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Abstract The objective of the present paper is the study of a one-dimensional Hamiltonian with the interaction term given by the
sum of two nonlocal attractive δ′-interactions of equal strength and symmetrically located with respect to the origin. We use the
procedure known as renormalisation of the coupling constant in order to rigorously achieve a self-adjoint determination for this
Hamiltonian. This model depends on two parameters, the interaction strength and the distance between the centre of each interaction
and the origin. Once we have the self-adjoint determination, we obtain its discrete spectrum showing that it consists of two negative
eigenvalues representing the energy levels. We analyse the dependence of these energy levels on the above-mentioned parameters.
We investigate the possible resonances of the model. Furthermore, we analyse in detail the limit of our model as the distance between
the supports of the two δ′ interactions vanishes.

1 Introduction

This is a new contribution to the study of one-dimensional contact potentials, or potentials with support consisting of a single point
or a discrete collection of points [1–10]. There are two main reasons for the study of this type of objects. From a physicist’s point
of view, one-dimensional Hamiltonians with contact interactions are used to model a wide range of situations. For instance, those
including extra thin structures, point defects in materials, heterostructures with abrupt effective mass change, in addition to other
applications in the study of nanostructures. They also provide one-particle states in scalar (1 + 1)-dimensional QFT, Casimir effect,
etc [11–22]. In addition, many one-dimensional models with two or more contact potentials show scattering resonances and other
scattering features, as poles of the analytically continued S-matrix (or reduced resolvent), thus being a useful source for the study
of unstable quantum systems [23–29].

From the mathematical point of view, contact potentials appear in the theory of self-adjoint extensions of symmetric operators.
In this case, each self-adjoint extension with a contact potential supported at one point is characterised by some conditions that
must be satisfied by the functions belonging to its domain on the support of the contact potential. Then, we may characterise the
potential by one of these conditions. Nevertheless, there are particular situations in which the determination of such constraints
for a given predetermined contact potential is not easy. Instead, we have to resort to other strategies in order to provide a self-
adjoint determination to the given formal Hamiltonian. These strategies often require a renormalisation and the resulting self-adjoint
Hamiltonian is defined via its resolvent or its Birman-Schwinger operator which, in some sense, gives a shortcut to the problem of
finding eigenvalues and resonances arising as a result of the renormalised potential.

One-dimensional nonrelativistic contact potentials having support at one single point have been classified in [30]. In this case,
one gets four one-dimensional families of self-adjoint extensions of the symmetric operator H0 � −d2/dx2 on a suitable domain
in L2(R), where each extension is readily characterised by two-sided boundary conditions on the wave functions of the domain
of the extension on the support of the potential. Physical interpretations of the resulting potentials have been given [31, 32], even
though the general consensus on them is still far from being achieved. Contact potentials perturbing the Salpeter Hamiltonian√−d2/dx2 + m2, which, differently from the Laplacian, is characterised by being nonlocal, have been studied in the literature.
Here, there is a unique family of point perturbations, given by αδ(x) with α ∈ R, that makes the total Hamiltonian self-adjoint, so
that H � √−d2/dx2 + m2 + α δ(x). In this case, self-adjoint determinations for each value of the parameter α cannot be given
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by matching conditions, which implies that the renormalisation procedure is required [26, 33–35], a feature characterising also
Hamiltonians with contact potentials supported at one point in two or three dimensions and some others [36–42].

Both renormalisation and the construction of Birman-Schwinger formulae [43, 44] may represent a mathematical challenge that
makes the procedure interesting from the mathematical point of view.

With regard to the unperturbed Hamiltonian H0 � −d2/dx2, a typical domain D(H0) on which H0 is symmetric is given by
(f (x) is a measurable function f (x) : R → C with properties as below):

D(H0) :� { f (x) ∈ W 2
2 (R), f (x0) � f ′(x0) � 0}, (1.1)

for some fixed x0 ∈ R (often x0 � 0). Here W 2
2 (R) is the Sobolev space of absolutely continuous square integrable functions, f (x),

on R having an absolutely continuous first derivative and a square integrable second derivative, so that
∫ ∞

−∞
(| f (x)|2+| f ′′(x)|2) dx < ∞. (1.2)

In the present paper we study a one-dimensional Hamiltonian decorated with two attractive nonlocal δ′-interactions symmetrically
located around the origin, so that we may start from the merely heuristic expression:

H (λ, x0) � − d2

dx2 − λ
[
δ′(x + x0) + δ′(x − x0)

]
, λ > 0. (1.3)

The term nonlocal, which has been used in previous papers by the authors, see for instance [10], requires an explanation. In fact,
there exist two possible δ′-interactions, one local and the other nonlocal.

To begin with, let us recall that the δ′, regarded as a distribution, is defined by

(δ′, f ) � −(δ, f ′) � − f ′(0), f ∈ S (R),

where S (R) is the well-known Schwartz space of test functions, the properties of which have been presented in detail in [45, 46].
In the theory of distributions one often wishes to assess how singular a given distribution is. The concept playing a crucial role in

this assessment is the so-called singular order of a distribution. Although its rigorous definition was given in [46] both in coordinate
and momentum space, we wish to recall here the more operational criterion provided in [47] in order to determine the singular order
of a given distribution. A distribution (with respect to any space of one-dimensional test functions) T has singular order equal to s if
T is the (s + 2)-th derivative in the sense of distributions of a given continuous (not necessarily differentiable) function f (x), so that
T � Ds+2 f , where D means derivative in the distributional sense. Here s is any integer and a derivative of negative order denotes
an indefinite integral. Thus, the Heaviside function, regarded as a distribution, has singular order s � −1 (it is not continuous, even
though it is the distributional derivative of a continuous function). Therefore, its first derivative, the Dirac distribution δ, has singular
order s � 0, while its second derivative δ′ has singular order s � 1.

As was mentioned earlier, two different point perturbations of the one-dimensional Laplacian, both stemming from the δ′-
distribution, have been studied in the literature. The former, called local δ′-interaction or δ′-potential at x0, denoted by δ′(x − x0), is
defined by its action on a pair of real valued test functions f (x) and g(x) (we use real valued functions in order to make the notation
lighter, the extension to complex valued functions being quite obvious):

(g, δ′(x − x0) f ) �
∫ ∞

∞
g(x) δ′(x − x0) f (x) dx � −

∫ ∞

∞
δ(x − x0)

d

dx
[g(x) f (x)] dx

� − g(x0) f ′(x0) − g′(x0) f (x0). (1.4)

The latter, called nonlocal δ′-interaction at x0, acts as a dyad of the form |δ′
x0

〉〈δ′
x0

|, so that for any (real) test functions f (x) and g(x),
we have:

(g, |δ′
x0

〉〈δ′
x0

| f ) �(g, δ′(x − x0)) (δ′(x − x0), f ) � [−(g′, δ(x − x0))] [−(δ(x − x0), f ′)]
�g′(x0) f ′(x0). (1.5)

It should be remarked that such a distinction does not exist in the case of the Dirac delta. In fact, if δ(x − x0) is the Dirac delta at
x0, we have for any real test functions f (x) and g(x)

(g, δ(x − x0) f ) �
∫ ∞

∞
g(x) δ(x − x0) f (x) dx � g(x0) f (x0)

