less than the real one Γ = (V, a), and has
the following topology, which is shown in Figure 3.7: the edges {x1, x14} and {x14, x15} of
the real network are substituted in the recovered network by edge {x1, x15}. The values
of admittance on these edges in the real network Γ are a(x1, x14) = 16.7913 − 2.6154i and
a(x14, x15) = 1.1999 − 3.8157i, and the value of the admittance of Γ′ at edge {x1, x15} is
a′(x1, x15) = 1.6852− 3.1333i. The values of a and a′ at the edges that are common to both
networks, Γ and Γ′, are practically equal.

The difference between Γ and Γ′ is analogous to the difference in Example 3.6.2 between
the real network of that example whose set of edges is {exy, eyz} and the recovered network
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Figure 3.7: Iteration number: 34, |E(Γ)| = 13. (Kerber network).

of that example whose set of edges is {exz}. That is, it is satisfied that

1

a′(x1, x15)
=

1

a(x1, x14)
+

1

a(x14, x15)
, (3.13)

which is the AC analogue to (3.2). As a consequence, Γ′ is the union of the isolated vertex
{x14} and the Kron reduction of Γ with respect to {x14}. Also, a′(x1, x15) is equal to the
effective admittance in Γ between x1 and x15, a

e(x1, x15). Analogously to Example 3.6.2,
the Laplacian of Γ′ is the Dirichlet-to-Neumann map of Γ and {x14}, which gives us the
relationship between potential and injected current at V \{x14} = {x, z} when the potential
is harmonic on x14.

In all the examples, the condition number of the operatorsME(Γ),u decreases dramatically
in the algorithm, being much lower in the last electrical network fitted than in the first one.
This is especially pronounced in Examples 3.6.2 and 3.6.4, in which the condition number
in the first iteration is of the order of magnitude of 1015, and it is 13 orders of magnitude
lower in the last network topology obtained.

In some cases, the rms of a network decreases after removing some edges and recover-
ing a network solving Problem 3.1.2 with the new set of edges. We conjecture that this
phenomenon might be due to the finite precision of the interior-point solver.

As a conclusion, the application of Algorithm 2 to different problems of sparse recovery
of an electrical network has yielded promising results. In all cases the algorithm recovers a
sparse network after few iterations. In this sparse network topology, the Problem 3.1.2 of
network recovery becomes well-posed.
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In this thesis we have studied inverse problems on electrical networks from the perspective
of discrete vector calculus on finite networks. A version of discrete vector calculus has been
introduced in detail in Chapter 1. Our version has extended the discrete vector calculus for
DC networks developed in [18, 20, 35, 36] to include the case of AC networks in which all
lines are inductive and short.

In the case of AC networks, the tangent space at each vertex of the network has been
defined as a complex vector space. With this definition, we have been able to extend to the
AC case the definitions of difference operators such as the derivative, gradient, divergence,
Laplacian, normal derivative and Dirichlet-to-Neumann map and to study their properties.
We have shown that the relation between potential, current and power injected at a network
can be expressed using those difference operators both in the DC and AC cases. Therefore,
the discrete vector calculus has provided an adequate framework to formulate the inverse
problems on DC and AC networks that we have studied throughout the thesis.

Moreover, unlike in [35], we studied Dirichlet and Poisson problems on a subset F ⊆ V of
the vertices of a network Γ = (V, a) in the case in which F is not connected. This has made
possible to extend the definition of the Dirichlet-to-Neumann map of Γ and F to the case in
which F is not necessarily connected and in which there may exist edges between vertices
of F c. This has allowed us to introduce the effective admittance between two vertices of
a network from a Dirichlet-to-Neumann map and to relate it to a Kron reduction of the
network.

As a consequence, we have given a novel physical interpretation to the sampling prob-
abilities in Algorithm 1, which was proposed in 1 to construct a sparse approximation of a
network. These probabilities are proportional to the product of the conductance of an edge
by its effective resistance. Also, as a consequence, the fact that the effective conductance
between every pair of vertices of a Kron reduction of a network is the same as in the orig-
inal network has been obtained as a straightforward consequence of Proposition 1.6.8 (see
Corollary 1.7.3).

We have seen that some results on electrical networks which had been previously proved in
the literature using techniques from other fields, such as the composition property of the Kron
reduction (see Proposition 1.6.8), can alternatively be proved using discrete vector calculus
tools. We think that the further development of the discrete vector calculus could lead to the
discovery of new mathematical properties of electrical networks. Also, we believe that the
future study of additional problems on networks within the framework of the discrete vector
calculus proposed in this thesis could yield new insights and advances in those problems.
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Chapter 2 was dedicated to studying of the inverse conductance problem on a DC net-
work. This problem consists in recovering the conductance of a network from its Dirichlet-
to-Neumann map, and it is ill-posed. In particular, we have reviewed and extended the
results from [38] and [37]. In [38] the authors proposed Problem 2.3.1 as a reformulation
of the inverse conductance problem. We have seen that Problem 2.3.1 is a polynomial op-
timization problem with a regularization term. This term penalizes deviations with respect
to the conductance being piecewise constant on a partition of the edge set known a priori.