�(g, δ(x − x0))(δ(x − x0), f ) � (g, |δx0〉〈δx0 | f ). (1.6)

As is well known, the spaces Hn are the spaces of measurable functions f (x) : R → C such that
∫ ∞

−∞
(1 + p2)n | f̂ (p)|2 dp � ‖(1 + p2)

n
2 f̂ ‖2

2< ∞. (1.7)
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The dual of Hn is H−n . Then, while δ ∈ H−1 due to the renowned KLMN theorem (see [48, 49]), the nonlocal δ′ ∈ H−2 since for
any f ∈ H2:

( f , |δ′〉〈δ′| f ) � ( f ′, δ f ′), (1.8)

so that the KLMN theorem is applicable to f ′ ∈ H1.
Incidentally, the fact that |δ′〉〈δ′|� d

dx δ d
dx explains why the term “momentum dependent interaction” was coined for the nonlocal

δ′-interaction in the literature (see [50, 51]).
Regarded as perturbations of H0 � −d2/dx2, the point potentials given by the Dirac delta or either the local or the nonlocal

δ′, determine self-adjoint Hamiltonians. These self-adjoint determinations are given by their respective domains characterised by
two-sided boundary conditions at the point supporting the point potentials. As is well known (see page 157 in [2]), the two-sided
boundary conditions for any function ψ(x) in the domain of H0 + a δ(x) are [21]

(
ψ(+0)
ψ ′(+0)

)
�

(
1 0
a 1

)(
ψ(−0)
ψ ′(−0)

)
, (1.9)

while the two-sided boundary conditions for the Hamiltonian H0 + b δ′(x) are
(

ψ(+0)
ψ ′(+0)

)
�

( 2−b
2+b 0
0 2+b

2−b

)(
ψ(−0)
ψ ′(−0)

)
(1.10)

for the local δ′ [21] and
(

ψ(+0)
ψ ′(+0)

)
�

(
1 β

0 1

)(
ψ(−0)
ψ ′(−0)

)
. (1.11)

for the nonlocal δ′, with the coupling constant β arising from the renormalisation procedure required to determine the appropriate
self-adjoint operator (see [2, 10]).

Note that, while the local δ′-potential is compatible with the δ-potential in the sense that a Hamiltonian like H0 + δ(x) + δ′(x)
(the perturbations may also have real coefficients) admits a self-adjoint determination, this is not possible with the nonlocal δ′-
perturbation. The reason is the presence of β in the second entry of the first row in the square matrix in (1.11).

In the present paper, we introduce a one-dimensional Hamiltonian, in which H0 � −d2/dx2 is now decorated with two nonlocal
δ′-perturbations supported at two centres located at x0 > 0 and −x0.

Before moving to a brief description of the sections of this article, we wish to provide our main motivation for the latter. As is well
known, point interactions were historically introduced in Quantum Mechanics in order to replace sharply peaked potentials, so that
the related Hamiltonians may become solvable models. As a consequence, it would be reasonable to expect that point interactions
should always behave like the short range potentials they are supposed to mimic. As fully attested by the classical Quantum Chemistry
textbook example of H+

2 smoothly approaching He+ in the limit R → 0+ (see [52–55]), two three-dimensional interactions with
nonzero range coalesce smoothly as the distance between their centres vanishes. However, as was rigorously proved in some previous
papers by our group [38, 39, 56], a similar phenomenon does not occur for two three-dimensional δ-interactions (see also a very
recent contribution to this topic [57]).The same pathological behaviour is exhibited by two-dimensional δ-interactions [58], as well
as by one-dimensional δ-interactions perturbing the aforementioned Salpeter Hamiltonian

√−d2/dx2 + m2 [59]. In all these papers
it was shown that, by making the coupling parameter suitably dependent on x0 > 0, these regularised point interactions merge
smoothly, exactly like short range interactions. In this article we wish to investigate the behaviour of two nonlocal δ′-interactions in
this regard, given that, to the best of our knowledge, the issue has not been dealt with in the existing literature.

The paper is organised as follows: after determining in a rigorous way the self-adjoint Hamiltonian making sense of the merely
heuristic expression (1.3) in Sect. 2, we show that, in addition to its absolutely continuous spectrum [0, +∞), its discrete spectrum
consists of two eigenvalues (energy levels) which are functions of the two parameters appearing in the resolvent of such a Hamiltonian,
namely x0 > 0 and β, the coupling parameter arising as a result of the required renormalisation procedure. While we analyse in
detail the dependence of both eigenvalues on x0 > 0 for any fixed value of β in Sect. 3, we investigate their behaviour as functions
of β for any fixed value of x0 > 0 in Sect. 4. Section 5 is devoted to the study of the resonances of the model. In Sect. 6 we
rigorously prove that, as x0 → 0+, the resolvent of the self-adjoint Hamiltonian converges in norm to that of the self-adjoint operator

making sense of the merely heuristic expression − d2

dx2 − 2λ|δ′
0〉〈δ′

0|, which implies that, despite their extremely singular nature, two
nonlocal δ′-interactions coalesce smoothly as the distance between their centres is shrunk to zero. Finally, in Sect. 7, in addition to
our concluding remarks, we discuss the remarkable result achieved in Sect. 6 in relation to our previous works on singular double
wells consisting of δ-interactions in d � 1, 2, 3 dimensions.

2 On the rigorous definition of the Hamiltonian H(λ, x0)

Our first objective is to obtain by means of a rigorous procedure a self-adjoint determination of the merely heuristic Hamiltonian
H (λ, x0) written below. This procedure is known as renormalisation of the coupling constant. The novelty of this Hamiltonian is
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that its interaction term is given by two nonlocal δ′-interactions with equal strength and symmetrically located with respect to the
origin, that is to say:

H (λ, x0) � − d2

dx2 − λ
[|δ′−x0

〉〈δ′−x0
|+|δ′

x0
〉〈δ′

x0
|], (2.1)

for any x0 > 0. It is noteworthy that such an extremely singular point interaction exists only for one-dimensional systems, as can
be seen in [1, 2, 60]. It is worth pointing out that the semiclassical limit of the self-adjoint Hamiltonian making sense of the merely

heuristic expression − d2

dx2 − λ|δ′〉〈δ′| has recently been investigated in [61].
In previous papers [56, 58, 59, 62], our group has investigated models consisting of symmetric double wells with δ-interactions

in dimensions d � 1, 2, 3. he one-dimensional model with such a double well was also investigated in [63–65]. Throughout the
present paper, we shall carry out our calculations in p-space, the momentum space, instead of the more widely used x-space.

As was seen in the previous section, for the nonlocal δ′-interaction centred at x0 > 0, by setting g � f ∈ S (R) in (1.5), we have:
(
f , |δ′

x0
〉〈δ′

x0
| f ) � (

f ′, |δx0〉〈δx0 | f ′) � (
f ′, δx0 f ′) �

∫ ∞

−∞
δ(x − x0)

[
f ′(x)

]2
dx � [

f ′(x0)
]2

. (2.2)

In p-space, (2.2) is written as

1

2π

(
p f̂ , eix0 p

)(
eix0 p , p f̂

)
� 1

2π

∣∣∣
(
eix0 p , p f̂

)∣∣∣
2
, (2.3)

where f̂ (p) denotes the Fourier transform of f (x).
Then, for any x0 > 0, we have the following identities:

(
f , |δ′−x0

〉〈δ′−x0
| f ) +

(
f , |δ′

x0
〉〈δ′

x0
| f ) � (

f ′, δ−x0 f ′) +
(
f ′, δx0 f ′)

�
∫ ∞

−∞
δ(x + x0)

[
f ′(x)

]2
dx +

∫ ∞

−∞
δ(x − x0)

[
f ′(x)

]2
dx � [

f ′(−x0)
]2 +

[
f ′(x0)

]2
. (2.4)

In terms of momenta, the latter expression is equal to

1

2π

[∣∣∣
(
eix0 p , p f̂

)∣∣∣
2

+
∣∣∣
(
e−i x0 p , p f̂

)∣∣∣
2
]

, (2.5)

which shows that |δ′−x0
〉〈δ′−x0

|+|δ′
x0

〉〈δ′
x0

| is a rank two perturbation [2].
As attested by [66–68], the operator

Bx0;E :�
[
− d2

dx2 + |E |
]− 1

2

V (·)
[
− d2

dx2 + |E |
]− 1

2

(2.6)

is isospectral to the more commonly used Birman-Schwinger operator

sgn(V ) |V | 1
2

[
− d2

dx2 + |E |
]−1

|V | 1
2 . (2.7)

Adopting the technique used in references [56, 58, 59, 62] and taking account once again of the fact that ( f , δ′)(δ′, g) � ( f ′, δ)(δ,
g′) � ( f ′, δ g′) (see [50, 51]), we can write the two-dimensional integral kernel of the integral operator in Eq. (2.6) with potential
V :� |δ′−x0

〉〈δ′−x0
|+|δ′

x0
〉〈δ′

x0
| in momentum space as

Bx0;E (p, p′) � 1

π

p
(
p2 + |E |)1/2 cos

(
x0(p − p′)

) p′
(
p′2 + |E |)1/2

� 1

π

p
(
p2 + |E |)1/2

[
cos x0 p cos x0 p

′ + sin x0 p sin x0 p
′ ] p′

(
p′2 + |E |)1/2 , (2.8)

since the Fourier transform of d f
dx is given by i p f̂ .

The simplicity of the latter expression shows rather explicitly why in this context it is more convenient to use the operator Bx0;E

instead of the Birman-Schwinger operator. It is interesting to compare the above kernel to its counterpart when the interaction term
is of the form δ(x − x0) + δ(x + x0). In momentum space the latter kernel, bx0;E (p, p′), is given by

bx0;E (p, p′) � 1

π

1
(
p2 + |E |)1/2 cos

(
x0(p − p′)

) 1
(
p′2 + |E |)1/2 . (2.9)

As rigorously shown in [62], bx0;E (p, p′) is the kernel of a trace class positive integral operator, which is actually a rank two operator,
acting on L2(R) with trace norm equal to

‖bx0;E‖T1�
1

π

∫ ∞

−∞
1

p2 + |E | dp � 2

π

∫ ∞

0

1

p2 + |E | dp � 1

|E |1/2 . (2.10)
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This result has an interesting conclusion [1, 2, 45, 48], which is that the quadratic form domain of a self-adjoint determination of
the Hamiltonian1 H � −d2/dx2 + δ(x − x0) + δ(x + x0) coincides with that of the unperturbed H0 � −d2/dx2 since the finiteness
of the trace implies that the renowned KLMN theorem is immediately applicable (see [48, 49]).

On the other hand, the operator with kernel Bx0;E (p, p′) in (2.8) is not trace class. Nevertheless, let us consider the following
positive operator

(
p2 + |E |)− 1

2 Bx0;E
(
p2 + |E |)− 1

2 � (
p2 + |E |)−1[|δ′−x0

〉〈δ′−x0
|+|δ′

x0
〉〈δ′

x0
|](p2 + |E |)−1

, (2.11)

having a form similar to (2.6). This operator has the following kernel in momentum space

1

π

p

p2 + |E | cos
(
x0(p − p′)

) p′

p′2 + |E | . (2.12)

The latter positive operator has a finite trace given by

1

π

∫ ∞

−∞
p2 dp

(
p2 + |E |)2 � 2

π

∫ ∞

0

p2 dp
(
p2 + |E |)2 � 2

π

[∫ ∞

0

dp

p2 + |E | − |E |
∫ ∞

0

dp
(
p2 + |E |)2

]

� 2

π

[
π

2|E |1/2 − |E |
∫ ∞

0

1
(
p2 + |E |)2 dp

]

� 2

π

[
π

2|E |1/2 − π

4|E |1/2

]
� 1

2|E |1/2 . (2.13)

This shows that |δ′−x0
〉〈δ′−x0

|+|δ′
x0

〉〈δ′
x0

|, while not in H−1, is in H−2 since for any f ∈ H2:
(
f ,

[|δ′−x0
〉〈δ′−x0

|+|δ′
x0

〉〈δ′
x0

|] f
) �

�
([

− d2

dx2 + |E |
]
f ,

[
− d2

dx2 + |E |
]−1[|δ′−x0

〉〈δ′−x0
|+|δ′

x0
〉〈δ′

x0
|]

[
− d2

dx2 + |E |
]−1 [

− d2

dx2 + |E |
]
f

)

�
((

p2 + |E |) f̂ ,
(
p2 + |E |)− 1

2 Bx0;E
(
p2 + |E |)− 1

2
(
p2 + |E |) f̂

)
≤ 1

2|E |1/2 ‖(p2 + |E |) f̂ ‖2
2. (2.14)

This property has a consequence: as has been explained in detail in [2] (Lemma 1.2.2), rank one perturbations defined by vectors that

are in H−2 but not in H−1 are not form bounded with respect to the self-adjoint operator − d2

dx2 defined on the first Sobolev space H1.
In accordance with [2], this implies that, in order to achieve a self-adjoint determination of the merely heuristic Hamiltonian in (2.1),
either the theory of self-adjoint extensions of symmetric operators or the renormalisation of the coupling constant is required. While
the former might be the favourite choice of mathematicians, we have opted to use the latter in order to highlight the analogy between
the model studied here and those with a singular double well consisting of two identical attractive δ-interactions as a perturbation
of either the semirelativistic Salpeter Hamiltonian in one dimension or the negative Laplacian in two or three dimensions, that is to
say the necessity of fixing the ultraviolet divergences (short distances or, equivalently, large momenta) arising because of the point
interactions, as attested by articles such as [69] in addition to the aforementioned articles.

It is worth recalling that, as was rigorously demonstrated in [62, 70], the Hamiltonian with a nonlocal δ′-interaction is the norm
resolvent limit of a net of Hamiltonians with a suitable triple of δ interactions. Therefore, as fully shown in [70], the Hamiltonian
with a nonlocal δ′-interaction can be approximated by Hamiltonians with the interaction term given by the sum of three short range
potentials with shrinking supports. The latter fact implies that the approximation of our Hamiltonian with a singular double well
with a pair of identical nonlocal δ′-interactions by means of Hamiltonians with short range potentials, although feasible in principle,
would not be very practical from the operational point of view since one should use six short range potentials with shrinking supports.