We have presented numerous experimental examples that suggest that when the conduc-
tance is truly piecewise constant on the considered partition, the Lipschitz stability constant
of the problem grows exponentially with the number of subsets in the partition. In particu-
lar, when the number of subsets is small relative to the total number of edges, we have been
able to solve the inverse conductance problem with stability, for different partitions and sizes
of the network.

We have also discussed an example from [37] of resolution of the inverse conductance
problem using the formulation of Problem 2.3.1 with a partition such that the actual con-
ductance is not piecewise constant on it. In this example, the resolution of Problem 2.3.1
with a certain positive value of the penalty parameter yields better results than enforcing
the recovered conductance to be piecewise constant on the partition or solving the problem
without any regularization. This supports our penalty formulation of Problem 2.3.1 and the
applicability of this approach to solve real-world problems, in which it is expected that the
actual conductance is not exactly piecewise constant on the known partition. We have also
explained how we can look for a guarantee that a minimum of this optimization problem
obtained with a numerical method is a global minimum using techniques of Sum of Squares
(SOS) decompositions of polynomials, (see [37]).

We think that our approach of reformulation to solve the inverse conductance problem
is promising, considering the results presented in this thesis. In particular, it would be
interesting to solve the inverse conductance problem with this approach as part of a process
to get a numerical solution of Calderón’s problem. Currently, the use of spider networks
in applications of Calderón’s problem to noninvasive medical imaging is typically restricted
to networks with fewer than 16 nodes on the boundary. As we have seen that our method
remains stable when the size of the network increases, our method would enable the use of
larger networks, thus improving the numerical results.

We believe that it would also be interesting to solve Problem 2.3.1 for other network
topologies for which we know that the inverse conductance problem has a unique solution,
such as for critical planar graphs different from the spider graphs. Also, it would be interest-
ing to carry out experiments with a supercomputer applying the mentioned SOS techniques
for larger networks. If, in an experiment, a numerical method provides a minimum of Prob-
lem 2.3.1, but SOS techniques do not guarantee it is a global minimum, then we could look
for another minimum of Problem 2.3.1 by using the numerical method with another initial
guess, or by using a different numerical method.

Chapter 3 has been devoted to extend and review the results from [88]. The aim of
the chapter was to study the inverse problem of simultaneously recovering the admittance
and topology of an AC or DC network from a set of measurements of voltage and its corre-
sponding power injected at all vertices. Nevertheless, as we have discussed, this problem is
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ill-posed, and thus we usually get a solution with a large set of edges, which is not efficient
for applications. Therefore, Problem 3.2.1 was proposed as a reformulation. The goal of this
reformulated inverse problem is to recover a sparse network such that the fitting error to
the data is below a fixed tolerance. A solution to this problem would be desirable from an
applied point of view because it would allow the efficient and accurate resolution of usual
problems in electrical networks.

Motivated by our mentioned novel physical insights on Algorithm 1, we have studied its
application to solve Problem 3.2.1. We have seen that given ε > 0 and a network Γ = (V, c),
this algorithm generates a network Γ′ = (V, c′) by removing edges from Γ, and there is a
certain probability that Γ′ is an ε-approximation of Γ, (see Definition 3.3.1). Then, we have
proved original theoretical results (see Theorems 3.4.1 and 3.4.4) that give an upper bound
on the fitting error of any ε-approximation a network.

Later, we have proposed Algorithm 2 to obtain a solution to Problem 3.2.1, which is
based on Theorems 3.4.1 and 3.4.4. This algorithm consists in an iterative procedure of
solving a convex problem and applying Algorithm 1. We presented diverse experimental
results, which suggest that Algorithm 2 is promising for efficiently solving the problem. In
all experiments, after just a few iterations, we recovered a network that was either the real
one, electrically equivalent to the real one under the conditions satisfied by the data set, or
a sparse approximation of the real network.

Therefore, we believe it would be interesting to further study Algorithm 2 in the future.
One line of research currently in progress is the study of stopping criteria for it. Another
promising direction for future research is exploring the application of alternative graph spar-
sification procedures to remove edges in the algorithm.

To conclude, the discrete vector calculus on networks developed in this thesis has provided
us the tools and definitions necessary to formulate and achieve significant advances in inverse
problems on networks. In particular, we have proposed a stable reformulation of the inverse
conductance problem and we have introduced an algorithm to solve Problem 3.2.1, based on
original theoretical results.
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[11] Araúz, C., Carmona, Á., Encinas, A.M., Mitjana, M., 2016. Recovering the conduc-
tances on grids: a theoretical justification, in: A panorama of mathematics: pure
and applied. Amer. Math. Soc., Providence, RI. volume 658 of Contemp. Math., pp.
149–166.
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[19] Bendito, E., Carmona, Á., Encinas, A.M., 2005. Potential theory for Schrödinger
operators on finite networks. Rev. Mat. Iberoamericana 21, 771–818.
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