Then, we consider the following Hamiltonian in which we have introduced a cutoff for large values of the momentum:

H (k, λ(k), x0) � p2 − λ(k) p χ|p|<k(p)
[
|e−i x0 p〉〈e−i x0 p|+|eix0 p〉〈eix0 p|

]
p χ|p|<k(p). (2.15)

Here, the function χ|p|<k(p) is the characteristic function of the set of momenta with magnitude less than the cutoff set at k. Observe
that the constant λ in (1.1) is now a function, λ(k), to be determined from the value of the maximum momentum. After the removal
of this ultraviolet divergence, it results that the Hamiltonian H (k, λ(k), x0) is a perfectly defined self-adjoint operator.

Next, we go back to the operator Bx0;E with integral kernel (2.8) and apply on it the previous ultraviolet cutoff. Thus, we obtain an
operator denoted by Bk

x0;E , where k is defined as before. Following the procedure in [59], we can determine the following resolvent
operator:

[
I − λ(k)Bk

x0;E

]−1 �I +
1

π
λ(k) − ∫ k

−k
p2 sin2 x0 p
p2+|E | dp

∣∣∣∣∣
χ|p|<k p sin x0 p
(
p2 + |E |)1/2

〉〈
χ|p|<k p sin x0 p
(
p2 + |E |)1/2

∣∣∣∣∣

1 The operator domain of this self-adjoint determination is the space of functions on a Sobolev space verifying (1.9) at each of the points x0 and −x0.
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+
1

π
λ(k) − ∫ k

−k
p2 cos2 x0 p

p2+|E | dp

∣∣∣∣∣
χ|p|<k p cos x0 p

(
p2 + |E |)1/2

〉〈
χ|p|<k p cos x0 p

(
p2 + |E |)1/2

∣∣∣∣∣

�I +
1

π
λ(k) − 2

∫ k
0

p2 sin2 x0 p
p2+|E | dp

∣∣∣∣∣
χ|p|<k p sin x0 p
(
p2 + |E |)1/2

〉〈
χ|p|<k p sin x0 p
(
p2 + |E |)1/2

∣∣∣∣∣

+
1

π
λ(k) − 2

∫ k
0

p2 cos2 x0 p
p2+|E | dp

∣∣∣∣∣
χ|p|<k p cos x0 p

(
p2 + |E |)1/2

〉〈
χ|p|<k p cos x0 p

(
p2 + |E |)1/2

∣∣∣∣∣
. (2.16)

Observe that in the denominators of the coefficients in (2.16), there are some integrals that should be evaluated before studying their
limit as k → ∞. The former integral is

2
∫ k

0

p2 sin2 x0 p

p2 + |E | dp �2
∫ k

0
sin2 x0 p dp − 2|E |

∫ k

0

sin2 x0 p

p2 + |E |dp

�
∫ k

0
[1 − cos 2x0 p] dp − |E |

∫ k

0

1 − cos 2x0 p

p2 + |E | dp

�k

(
1 − sin 2x0k

2x0k

)
− |E |1/2 tan−1

(
k

|E |1/2

)
+ |E |

∫ k

0

cos 2x0 p

p2 + |E | dp. (2.17)

The latter is

2
∫ k

0

p2 cos2 x0 p

p2 + |E | dp �2
∫ k

0
cos2 x0 p dp − 2|E |

∫ k

0

cos2 x0 p

p2 + |E | dp

�
∫ k

0
[1 + cos 2x0 p] dp − |E |

∫ k

0

1 + cos 2x0 p

p2 + |E | dp

�k

(
1 +

sin 2x0k

2x0k

)
− |E |1/2 tan−1

(
k

|E |1/2

)
− |E |

∫ k

0

cos 2x0 p

p2 + |E | dp. (2.18)

To understand the notation used in (2.16), let us assume that f (x) ∈ L2(R). As is well known, the expression | f 〉〈 f | defines a rank
one operator on L2(R), for if g is arbitrary in L2(R), then, the action of | f 〉〈 f | on g is defined as ( f , g) | f 〉, where (f , g) is the scalar
product of f with g, so that | f 〉〈 f | is the orthogonal projection of L2(R) on the one-dimensional subspace spanned by the function
f .

Now, it is time to fix the function λ(k). Following [1, 2], we fix for some β �� 0,

π

λ(k)
� k +

π

β
, (2.19)

so that

λ(k) � β π

βk + π
. (2.20)

After (2.19)–(2.20) and taking into account (2.17)–(2.18), we may find the limits as k → ∞ of the denominators of the coefficients
in (2.16). For the first denominator, we have

π

λ(k)
− 2

∫ k

0

p2 sin2 x0 p

p2 + |E | dp → π

β
+

π |E |1/2

2

(
1 − e−2x0|E |1/2

)
. (2.21)

For the second,

π

λ(k)
− 2

∫ k

0

p2 cos2 x0 p

p2 + |E | dp → π

β
+

π |E |1/2

2

(
1 + e−2x0|E |1/2

)
, (2.22)

where the improper integrals that appear after the limit have been evaluated in [62]. Consequently, in the limit k → ∞, we have that

[
I − λ(k)Bk

x0;E

]−1 → I +
1

π
β

+ π |E |1/2

2

(
1 − e−2x0|E |1/2)

∣∣∣∣∣
p sin x0 p

(
p2 + |E |)1/2

〉〈
p sin x0 p

(
p2 + |E |)1/2

∣∣∣∣∣

+
1

π
β

+ π |E |1/2

2

(
1 + e−2x0|E |1/2)

∣∣∣∣∣
p cos x0 p

(
p2 + |E |)1/2

〉〈
p cos x0 p

(
p2 + |E |)1/2

∣∣∣∣∣
. (2.23)
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Fig. 1 3D plots of the ground state
energy E0(x0, β) and the excited
state energy E1(x0, β) as
functions of x0 and β

The latter expression does not define a bounded operator on L2(R) since the functions inside the rank one operators are manifestly

far from being square summable. However,
[
I − λ(k)Bk

x0;E

]−1
per se is not physically relevant. Nevertheless, we may exploit

Tiktopoulos’ formula (see [45, 49]), that is to say

(H0 − V + |E |)−1 � (H0 + |E |)−1/2[I − (H0 + |E |)−1/2 V (H0 + |E |)−1/2]−1
(H0 + |E |)−1/2, (2.24)

valid for any positive H0 ≥ 0 and potential V ≥ 0, in order to write the resolvent of H (k, λ(k), x0) and then perform its limit as
k → ∞:

[H (k, λ(k), x0) + |E |]−1 � (
p2 + |E |)−1/2

[
I − λ(k)Bk

x0;E

]−1 (
p2 + |E |)−1/2

→ (
p2 + |E |)−1

+
1

π
[

1
β

+ |E |1/2

2

(
1 − e−2x0|E |1/2)]

∣∣∣∣∣
p sin x0 p

p2 + |E |

〉〈
p sin x0 p

p2 + |E |

∣∣∣∣∣

+
1

π
[

1
β

+ |E |1/2

2

(
1 + e−2x0|E |1/2)]

∣∣∣∣∣
p cos x0 p

p2 + |E |

〉〈
p cos x0 p

p2 + |E |

∣∣∣∣∣
�: R(β, x0, |E |), (2.25)

where the last identity defines the operator valued function R(β, x0, |E |). The functions that determine the rank one operators are
square integrable since the squares of both functions are bounded by the integrand in:

∫ +∞

0

p2 dp
(
p2 + |E |)2 �

∫ +∞

0

1

p2 + |E | dp − 2|E |
∫ +∞

0

dp
(
p2 + |E |)2 � π

2|E |1/2 − π

4|E |1/2 � π

4|E |1/2 (2.26)

By proceeding essentially along the lines of the proof of Lemma 3.1. in [71], we may show that the limit in (2.25) is given in the
norm of trace class operators on L2(R), so that

‖R(β, x0, |E |) − [H (k, λ(k), x0) + |E |]−1 ‖T1→ 0, k → ∞ (2.27)

Finally, we should prove that the operator R(β, x0, |E |) is indeed the resolvent of a self-adjoint operator. However, such a proof
will be omitted here since it would be essentially identical to those of Theorem 1.1.1 Ch. II.1 in [1], Theorem 2.2 in [36], and
Theorem 2.1 in [59].

As fully attested by (2.25), R(β, x0, |E |) is a rank two perturbation of the free resolvent, so that it is straightforward to infer that
the operator domain of the limiting operator in p-space consists of all the vectors in the operator domain of the free Hamiltonian
and the two-dimensional subspace spanned by the vectors

f̂0(p; x0, E0(x0, β)) � p sin x0 p

p2 + |E0(x0, β)| , f̂1(p; x0, E1(x0, β)) � p cos x0 p

p2 + |E1(x0, β)| ,

which implies that the operator domain in x-space consists of all the vectors inH2, the second Sobolev space, and the two-dimensional
subspace spanned by the vectors

f0(x ; x0, E0(x0, β)) � 1

2|E0(x0, β)|1/2

d

dx

(
e−|E0(x0,β)|1/2|x−x0| − e−|E0(x0,β)|1/2|x+x0|), (2.28)

f1(x ; x0, E1(x0, β)) � 1

2|E1(x0, β)|1/2

d

dx

(
e−|E1(x0,β)|1/2|x−x0| + e−|E1(x0,β)|1/2|x+x0|), (2.29)

as follows from (2.10a) in [62]. Here E0(x0, β) (respectively, E1(x0, β)) is the zero of the denominator of the second (resp. third)
term in (2.25), so that it is nothing else but the ground state (resp. excited state) eigenenergy. The eigenvalues E0(x0, β) and E1(x0,
β), depicted as functions of both parameters in Fig. 1, will be studied in detail in the next two sections.

Let us summarise the results of the present Section as follows:
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Theorem 1 The rigorous Hamiltonian making sense of the merely heuristic expression

H (λ, x0) � − d2

dx2 − λ
[|δ′−x0

〉〈δ′−x0
|+|δ′

x0
〉〈δ′

x0
|], x0 > 0, (2.30)

is the self-adjoint operator Hsa(β, x0) whose resolvent is given by R(β, x0, |E |), defined in (2.25), for any E < 0, β �� 0, x0 > 0.
The latter is the limit, as k → +∞, in norm convergence of the resolvents of the Hamiltonians H (k, λ(k), x0) with the ultraviolet
momentum cutoff defined by (2.19) or, equivalently, (2.20). Furthermore, Hsa(β, x0), regarded as a function of β, is an analytic
family in the sense of Kato.

3 On the eigenvalues of Hsa(β, x0) as functions of x0 > 0

In this section we shall assume that x0 > 0 and the coupling parameter β < 0 is fixed. The eigenvalues of Hsa(β, x0) are determined
by the poles along the negative semiaxis E < 0 of its resolvent R(β, x0, |E |). Thus, throughout the present Section, we shall
investigate in detail the two equations determining the two eigenvalues created by the singular double well, namely the unique
solution, for any fixed β < 0, x0 > 0 and E < 0, of

1

β
+

|E |1/2

2

(
1 − e−2x0|E |1/2

)
� 0, (3.1)

for the ground state energy and the unique solution of

1

β
+

|E |1/2

2

(
1 + e−2x0|E |1/2

)
� 0, (3.2)

for the energy of the excited state.
Here a brief remark is needed. By reviewing the collection of papers previously published by our group, one may compare

equations (3.1)–(3.2) with some results obtained in [62], in particular Eqs. (2.12) and (2.11), in which a Hamiltonian similar to (1.3),
with the delta primes replaced by the deltas, was investigated. Furthermore, it is worth recalling that in [72] we encountered similar
equations for the self-adjoint Hamiltonians acting on L2(R+)

[
− d2

dx2

]

D
− λδ(x − x0),

[
− d2

dx2

]

N
− λδ(x − x0) (3.3)

with x0 > 0. Here, the subindices D and N stand for Dirichlet and Neumann boundary conditions at the origin, respectively.
For any fixed value of β, we wish to obtain the energy as a function of x0. We first note that (3.1) can be written as

x0(E0) � − 1

2|E0|1/2 ln

(
1 − 2

|β| |E0|1/2

)
> 0, (3.4)

which is well defined provided that E0 < −4/β2. Analogously, expression (3.2) admits the following version:

x0(E1) � − 1

2|E1|1/2 ln

(
2

|β| |E1|1/2 − 1

)
> 0, (3.5)

provided that − 4
β2 < E1 < − 1

β2 .
It is easy to check that both x0(E0) and x0(E1) are strictly monotonic in their arguments, E0 and E1, respectively. Therefore,

they are invertible, so that one may find the ground state energy, E0(x0), as a function of x0 > 0 within the range
(
−∞, − 4

β2

)
and

the first excited state, E1(x0), on the interval
(
− 4

β2 , − 1
β2

)
. These curves, E0(x0) and E1(x0), are plotted in Figs. 2 and 3 for various

values of β.
As attested by the plots, E1(x0) approaches asymptotically − 4

β2 from above as x0 → +∞. The ground state energy, E0(x0), has
the same limit, this time from below. As a consequence, the first excited state energy is practically indistinguishable from the ground
state energy for large values of x0, i.e. when both centres are far apart from each other. Therefore, the ionisation energy decreases
as the distance between the centres widens and vanishes in the limit x0 → +∞.

This spectral feature, that may be called asymptotic degeneracy, is a feature shared by both the Hamiltonian (1.3) and its twin
Hamiltonian with the delta primes replaced by deltas, i.e.

− d2

dx2 − λ[δ(x + x0) + δ(x − x0)], (3.6)

studied in detail in [62], both eigenvalues of which converge to − λ2

4 . The latter is the eigenvalue of the Hamiltonian −d2/dx2 −
λδ(x − x0), λ > 0 for any x0 along the real line. In our case, both eigenvalues converge to − 4

β2 , which is precisely the eigenvalue

of the self-adjoint determination of the heuristic Hamiltonian −d2/dx2 − λδ′(x − x0), λ > 0 for any x0 along the real line, β being
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Fig. 2 Plot of the ground state
energy E0(x0) (red curve) and the
excited state energy E1(x0) (blue
curve) as functions of x0 for
β � −1/2 (left) and β � −1
(right)

Fig. 3 Plot of the ground state
energy E0(x0) (red curve) and the
excited state energy E1(x0) (blue
curve) as functions of x0 for
β � −5 (left) and β � −15 (right)

the coupling parameter arising from the renormalisation required to achieve the self-adjoint determination (see [1, 2]). This kind of
asymptotic degeneracy also appears in the analysis of the self-adjoint determination of the semi-relativistic Salpeter Hamiltonian

√
p2 + m2 − λ[δ(x + x0) + δ(x − x0)], (3.7)

which was analysed in detail in [59]. In this case, the limit value of the eigenvalues as x0 → ∞ just coincides with the only eigenvalue
of the self-adjoint determination of

√
p2 + m2 − λδ(x − x0), λ > 0 for any x0 along the real line. The self-adjoint determinations

of these two Hamiltonians require an appropriate renormalisation procedure [26, 34, 59].
The present model shares some spectral properties with other models previously investigated by our group [38, 39, 59, 62, 73]

in the sense that the greater the distance between two impurities is, the less localised the ground state will be. Also, as stated in
[38, 39, 73], the ground state energy behaves similarly even if the free Hamiltonian is given by that of the harmonic oscillator in
one, two or three dimensions. A similar phenomenon was observed by Brüning et al. [37] in a study of the ground state energy of
the three-dimensional harmonic oscillator with a point perturbation, in particular with respect to the distance between the location
of the bottom of the harmonic potential and that of the point perturbation. It is worth pointing out that this Hamiltonian serves as a
model for a three-dimensional quantum dot.

Once we have mentioned the analogies between the models given by Hamiltonians (1.3), with two delta primes, and (3.6), with
two deltas, it is time to stress their differences. The discrete spectrum of the self-adjoint determination of (1.3) consists of two distinct
eigenvalues, as follows from (2.25) and gets visualised in Figs. 1 and 2. As the distance between the centres vanishes, i.e. in the limit
x0 → 0, E1(x0) converges to −1/β2, a value which, for any finite β < 0, is always below the minimum of σac(Hsa(β, x0) ) � [0,
+∞). Therefore, there is no emergence of this eigenvalue out of the absolutely continuous spectrum of Hsa(β, x0) for any finite
negative value of the coupling β. On the other hand, the discrete spectrum of (3.6) has a bound state and admits a second one, with
higher energy, provided that λx0 > 1, with λ > 0. As rigorously shown in [58], this excited state emerges from the absolutely
continuous spectrum of (3.6) at x0 � λ−1. It is also interesting to remark that, as shown in [59], the proper self-adjoint determination
of (3.7) is somehow an intermediate case between the two we have just mentioned when we consider the behaviour of the excited
state energy. There, the emergence of the second eigenvalue out of the absolutely continuous spectrum occurs exactly at x0 � 0.
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Fig. 4 Plot of the ground state
energy E0(β) (red curve) and the
excited state energy E1(β) (blue
curve) as functions of β for
x0 � 0.2 (left) and x0 � 0.5
(right)

4 On the eigenvalues of Hsa(β, x0) as functions of β < 0

In the present Section we adopt the converse point of view with respect to that of the previous one. Now, x0 > 0, the distance
between the centres, will be held fixed and the coupling parameter β < 0 will vary. Our goal is the analysis of the behaviour of both
eigenvalues of Hsa(β, x0) as functions of β.

From (3.1) and (3.2), respectively, we obtain the following equations that are the counterparts of (3.4) and (3.5):

β(E0) � − 2

|E0|1/2
(
1 − e−2x0|E0|1/2) , (4.1)

and

β(E1) � − 2

|E1|1/2
(
1 + e−2x0|E1|1/2) . (4.2)

As a consequence of (4.1), β(E0) is a strictly decreasing function on its domain (−∞, 0) with range (−∞, 0). This implies the
existence of the inverse function E0(β), which gives the ground state energy in terms of the coupling constant for any value of
x0 > 0. Due to (4.2), the same holds for β(E1).

In Fig. 4, we see the plots of E0(β) and E1(β) for two different values of x0. Observe that the larger x0 is, the closer the energies
of both eigenstates become.

5 Resonances

In this Section, we show that Hsa(β, x0) has an infinite number of resonances characterised as pairs of complex poles of the resolvent
of this Hamiltonian. In the momentum representation, these pairs of poles are located in the lower half of the complex plane. Each
pair is symmetrically spaced with respect to the imaginary axis.

Looking at (2.25), we see that the search for complex poles of the resolvent R(β, x0, |E |) is just the search for complex solutions
of both (3.1) and (3.2). Let us start with (3.1). Since the energies are negative, let us replace |E| by −E . Since we are looking for
complex solutions of (3.1), we write

√−E � −i
√
E � −i(k1 + ik2), where ki , i � 1, 2, are real numbers. Note that the energy E

always appears under a square root either in (3.1) or in (3.2), so that this transformation is always reasonable. At the same time, we
go from the energy to the momentum representation.

Then, let us define q1 :� 2x0k1, q2 :� 2x0k2 and α :� 4x0/β < 0. With these definitions, (3.1) is transformed into

α � (iq1 − q2)
(

1 − e−q2eiq1
)
. (5.1)

This is a complex equation, which splits into a system of two real transcendental equations, which are after some algebra:

(q2 + α)eq2 � q2 cos q1 + q1 sin q1, (5.2)

and

eq2 � cos q1 − q2
sin q1

q1
, (5.3)
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Fig. 5 Plot of the resonances associated to Eqs. (5.2) and (5.3), which coincide with the intersection of the orange and blue curves. From left to right, and
from up to down, α � −6, −5, −4, −3, −2, −1

where (5.2) and (5.3) correspond to the real and imaginary parts of (5.1), respectively. Observe that these equations are invariant
under the transformation q1 → −q1. This fact is important, since all possible complex solutions of (5.1), and therefore of (3.1)
appear into pairs symmetrically located with respect to the imaginary axis.

Then, the intersections of curves (5.2) and (5.3), orange and blue, respectively, in Fig. 5, give the resonance poles on the
momentum plane. Observe that these poles come into pairs symmetrically spaced with respect to the imaginary axis and have a
negative imaginary part. According to a general theory [74, 75], these pairs of poles correspond to scattering resonances. In Fig. 5,
we show the location for the first two resonances for various values of α. On the graphics one sees that the larger the value of q1 for
a resonance is, the closer the resonance pole to the q2 � 0 axis will be.

Once we have obtained the resonances as the complex zeroes of (3.1), we may repeat the steps with (3.2). Here, the counterpart
of (5.2) is

(q2 + α)eq2 � −(q2 cos q1 + q1 sin q1), (5.4)

and of (5.3):

eq2 � −
(

cos q1 − q2
sin q1

q1

)
. (5.5)

In Fig. 6, we depict the first two resonance poles for this second pair of equations as the intersections of the blue and orange curves,
for various values of α. Curves (5.5) and in (5.4) are depicted in blue and orange, respectively. Observe that in both cases the
behaviour of such resonance poles is quite similar.

At this stage we want to show that all resonance poles on the momentum plane (q1, q2) lie in the open lower half plane. In order
to achieve this, we need only prove that in the curves (5.3) and (5.5) one necessarily has that q2 ≤ 0. In fact from both (5.3) and
(5.5), it follows that

0 < eq2 ≤ |cos q1|+|q2|
∣∣∣∣
sin q1

q1

∣∣∣∣ ≤ 1 + |q2|< e|q2|. (5.6)

The latter inequality is strict for q2 �� 0, so that if q2 were positive, we should have eq2 < eq2 , which is a nonsense. Therefore,
q2 ≤ 0 for all curves (5.3) and (5.5), so that they lie in the lower half plane of the plane (q1, q2).

In addition, if q2 � 0 in (5.3) (real axis), then, q1 � 2πn, n � 0, ±1, ±2, . . . . If q2 � 0 in (5.5), then, q1 � (2n − 1)π , n � 0,
±1, ±2, . . . . It is not difficult to show that all these points are relative maxima of (5.3) and (5.5), respectively. These facts are clearly
shown in Figs. 5 and 6.
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Fig. 6 Plot of the resonances associated to Eqs. (5.4) and (5.5), which coincide with the intersection of the orange and blue curves. From left to right, and
from up to down, α � −11, −9, −7, −5, −3, −1

Finally, we note that this model does not show either anti-bound states, also called virtual states [74, 76, 77], or redundant states
[78–80].

6 On the behaviour of Hsa(β, x0) as x0 → 0+

Throughout this section β �� 0 will be assumed to be fixed. In order to obtain the limit of Hsa(β, x0) as the distance between both
centres vanishes, we are going to study this limit in the resolvent Eqs. (2.25), where we consider each term separately. First of all,
note that as x0 → 0+, we have that

1

π
[

1
β

+ |E |1/2

2

(
1 − e−2x0|E |1/2)] → β

π
. (6.1)

Then, observe that for any x0 > 0, we have the following upper bound:
∥∥∥∥
p sin x0 p

p2 + |E |
∥∥∥∥

2

2
�

∫ ∞

−∞
p2 sin2 x0 p
(
p2 + |E |)2 dp ≤

∫ ∞

−∞
p2

(
p2 + |E |)2 dp � π

2|E |1/2 , (6.2)

where ||−||2 is the norm on L2(R). Then, if we apply the Lebesgue dominated theorem to the first integral on (6.2), we can conclude
that

lim
x0→0+

∥∥∥∥
p sin x0 p

p2 + |E |
∥∥∥∥

2
� 0. (6.3)

By looking at the second term in (2.25), we note that it is a rank one operator acting on the subspace of even functions. Due to (6.3),
it is not difficult to show that its trace norm vanishes as x0 → 0+. The proof is the following: Let ||−||T1 be the trace norm. Then,

∥∥∥∥∥

∣∣∣∣∣
p sin x0 p

p2 + |E |

〉〈
p sin x0 p

p2 + |E |

∣∣∣∣∣

∥∥∥∥∥
T1

�
∥∥∥∥
p sin x0 p

p2 + |E |
∥∥∥∥

2

2
→ 0, (6.4)

as x0 → 0+.
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Then, we turn our attention to the last term in the resolvent in (2.25), which is again a rank one operator. First of all, as x0 → 0+,
we have the following limit

1

π
[

1
β

+ |E |1/2

2

(
1 + e−2x0|E |1/2)] → 1

π
(

1
β

+ |E |1/2
) . (6.5)

In addition, for arbitrary f , g ∈ L2(R), we have the following limit as x0 → 0+:
(

f ,

∣∣∣∣∣
p cos x0 p

p2 + |E |

〉〈
p cos x0 p

p2 + |E |

∣∣∣∣∣
g

)

→
(

f ,

∣∣∣∣∣
p

p2 + |E |

〉〈
p

p2 + |E |

∣∣∣∣∣
g

)

. (6.6)

The results given by Eqs. (6.5) and (6.6), show the convergence, in the weak topology of bounded operators, of the third term of
(2.25) to

1

π
(

1
β

+ |E |1/2
)

∣∣∣∣∣
p

p2 + |E |

〉〈
p

p2 + |E |

∣∣∣∣∣
. (6.7)

Furthermore, this convergence actually holds in the trace norm topology. Using again the dominated convergence theorem, taking
the limit as x0 → 0+, we have the following:

∥∥∥∥∥

∣∣∣∣∣
p cos x0 p

p2 + |E |

〉〈
p cos x0 p

p2 + |E |

∣∣∣∣∣

∥∥∥∥∥
T1

�
∥∥∥∥
p cos x0 p

p2 + |E |
∥∥∥∥

2

2
�

∫ ∞

−∞
p2 cos2 x0 p
(
p2 + |E |)2 dp

→
∫ ∞

−∞
p2

(
p2 + |E |)2 dp �

∥∥∥∥
p

p2 + |E |
∥∥∥∥

2

2
�

∥∥∥∥∥

∣∣∣∣∣
p

p2 + |E |

〉〈
p

p2 + |E |

∣∣∣∣∣

∥∥∥∥∥
T1

, (6.8)

which implies the above-mentioned convergence in the trace norm topology as a consequence of Theorem 2.21 in [81].
Therefore, as x0 → 0+, we have:

∥∥∥∥∥∥
[Hsa(β, x0) + |E | ]−1 − (

p2 + |E |)−1 − 1

π
(

1
β

+ |E |1/2
)

∣∣∣∣∣
p

p2 + |E |

〉〈
p

p2 + |E |

∣∣∣∣∣

∥∥∥∥∥∥
T1

→ 0. (6.9)

At this stage, in principle, we should prove that the limiting operator

(
p2 + |E |)−1

+
1

π
(

1
β

+ |E |1/2
)

∣∣∣∣∣
p

p2 + |E |

〉〈
p

p2 + |E |

∣∣∣∣∣
(6.10)

is the resolvent of a self-adjoint operator. However, by comparing the second term in (6.10) with (5.8) in [62] (taking account of the
fact that in [62] the negative sign in front of β had been introduced by default), it is almost immediate to realise that, for any β < 0
and E < 0,

(
p2 + |E |)−1

+
1

π
(

1
β

+ |E |1/2
)

∣∣∣∣∣
p

p2 + |E |

〉〈
p

p2 + |E |

∣∣∣∣∣
� (


2β + |E | )−1, (6.11)

where following [1], 
2β represents −d2/dx2 on W 2
2 (R/{0}) with the following two-sided boundary conditions at the origin:

ψ ′(0+) � ψ ′(0−) and ψ(0+)−ψ(0−) � 2βψ ′(0), for any ψ(x) in the domain of 
2β . These are exactly the conditions that determine

the nonlocal interaction 2β δ′(x), so that 
2β is the self-adjoint determination of the heuristic expression − d2

dx2 − 2 λ |δ′〉〈δ′|.
In conclusion, the self-adjoint Hamiltonian Hsa(β, x0) converges in the norm resolvent sense to the self-adjoint operator 
2β as

x0 → 0+. We may say that, as the distance between the centres vanishes, these two identically attractive δ′-interactions smoothly
coalesce and become a single attractive δ′-interaction supported at the origin with strength 2β.

With regard to the spectrum of 
2β , we can say that, for any β < 0, this operator has one simple negative eigenvalue, E0(β) �
−1/β2 and its absolutely continuous spectrum is [0, ∞).

All these results were expected after looking at the behaviour of the spectral curves as functions of x0 depicted in Figs. 1 and
2. In fact, while the lower curve, corresponding to the ground state as a function of x0 diverges negatively in the limit x0 → 0+,
the excited state always approaches the value −1/β2. We may say that since the principle of noncontraction of the spectrum holds
under norm resolvent convergence [45], the value −1/β2 may not abruptly disappear from the spectrum of the limiting operator. It
is worth stressing that this principle does not hold under strong resolvent convergence, which only ensures that the spectrum of the
limiting operator may not suddenly expand [45].

We may summarise the latest results as follows:
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Theorem 2 For any fixed value of β �� 0, the self-adjoint Hamiltonian Hsa(β, x0) whose resolvent is given by R(β, x0, |E |) in
(2.25), for any E < 0, x0 > 0, converges in the norm resolvent sense to the self-adjoint Hamiltonian 
2β , namely the negative
Laplacian with the well-known δ′-conditions (1.11) with coupling constant 2β at the origin, as x0 → 0+.

7 Some further discussions and concluding remarks

In previous articles where the free Hamiltonian has been either H0 � −d2/dx2 (see [62]) or H0 � 1
2

[
− d2

dx2 + x2
]

(see [73]), we

have studied the perturbation given by −λ[δ(x + x0) + δ(x − x0)], λ > 0. As the half-distance between the two centres x0 → 0+,
each Hamiltonian converges, in the norm resolvent sense, to the respective Hamiltonian H0 − 2λ δ(x). Note that in the limit the
coupling constant gets doubled. This is somehow an expected result, as the one-dimensional δ-perturbation is not too singular since
it is an infinitesimally small perturbation of either free Hamiltonian, as a consequence of the KLMN Theorem [48]. This implies
that the coupling constant renormalisation is not required in this case and the one-dimensional δ behaves essentially like a short
range smooth potential.

A completely different situation arises with the δ-perturbation of the free Salpeter Hamiltonian [26, 33, 34, 59] given by

H0 �
√

− d2

dx2 + m2 (7.1)

In this case the KLMN theorem does not hold, so that the one-dimensional Dirac distribution is no longer infinitesimally small
with respect to H0. Therefore, the renormalisation of the coupling constant is needed in order to define rigorously the self-adjoint
operator, H (β, x0), making sense of the heuristic expression H0 − λ[δ(x + x0) + δ(x − x0)], with H0 as in (7.1), see also (3.7).
Here β is the coupling parameter arising from the renormalisation procedure. It has been rigorously proved [59] that in the limit as
x0 → 0+, the self-adjoint operator H (β, x0) does not converge to H (2β, 0). Thus, the two point interactions do not merge smoothly
at the origin. This pathology has a cure, that is to say the renormalised strength parameter is to be made dependent on the distance
between the centres, β ≡ β(x0). Then, one shows that H (β(x0), x0) converges in the norm resolvent sense to H (2β, 0), thus making
the smooth merging of the two point interactions possible.

A similar situation occurs for singular perturbations either of H0 � −� or H0 � 1
2 [−� + |x|2] in two dimensions, with centres

at (−x0, 0) and (x0, 0), or three dimensions with centres at (−x0, 0, 0) and (x0, 0, 0) [38, 39, 56, 58].
In view of the above remarks, it is slightly bewildering that two extremely singular δ′-interactions, which do require a renormal-

isation procedure in order to be rigorously defined as perturbations of the free Hamiltonian H0 � − d2

dx2 , can coalesce smoothly as
the distance between the centres vanishes, as shown in the present manuscript. We propose a possible explanation for this difference:
as a matter of fact, what really matters is the behaviour of E1(x0) in a right neighbourhood of x0 � 0, due to the principle of noncon-
traction of the spectrum under norm resolvent convergence. The fact that H (2 β, 0) and Hsa(β, x0) are defined by renormalisation
does not really matter, because the symmetric ground state disappears in the limit, differently from the Salpeter Hamiltonian or the
2D/3D Hamiltonians studied in the aforementioned articles.

The latter fact leads us to point out a rather remarkable phenomenon exhibited by this simple one-dimensional model: while for
any x0 > 0, the ground state wave function is clearly symmetric, at the critical value x0 � 0 the wave function of the unique bound
state becomes antisymmetric. It may be worth noting that this spectral phenomenon is somewhat reminiscent of the one described
by Klaus in [82] dealing with the Hamiltonian with an attractive Coulomb potential in one dimension and its approximants involving
a cutoff. It is worth stressing that Klaus’ rigorous functional analytic approach represented a major contribution towards a better
understanding of this model.

Remarkably, this kind of symmetry reversal also occurs when:
i.) The coupling parameter of an attractive nonlocal δ′-interaction centred at the origin, perturbing the Hamiltonian of the one-

dimensional harmonic oscillator, exceeds the critical value β0 � �(1/4)
2�(3/4) ≈ 1.47934, as shown in [83]. See also [51, 71].

ii.) The coupling parameter of an attractive nonlocal δ′-interaction centred at the origin, perturbing the Hamiltonian of the
one-dimensional conic or V-shaped oscillator, exceeds the critical value β0 � − Ai(0)

Ai ′(0) ≈ 1.37172, as shown in [83] (see [10] as
well).

Both models exhibit the phenomenon called level crossing of eigenvalues, thoroughly discussed in [83], which induces the
double degeneracy of the ground states for critical values of the coupling constant, as given before. As shown in detail in[1], this

double degeneracy also manifests itself when the operator
(
− d2

dx2

)

θ
, the one-dimensional negative Laplacian with the well-known

θ -boundary conditions acting on L2[−a/2, a/2], is perturbed by an attractive nonlocal δ′ interaction supported at the origin. See

[84] for a definition of the operator
(
− d2

dx2

)

θ
and its role as a fibre of − d2

dx2 , and [1] for a self-adjoint determination of the heuristic

Hamiltonian
(
− d2

dx2

)

θ
+ λ δ′(x) and its role as a fibre of the negative Laplacian in one dimension decorated with a periodic array

of nonlocal δ′ interactions.
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As to our concluding remarks, we see how apparently simple models provide both a complexity of interesting features and
exciting solvable mathematical models. In the present article, we have studied the one-dimensional negative Laplacian decorated
with two equally weighted δ′-interactions symmetrically distributed with respect to the origin.

First of all, the need for a proper self-adjoint determination of the Hamiltonian, which implies the use of techniques such as
renormalisation, is to be stressed. This is far from being trivial since it uses a determination of the resolvent of the self-adjoint
operator as a norm resolvent limit of the resolvents of a net of approximating Hamiltonians.

The use of the resolvent solves the eigenvalue problem for the studied Hamiltonian. In particular, we have shown that this model
has two eigenvalues and have studied their behaviour as functions of x0. We have shown the existence of resonances and the absence
of other scattering features such as anti-bound or redundant states.

We have also taken the limit as x0 → 0+ and shown that in this limit the two perturbations merge smoothly yielding a single
point perturbation with double strength. We have compared this model with others investigated in the past.
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